【中考数学复习】2022中考数学几何模型(费马点,胡不归,阿氏圆)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

12讲通关中考数学几何模型
中考数学几何模型1:截长补短模型 (1)
中考数学几何模型2:共顶点模型 (9)
中考数学几何模型3:对角互补模型 (16)
中考数学几何模型4:中点模型 (25)
中考数学几何模型5:角含半角模型 (35)
中考数学几何模型6:弦图模型 (44)
中考数学几何模型7:轴对称最值模型 (53)
中考数学几何模型8:费马点最值模型 (64)
中考数学几何模型9:隐圆模型 (72)
中考数学几何模型10:胡不归最值模型 (84)
中考数学几何模型11:阿氏圆最值模型 (97)
中考数学几何模型12:主从联动模型 (106)
中考数学几何模型1:截长补短模型
名师点睛拨开云雾开门见山有一类几何题其命题主要是证明三条线段长度的“和”或"差”及其比例关系.这一类题目一般可以采取“截长”或“补短”的方法来进行求解.所谓“截长”,就是将三者中最长的那条线段一分为二,使其中的一条线段与已知线段相等,然后证明其中的另一段与已知的另一段的大小关系.所谓“补短”,就是将一个已知的较短的线段延长至与另一个已知的较短的长度相等.然后求出延长后的线段与最长的已知线段的关系.有的是采取截长补短后,使之构成某种特定的三角形进行求解.
典题探究启迪思维探究重点例题1.如图,AB∥CD,BE平分∠ABC,CE平分∠BCD,若E在AD上.
求证:(1)BE⊥CE;(2)BC=AB+CD.
变式练习>>>
1.已知△ABC的内角平分线AD交BC于D,∠B=2∠C.求证:AB+BD=AC.
例题2.已知△ABC中,∠A=60°,BD,CE分别平分∠ABC和∠ACB,BD、CE交于点O,试判断BE,CD,BC的数量关系,并说明理由.
2.已知:△ABC中,AB=AC,D为△ABC外一点,且∠ABD=60°,∠ADB=90°﹣∠BDC.试判断线
段CD、BD与AB之间有怎样的数量关系?并证明你的结论.
例题3.如图所示,在五边形ABCDE中,AB=AE,BC+DE=CD,∠ABC+∠AED=180°,求证:DA平分∠CDE.
3.如图,△ABC是等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,M是AB延长线上一点,N是CA延长线上一点,且∠MDN=60°.试探究BM、MN、CN之间的数量关系,并给出证明.
例题4.在四边形ABDE中,C是BD边的中点.
(1)如图(1),若AC平分∠BAE,∠ACE=90°,则线段AE、AB、DE的长度满足的数量关系为
;(直接写出答案)
(2)如图(2),AC平分∠BAE,EC平分∠AED,若∠ACE=120°,则线段AB、BD、DE、AE的长度满足怎样的数量关系?写出结论并证明;
(3)如图(3),BD=8,AB=2,DE=8,若ACE=135°,求线段AE长度的最大值.
例题5.在△ABC中,∠BAC=90°.
(1)如图1,直线l是BC的垂直平分线,请在图1中画出点A关于直线l的对称点A′,连接A′C,A′B,A′C与AB交于点E;
(2)将图1中的直线A′B沿着EC方向平移,与直线EC交于点D,与直线BC交于点F,过点F作直线AB的垂线,垂足为点H.
①如图2,若点D在线段EC上,请猜想线段FH,DF,AC之间的数量关系,并证明;
②若点D在线段EC的延长线上,直接写出线段FH,DF,AC之间的数量关系.
例题6.如图1,在△ABC中,∠ACB=2∠B,∠BAC的平分线AO交BC于点D,点H为AO上一动点,过点H作直线l⊥AO于H,分别交直线AB、AC、BC、于点N、E、M.
(1)当直线l经过点C时(如图2),求证:BN=CD;
(2)当M是BC中点时,写出CE和CD之间的等量关系,并加以证明;
(3)请直接写出BN、CE、CD之间的等量关系.
达标检测领悟提升强化落实1.如图,在△ABC中,∠BAC=60°,AD是∠BAC的平分线,且AC=AB+BD,求∠ABC的度数.
