德格县高级中学2018-2019学年高二上学期第二次月考试卷数学测试卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
德格县高级中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. 设a 是函数
x 的零点,若x 0>a ,则f (x 0)的值满足( )
A .f (x 0)=0
B .f (x 0)<0
C .f (x 0)>0
D .f (x 0)的符号不确定
2. 设函数f (x )的定义域为A ,若存在非零实数l 使得对于任意x ∈I (I ⊆A ),有x+l ∈A ,且f (x+l )≥f (x ),
则称f (x )为I 上的l 高调函数,如果定义域为R 的函数f (x )是奇函数,当x ≥0时,f (x )=|x ﹣a 2|﹣a 2
,且
函数f (x )为R 上的1高调函数,那么实数a 的取值范围为( )
A .0<a <1
B .﹣≤a ≤
C .﹣1≤a ≤1
D .﹣2≤a ≤2
3. 抛物线x 2=4y 的焦点坐标是( )
A .(1,0)
B .(0,1)
C .(
)
D .(
)
4. 双曲线上一点P 到左焦点的距离为5,则点P 到右焦点的距离为( ) A .13
B .15
C .12
D .11
5. 如图是某几何体的三视图,正视图是等腰梯形,俯视图中的曲线是两个同心的半圆组成的半圆环,侧视图是直角梯形.则该几何体表面积等于( )
A .12+
B .12+23π
C .12+24π
D .12+π
6. 复数i i -+3)1(2
的值是( )
A .i 4341+-
B .i 4341-
C .i 5351+-
D .i 5
351-
【命题意图】本题考查复数乘法与除法的运算法则,突出复数知识中的基本运算,属于容易题.
7. 如图,网格纸上的正方形的边长为1,粗线画出的是某几何体的三视图,则这个几何体的体积为( )
A .30
B .50
C .75
D .150
8. 函数 y=x 2﹣4x+1,x ∈[2,5]的值域是( )
A .[1,6]
B .[﹣3,1]
C .[﹣3,6]
D .[﹣3,+∞)
9. 设集合A={x|2x ≤4},集合B={x|y=lg (x ﹣1)},则A ∩B 等于( ) A .(1,2) B .[1,2]
C .[1,2)
D .(1,2]
10.直线x ﹣2y+2=0经过椭圆的一个焦点和一个顶点,则该椭圆的离心率为( )
A .
B .
C .
D .
11.在正方体8个顶点中任选3个顶点连成三角形,则所得的三角形是等腰直角三角形的概率为( )
A .
B .
C .
D .
12.设函数()()()
21ln 31f x g x ax x ==-+,,若对任意1[0)x ∈+∞,,都存在2x ∈R ,使得
()()12f x f x =,则实数的最大值为( )
A .
94 B . C.9
2
D .4 二、填空题
13.某公司租赁甲、乙两种设备生产A B ,两类产品,甲种设备每天能生产A 类产品5件和B 类产品10件,乙种设备每天能生产A 类产品6件和B 类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费用为300元,现该公司至少要生产A 类产品50件,B 类产品140件,所需租赁费最少为__________元. 14.已知数列{a n }满足a n+1=e+a n (n ∈N *,e=2.71828)且a 3=4e ,则a 2015= .
15.如图,在平行四边形ABCD 中,点E 在边CD 上,若在平行四边形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率是 .
16.某种产品的加工需要 A ,B ,C ,D ,E 五道工艺,其中 A 必须在D 的前面完成(不一定相邻),其它工艺的顺序可以改变,但不能同时进行,为了节省加工时间,B 与C 必须相邻,那么完成加工该产品的不同工艺的排列顺序有 种.(用数字作答)
17.已知向量,满足42
=,2||=,4)3()(=-⋅+,则与的夹角为 .
【命题意图】本题考查向量的数量积、模及夹角知识,突出对向量的基础运算及化归能力的考查,属于容易题. 18.正六棱台的两底面边长分别为1cm ,2cm ,高是1cm ,它的侧面积为 .
三、解答题
19.(本小题满分13分)
设1
()1f x x
=+,数列{}n a 满足:112a =,1(),n n a f a n N *+=∈.
(Ⅰ)若12,λλ为方程()f x x =的两个不相等的实根,证明:数列12n n a a λλ⎧⎫
-⎨⎬-⎩⎭
为等比数列;
(Ⅱ)证明:存在实数m ,使得对n N *
∀∈,2121222n n n n a a m a a -++<<<<.
)
20.(本题12分)已知数列{}n x 的首项13x =,通项2n n x p nq =+(*
n N ∈,p ,为常数),且145x x x ,,成等差数列,求:
(1)p q ,的值;
(2)数列{}n x 前项和n S 的公式.
