张家港市九年级上册期末精选试卷检测题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

张家港市九年级上册期末精选试卷检测题
一、初三数学一元二次方程易错题压轴题(难)
1.某中心城市有一楼盘,开发商准备以每平方米7000元价格出售,由于国家出台了有关调控房地产的政策,开发商经过两次下调销售价格后,决定以每平方米5670元的价格销售.
(1)求平均每次下调的百分率;
(2)房产销售经理向开发商建议:先公布下调5%,再下调15%,这样更有吸引力,请问房产销售经理的方案对购房者是否更优惠?为什么?
【答案】(1)平均每次下调的百分率为10%.(2)房产销售经理的方案对购房者更优惠.
【解析】
【分析】
(1)根据利用一元二次方程解决增长率问题的要求,设出未知数,然后列方程求解即可;(2)分别求出两种方式的增长率,然后比较即可.
【详解】
(1)设平均每次下调x%,则
7000(1﹣x)2=5670,解得:x1=10%,x2=190%(不合题意,舍去);
答:平均每次下调的百分率为10%.
(2)(1﹣5%)×(1﹣15%)=95%×85%=80.75%,(1﹣x)2=(1﹣10%)2=81%.
∵80.75%<81%,∴房产销售经理的方案对购房者更优惠.
2.已知二次函数y=9x2﹣6ax+a2﹣b,当b=﹣3时,二次函数的图象经过点(﹣1,4)
①求a的值;
②求当a≤x≤b时,一次函数y=ax+b的最大值及最小值;
【答案】①a的值是﹣2或﹣4;②最大值=13,最小值=9
【解析】
【分析】
①根据题意解一元二次方程即可得到a的值;
②根据a≤x≤b,b=﹣3求得a=-4,由此得到一次函数为y=﹣4x﹣3,根据函数的性质当x=﹣4时,函数取得最大值,x=﹣3时,函数取得最小值,分别计算即可.
【详解】
解:①∵y=9x2﹣6ax+a2﹣b,当b=﹣3时,二次函数的图象经过点(﹣1,4)
∴4=9×(﹣1)2﹣6a×(﹣1)+a2+3,
解得,a1=﹣2,a2=﹣4,
∴a的值是﹣2或﹣4;
②∵a≤x≤b,b=﹣3
∴a=﹣2舍去,
∴a=﹣4,
∴﹣4≤x≤﹣3,
∴一次函数y=﹣4x﹣3,
∵一次函数y=﹣4x﹣3为单调递减函数,
∴当x=﹣4时,函数取得最大值,y=﹣4×(﹣4)﹣3=13
x=﹣3时,函数取得最小值,y=﹣4×(﹣3)﹣3=9.
【点睛】
此题考查解一元二次方程,一次函数的性质,(2)是难点,正确理解a、b的关系得到函数解析式是解题的关键.
3.(本题满分10分)如图,在平面直角坐标系中,直线AB与x轴、y轴分别交于点A、B,直线CD与x轴、y轴分别交于点C、D,AB与CD相交于点E,线段OA、OC的长是一元二次方程-18x+72=0的两根(OA>OC),BE=5,tan∠ABO=.
(1)求点A,C的坐标;
(2)若反比例函数y=的图象经过点E,求k的值;
(3)若点P在坐标轴上,在平面内是否存在一点Q,使以点C,E,P,Q为顶点的四边形是矩形?若存在,请写出满足条件的点Q的个数,并直接写出位于x轴下方的点Q的坐标;若不存在,请说明理由.
【答案】(1)、A(12,0),C(﹣6,0);(2)、k=36;(3)、6个;Q1(10,﹣12),Q2(﹣3,6﹣3).
【解析】
试题分析:(1)、首先求出方程的解,根据OA>OC求出两点的坐标;(2)、根据∠ABO的正切值求出OB的长度,根据Rt△AOB得出AB的长度,作EM⊥x轴,根据三角形相似得出点E的坐标,然后求出k的值;(3)、分别以CE为矩形的边,在点C、E处设计直角,垂线与两坐标轴相交,得到点P,进而得到点Q;以CE为矩形对角线,则以CE的中点为圆心做圆,与两坐标轴相交,得到点P,再得点Q.
试题解析:(1)由题意,解方程得:x1=6,x2=12.∵OA>OC,∴OA=12,OC=6.
∴A(12,0),C(﹣6,0);
(2)∵tan∠ABO=,∠AOB=90°
∴∴OB=16.
在Rt△AOB中,由勾股定理,得AB=20
∵BE=5,∴AE=15.
如图1,作EM⊥x轴于点M,
∴EM∥OB.∴△AEM∽△ABO,
∴,即:
∴EM=12,AM=9,∴OM=12﹣9=3.
∴E(3,12).∴k=36;
(3)满足条件的点Q的个数是6,
x轴的下方的Q1(10,﹣12),Q2(﹣3,6﹣3);
方法:如下图
①分别以CE为矩形的边,在点C、E处设计直角,垂线与两坐标轴相交,得到点P,进而得到点Q;(有三种)②以CE为矩形对角线,则以CE的中点为圆心做圆,与两坐标轴相交,得到点P,再得点Q;(有三种)
如图①∵E (3,12),C (﹣6,0), ∴CG=9,EG=12, ∴EG 2=CG•GP , ∴GP=16, ∵△CPE 与△PCQ 是中心对称,
∴CH=GP=16,QH=FG=12, ∵OC=6, ∴OH=10, ∴Q (10,﹣12),
如图②作MN ∥x 轴,交EG 于点N ,
EH ⊥y 轴于点H ∵E (3,12),C (﹣6,0), ∴CG=9,EG=12, ∴CE=15, ∵MN=CG=, 可以求得PH=3
﹣6,
同时可得PH=QR ,HE=CR ∴Q (﹣3,6﹣3
),
考点:三角形相似的应用、三角函数、一元二次方程.
4.某建材销售公司在2019年第一季度销售,A B 两种品牌的建材共126件,A 种品牌的建材售价为每件6000元,B 种品牌的建材售价为每件9000元.
(1)若该销售公司在第一季度售完两种建材后总销售额不低于96.6万元,求至多销售A 种品牌的建材多少件?
(2)该销售公司决定在2019年第二季度调整价格,将A 种品牌的建材在上一个季度的基础上下调%a ,B 种品牌的建材在上一个季度的基础上上涨%a ;同时,与(1)问中最低销售额的销售量相比,A 种品牌的建材的销售量增加了1
%2
a ,B 种品牌的建材的销售量减少了2
%5a ,结果2019年第二季度的销售额比(1)问中最低销售额增加2%23
a ,求a 的值.
【答案】(1)至多销售A 品牌的建材56件;(2)a 的值是30. 【解析】 【分析】
(1)设销售A 品牌的建材x 件,根据售完两种建材后总销售额不低于96.6万元,列不等式求解;
(2)根据题意列出方程求解即可. 【详解】
(1)设销售A 品牌的建材x 件.
根据题意,得()60009000126966000x x +-≥, 解这个不等式,得56x ≤, 答:至多销售A 品牌的建材56件.
(2)在(1)中销售额最低时,B 品牌的建材70件, 根据题意,得
()()()12260001%561%90001%701%6000569000701%2523a a a a a ⎛⎫⎛⎫⎛⎫
-⨯+++⨯-=⨯+⨯+ ⎪ ⎪ ⎪
⎝⎭⎝⎭⎝⎭