2.如图,在四边形ABCD中,AB∥DC,E为BC边的中点,∠BAE=∠EAF,AF与DC的延长线相交于点F,试探究线段AB与AF,CF之间的数量关系,并证明你的结论.
3.如图,△ABC是等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角∠NDM,角的两边分别交AB、AC边于M、N两点,连接MN.试探究BM、MN、CN之间的数量关系,并加以证明.
4.如图,▱ABCD中,E是BC边的中点,连接AE,F为CD边上一点,且满足∠DFA=2∠BAE.
(1)若∠D=105°,∠DAF=35°.求∠FAE的度数;
(2)求证:AF=CD+CF.
5.如图所示,在正方形ABCD的边CB的延长线上取点F,连结AF,在AF上取点G,使得AG=AD,连结DG,过点A作AE⊥AF,交DG于点E.
(1)若正方形ABCD的边长为4,且AB=2FB,求FG的长;
(2)求证:AE+BF=AF.
6.如图,在四边形ABCD中,AB=AD,∠BAD=60°,∠BCD=120°,连接AC,BD交于点E.
(1)若BC=CD=2,M为线段AC上一点,且AM:CM=1:2,连接BM,求点C到BM的距离.(2)证明:BC+CD=AC.
7.如图,在正方形ABCD 中,点P 是AB 的中点,连接DP ,过点B 作BE ⊥DP 交DP 的延长线于点E ,连接AE ,过点A 作AF ⊥AE 交DP 于点F ,连接BF .
(1)若AE =2,求EF 的长;
(2)求证:PF =EP +EB .
中考数学几何模型2:共顶点模型名师点睛拨开云雾开门见山
共顶点模型,亦称“手拉手模型”,是指两个顶角相等的等腰或者等边三角形的顶点重合,两个三角形的两条腰分别构成的两个三角形全等或者相似。

寻找共顶点旋转模型的步骤如下:
(1)寻找公共的顶点
(2)列出两组相等的边或者对应成比例的边
(3)将两组相等的边分别分散到两个三角形中去,证明全等或相似即可。

两等边三角形
两等腰直角三角形两任意等腰三角形
*常见结论:连接BD 、AE 交于点F ,连接CF ,则有以下结论:
(1)BCD ACE
≅△△(2)AE BD
=(3)AFB DFE
∠=∠(4)FC BFE
∠平分
典题探究启迪思维探究重点例题1.以点A为顶点作等腰Rt△ABC,等腰Rt△ADE,其中∠BAC=∠DAE=90°,如图1所示放置,使得一直角边重合,连接BD、CE.
(1)试判断BD、CE的数量关系,并说明理由;
(2)延长BD交CE于点F试求∠BFC的度数;
(3)把两个等腰直角三角形按如图2放置,(1)、(2)中的结论是否仍成立?请说明理由.
变式练习>>>
1.已知:如图,△ABC和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°.
(1)求证:BD=AE.
(2)若∠ABD=∠DAE,AB=8,AD=6,求四边形ABED的面积.
例题2.如图,等边△ABC,等边△ADE,等边△DBF分别有公共顶点A,D,且△ADE,△DBF都在△ADB内,求证:CD与EF互相平分.
变式练习>>>
2.已如图,已知等边三角形ABC,在AB上取点D,在AC上取点E,使得AD=AE,作等边三角形PCD,QAE和RAB,求证:P、Q、R是等边三角形的三个顶点.
例题3.在等边△ABC与等边△DCE中,B,C,E三点共线,连接BD,AE交于点F,连接CF.
(1)如图1,求证:BF=AF+FC,EF=DF+FC;
(2)如图2,若△ABC,△DCE为等腰直角三角形,∠ACB=∠DCE=90°,则(1)的结论是否成立?若不成立,写出正确结论并证明.
例题4.【问题探究】(1)如图①已知锐角△ABC,分别以AB、AC为腰,在△ABC的外部作等腰Rt△ABD 和Rt△ACE,连接CD、BE,试猜想CD、BE的大小关系;(不必证明)
【深入探究】(2)如图②△ABC、△ADE都是等腰直角三角形,点D在边BC上(不与B、C重合),连接EC,则线段BC,DC,EC之间满足的等量关系式为;(不必证明)
线段AD2,BD2,CD2之间满足的等量关系,并证明你的结论;
【拓展应用】(3)如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.