21.(本题满分12分)如图所示,在正方体ABCD —A 1B 1C 1D 1中, E 、F 分别是棱DD 1 、C 1D 1的中点. (1)求直线BE 和平面ABB 1A 1所成角 的正弦值; (2)证明:B 1F ∥平面A 1BE .
22.已知p :“直线x+y ﹣m=0与圆(x ﹣1)2+y 2=1相交”;q :“
方程x 2﹣x+m ﹣4=0的两根异号”.若p ∨q 为真,¬p 为真,求实数m 的取值范围.
23.已知曲线C 1:ρ=1,曲线C 2:(t 为参数)
(1)求C 1与C 2交点的坐标;
(2)若把C 1,C 2上各点的纵坐标都压缩为原来的一半,分别得到曲线C 1′与C 2′,写出C 1′与C 2′的参数方程,C 1与C 2公共点的个数和C 1′与C 2′公共点的个数是否相同,说明你的理由.
2015-2016学年安徽省合肥168中学高三(上)10月月考数学试卷(理科)
A 1
B 1
C 1
D
D 1 C
B A
E F
24.已知f(x)=lg(x+1)
(1)若0<f(1﹣2x)﹣f(x)<1,求x的取值范围;
(2)若g(x)是以2为周期的偶函数,且当0≤x≤1时,g(x)=f(x),求函数y=g(x)(x∈[1,2])的反函数.
德格县高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题
1.【答案】C
【解析】解:作出y=2x和y=log x的函数图象,如图:
由图象可知当x0>a时,2>log x0,
∴f(x0)=2﹣log x0>0.
故选:C.
2.【答案】B
【解析】解:定义域为R的函数f(x)是奇函数,
当x≥0时,
f(x)=|x﹣a2|﹣a2=图象如图,
∵f(x)为R上的1高调函数,当x<0时,函数的最大值为a2,要满足f(x+l)≥f(x),
1大于等于区间长度3a2﹣(﹣a2),
∴1≥3a2﹣(﹣a2),
∴﹣≤a≤
故选B
【点评】考查学生的阅读能力,应用知识分析解决问题的能力,考查数形结合的能力,用图解决问题的能力,属中档题.
3.【答案】B
【解析】解:∵抛物线x2=4y中,p=2,=1,焦点在y轴上,开口向上,
∴焦点坐标为(0,1),
故选:B.
【点评】本题考查抛物线的标准方程和简单性质的应用,抛物线x2=2py的焦点坐标为(0,),属基础题.4.【答案】A
【解析】解:设点P到双曲线的右焦点的距离是x,
∵双曲线上一点P到左焦点的距离为5,
∴|x﹣5|=2×4
∵x>0,∴x=13
故选A.
5.【答案】C
【解析】解:根据几何体的三视图,得;
该几何体是一半圆台中间被挖掉一半圆柱,
其表面积为
S=[×(2+8)×4﹣2×4]+[×π•(42﹣12)+×(4π×﹣π×)+×8π]
=12+24π. 故选:C .
【点评】本题考查了空间几何体三视图的应用问题,也考查了空间想象能力与计算能力的应用问题,是基础题目.
6. 【答案】C
【解析】i i i i i i i i i i 5
3
511062)3)(3()3(2323)1(2+-=+-=+-+=-=-+.
7. 【答案】B
【解析】解:该几何体是四棱锥, 其底面面积S=5×6=30, 高h=5,
则其体积V=
S ×h=
30×5=50.
故选B .
8. 【答案】C
【解析】解:y=x 2﹣4x+1=(x ﹣2)2
﹣3 ∴当x=2时,函数取最小值﹣3 当x=5时,函数取最大值6 ∴函数 y=x 2
﹣4x+1,x ∈[2,5]的值域是[﹣3,6]
故选C
【点评】本题考查了二次函数最值的求法,即配方法,解题时要分清函数开口方向,辨别对称轴与区间的位置关系,仔细作答
9. 【答案】D
【解析】解:A={x|2x
≤4}={x|x ≤2}, 由x ﹣1>0得x >1
∴B={x|y=lg (x ﹣1)}={x|x >1} ∴A ∩B={x|1<x ≤2} 故选D .
10.【答案】A
【解析】直线x ﹣2y+2=0与坐标轴的交点为(﹣2,0),(0,1),
直线x ﹣2y+2=0经过椭圆的一个焦点和一个顶点;
故.
故选A .
【点评】本题考查了椭圆的基本性质,只需根据已知条件求出a ,b ,c 即可,属于基础题型.