令%a y =,整理这个方程,得21030y y -=, 解这个方程,得1230,10
y y ==
, ∴10a =(舍去),230a =, 即a 的值是30. 【点睛】
本题考查了一元二次方程和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.
5.如图,抛物线y=ax 2+bx+c 与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为x=﹣1.
(1)求抛物线的解析式并写出其顶点坐标;
(2)若动点P 在第二象限内的抛物线上,动点N 在对称轴l 上. ①当PA ⊥NA ,且PA=NA 时,求此时点P 的坐标;
②当四边形PABC 的面积最大时,求四边形PABC 面积的最大值及此时点P 的坐标.
【答案】(1)y=﹣(x+1)2+4,顶点坐标为(﹣1,4);(2)①点P 2﹣1,2);②P (﹣32
,154) 【解析】
试题分析:(1)将B 、C 的坐标代入已知的抛物线的解析式,由对称轴为1x =-即可得到抛物线的解析式;
(2)①首先求得抛物线与x 轴的交点坐标,然后根据已知条件得到PD=OA ,从而得到方程求得x 的值即可求得点P 的坐标;
②ΔOBC ΔAPD ABCP C =PDO S
S S S ++四边形梯形,表示出来得到二次函数,求得最值即可.
试题解析:(1)∵抛物线2
y ax bx c =++与x 轴交于点A 和点B (1,0),与y 轴交于
点C (0,3),其对称轴l 为1x =-,∴0
{3
1
2a b c c b
a
++==-=-,解得:1
{23a b c =-=-=,∴二次函数的
解析式为223y x x =--+=2
(1)4x -++,∴顶点坐标为(﹣1,4);
(2)令2
230y x x =--+=,解得3x =-或1x =,∴点A (﹣3,0),B (1,0),作
PD ⊥x 轴于点D ,∵点P 在223y x x =--+上,∴设点P (x ,223x x --+), ①∵PA ⊥NA ,且PA=NA ,∴△PAD ≌△AND ,∴OA=PD ,即2232y x x =--+=,解得x=21-(舍去)或x=21--,∴点P (21--,2);
②设P(x ,y),则223y x x =--+,∵ΔOBC ΔAPD ABCP C =PDO S S S S ++四边形梯形 =
12OB•OC+12AD•PD+1
2(PD+OC)•OD=11131+(3)(3)()222
x y y x ⨯⨯⨯+++-=333222
x y -+ =
2333(23)222x x x -+--+=239622x x --+=23375()228
x -++, ∴当x=32-时,ABCP S 四边形最大值=758,当x=32
-时,2
23y x x =--+=154,此时P
(32
-
,15
4).
考点:1.二次函数综合题;2.二次函数的最值;3.最值问题;4.压轴题.
二、初三数学 二次函数易错题压轴题(难)
6.如图,直线y =
12x ﹣2与x 轴交于点B ,与y 轴交于点A ,抛物线y =ax 2﹣3
2
x+c 经过
A,B两点,与x轴的另一交点为C.
(1)求抛物线的解析式;
(2)M为抛物线上一点,直线AM与x轴交于点N,当
3
2
MN
AN
=时,求点M的坐标;(3)P为抛物线上的动点,连接AP,当∠PAB与△AOB的一个内角相等时,直接写出点P 的坐标.
【答案】(1)y=
1
2
x2﹣
3
2
x﹣2;(2)点M的坐标为:(5,3)或(﹣2,3)或(2,﹣3)或(1,﹣3);(3)点P的坐标为:(﹣1,0)或(
3
2
,﹣
25
8
)或(
17
3

50
9
)或(3,﹣2).
【解析】
【分析】
(1)根据题意直线y=
1
2
x﹣2与x轴交于点B,与y轴交于点A,则点A、B的坐标分别为:(0,-2)、(4,0),即可求解;
(2)由题意直线MA的表达式为:y=(
1
2
m﹣
3
2
)x﹣2,则点N(
4
3
m-
,0),当
MN
AN =
3
2
时,则
NH
ON

3
2
,即
4
3
4
3
m
m
m
-
-
-

3
2
,进行分析即可求解;
(3)根据题意分∠PAB=∠AOB=90°、∠PAB=∠OAB、∠PAB=∠OBA三种情况,分别求解即可.
【详解】
解:(1)直线y=
1
2
x﹣2与x轴交于点B,与y轴交于点A,则点A、B的坐标分别为:(0,﹣2)、(4,0),
则c=﹣2,将点B的坐标代入抛物线表达式并解得:a=
1
2

故抛物线的表达式为:y=
1
2
x2﹣
3
2
x﹣2①;
(2)设点M(m,
1
2
m2﹣
3
2
m﹣2)、点A(0,﹣2),
将点M、A的坐标代入一次函数表达式:y=kx+b并解得:
直线MA的表达式为:y=(
1
2
m﹣
3
2
)x﹣2,
则点N(
4
3
m-
,0),

