2022年沪教版(上海)九年级数学第二学期第二十八章统计初步必考点解析试卷(精选含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学第二学期第二十八章统计初步必考点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、某校“安全知识”比赛有16名同学参加,规定前8名的同学进入决赛.若某同学想知道自己能否晋级,不仅要了解自己的成绩,还需要了解16名参赛同学成绩的()
A.平均数B.中位数C.众数D.方差
2、下列调查中,适合用普查方式的是()
A.调查佛山市市民的吸烟情况
B.调查佛山市电视台某节目的收视率
C.调查佛山市市民家庭日常生活支出情况
D.调查佛山市某校某班学生对“文明佛山”的知晓率
3、某中学开展“读书伴我成长”活动,为了解八年级学生四月份的读书册数,对从中随机抽取的20名学生的读书册数进行调查,结果如下表:
根据统计表中的数据,这20名同学读书册数的众数,中位数分别是()
A.3,3 B.3,7 C.2,7 D.7,3
4、下列说法正确的是()
A.2-的相反数是2
B.各边都相等的多边形叫正多边形
C.了解一沓钞票中有没有假钞,应采用普查的形式
=,则点B是线段AC的中点
D.若线段AB BC
5、某校男子足球队的年龄分布如图条形图所示,则这些队员年龄的众数是()
A.8 B.13 C.14 D.15
6、下列调查中,调查方式选择合理的是()
A.为了了解澧水河流域饮用水矿物质含量的情况,采用抽样调查方式
B.为了保证长征运载火箭的成功发射,对其所有的零部件采用抽样调查方式
C.为了了解天门山景区的每天的游客客流量,选择全面调查方式
D.为了调查湖南卫视《快乐大本营》节目的收视率,采用全面调查方式
7、新冠疫情防控形势下,学校要求学生每日测量体温.某同学连续一周的体温情况如表所示,则该同学这一周的体温数据的众数和中位数分别是()
A.36.3和36.2 B.36.2和36.3 C.36.3和36.3 D.36.2和36.1
8、在一次班级体测调查中,收集到40名同学的跳高数据,数据分别落在5个组内,且落入第一、
二、三、五组的数据个数分别为2、7、11、12,则第四组频数为().
A.9 B.8 C.7 D.6
9、某小组同学在一周内参加家务劳动的时间表所示,关于“劳动时间”的这组数据,以下说法正确的是()
A.中位数是4.5,平均数是3.75 B.众数是4,平均数是3.75
C.中位数是4,平均数是3.8 D.众数是2,平均数是3.8
10、下列问题不适合用全面调查的是()
A.旅客上飞机前的安检B.企业招聘,对应试人员进行面试
C.了解全班同学每周体育锻炼的时间D.调查市场上某种食品的色素含量是否符合国家标准
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、某校组织一次实验技能竞赛,测试项目有理论知识测试、实验技能操作A、实验技能操作B,各项满分均为100分,并将这三项得分分别按4:3:3的比例计算最终成绩.在本次竞赛中张同学的三项测试成绩如下:理论知识测试:80分;实验技能操作A:90分;实验技能操作B:75分;则该同学的最终成绩是______分.
2、已知有50个数据分别落在五个小组内,落在第一、二、三、五小组内的数据个数分别为2,8,15,15,则落在第四小组内的频率是_____.
3、一组数据a,b,c,d,e的方差是7,则a+2、b+2、c+2、d+2、e+2的方差是___.
4、圆周率π≈3.141592653589793,数字5出现的频数是____.
5、某学校决定招聘数学教师一名,一位应聘者测试的成绩如表:
将笔试成绩,面试成绩按6:4的比例计入总成绩,则该应聘者的总成绩是______分.
三、解答题(5小题,每小题10分,共计50分)
1、某校七年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下,并绘制了如图所示的两幅不完整的统计图,请结合图中相关数据回答下列问题:
(1)直接写出随机抽取学生的人数为______人;
(2)直接补全频数直方图;
(3)求扇形统计图中B部分所对应的百分比和F部分扇形圆心角的度数;
(4)该校七年级共有学生1000人,请估计七年级学生这天在课堂上发言次数大于等于12次的人数.
2、2020年冬季达州市持续出现雾霾天气.某记者为了了解“雾霾天气的主要成因”,随机调查了该市部分市民,并对调查结果进行整理,绘制了尚不完整的统计图表.
请根据图表中提供的信息解答下列问题:
(1)填空:m=,n=,扇形统计图中E组所占的百分比为%;
(2)若该市人口约有200万人,请你估计其中持D组“观点”的市民人数.
(3)治污减霾,你有什么建议?