例题5.如图1,在△ABC中,BC=4,以线段AB为边作△ABD,使得AD=BD,连接DC,再以DC为边作△CDE,使得DC=DE,∠CDE=∠ADB=α.
(1)如图2,当∠ABC=45°且α=90°时,用等式表示线段AD,DE之间的数量关系;
(2)将线段CB沿着射线CE的方向平移,得到线段EF,连接BF,AF.
①若α=90°,依题意补全图3,求线段AF的长;
②请直接写出线段AF的长(用含α的式子表
示).
达标检测领悟提升强化落实1.如图,在等边△ABC与等边△DCE中,B,C,E三点共线,BD交AC于点G,AE交DC于点H,连接GH.求证:GH∥BE.
2.如图,在正方形ABCD内取一点E,连接AE,BE,在△ABE外分别以AE,BE为边作正方形AEMN和EBFG,连接NC,AF,求证:NC∥AF.
3.如图,在等腰Rt△ABC与等腰Rt△DCE中,∠ABC=∠DCE=90°,连接AD,BE,求证:
AB2+DE2=AD2+BE2.
4.如图,在△ABC中,AB=AC=10,∠BAC=45°,以BC为腰在△ABC外部作等腰Rt△BCD,∠BCD=90°,连接AD,求AD的长.
5.【发现问题】如图1,已知△ABC,以点A为直角顶点、AB为腰向△ABC外作等腰直角△ABE.请你以A为直角顶点、AC为腰,向△ABC外作等腰直角△ACD(不写作法,保留作图痕迹).连接BD、CE.那BD与CE的数量关系是.
【拓展探究】如图2,已知△ABC,以AB、AC为边向外作正方形AEFB和正方形ACGD,连接BD、CE,试判断BD与CE之间的数量关系,并说明理由.
【解决问题】如图3,有一个四边形场地ABCD,∠ADC=60°,BC=15,AB=8,AD=CD,求BD的最大值.
6.已知线段AB ⊥直线l 于点B ,点D 在直线l 上,分别以AB 、AD 为边作等边三角形ABC 和等边三角形ADE ,直线CE 交直线l 于点F .
(1)当点F 在线段BD 上时,如图①,求证:DF =CE ﹣CF ;
(2)当点F 在线段BD 的延长线上时,如图②;当点F 在线段DB 的延长线上时,如图③,请分别写出线段DF 、CE 、CF 之间的数量关系,在图②、图③中选一个进行证明;
(3)在(1)、(2)的条件下,若BD =2BF ,EF =6,则CF =.
中考数学几何模型3:对角互补模型名师点睛拨开云雾开门见山共顶点模型,即四边形或构成的几何图形中,相对的角互补。

主要:含90°的对角互补,含120°的对角互补,两种类型,种类不同,得出的个别结论会有所区别。

解决此类题型常用到的辅助线画法主要有两种:旋转法和过顶点作两垂线.
类型一:含90°的对角互补模型
(1)如图,∠AOB=∠DCE=90°,OC 平分∠AOB ,则有以下结论:
CD CE =①;
OD OE +②

2
1+=2
OCD OCE S S OC ③作法1作法2
(2)如图,∠AOB=∠DCE=90°,OC 平分∠AOB ,当∠DCE 的一边与AO 的延长线交于点D 时,则有以下结论:
CD CE =①;
-OE OD ②

2
1-=2
OCE OCD S S OC ③作法1
作法2
类型二:含120°的对角互补模型
(1)如图,∠AOB=2∠DCE=120°,OC 平分∠AOB ,则有以下结论:CD CE =①;
=OD OE OC +②;
2
3+=4
OCD OCE S S ③作法1作法2
(2)如图,∠AOB=∠DCE=90°,OC 平分∠AOB ,当∠DCE 的一边与AO 的延长线交于点D 时,则有以下结论:
CD CE =①;
-OE OD ②

2
1-=2
OCE OCD S S OC ③作法1作法2典题探究启迪思维探究重点例题1.如图,正方形ABCD 与正方形OMNP 的边长均为10,点O 是正方形ABCD 的中心,正方形OMNP 绕O 点旋转,证明:无论正方形OMNP 旋转到何种位置,这两个正方形重叠部分的面积总是一个定值,并求这个定值.