MN
AN

3
2
时,则
NH
ON

3
2
,即:
4
3
4
3
m
m
m
-
-
-

3
2

解得:m=5或﹣2或2或1,
故点M的坐标为:(5,3)或(﹣2,3)或(2,﹣3)或(1,﹣3);
(3)①∠PAB=∠AOB=90°时,
则直线AP的表达式为:y=﹣2x﹣2②,
联立①②并解得:x=﹣1或0(舍去0),
故点P(﹣1,0);
②当∠PAB=∠OAB时,
当点P在AB上方时,无解;
当点P在AB下方时,
将△OAB沿AB折叠得到△O′AB,直线OA交x轴于点H、交抛物线为点P,点P为所求,则BO=OB=4,OA=OA=2,设OH=x,
则sin∠H=
BO OA
HB HA
'
=,即:
2
4
44
x x
=
++,解得:x=
8
3
,则点H(﹣
8
3
,0),.
则直线AH 的表达式为:y =﹣3
4
x ﹣2③, 联立①③并解得:x =
32,故点P (3
2,﹣258
); ③当∠PAB =∠OBA 时, 当点P 在AB 上方时,
则AH =BH ,
设OH =a ,则AH =BH =4﹣a ,AO =2, 故(4﹣a )2=a 2+4,解得:a =3
2
, 故点H (
3
2
,0), 则直线AH 的表达式为:y =4
3
x ﹣2④, 联立①④并解得:x =0或
17
3
(舍去0), 故点P (
173,509
); 当点P 在AB 下方时,
同理可得:点P (3,﹣2); 综上,点P 的坐标为:(﹣1,0)或(32,﹣258
)或(173,509)或(3,﹣2). 【点睛】
本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形、勾股定理的运用等,要注意分类讨论,解题全面.
7.在平面直角坐标系中,二次函数2
2y ax bx =+-的图象与x 轴交于点(4,0)A -,
(1,0)B ,与y 轴交于点C .
(1)求此抛物线的解析式;
(2)点P 是抛物线2
2y ax bx =+-上的任意一点,过点P 作x 轴的垂线PD ,直线PD
交直线AC 于点D .
①是否存在点P ,使得PAC ∆的面积是ABC ∆面积的4
5
?若存在,求出点P 的坐标;若不存在,请说明理由.
②点Q 是坐标平面内的任意一点,若以O ,C ,Q ,D 为顶点的四边形是菱形时,请直接写出点Q 的坐标. 【答案】(1)213
222
y x x =
+- (2)①存在,点P 的坐标为(22,12)-+-,(222,12)--+,(2,3)--
②1816,55Q ⎫
⎛-- ⎪⎝⎭,2(2,1)Q -,34525Q ⎝⎭,44525Q ⎛ ⎝⎭
【解析】 【分析】
(1)将(4,0)A -,(1,0)B 两点坐标代入解析式中求解即可; (2)①先求出△PAC 的面积为4,再求出直线AC 的解析式为1
22
y x =--.设点P 的横坐标为(t ,
213222t t +-),利用21
442
∆∆∆=-=⋅=+=PAC PDC PDA S S S OA PD t t 即可求解; ②先设出D 点坐标,然后再按对角线分成三种情况讨论即可求解. 【详解】
解:(1)由题意得,将(4,0)A -,(1,0)B 两点坐标代入解析式中:
1642020
a b a b --=⎧⎨+-=⎩,解得:1232a b ⎧=⎪⎪⎨⎪=⎪⎩
. ∴此抛物线的解析式为213222y x x =
+-, 故答案为213222
y x x =+-. (2)①存在点P ,使得PAC ∆的面积是ABC ∆面积的
45.理由如下: 作出如下所示示意图:
∵点(4,0)A -,(1,0)B ,
∴4OA =,5AB =,
令0x =,则2y =-,
∴(0,2)C -,∴2OC =,
∴1152522ABC S AB OC ∆=
⋅=⨯⨯=, ∴4455
45PAC ABC S S ∆∆==⨯=, 设直线AC 的解析式为y mx n =+,
则有402m n n -+=⎧⎨=-⎩,解得:122
m n ⎧=-⎪⎨⎪=-⎩, ∴直线AC 的解析式为122
y x =--.
设点P 的横坐标为t ,则其纵坐标为213222t t +-, 即213,222P t t t ⎫⎛+- ⎪⎝⎭
. ∵PD x ⊥轴,则点D 的坐标为1,22t t ⎫⎛-
- ⎪⎝⎭. ∴2213112222222
PD t t t t t ⎫⎛=+----=+ ⎪⎝⎭. ∵22111424222PAC PDC PDA S S S OA PD t t t t ∆∆∆=-=
⋅=⨯⨯+=+. ∴244t t +=,即2440t t +-=或2440t t ++=,
解得:1222t =-+,2222t =--,32t =-.
∴点P 的坐标为(222,12)-+-,(222,12)--+,(2,3)--,
故答案为:(222,12)-+-或(222,12)--+或(2,3)--.
②分类讨论:
情况一:当OC 为菱形的对角线时,此时DO=DC ,即D 点在线段OC 的垂直平分线, ∴D 点坐标(-2,-1),将△OCD 沿y 轴翻折,此时四边形ODCQ 为菱形,故此时Q 点坐标为(2,-1),如下图一所示,
情况二:当OQ 为对角线时,DO=DQ ,如下图二所示,
DQ=OC=OD=2,设D 点坐标1,22⎛
⎫-- ⎪⎝⎭
x x ,则EO=-x ,DE=122x +, 在Rt △EDO 中,由勾股定理可知:EO²+ED²=DO²,
故221
(2)42++=x x ,解得80(),5舍==-x x ,此时Q 点坐标为816,5
5⎛⎫-- ⎪⎝⎭, 情况三:当OD 为对角线时,OC=OQ=2,如下图三所示:
设D 点坐标1,22⎛⎫-- ⎪⎝⎭m m ,则EO=|m|,DE=122m +,QE=2-(122m +)=12m , 在Rt △QDO 中,由勾股定理可知:QE²+EO²=QO²,
故221
()()42+=m m ,解得124545,==-m m ,此时Q 点坐标为4525,⎛⎫- ⎪ ⎪⎝⎭或4525,55⎛⎫- ⎪ ⎪⎝⎭
, 综上所述,Q 点的坐标为1816,55Q ⎫⎛-- ⎪⎝⎭,2(2,1)Q -,34525,55Q ⎫⎛-⎪ ⎝⎭
,44525,Q ⎫⎛-⎪ ⎝⎭
. 故答案为1816,55Q ⎫⎛-- ⎪⎝⎭,2(2,1)Q -,34525,Q ⎫⎛-⎪ ⎝⎭,44525,Q ⎫⎛-⎪ ⎝⎭
. 【点睛】
本题考查了待定系数法求二次函数解析式,三角形的面积问题,菱形的存在性问题等,属于综合题,具有一定的难度,熟练掌握二次函数的图形及性质是解决本题的关键.
8.如图,直线l :y =﹣3x +3与x 轴,y 轴分别相交于A 、B 两点,抛物线y =﹣x 2+2x +b 经过点B .
(1)该抛物线的函数解析式;
(2)已知点M 是抛物线上的一个动点,并且点M 在第一象限内,连接AM 、BM ,设点M 的横坐标为m ,△ABM 的面积为S ,求S 与m 的函数表达式,并求出S 的最大值; (3)在(2)的条件下,当S 取得最大值时,动点M 相应的位置记为点M '.
①写出点M '的坐标;
②将直线l 绕点A 按顺时针方向旋转得到直线l ',当直线l ′与直线AM '重合时停止旋转,在旋转过程中,直线l '与线段BM '交于点C ,设点B ,M '到直线l '的距离分别为d 1,d 2,当d 1+d 2最大时,求直线l '旋转的角度(即∠BAC 的度数).
【答案】(1)2y x 2x 3=-++;(2)2
1525228S m ⎛⎫=--+ ⎪⎝⎭ ,258;(3)①57,24M ⎛⎫' ⎪⎝⎭
;②45° 【解析】
【分析】
(1)利用直线l 的解析式求出B 点坐标,再把B 点坐标代入二次函数解析式即可求出b 的值.
(2)设M 的坐标为(m ,﹣m 2+2m +3),然后根据面积关系将△ABM 的面积进行转化. (3)①由(2)可知m =52
,代入二次函数解析式即可求出纵坐标的值. ②可将求d 1+d 2最大值转化为求AC 的最小值.
【详解】
(1)令x =0代入y =﹣3x+3,
∴y =3,
∴B (0,3),
把B (0,3)代入y =﹣x 2+2x+b 并解得:b =3,
∴二次函数解析式为:y =﹣x 2+2x+3.
(2)令y =0代入y =﹣x 2+2x+3,
∴0=﹣x 2+2x+3,
∴x =﹣1或3,
∴抛物线与x 轴的交点横坐标为-1和3,
∵M 在抛物线上,且在第一象限内,
∴0<m <3,
令y =0代入y =﹣3x+3,
∴x =1,
∴A 的坐标为(1,0),
由题意知:M 的坐标为(m ,﹣m 2+2m+3),
∴S =S 四边形OAMB ﹣S △AOB =S △OBM +S △OAM ﹣S △AOB
=1
2
×m×3+
1
2
×1×(-m2+2m+3)-
1
2
×1×3
=﹣1
2
(m﹣
5
2
)2+
25
8