3、在新冠状病毒防控期间,各地纷纷展开了停课不停学活动,学校为了了解学生自主阅读情况,抽样调查了部分学生每周用于自主阅读的时间,过程如下:
收集数据:
从全校随机抽取20名学生,每周用于自主阅读时间的调查,数据如下:(单位:min)
30 60 81 50 44 110 130 146 80 100
60 80 120 140 75 81 10 30 81 92
整理数据:按下表分段整理样本数据:
分析数据:样本的平均数、中位数、众数如下表所示:
请回答下列问题:
a_______,b=________,c=_______;
(1)表格中的数据=
(2)用样本中的统计量估计该校学生每周用于课外阅读时间的等级为______;
(3)假设平均阅读一本课外书的时间为320分钟,请你用样本平均数
...估计该校学生每人一年(按52周计算)平均阅读________本课外书.
4、疫情期间,渤海中学进行了一次线上数学学情调查,九年级(1)班数学李老师对成绩进行分析,绘制成尚不完整的统计图表,如图.
(1)=a ,B 类所在扇形的圆心角的度数是 ,并补全频数分布直方图;
(2)全校九年级共有720名学生全部参加此次测试,估计该校成绩在80100x ≤<范围内的学生人数;
(3)九年级(1)班数学李老师准备从D 类优生的6人中随机抽取2人进行线上学习经验交流,已知这6人中有2名是无家长管理的留守学生,求恰好只选中其中1名留守学生进行经验交流的概率.
5、为促进学生健康成长,帮助家长解决按时接送学生困难的问题,认真落实全国教育大会精神,某校结合自身情况,在开展中学生课后服务工作方面做了全面规划,并且落到实处.在不加重学生课业负担的前提下,学校在托管时间内组织学生进行自主阅读、体育、艺术、及其他一些有益身心健康的活动,学生根据自己的喜好,自主选择.学校随机抽取了部分学生进行调查(抽取的学生都选择了一种自己喜爱的活动),下面是根据调查情况,得到的两幅不完整的统计图,请结合图中信息解答下列
问题:
(1)求出本次调查中,随机抽取的学生人数;
(2)补全条形统计图,并求出“其他”所对应的圆心角的度数;
(3)若该校学生总人数为840人,估计选择阅读的学生有多少人?
-参考答案-
一、单选题
1、B
【分析】
由中位数的概念,即最中间一个或两个数据的平均数;可知16人成绩的中位数是第8名和第9名的成绩.根据题意可得:参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.
【详解】
解:由于16个人中,第8和第9名的成绩的平均数是中位数,故同学知道了自己的分数后,想知道自己能否进入决赛,还需知道这16位同学的成绩的中位数.
故选:B.
【点睛】
此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量
有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
2、D
【分析】
根据普查和抽样调查的定义进行逐一判断即可.
【详解】
解:A、调查佛山市市民的吸烟情况,应采用抽样调查,故此选项不符合题意;
B、调查佛山市电视台某节目的收视率,应采用抽样调查,故此选项不符合题意;
C、调查佛山市市民家庭日常生活支出情况,应采用抽样调查,故此选项不符合题意;
D、调查佛山市某校某班学生对“文明佛山”的知晓率,应采用普查,故此选项符合题意;
故选D.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
3、A
【分析】
根据众数、中位数的定义解答.
【详解】
解:读书册数的众数是3;第10个数据是3,第11个数据是3,故中位数是3,
故选:A.
【点睛】
此题考查了统计中的众数和中位数的定义,数据定义并应用是解题的关键.
4、C
【分析】
根据相反数、正多边形、抽样调查、中点的相关定义逐项判断即可.
【详解】
解:A. 2-的相反数是-2,原选项不正确,不符合题意;
B. 各边都相等,各角都相等的多边形叫正多边形,原选项不正确,不符合题意;
C. 了解一沓钞票中有没有假钞,应采用普查的形式,原选项正确,符合题意;
=,则点B是线段AC的中点,Am、B、C三点不共线时,则说D. A、B、C三点共线时,若线段AB BC
法不成立,原选项不正确,不符合题意;
故选:C.
【点睛】
本题考查了相反数、正多边形、全面调查和线段的中点,解题关键是熟记相关知识,准确进行判断.5、C
【分析】
根据众数的定义:一组数据中出现次数最多的那个数,称为这组数据的众数,据此结合条形图可得答案.
【详解】
解:由条形统计图知14岁出现的次数最多,
所以这些队员年龄的众数为14岁,
故选C.
【点睛】
本题考查了众数的定义及条形统计图的知识,解题的关键是能够读懂条形统计图及了解众数的定义.6、A
【分析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查所费人力、物力和时间较少,但只能得出近似的结果判断即可.