变式练习>>>
1.角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.
(1)求证:OM=ON.
(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.
例题2.四边形ABCD被对角线BD分为等腰直角△ABD和直角△CBD,其中∠A和∠C都是直角,另一条对角线AC的长度为2,求四边形ABCD的面积.
变式练习>>>
2.如图,在四边形ABCD中,∠A=∠C=90°,AB=AD,若这个四边形的面积为12,则BC+CD=_______.
例题3.如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,Rt△MPN,∠MPN=90°,点P在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP=.
变式练习>>>
3.如图,在矩形ABCD中,AB=3,BC=5,点E在对角线AC上,连接BE,作EF⊥BE,垂足为E,直线EF交线段DC于点F,则=()
A.B.C.D.
例题4.用两个全等且边长为4的等边三角形△ABC和△ACD拼成菱形ABCD.把一个60°角的三角尺与这个菱形叠合,使三角尺的60°角的顶点与点A重合,两边分别与AB,AC重合,将三角尺绕点A按逆时针方向旋转.
(1)当三角尺的两边分别与菱形的两边BC,CD相交于点E,F时,(如图1),通过观察或测量BE,CF 的长度,你能得出什么结论?(直接写出结论,不用证明);
(2)当三角尺的两边分别与菱形的两边BC,CD的延长线相交于点E,F时(如图2),你在(1)中得到的结论还成立吗?说明理由;
(3)在上述情况中,△AEC的面积是否会等于?如果能,求BE的长;如果不能,请说明理由.
变式练习>>>
4.我们规定:横、纵坐标相等的点叫做“完美点”.
(1)若点A(x,y)是“完美点”,且满足x+y=4,求点A的坐标;
(2)如图1,在平面直角坐标系中,四边形OABC是正方形,点A坐标为(0,4),连接OB,E点从O向B运动,速度为2个单位/秒,到B点时运动停止,设运动时间为t.
①不管t为何值,E点总是“完美点”;
②如图2,连接AE,过E点作PQ⊥x轴分别交AB、OC于P、Q两点,过点E作EF⊥AE交x轴于点F,问:当E点运动时,四边形AFQP的面积是否发生变化?若不改变,求出面积的值;若改变,请说明理由.
例题5.已知,点P是∠MON的平分线上的一动点,射线PA交射线OM于点A,将射线PA绕点P逆时针旋转交射线ON于点B,且使∠APB+∠MON=180°.
(1)利用图1,求证:PA=PB;
=3S△PCB时,求PB与PC的比值;
(2)如图2,若点C是AB与OP的交点,当S
△POB
(3)若∠MON=60°,OB=2,射线AP交ON于点D,且满足且∠PBD=∠ABO,请借助图3补全图形,并求OP的长.
达标检测领悟提升强化落实1.如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D、E分别在AC、BC边上运动,且保持AD=CE,连结DE、DF、EF,在此运动变化的过程中,下列结论:①△DEF是等腰直角三角形;②四边形CDFE不可能为正方形;③四边形CDFE的面积保持不变;④DE长度的最小值为4;⑤△CDE面积的最大值为8,其中正确的结论是______________.
2.如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为8,求BE的长.
3.如图,正方形ABCD的边长为6,点O是对角线AC,BD的交点,点E在CD上,且DE=2CE,连接BE.过点C作CF⊥BE,垂足为点F,连接OF.求:
(1)CF的长;
(2)OF的长.
4.如图①,∠QPN的顶点P在正方形ABCD两条对角线的交点处,∠QPN=α,将∠QPN绕点P旋转,旋
转过程中∠QPN的两边分别与正方形ABCD的边AD和CD交于点E和点F(点F与点C,D不重合).(1)如图①,当α=90°时,DE,DF,AD之间满足的数量关系是;
(2)如图②,将图①中的正方形ABCD改为∠ADC=120°的菱形,其他条件不变,当α=60°时,(1)中的结论变为DE+DF=AD,请给出证明;
(3)在(2)的条件下,若旋转过程中∠QPN的边PQ与射线AD交于点E,其他条件不变,探究在整个运动变化过程中,DE,DF,AD之间满足的数量关系,直接写出结论,不用加以证明.