∴当m=5
2
时,S取得最大值
25
8

(3)①由(2)可知:M′的坐标为(5
2

7
4
).
②设直线l′为直线l旋转任意角度的一条线段,过点M′作直线l1∥l′,过点B作BF⊥l1于点F,
根据题意知:d1+d2=BF,
此时只要求出BF的最大值即可,
∵∠BFM′=90 ,
∴点F在以BM′为直径的圆上,
设直线AM′与该圆相交于点H,
∵点C在线段BM′上,
∴F在优弧'
BM H上,
∴当F与M′重合时,
BF可取得最大值,
此时BM′⊥l1,
∵A(1,0),B(0,3),M′(5
2

7
4
),
∴由勾股定理可求得:AB10,M′B55M′A 85

过点M′作M′G⊥AB于点G,
设BG=x,
∴由勾股定理可得:M′B2﹣BG2=M′A2﹣AG2,
∴85
16
10﹣x)2=
125
16
﹣x2,
∴x =5108
, cos ∠M′BG =
'BG BM =2,∠M′BG= 45︒ 此时图像如下所示,
∵l 1∥l′,F 与M′重合,BF ⊥l 1
∴∠B M′P=∠BCA =90︒,
又∵∠M′BG=∠CBA= 45︒
∴∠BAC =45︒.
【点睛】
本题主要考查了一次函数与二次函数的综合以及一次函数旋转求角度问题,正确掌握一次函数与二次函数性质及综合问题的解法是解题的关键.
9.二次函数22(0)63m m y x x m m =
-+>的图象交y 轴于点A ,顶点为P ,直线PA 与x 轴交于点B .
(1)当m =1时,求顶点P 的坐标;
(2)若点Q (a ,b )在二次函数22(0)63
m m y x x m m =
-+>的图象上,且0b m ->,试求a 的取值范围;
(3)在第一象限内,以AB 为边作正方形ABCD .
①求点D 的坐标(用含m 的代数式表示);
②若该二次函数的图象与正方形ABCD 的边CD 有公共点,请直接写出符合条件的整数m 的值.
【答案】(1)P (2,
13
);(2)a 的取值范围为:a <0或a >4;(3)①D (m ,m +3); ②2,3,4.
【解析】
【分析】
(1)把m =1代入二次函数22(0)63m m y x x m m =
-+>解析式中,进而求顶点P 的坐标即可;
(2)把点Q (a ,b )代入二次函数22(0)63
m m y x x m m =-+>解析式中,根据0b m ->得到关于a 的一元二次不等式即一元一次不等式组,解出a 的取值范围即可; (3)①过点D 作DE ⊥x 轴于点E ,过点A 作AF ⊥DE 于点F ,求出二次函数与y 轴的交点A 的坐标,得到OA 的长,再根据待定系数法求出直线AP 的解析式,进而求出与x 轴的交点B 的坐标,得到OB 的长;通过证明△ADF ≌△ABO ,得到AF=OA=m ,DF=OB=3,DE=DF+EF= DF+OA=m+3,求出点D 的坐标;
②因为二次函数的图象与正方形ABCD 的边CD 有公共点,由①同理可得:C (m+3,3),分当x 等于点D 的横坐标时与当x 等于点C 的横坐标两种情况,进行讨论m 可能取的整数值即可.
【详解】
解:(1)当m =1时,二次函数为212163y x x =
-+, ∴顶点P 的坐标为(2,13
); (2)∵点Q (a ,b )在二次函数22(0)63m m y x x m m =
-+>的图象上, ∴2263
m m b a a m =-+, 即:2263m m b m a a -=
-
∵0b
m ->, ∴
2263
m m a a ->0, ∵m >0, ∴2263
a a ->0, 解得:a <0或a >4,
∴a 的取值范围为:a <0或a >4; (3)①如下图,过点D 作DE ⊥x 轴于点E ,过点A 作AF ⊥DE 于点F ,
∵二次函数的解析式为2263m m y x x m =-+, ∴顶点P (2,3
m ), 当x=0时,y=m ,
∴点A (0,m ),
∴OA=m ;
设直线AP 的解析式为y=kx+b(k≠0),
把点A (0,m ),点P (2,3
m )代入,得: 23
m b m k b =⎧⎪⎨=+⎪⎩, 解得:3m k b m
⎧=-⎪⎨⎪=⎩,
∴直线AP 的解析式为y=3
m -
x+m , 当y=0时,x=3,
∴点B (3,0);
∴OB=3;
∵四边形ABCD 是正方形,
∴AD=AB ,∠DAF+∠FAB=90°,
且∠OAB+∠FAB =90°,
∴∠DAF=∠OAB ,
在△ADF 和△ABO 中,
DAF OAB AFD AOB AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩

∴△ADF ≌△ABO (AAS ),
∴AF=OA=m ,DF=OB=3,DE=DF+EF= DF+OA=m+3,
∴点D 的坐标为:(m ,m+3);
②由①同理可得:C (m+3,3),
∵二次函数的图象与正方形ABCD 的边CD 有公共点,
∴当x =m 时,3y m ≤+,可得3
22363m m m m -+≤+,化简得:32418m m -≤. ∵0m >,∴2
184m m m -≤,∴218(2)4m m
--≤, 显然:m =1,2,3,4是上述不等式的解,
当5m ≥时,2(2)45m --≥,18 3.6m ≤,此时,218(2)4m m
-->, ∴符合条件的正整数m =1,2,3,4; 当x = m +3时,y ≥3,可得2
(3)2(3)363m m m m m ++-+≥, ∵0m >,∴2
1823m m m ++≥,即218(1)2m m
++≥, 显然:m =1不是上述不等式的解,
当2m ≥时,2(1)211m ++≥,189m ≤,此时,218(1)2m m
++>恒成立, ∴符合条件的正整数m =2,3,4;
综上:符合条件的整数m 的值为2,3,4.
【点睛】
本题考查二次函数与几何问题的综合运用,熟练掌握二次函数的图象和性质、一次函数的图象和性质、正方形的性质是解题的关键.
10.在平面直角坐标系xOy 中(如图),已知二次函数2
y ax bx c =++(其中a 、b 、c 是常数,且a ≠0)的图像经过点A (0,-3)、B (1,0)、C (3,0),联结AB 、AC . (1)求这个二次函数的解析式;
(2)点D是线段AC上的一点,联结BD,如果:3:2
ABD BCD
S S
∆∆
=,求tan∠DBC的值;(3)如果点E在该二次函数图像的对称轴上,当AC平分∠BAE时,求点E的坐标.
【答案】(1)243
y x x
=-+-;(2)
3
2
;(3)E(2,
7
3
-)
【解析】
【分析】
(1)直接利用待定系数法,把A、B、C三点代入解析式,即可得到答案;
(2)过点D作DH⊥BC于H,在△ABC中,设AC边上的高为h,利用面积的比得到3
2
AD
DC
=,然后求出DH和BH,即可得到答案;
(3)延长AE至x轴,与x轴交于点F,先证明△OAB∽△OFA,求出点F的坐标,然后求出直线AF的方程,即可求出点E的坐标.
【详解】
解:(1)将A(0,-3)、B(1,0)、C(3,0)代入20
y ax bx c a
=++≠
()得,
03,
0934,
300
a b
a b
c
=+-


=+-

⎪-=++

解得
1
4
3
a
b
c
=-


=

⎪=-


∴此抛物线的表达式是:243
y x x
=-+-.
(2)过点D作DH⊥BC于H,
在△ABC 中,设AC 边上的高为h ,则
11:():():3:222
ABD BCD S S AD h DC h AD DC ∆∆=⋅⋅==, 又∵DH//y 轴,
∴25
CH DC DH OC AC OA ===. ∵OA=OC=3,则∠ACO=45°,
∴△CDH 为等腰直角三角形,
∴26355
CH DH ==⨯=. ∴64255BH BC CH =-=-
=. ∴tan ∠DBC=32
DH BH =. (3)延长AE 至x 轴,与x 轴交于点F ,
∵OA=OC=3,
∴∠OAC=∠OCA=45°,
∵∠OAB=∠OAC -∠BAC=45°-∠BAC ,∠OFA=∠OCA -∠FAC=45°-∠FAC ,
∵∠BAC=∠FAC ,
∴∠OAB=∠OFA .
∴△OAB ∽△OFA

∴13
OB OA OA OF ==. ∴OF=9,即F (9,0);
设直线AF 的解析式为y=kx+b (k≠0),
可得093k b b =+⎧⎨-=⎩ ,解得133
k b ⎧=⎪⎨⎪=-⎩, ∴直线AF 的解析式为:133
y x =-, 将x=2代入直线AF 的解析式得:73
y =-, ∴E (2,73
-
). 【点睛】 本题考查了相似三角形的判定和性质,二次函数的性质,求二次函数的解析式,等腰直角三角形的判定和性质,求一次函数的解析式,解题的关键是掌握二次函数的图像和性质,以及正确作出辅助线构造相似三角形.
三、初三数学 旋转易错题压轴题(难)
11.已知:如图①,在矩形ABCD 中,3,4,AB AD AE BD ==⊥,垂足是E .点F 是点E 关于AB 的对称点,连接AF 、BF .
(1)求AF 和BE 的长;
(2)若将ABF 沿着射线BD 方向平移,设平移的距离为m (平移距离指点B 沿BD 方向所经过的线段长度).当点F 分别平移到线段AB AD 、上时,直接写出相应的m 的值. (3)如图②,将ABF 绕点B 顺时针旋转一个角1(080)a a ︒<<︒,记旋转中ABF 为''A BF ,在旋转过程中,设''A F 所在的直线与直线AD 交于点P ,与直线BD 交于点Q .是否存在这样的P Q 、两点,使DPQ 为等腰三角形?若存在,求出此时DQ 的长;若不存在,请说明理由.
【答案】(1)129,55AF BF ==;(2)95
m =或165m =;(3)存在4组符合条件的点P 、点Q ,使DPQ 为等腰三角形; DQ 的长度分别为2或258
91055或
3
510
5
-.
【解析】
【分析】
(1)利用矩形性质、勾股定理及三角形面积公式求解;
(2)依题意画出图形,如图①-1所示.利用平移性质,确定图形中的等腰三角形,分别求出m的值;
(3)在旋转过程中,等腰△DPQ有4种情形,分别画出图形,对于各种情形分别进行计算即可.
【详解】
(1)∵四边形ABCD是矩形,
∴∠BAD=90°,
在Rt△ABD中,AB=3,AD=4,
由勾股定理得:BD=2222
345
AB AD
+=+=,
∵S△ABD
1
2
=BD•AE=
1
2
AB•AD,
∴AE=AB AD3412 BD55
⋅⨯
==,
∵点F是点E关于AB的对称点,
∴AF=AE
12
5
=,BF=BE,
∵AE⊥BD,
∴∠AEB=90°,
在Rt△ABE中,AB=3,AE
12
5 =,
由勾股定理得:BE
2
222
129
3
55 AB AE
⎛⎫
=-=-=