11.【答案】C
【解析】解:正方体8个顶点中任选3个顶点连成三角形,所得的三角形是等腰直角三角形只能在各个面上,
在每一个面上能组成等腰直角三角形的有四个, 所以共有4×6=24个,
而在8个点中选3个点的有C 83
=56,
所以所求概率为=
故选:C
【点评】本题是一个古典概型问题,学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题.
12.【答案】] 【解析】
试题分析:设()()
2ln 31g x ax x =-+的值域为A ,因为函数()1f x =[0)+∞,上的值域为(0]-∞,,所以(0]A -∞⊆,,因此()231h x ax x =-+至少要取遍(01],
中的每一个数,又()01h =,于是,实数需要满足0a ≤或0940
a a >⎧⎨∆=-≥⎩,解得9
4a ≤.
考点:函数的性质.
【方法点晴】本题主要考查函数的性质用,涉及数形结合思想、函数与方程思想、转和化化归思想,考查逻辑推理能力、化归能力和计算能力,综合程度高,属于较难题型。
首先求出A ,再利用转化思想将命题条件转化为(0]A -∞⊆,,进而转化为()231h x ax x =-+至少要取遍(01],
中的每一个数,再利用数形结合思想建立不等式组:0a ≤或0940
a a >⎧⎨∆=-≥⎩,从而解得9
4a ≤.
二、填空题
13.【答案】2300 【解析】111]
试题分析:根据题意设租赁甲设备,乙设备,则⎪⎪⎩⎪
⎪⎨⎧≥+≥+≥≥140
20y 10x 506y 5x 0y 0x ,求目标函数300y 200x Z +=的
最小值.作出可行域如图所示,从图中可以看出,直线在可行域上移动时,当直线的截距最小时,取最小值2300
.
1111]
考点:简单线性规划.
【方法点晴】本题是一道关于求实际问题中的最值的题目,可以采用线性规划的知识进行求解;细查题意,设甲种设备需要生产天,乙种设备需要生产y 天,该公司所需租赁费为Z 元,则y x Z 300200+=,接下来列出满足条件的约束条件,结合目标函数,然后利用线性规划的应用,求出最优解,即可得出租赁费的最小值. 14.【答案】 2016 .
【解析】解:由a n+1=e+a n ,得a n+1﹣a n =e , ∴数列{a n }是以e 为公差的等差数列, 则a 1=a 3﹣2e=4e ﹣2e=2e ,
∴a 2015=a 1+2014e=2e+2014e=2016e . 故答案为:2016e .
【点评】本题考查了数列递推式,考查了等差数列的通项公式,是基础题.
15.【答案】
.
【解析】解:由题意△ABE的面积是平行四边形ABCD的一半,
由几何概型的计算方法,
可以得出所求事件的概率为P=,
故答案为:.
【点评】本题主要考查了几何概型,解决此类问题的关键是弄清几何测度,属于基础题.
16.【答案】24
【解析】解:由题意,B与C必须相邻,利用捆绑法,可得=48种方法,
因为A必须在D的前面完成,所以完成加工该产品的不同工艺的排列顺序有48÷2=24种,
故答案为:24.
【点评】本题考查计数原理的应用,考查学生的计算能力,比较基础.
2
17.【答案】
3
【解析】
18.【答案】cm2.
【解析】解:如图所示,是正六棱台的一部分,
侧面ABB1A1为等腰梯形,OO1为高且OO1=1cm,AB=1cm,A1B1=2cm.
取AB和A1B1的中点C,C1,连接OC,CC1,O1C1,
则C1C为正六棱台的斜高,且四边形OO1C1C为直角梯形.
根据正六棱台的性质得OC=,O
C1==,
1
∴CC1==.
又知上、下底面周长分别为c=6AB=6cm,c′=6A1B1=12cm.
∴正六棱台的侧面积:
S=.
=
=
(cm 2
).
故答案为: cm 2.
【点评】本题考查正六棱台的侧面积的求法,是中档,解题时要认真审题,注意空间思维能力的培养.
三、解答题
19.【答案】
【解析】解:证明:2
()10f x x x x =⇔+-=,∴2112221010λλλλ⎧+-=⎪⎨+-=⎪⎩,∴2
11
2
22
11λλλλ⎧-=⎪⎨-=⎪⎩. ∵1
21111111
1212
222222
21
11111n n n n n n n n n n
a a a a a a a a a a λλλλλλλλλλλλλλλλ++--+----====⋅------+, (3分)
11120a a λλ-≠-,12
0λ
λ≠,
∴数列12n n a a λλ⎧⎫-⎨⎬-⎩⎭
为等比数列. (4分)
(Ⅱ)证明:设m =()f m m =.