5.“如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D.”这里,根据已学的相似三角形的知识,易证:=.在图1这个基本图形的基础上,继续添加条件“如图2,点E是直线AC上一动点,连接
DE,过点D作FD⊥ED,交直线BC于点F,设=.”
(1)探究发现:如图②,若m=n,点E在线段AC上,则=;
(2)数学思考:
①如图3,若点E在线段AC上,则=(用含m,n的代数式表示);
②当点E在直线AC上运动时,①中的结论是否仍然成立?请仅就图4的情形给出证明;
(3)拓展应用:若AC=,BC=2,DF=4,请直接写出CE的长.
6.如图①,已知AC=BC,AC⊥BC,直线MN经过点B,过点A作AD⊥MN,垂足为D,连接CD.
(1)动手操作:根据题意,请利用尺规将图①补充完整;(保留作图痕迹,不写作法)
(2)探索证明:在补充完成的图①中,猜想CD、BD与AD之间的数量关系,并说明理由;
(3)探索拓广:一天小明一家在某公园游玩时走散了,电话联系后得知,三人的位置如图②,爸爸在A处,妈妈在C处,小明在D处,B为公园大门口,若B、D在直线MN上,且AC⊥BC,AD⊥MN,AC=BC,AD=100m,CD=40m,求出小明到公园门口的距离BD的长度.
中考数学几何模型4:中点模型
名师点睛拨开云雾开门见山中点模型,提到中点,我们需要想到关于中点的以下知识点:①三角形中线平分三角形面积,等分点等分面积;②等腰三角形“三线合一”的性质;③直角三角形斜边上的中线等于斜边的一半;④三角形中位线平行且等于第三边的一半.这四点使我们已经深入学习过的有关中点运用的知识点,今天重点在结合四点的基础上探究另外一种中点模型,我们简称“平中对模型”,即“平行线+中点+对顶角”构造全等或相似模型,与倍长中线法相通。

典题探究启迪思维探究重点
例题1.如图,在△ABC的两边AB、AC向形外作正方形ABDE和ACFG,取BE、BC、CG的中点M、Q、N.求证:MQ=QN.
变式练习>>>
1.如图,在△ACE中,点B是AC的中点,点D是CE的中点,点M是AE的中点,四边形BCGF和四边形CDHN都是正方形.求证:△FMH是等腰直角三角形.
例题2.如图,已知BD、CE分别是△ABC的AC、AB边上的高,G、F分别是BC、DE的中点.求证:GF ⊥DE.
变式练习>>>
2.如图,在△ABC中内取一点,使∠PBA=∠PCA,作PD⊥AB于点D,PE⊥AC于点E,求证:DE的垂直平分线必过BC的中点M.
例题3.已知:AD为△ABC的中线,AE是△ABD的中线,AB=BD,求证:AC=2AE.(两种证法)
3.如图①,点O为线段MN的中点,PQ与MN相交于点O,且PM∥NQ,可证△PMO≌△QNO.根据上述结论完成下列探究活动:
探究一:如图②,在四边形ABCD中,AB∥DC,E为BC边的中点,∠BAE=∠EAF,AF与DC的延长线相交于点F.试探究线段AB与AF、CF之间的数量关系,并证明你的结论;
探究二:如图③,DE、BC相交于点E,BA交DE于点A,且BE:EC=1:2,∠BAE=∠EDF,CF∥AB.若AB=4,CF=2,求DF的长度.
例题4.如图,正方形ABCD和正方形EFCG的边长分别为3和1,点F,G分别在边BC,CD上,P为AE 的中点,连接PG,则PG的长为.
4.如图,过边长为3的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为.
例题5.如图1,在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD的中点G,连接EG、CG.易证:EG=CG且EG⊥CG.