⎝⎭

(2)设平移中的三角形为△A′B′F′,如图①-1所示:
由对称点性质可知,∠1=∠2.BF=BE
9
5 =,
由平移性质可知,AB∥A′B′,∠4=∠1,BF=B′F′
9
5 =,
①当点F′落在AB上时,
∵AB∥A′B′,
∴∠3=∠4,
根据平移的性质知:∠1=∠4,∴∠3=∠2,
∴BB′=B′F′
9
5
=,即
9
5
m=;
②当点F′落在AD上时,∵AB∥A′B′,AB⊥AD,
∴∠6=∠2,A′B′⊥AD,∵∠1=∠2,∠5=∠1,
∴∠5=∠6,
又知A′B′⊥AD,
∴△B′F′D为等腰三角形,
∴B′D=B′F′
9
5 =,
∴BB′=BD-B′D=5-916
55
=,即m
16
5
=;
(3)存在.理由如下:
∵四边形ABCD是矩形,
∴∠BAD=90°,
∵AE⊥BD,
∴∠AEB=90°,
∠2+∠ABD=90°,∠BAE+∠ABD=90°,
∴∠2=∠BAE,
∵点F是点E关于AB的对称点,
∴∠1=∠BAE,
∴∠1=∠2,
在旋转过程中,等腰△DPQ依次有以下4种情形:
①如图③-1所示,点Q落在BD延长线上,且PD=DQ,
则∠Q=∠DPQ,
∴∠2=∠Q+∠DPQ=2∠Q,∵∠1=∠3+∠Q,∠1=∠2,∴∠3=∠Q,
∴A′Q=A′B=3,
∴F′Q=F′A′+A′Q=1227
3
55
+=,
在Rt△BF′Q中,由勾股定理得:BQ=
22
22
927910 BF F Q
555
⎛⎫⎛⎫
+=+=
⎪ ⎪
⎝⎭⎝⎭
'',
∴DQ=BQ-BD=910
5 5
-;
②如图③-2所示,点Q落在BD上,且PQ=DQ,
则∠2=∠P,
∵∠1=∠2,
∴∠1=∠P,
∴BA′∥PD,
则此时点A′落在BC边上.
∵∠3=∠2,
∴∠3=∠1,
∴BQ=A′Q,
∴F′Q=F′A′-A′Q=12
5
-BQ,
在Rt△BQF′中,由勾股定理得:BF′2+F′Q2=BQ2,
即:
22
2 912
55
BQ BQ
⎛⎫⎛⎫
+-=
⎪ ⎪
⎝⎭⎝⎭

解得:
15
8 BQ=,
∴DQ= BD-BQ=5-1525 88
=;
③如图③-3所示,点Q落在BD上,且PD=DQ,
则∠3=∠4.
∵∠2+∠3+∠4=180°,∠3=∠4,
∴∠4=90°-1
2
∠2.
∵∠1=∠2,
∴∠4=90°-1
2
∠1,
∴∠A′QB=∠4=90°-1
2
∠1,
∴∠A′QB=∠A′BQ,∴A′Q=A′B=3,
∴F′Q=A′Q-A′F′=3-123 55
=,
在Rt△BF′Q中,由勾股定理得:
22
22
93310 BF F Q
55
⎛⎫⎛⎫
+=+=
⎪ ⎪
⎝⎭⎝⎭
'',
∴DQ=BQ-BD=
310 5-
④如图④-4所示,点Q落在BD上,且PQ=PD,
则∠2=∠3.
∵∠1=∠2,∠3=∠4,∠2=∠3,
∴∠1=∠4,
∴BQ=BA′=3,
∴DQ=BD-BQ=5-3=2.
综上所述,存在4组符合条件的点P、点Q,使△DPQ为等腰三角形,DQ的长度分别为:
2或25
8