由112a =
及111n n
a a +=+得223a =,335a =,∴130a a m <<<. ∵()f x 在(0,)+∞上递减,∴13()()()f a f a f m >>,∴24a a m >>.∴1342a a m a a <<<<,(8分) 下面用数学归纳法证明:当n N *
∈时,2121222n n n n a a m a a -++<<<<. ①当1n =时,命题成立. (9分)
②假设当n k =时命题成立,即2121222k k k k a a m a a -++<<<<,那么 由()f x 在(0,)+∞上递减得2121222()()()()()k k k k f a f a f m f a f a -++>>>> ∴2222321k k k k a a m a a +++>>>>
由2321k k m a a ++>>得2321()()()k k f m f a f a ++<<,∴2422k k m a a ++<<, ∴当1n k =+时命题也成立, (12分)
由①②知,对一切n N *
∈命题成立,即存在实数m ,使得对n N *
∀∈,2121222n n n n a a m a a -++<<<<.
20.【答案】(1)1,1==q p ;(2)2
)
1(22
1
++
-=-n n S n n .
考
点:等差,等比数列通项公式,数列求和.
21.【答案】解:(1)设G 是AA 1的中点,连接GE ,BG .∵E 为DD 1的中点,ABCD —A 1B 1C 1D 1为正方体,∴GE ∥AD ,又∵AD ⊥平面ABB 1A 1,∴GE ⊥平面ABB 1A 1,且斜线BE 在平面ABB 1A 1内的射影为BG ,∴Rt △BEG 中的∠EBG 是直线BE 和平面ABB 1A 1所成角,即∠EBG =θ.设正方体的棱长为a ,∴a GE =,
a BG 25=
,a GE BG BE 2
3
22=+=, ∴直线BE 和平面ABB 1A 1所成角θ的正弦值为:=
θsin 3
2
=BE GE ;……6分 (2)证明:连接EF 、AB 1、C 1D ,记AB 1与A 1B 的交点为H ,连接EH .
∵H 为AB 1的中点,且B 1H =
21C 1D ,B 1H ∥C 1D ,而EF =2
1
C 1
D ,EF ∥C 1D , ∴B 1H ∥EF 且B 1H =EF ,四边形B 1FEH 为平行四边形,即B 1F ∥EH , 又∵B 1F ⊄平面A 1B
E 且EH ⊆平面A 1BE ,∴B 1
F ∥平面A 1BE . ……12分 22.【答案】
【解析】解:若命题p 是真命题:“直线x+y ﹣m=0与圆(x ﹣1)2+y 2=1相交”,则
<1,解得1﹣
;
若命题q 是真命题:“方程x 2﹣x+m ﹣4=0的两根异号”,则m ﹣4<0,解得m <4. 若p ∨q 为真,¬p 为真, 则p 为假命题,q 为真命题.
∴
.
∴实数m 的取值范围是
或
.
【点评】本题考查了复合命题真假的判定方法、直线与圆的位置关系、一元二次的实数根与判别式的关系,考查了推理能力与计算能力,属于中档题.
23.【答案】
【解析】解:(1)∵曲线C 1:ρ=1,∴C 1的直角坐标方程为x 2+y 2
=1,
∴C 1是以原点为圆心,以1为半径的圆,
∵曲线C 2:(t 为参数),∴C 2的普通方程为x ﹣y+=0,是直线,
联立,解得x=﹣,y=.
∴C 2与C 1只有一个公共点:(﹣,
).
(2)压缩后的参数方程分别为
:
(θ为参数)
:
(t 为参数),
化为普通方程为::x 2+4y 2
=1,
:y=,
联立消元得,
其判别式,
∴压缩后的直线与椭圆仍然只有一个公共点,和C1与C2公共点个数相同.
【点评】本题考查两曲线的交点坐标的求法,考查压缩后的直线与椭圆的公共点个数的判断,是基础题,解题时要认真审题,注意一元二次方程的根的判别式的合理运用.
24.【答案】
【解析】解:(1)f(1﹣2x)﹣f(x)=lg(1﹣2x+1)﹣lg(x+1)=lg(2﹣2x)﹣lg(x+1),
要使函数有意义,则
由解得:﹣1<x<1.
由0<lg(2﹣2x)﹣lg(x+1)=lg<1得:1<<10,
∵x+1>0,
∴x+1<2﹣2x<10x+10,
∴.
由,得:.
(2)当x∈[1,2]时,2﹣x∈[0,1],
∴y=g(x)=g(x﹣2)=g(2﹣x)=f(2﹣x)=lg(3﹣x),
由单调性可知y∈[0,lg2],
又∵x=3﹣10y,
∴所求反函数是y=3﹣10x,x∈[0,lg2].。