(1)将△BEF绕点B逆时针旋转90°,如图2所示,则线段EG和CG有怎样的数量和位置关系?请直接写出你的猜想.
(2)将△BEF绕点B逆时针旋转180°,如图3所示,则线段EG和CG又有怎样的数量和位置关系?请写出你的猜想,并加以证明.
(3)将△BEF绕点B旋转一个任意角度α,如图4所示,则线段EG和CG有怎样的数量和位置关系?请直接写出结论.
5.请阅读下列材料:
问题:如图1,在菱形ABCD和菱形BEFG中,点A、B、E在同一条直线上,P是线段DF的中点,连结PG、PC.若∠ABC=∠BEF=60°,探究PG与PC的位置关系及数量关系.
小聪同学的思路是:延长GP交DC于点H,构造全等三角形,经过推理使问题得到解决.
请你参考小聪同学的思路,探究并解决下列问题:
(1)直接写出上面问题中线段PG与PC的位置关系及的值;
(2)如图2,在正方形ABCD和正方形BEFG中,点A、B、E在同一条直线上,P是线段DF的中点,连结PG、PC,探究PG与PC的位置关系及数量关系;
(3)将图2中的正方形BEFG绕点B顺时针旋转,原问题中的其他条件不变(如图3),你在(2)中得到的两个结论是否发生变化?写出你的猜想并加以证明.
达标检测领悟提升强化落实1.如图所示,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=8,MN=3,则AC
的长是()
A.12B.14C.16D.18
2.如图,△ABD和△ACE都是直角三角形,其中∠ABD=∠ACE=90°,且点C在AB上,连接DE,M为DE 中点,连接BM,CM,求证BM=CM.
3.如图,正方形ABCD中,E为CD的中点,F是DA的中点,连接BE,与CF相交于P,求证:AP=AB.
4.如图,分别以△ABC的边AB、AC为斜边向外侧构造等腰直角△ABD和等腰直角△ACE,M是BC中点.求
证:DM=ME,DM⊥ME.
5.已知△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE中点,连接DF、CF.
(1)如图1,当点D在AB上,点E在AC上,请判断此时线段DF、CF的数量关系和位置关系,并说明理由.
(2)如图2,将△ADE绕点A逆时针旋转45°时,请你判断此时(1)中的结论是否仍然成立?若成立,请证明:若不成立,请说明理由.
(3)如图3,将△ADE绕点A逆时针旋转90°时,若AD=2,AC=3,求此时△FBC中CF边上的高的长.(直接写出结果)
6.已知:△ABC和△ADE均为等腰直角三角形,∠ABC=∠ADE=90°,AB=BC,AD=DE,按图1放置,
使点E在BC上,取CE的中点F,连接DF、BF.
(1)探索DF、BF的数量关系和位置关系,并证明;
(2)将图1中△ADE绕A点顺时针旋转45°,再连接CE,取CE的中点F(如图2),问(1)中的结论是否仍然成立?证明你的结论;
(3)将图1中△ADE绕A点转动任意角度(旋转角在0°到90°之间),再连接CE,取CE的中点F (如图3),问(1)中的结论是否仍然成立?证明你的结论.
7.如图:在△ABC中,AB=AC,EF交AB于点E,交AC的延长线于点F,交BC于D且BE=CF,求证:DE=DF.
8.(1)已知:如图1,在△ABC中,∠A=90°,D为BC中点,E为AB上一点,F为AC上一点,ED⊥DF,连接EF,求证:线段BE、FC、EF总能构成一个直角三角形;
(2)已知:如图2,∠A=120°,D为BC中点,E为AB上一点,F为AC上一点,ED⊥DF,连接EF,请你找出一个条件,使线段BE、FC、EF能构成一个等边三角形,给出证明.
9.在Rt△ABC中,D为斜边AB的中点,E,F分别在AC,BC上,∠EDF=90°,已知CE=4,AE=2,BF﹣CF=,求AB.
10.在△ABM中,∠ABM=45°,AM⊥BM,垂足为M,点C是BM延长线上一点,连接AC.
(1)如图1,若AB=3,BC=5,求AC的长;
(2)如图2,点D是线段AM上一点,MD=MC,点E是△ABC外一点,EC=AC,连接ED并延长交BC于点F,且点F是线段BC的中点,求证:∠BDF=∠CEF.