9
105
5
-或
3
510
5
-.
【点睛】
本题是四边形综合题目,主要考查了矩形的性质、轴对称的性质、平移的性质、旋转的性质、勾股定理、等腰三角形的性质等知识点;第(3)问难度很大,解题关键是画出各种旋转图形,依题意进行分类讨论.
12.在△ABC中,∠C=90°,AC=BC=6.
(1)如图1,若将线段AB绕点B逆时针旋转90°得到线段BD,连接AD,则△ABD的面积为.
(2)如图2,点P为CA延长线上一个动点,连接BP,以P为直角顶点,BP为直角边作等腰直角△BPQ,连接AQ,求证:AB⊥AQ;
(3)如图3,点E,F为线段BC上两点,且∠CAF=∠EAF=∠BAE,点M是线段AF上一个动点,点N是线段AC上一个动点,是否存在点M,N,使CM+NM的值最小,若存在,求出最小值:若不存在,说明理由.
【答案】(1)36;(2)详见解析;(3)存在,最小值为3.
【解析】
【分析】
(1)根据旋转的性质得到△ABD是等腰直角三角形,求得AD=2BC=12,根据三角形的面积公式即可得到结论;
(2)如图2,过Q作QH⊥CA交CA的延长线于H,根据等腰直角三角形的性质,得到PQ =PB,∠BPQ=90°,根据全等三角形的性质得到PH=BC,QH=CP,求得CP=AH,得到∠HAQ=45°,于是得到∠BAQ=180°﹣45°﹣45°=90°,即可得到结论;
(3)根据已知条件得到∠CAF=∠EAF=∠BAE=15°,求得∠EAC=30°,如图3,作点C关于AF的对称点D,过D作DN⊥AC于N交AF于M,则此时,CM+NM的值最小,且最小值=DN,求得AD=AC=6,根据直角三角形的性质即可得到结论.
【详解】
解:(1)∵将线段AB绕点B逆时针旋转90°得到线段BD,
∴△ABD是等腰直角三角形,
∵∠ACB=90°,
∴BC⊥AD,
∴AD=2BC=12,
∴△ABD的面积=1
2
AD•BC=
1
2
12×6=36,
故答案为:36;
(2)如图,过Q作QH⊥CA交CA的延长线于H,
∴∠H=∠C=90°,
∵△BPQ是等腰直角三角形,
∴PQ=PB,∠BPQ=90°,
∴∠HPQ+∠BPC=∠QPH+∠PQH=90°,
∴∠PQH=∠BPC,
∴△PQH≌△BPC(AAS),
∴PH=BC,QH=CP,
∵AC=BC,
∴PH=AC,
∴CP=AH,
∴QH=AH,
∴∠HAQ=45°,
∵∠BAC=45°,
∴∠BAQ=180°﹣45°﹣45°=90°,
∴AB ⊥AQ ;
(3)如图,作点C 关于AF 的对称点D ,过D 作DN ⊥AC 于N 交AF 于M ,
∵∠CAF =∠EAF =∠BAE ,∠BAC =45°,
∴∠CAF =∠EAF =∠BAE =15°,
∴∠EAC =30°,
则此时,CM +NM 的值最小,且最小值=DN ,
∵点C 和点D 关于AF 对称,
∴AD =AC =6,
∵∠AND =90°,
∴DN =12AD =12
⨯6=3, ∴CM +NM 最小值为3.
【点睛】
本题是几何变换综合题,考查了全等三角形的判定与性质,旋转的性质,等腰直角三角形的性质,含30°角的直角三角形的性质,正确的作出作辅助线构造全等三角形是解题的关键.
13.综合与探究:
如图1,Rt AOB 的直角顶点O 在坐标原点,点A 在y 轴正半轴上,点B 在x 轴正半轴上,4OA =,2OB =,将线段AB 绕点B 顺时针旋转90︒得到线段BC ,过点C 作CD x ⊥轴于点D ,抛物线23y ax x c =++经过点C ,与y 轴交于点(0,2)E ,直线AC 与x 轴交于点H .
(1)求点C 的坐标及抛物线的表达式;
(2)如图2,已知点G 是线段AH 上的一个动点,过点G 作AH 的垂线交抛物线于点F (点F 在第一象限),设点G 的横坐标为m .
①点G 的纵坐标用含m 的代数式表示为________;
②如图3,当直线FG 经过点B 时,求点F 的坐标,判断四边形ABCF 的形状并证明结论;
③在②的前提下,连接FH ,点N 是坐标平面内的点,若以F ,H ,N 为顶点的三角形与FHC 全等,请直接写出点N 的坐标.
【答案】(1)点C 的坐标为(6,2),21322y x x =-++;(2)①143
m -+;②点F 的坐标为(4,6),四边形ABCF 为正方形,证明见解析;③点N 的坐标为(10,4)或4226,55⎛⎫ ⎪⎝⎭或384,55⎛⎫ ⎪⎝⎭
. 【解析】
【分析】
(1)根据已知条件与旋转的性质证明ABO BCD ≌,根据全等三角形的性质得出点C 的坐标,结合点E 的坐标,根据待定系数法求出抛物线的表达式;
(2)①设直线AC 的表达式为y kx b =+,由点A 、C 的坐标求出直线AC 的表达式,进而得解;
②过点G 作GM x ⊥轴于点M ,过点F 作FP y ⊥轴,垂足为点P ,PF 的延长线与DC 的延长线交于点Q ,根据等腰三角形三线合一得出AG CG =,结合①由平行线分线段成比例得出点G 的坐标,根据待定系数法求出直线BG 的表达式,结合抛物线的表达式求出点F ;利用勾股定理求出AB BC CF FA ===,结合90ABC ︒∠=可得出结论; ③根据直线AC 的表达式求出点H 的坐标,设点N 坐标为(,)s t ,根据勾股定理分别求出2FC ,2CH ,2FN ,2NH ,然后分两种情况考虑:若△FHC ≌△FHN ,则FN =FC ,NH =CH ,若△FHC ≌△HFN ,则FN =CH ,NH =FC ,分别列式求解即可.
【详解】
解:(1)4=OA ,2OB =,
∴点A 的坐标为(0,4),点B 的坐标为(2,0),
线段AB 绕点B 顺时针旋转90︒得到线段BC ,
AB BC ∴=,90ABC ︒∠=,
90ABO DBC ︒∴∠+∠=,
在Rt AOB 中,90ABO OAB ︒∴∠+∠=,
=OAB DBC ∴∠∠,
CD x ⊥轴于点D ,
90BDC ︒∴∠=,
90AOB BDC ︒∴∠=∠=.
AB BC =,
ABO BCD ∴△≌△,
2CD OB ∴==,4BD OA ==,
6OB BD ∴+=,
∴点C 的坐标为(6,2),
∵抛物线2
3y ax x c =++的图象经过点C ,与y 轴交于点(0,2)E , 236182
c a c =⎧∴⎨++=⎩, 解得,122
a c ⎧=-⎪⎨⎪=⎩, ∴抛物线的表达式为21322
y x x =-++; (2)①设直线AC 的表达式为y kx b =+,
∵直线AC 经过点()6,2C ,(0,4)A ,
∴624k b b +=⎧⎨=⎩
, 解得,134
k b ⎧=-⎪⎨⎪=⎩,即143y x =-+, ∴点G 的纵坐标用含m 的代数式表示为:1
43
m -+, 故答案为:1
43
m -+.
②过点G 作GM x ⊥轴于点M , OM m ∴=,143
GM m =-+, AB BC =,BG AC ⊥,
AG CG ∴=,
90AOB GMH CDH ︒∠=∠=∠=,
OA GM
CD ∴, 1OM AG MD GC
∴==, 132
OM MD OD ∴===, 3m ∴=,1
433
m -+=,
∴点G 为(3,3),
设直线BG 的表达式为y kx b =+,将(3,3)G 和(2,0)B 代入表达式得,2033k b k b +=⎧⎨+=⎩
, 36
k b =⎧∴⎨=-⎩,即表达式为36y x =-, 点F 为直线BG 和抛物线的交点,
∴得2132362
x x x -++=-, 14x ∴=,24x =-(舍去),
∴点F 的坐标为(4,6),
过点F 作FP y ⊥轴,垂足为点P ,PF 的延长线与DC 的延长线交于点Q ,
4PF ∴=,2AP =,2FQ =,4CQ =,
在Rt AFP △中和Rt FCQ △中,根据勾股定理,得25AF FC ==,
同理可得25AB BC ==,
AB BC CF FA ∴===,
∴四边形ABCF 为菱形,
90ABC ︒∠=,
∴菱形ABCF 为正方形;
③∵直线AC :143y x =-
+与x 轴交于点H , ∴1403
x -+=, 解得,x =12,
∴(12,0)H ,
∴222(64)(26)20FC =-+-=,222
(126)(02)40CH =-+-=,
设点N 坐标为(,)s t ,
∴222(4)(6)FN s t =-+-,222(12)(0)NH s t =-+-,
第一种情况:若△FHC ≌△FHN ,则FN =FC ,NH =CH , ∴2222(4)(6)20(12)40s t s t ⎧-+-=⎨-+=⎩