【详解】
A. 为了了解澧水河流域饮用水矿物质含量的情况,适合采用抽样调查方式,符合题意;
B. 为了保证长征运载火箭的成功发射,对其所有的零部件适合采用全面调查方式,该选项不符合题意;
C. 为了了解天门山景区的每天的游客客流量,适合选择抽样调查方式,该选项不符合题意;
D. 为了调查湖南卫视《快乐大本营》节目的收视率,适合选择抽样调查方式,该选项不符合题意.
故选:A.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
7、C
【分析】
根据中位数、众数的意义求解即可.
【详解】
解:把已知数据按照由小到大的顺序重新排序后为36.2,36.2,36.3,36.3,36.3,36.4,36.7,
该名同学这一周体温出现次数最多的是36.3℃,共出现3次,因此众数是36.3,
将这七天的体温从小到大排列处在中间位置的一个数是36.3℃,因此中位数是36.3,
故选:C.
【点睛】
本题考查中位数、众数,理解中位数、众数的意义是解题的关键.
8、B
【分析】
根据题意可得:共40个数据,知道一、二、三、五组的数据个数,用总数减去这几组频数,即可得到答案.
【详解】
解:由题意得:第四组的频数=40-(2+7+11+12)=8;
故选B.
【点睛】
本题是对频数的考查,掌握各小组频数之和等于数据总和是解题的关键.
9、C
【分析】
根据平均数、众数和中位数的概念求解.
【详解】
解:平均数为:(3+3.5+4×2+4.5)÷5=3.8,
这组数据中4出现的次数最多,众数为4,
∵共有5个人,
∴第3个人的劳动时间为中位数,
∴中位数为4.
故选:C.
【点睛】
本题考查了众数、中位数及加权平均数的知识,解题的关键是了解有关的定义,难度不大.
10、D
【分析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近
似,根据以上逐项分析可知.
【详解】
解:A. 旅客上飞机前的安检,人员不多,且这个调查很重要不可漏掉任何人,适合全面调查,不符合题意,
B. 企业招聘,对应试人员进行面试,人员不多,且这个调查很重要不可漏掉任何人,适合全面调查,不符合题意,
C. 了解全班同学每周体育锻炼的时间,人员不多,适合全面调查,不符合题意,
D. 调查市场上某种食品的色素含量是否符合国家标准,调查具有破坏性,不适合全面调查,符合题意
故选D
【点睛】
本题考查的是全面调查与抽样调查,在调查实际生活中的相关问题时,要灵活处理,既要考虑问题本身的需要,又要考虑实现的可能性和所付出代价的大小.理解全面调查与抽样调查的适用范围是解题的关键.
二、填空题
1、81.5
【分析】
根据加权平均数的计算公式列出算式,再进行计算即可得出答案.
【详解】
解:该同学的最终成绩是:804903753
81.5
433
⨯+⨯+⨯
=
++
(分).
故答案为:81.5.
【点睛】
此题考查了加权平均数,熟记加权平均数的计算公式是解题的关键.2、0.4
【分析】
先求出第四小组的频数,再根据频率=频数÷样本容量计算即可;
【详解】
由题可知:第四小组的频数()502815520=-+++=,
频率=频数÷样本容量20500.4=÷=;
故答案是0.4.
【点睛】
本题主要考查了频率和频数的计算,准确分析计算是解题的关键.
3、7
【分析】
根据平均数和方差的计算公式即可得.
【详解】
解:设数据,,,,a b c d e 的平均数为5
a b c d e x ++++=, 则2,2,2,2,2a b c d e +++++的平均数为
2222225a b c d e x +++++++++=+, 数据,,,,a b c d e 的方差是7,
()()()()()
22222175a x b x c x d x e x ⎡⎤∴-+-+-+-+-=⎢⎥⎣⎦, ()()()()()
222221222222222275a x b x c x d x e x ⎡⎤∴+--++--++--++--++--=⎢⎥⎣⎦, 即2,2,2,2,2a b c d e +++++的方差是7,
故答案为:7.
【点睛】
本题考查了求方差,熟记公式是解题关键.
4、3
【分析】
从 3.141592653589793π≈数5出现的次数即可得出答案.
【详解】
在 3.141592653589793π≈中,5出现了3次,
∴数字5出现的频数是3.
故答案为:3.
【点睛】
本题考查频数的定义:一组数据中,某数据出现的次数,掌握频数的定义是解题的关键. 5、84
【分析】
根据求加权平均数的方法求解即可
【详解】 解:6480904836841010
⨯+⨯=+= 故答案为:84
【点睛】 本题考查了求加权平均数,掌握加权平均数计算公式是解题的关键.加权平均数计算公式为:1122()1k k x x f x f x f n
=++⋯+,其中12k f f f ⋯,,,代表各数据的权. 三、解答题
1、(1)50;(2)补全频数直方图见解析;(3)B 部分所对应的百分比20%;F 部分扇形圆心角的度数为36︒;(4)180人.