11.(1)方法回顾
在学习三角形中位线时,为了探索三角形中位线的性质,思路如下:
第一步添加辅助线:如图1,在△ABC中,延长DE(D、E分别是AB、AC的中点)到点F,使得EF=DE,连接CF;
第二步证明△ADE≌△CFE,再证四边形DBCF是平行四边形,从而得到DE∥BC,DE=BC.
(2)问题解决
如图2,在正方形ABCD中,E为AD的中点,G、F分别为AB、CD边上的点,若AG=2,DF=3,∠GEF=90°,求GF的长.
(3)拓展研究
如图3,在四边形ABCD中,∠A=100°,∠D=110°,E为AD的中点,G、F分别为AB、CD边上的点,若AG=4,DF=,∠GEF=90°,求GF的长.
12.在△ABC中,AB=AC,点F是BC延长线上一点,以CF为边,作菱形CDEF,使菱形CDEF与点A 在BC的同侧,连接BE,点G是BE的中点,连接AG、DG.
(1)如图①,当∠BAC=∠DCF=90°时,直接写出AG与DG的位置和数量关系;
(2)如图②,当∠BAC=∠DCF=60°时,试探究AG与DG的位置和数量关系,
(3)当∠BAC=∠DCF=α时,直接写出AG与DG的数量关系.
中考数学几何模型5:角含半角模型
名师点睛拨开云雾开门见山角含半角模型,顾名思义即一个角包含着它的一半大小的角。

它主要包含:等腰直角三角形角含半角模型;正方形中角含半角模型两种类型。

解决类似问题的常见办法主要有两种:旋转目标三角形法和翻折目标三角形法。

类型一:等腰直角三角形角含半角模型
(1)如图,在△ABC中,AB=AC,∠BAC=90°,点D,E在BC上,且∠DAE=45°,则:BD2+CE2=DE2.
图示(1)作法1:将△ABD旋转90°作法2:分别翻折△ABD,△ACE (2)如图,在△ABC中,AB=AC,∠BAC=90°,点D在BC上,点E在BC延长线上,且∠DAE=45°,
则:BD2+CE2=DE2.
图示(2)
(3)如图,将等腰直角三角形变成任意等腰三角形时,亦可以进行两种方法的操作处理..
任意等腰三角形
类型二:正方形中角含半角模型
(1)如图,在正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,连接EF,过点A作AG⊥于EF于点G,则:EF=BE+DF,AG=AD.
图示(1)作法:将△ABE绕点A逆时针旋转90°
(2)如图,在正方形ABCD中,点E,F分别在边CB,DC的延长线上,∠EAF=45°,连接EF,则:EF=DF-BE.
图示(2)
作法:将△ABE绕点A逆时针旋转90°
(3)如图,将正方形变成一组邻边相等,对角互补的四边形,在四方形ABCD中,AB=AD,∠BAD+∠
C=180°,点E,F分别在边BC,CD上,∠EAF=1
2∠BAD,连接EF,则:EF=BE+DF.
图示(3)作法:将△ABE绕点A逆时针旋转∠BAD的大小
典题探究启迪思维探究重点例题1.如图,正方形ABCD的边长为4,点E,F分别在AB,AD上,若CE=5,且∠ECF=45°,则CF 的长为.
变式练习>>>
1.如图四边形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E为CD上一点,且∠BAE=45°.若CD=4,则△ABE的面积为(
A.B.C.D.
例题2.在正方形ABCD中,连接BD.
(1)如图1,AE⊥BD于E.直接写出∠BAE的度数.
(2)如图1,在(1)的条件下,将△AEB以A旋转中心,沿逆时针方向旋转30°后得到△AB′E′,AB′与BD交于M,AE′的延长线与BD交于N.
①依题意补全图1;
②用等式表示线段BM、DN和MN之间的数量关系,并证明.