解得,11425265s t
⎧=⎪⎪⎨⎪=⎪⎩
,2262s t =⎧⎨=⎩(即点C ), ∴4226,55N ⎛⎫ ⎪⎝⎭
; 第二种情况:若△FHC ≌△HFN ,则FN =CH ,NH =FC ,
∴2222(4)(6)40(12)20
s t s t ⎧-+-=⎨-+=⎩, 解得,1138545s t ⎧=⎪⎪⎨⎪=⎪⎩
,22104s t =⎧⎨=⎩, ∴384,55N ⎛⎫ ⎪⎝⎭
或(10,4)N , 综上所述,以F ,H ,N 为顶点的三角形与△FHC 全等时,点N 坐标为(10,4)或4226,55⎛⎫
⎪⎝⎭或384,55⎛⎫ ⎪⎝⎭
. 【点睛】
本题是函数与几何的综合题,考查了待定系数法求函数的表达式,全等三角形的判定与性质,菱形与正方形的判定,旋转的性质,勾股定理等知识,其中对全等三角形存在性的分析,因有一条公共边,可对另外两边进行分类讨论,本题有一定的难度,是中考压轴题.
14.已知:△ABC 和△ADE 均为等边三角形,连接BE ,CD ,点F ,G ,H 分别为
DE ,BE ,CD 中点.
(1)当△ADE 绕点A 旋转时,如图1,则△FGH 的形状为 ,说明理由;
(2)在△ADE 旋转的过程中,当B ,D ,E 三点共线时,如图2,若AB =3,AD =2,求线段FH 的长;
(3)在△ADE 旋转的过程中,若AB =a ,AD =b (a >b >0),则△FGH 的周长是否存在最大值和最小值,若存在,直接写出最大值和最小值;若不存在,说明理由.
【答案】(1)△FGH是等边三角形;(2)61
2
-
;(3)△FGH的周长最大值为
3
2
(a+b),最小值为3
2
(a﹣b).
【解析】
试题分析:(1)结论:△FGH是等边三角形.理由如下:根据三角形中位线定理证明FG=FH,再想办法证明∠GFH=60°即可解决问题;、
(2)如图2中,连接AF、EC.在Rt△AFE和Rt△AFB中,解直角三角形即可;
(3)首先证明△GFH的周长=3GF=3
2
BD,求出BD的最大值和最小值即可解决问题;
试题解析:解:(1)结论:△FGH是等边三角形.理由如下:
如图1中,连接BD、CE,延长BD交CE于M,设BM交FH于点O.
∵△ABC和△ADE均为等边三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE,∴∠BAD=∠CAE,∴△BAD≌△CAE,∴BD=CE,∠ADB=
∠AEC,∵EG=GB,EF=FD,∴FG=1
2
BD,GF∥BD,∵DF=EF,DH=HC,∴FH=
1
2
EC,FH∥EC
,∴FG=FH,∵∠ADB+∠ADM=180°,∴∠AEC+∠ADM=180°,∴∠DMC+∠DAE=180°,∴∠DME=120°,∴∠BMC=60°
∴∠GFH=∠BOH=∠BMC=60°,∴△GHF是等边三角形,故答案为:等边三角形.
(2)如图2中,连接AF、EC.
易知AF⊥DE,在Rt△AEF中,AE=2,EF=DF=1,∴AF22
21
-3,在Rt△ABF中,
BF22
AB AF
-6,∴BD=CE=BF﹣DF61,∴FH=1
2
EC
61
-.
(3)存在.理由如下.
由(1)可知,△GFH是等边三角形,GF=1
2
BD,∴△GFH的周长=3GF=
3
2
BD,在△ABD
中,AB=a,AD=b,∴BD的最小值为a﹣b,最大值为a+b,∴△FGH的周长最大值为
3 2(a+b),最小值为3
2
(a﹣b).
点睛:本题考查等边三角形的性质.全等三角形的判定和性质、解直角三角形、三角形的三边关系、三角形的中位线的宽等知识,解题的关键是学会添加常用辅助线,正确寻找全等三角形解决问题,学会利用三角形的三边关系解决最值问题,属于中考压轴题.
15.(问题提出)
如图①,已知△ABC是等边三角形,点E在线段AB上,点D在直线BC上,且ED=EC,将△BCE绕点C顺时针旋转60°至△ACF连接EF
试证明:AB=DB+AF
(类比探究)
(1)如图②,如果点E在线段AB的延长线上,其他条件不变,线段AB,DB,AF之间又有怎样的数量关系?请说明理由
(2)如果点E在线段BA的延长线上,其他条件不变,请在图③的基础上将图形补充完整,并写出AB,DB,AF之间的数量关系,不必说明理由.
【答案】证明见解析;(1)AB=BD﹣AF;(2)AF=AB+BD.
【解析】
【分析】
(1)根据旋转的性质得出△EDB与FEA全等的条件BE=AF,再结合已知条件和旋转的性质推出∠D=∠AEF,∠EBD=∠EAF=120°,得出△EDB≌FEA,所以BD=AF,等量代换即可得出结论.(2)先画出图形证明∴△DEB≌△EFA,方法类似于(1);(3)画出图形根据图形直接写出结论即可.
【详解】
(1)证明:DE=CE=CF,△BCE
由旋转60°得△ACF,
∴∠ECF=60°,BE=AF,CE=CF,
∴△CEF是等边三角形,
∴EF=CE,
∴DE=EF,∠CAF=∠BAC=60°,
∴∠EAF=∠BAC+∠CAF=120°,
∵∠DBE=120°,。

相关文档
最新文档