(3)如图2,E、F是边BC、CD上的点,△CEF周长是正方形ABCD周长的一半,AE、AF分别与BD 交于M、N,写出判断线段BM、DN、MN之间数量关系的思路.(不必写出完整推理过程)
2.(1)【探索发现】
如图1,正方形ABCD中,点M、N分别是边BC、CD上的点,∠MAN=45°,若将△DAN绕点A顺时针旋转90°到△BAG位置,可得△MAN≌△MAG,若△MCN的周长为6,则正方形ABCD的边长为3.(2)【类比延伸】
如图(2),四边形ABCD中,AB=AD,∠BAD=120°,∠B+∠D=180°,点M、N分别在边BC、CD 上的点,∠MAN=60°,请判断线段BM,DN,MN之间的数量关系,并说明理由.
(3)【拓展应用】
如图3,四边形ABCD中,AB=AD=10,∠ADC=120°,点M,N分别在边BC,CD上,连接AM,MN,△ABM是等边三角形,AM⊥AD,DN=5(﹣1),请直接写出MN的长.
例题3.如图,在四边形ABCD中,AB=BC,∠A=∠C=90°,∠B=135°,K,N分别是AB,BC上的点,若△BKN的周长为AB的2倍,求∠KDN的度数.
3.如图,正方形被两条与边平行的线段EF,GH分割成四个小矩形,P是EF与GH的交点,若矩形PFCH 的面积恰是矩形AGPE面积的2倍,试确定∠HAF的大小并证明你的结论.
例题4.如图,在四边形ABCD中,AB=AD,BC=CD,∠ABC=∠ADC=90°,∠MAN=∠BAD.
(1)如图1,将∠MAN绕着A点旋转,它的两边分别交边BC、CD于M、N,试判断这一过程中线段BM、DN和MN之间有怎样的数量关系?直接写出结论,不用证明;
(2)如图2,将∠MAN绕着A点旋转,它的两边分别交边BC、CD的延长线于M、N,试判断这一过程中线段BM、DN和MN之间有怎样的数量关系?并证明你的结论;
(3)如图3,将∠MAN绕着A点旋转,它的两边分别交边BC、CD的反向延长线于M、N,试判断这一过程中线段BM、DN和MN之间有怎样的数量关系?直接写出结论,不用证明.
达标检测领悟提升强化落实1.请阅读下列材料:
问题:正方形ABCD中,M,N分别是直线CB、DC上的动点,∠MAN=45°,当∠MAN交边CB、DC 于点M、N(如图①)时,线段BM、DN和MN之间有怎样的数量关系?
小聪同学的思路是:延长CB至E使BE=DN,并连接AE,构造全等三角形经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题:
(1)直接写出上面问题中,线段BM,DN和MN之间的数量关系;
(2)当∠MAN分别交边CB,DC的延长线于点M/N时(如图②),线段BM,DN和MN之间的又有怎样的数量关系?请写出你的猜想,并加以证明;
(3)在图①中,若正方形的边长为16cm,DN=4cm,请利用(1)中的结论,试求MN的长.
2.(1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD.试探究图中线段BE、EF、FD之间的数量关系.
(1)小王同学探究此问题的方法是:延长EB到点G,使BG=DF,连结AG,先证明△ABG≌△ADF,再证明△AEG≌△AEF,可得出结论,他的结论应是.
(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由.
(3)如图3,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.
3.小曼和他的同学组成了“爱琢磨”学习小组,有一次,他们碰到这样一道题:“已知正方形ABCD,点E、
F、G、H分别在边AB、BC、CD、DA上,若EG⊥FH,则EG=FH.”为了解决这个问题,经过思考,
大家给出了以下两个方案:
方案一:过点A作AM∥HF交BC于点M,过点B作BN∥EG交CD于点N;
方案二:过点A作AM∥HF交BC于点M,过点A作AN∥EG交CD于点N.…
(1)对小曼遇到的问题,请在甲、乙两个方案中任选一个加以证明(如图(1)).
(2)如果把条件中的“正方形”改为“长方形”,并设AB=2,BC=3(如图(2)),是探究EG、FH之间有怎样的数量关系,并证明你的结论.
(3)如果把条件中的“EG⊥FH”改为“EG与FH的夹角为45°”,并假设正方形ABCD的边长为1,FH的长为(如图(3)),试求EG的长度.。

相关文档
最新文档