(1)用A组频数除以频率,即可求得抽取人数为50人;
(2)用50乘以C组所占百分比求出频数,用50减A、B、C、D、E组频数,即可求解,补全直方图即可;
(3)用B组频数除以50,即可求解;用F组频数除以50再乘以360°即可求解;
(4)用样本估计总体,用1000乘以样本中发言次数大于等于12的人数所占百分比,问题得解.
【详解】
(1)3÷6%=50,
故答案为:50;
(2)50×30%=15, 50-3-10-15-13-4=5,补全频数直方图如下;
(3)B部分所对应的百分比1050100%20%
÷⨯=,
F部分扇形圆心角的度数为5
36036
50
⨯︒=︒;
(4)
45
1000180
50
+
⨯=(人),
答:估计该校七年级学生1000人中,这天在课堂上发言次数大于等于12次的人数为180人.
【点睛】
本题考查了直方图,扇形图,用样本估计总体等知识,理解直方图、扇形图的意义,根据两种统计图中提供的公共信息求出样本容量是解题关键.
2、(1)400,100,15;(2)60万人;(3)见解析
(1)根据A的人数除以BA所占的百分比,求得总人数,总人数乘以B的百分比可得m,总人数减去其余各组人数之和可得n,用E组人数除以总人数可得答案;
(2)根据全市总人数乘以D类所占比例,可得答案;
(3)根据以上图表提出合理倡议均可.
【详解】
解:(1)本次调查的总人数为80÷20%=400(人),
则B组人数m=400×10%=40(人),
C组人数n=400﹣(80+40+120+60)=100(人),
∴扇形统计图中E组所占的百分比为(60÷400)×100%=15%;
(2)200×120
400
=60(万人),
答:估计其中持D组“观点”的市民人数有60万人;
(3)由上面的统计可知,造成“雾霾”的主要原因是“工厂造成的污染”和“汽车尾气排放”.
倡议关停重污染企业,加大对工厂排污的监管和处罚;倡议大家尽量乘坐公共交通工具出行,减少汽车尾气的排放.
【点睛】
本题主要考查了扇形统计图,统计表,能从图形中获取准确信息是解题的关键.
3、(1)5,80.5,81;(2)B;(3)13
【分析】
(1)用总人数减去A,B,D等级的人数即可求出a的值;根据中位数概念即可求出b的值;根据众数的概念即可求出c的值;
(2)根据平均数,中位数和众数即可得出该校学生每周用于课外阅读时间的等级;
(3)用阅读书籍的平均时间乘以一年的周数,再除以阅读每本书所需时间即可得.
(1)203845a =---=;
20名学生每周用于自主阅读的时间从小到大排列为如下:
10,30,30,44,50,60,60,75,80,80,81,81,81,92,100,110,120,130,140,146, ∵第10、11个数据分别为80、81, ∴中位数808180.52
b +==; 出现次数最多的数是81,
∴众数是81.
故答案为:5,80.5,81;
(2)∵平均数为80,中位数为80.5,众数为81,
∴用样本中的统计量估计该校学生每周用于课外阅读时间的等级为B ;
故答案为:B ;
(3)估计该校学生每人一年(按52周计算)平均阅读课外书为
805213320
⨯=(本), 故答案为:13.
【点睛】
此题主要考查数据的统计和分析的知识.准确把握三数(平均数、中位数、众数)和理解样本和总体的关系是关键.
4、(1)2,120︒,图见解析;(2)450人;(3)
815. 【分析】
(1)先根据C 类的信息可求出调查的总人数,由此即可得出a 的值,再求出B 类所占百分比,然后乘以360︒可得圆心角的度数,最后根据,A D 类的人数补全频数分布直方图即可;
(2)利用720乘以成绩在80100x ≤<范围内的学生所占百分比即可得;
(3)先画出树状图,从而可得随机抽取2人进行线上学习经验交流的所有可能的结果,再找出恰好只选中其中1名留守学生进行经验交流的结果,然后利用概率公式即可得.
【详解】
解:(1)调查的总人数为2450%48÷=(人),
则48162462a =---=,
B 类所在扇形的圆心角的度数是16360100%12048
︒⨯⨯=︒, 故答案为:2,120︒,
补全频数分布直方图如图所示:
(2)246720100%45048
+⨯⨯=(人), 答:估计该校成绩在80100x ≤<范围内的学生人数为450人;
(3)把D 类优生的6人分别记为1,2,3,4,5,6,其中1,2为留守学生,画树状图如下:
由图可知,共有30种等可能的结果,恰好只选中其中1名留守学生进行经验交流的结果有16种, 则所求的概率为1683015
P ==,
答:恰好只选中其中1名留守学生进行经验交流的概率为
8
15

【点睛】
本题考查了频数分布直方图、利用列举法求概率等知识点,熟练掌握统计调查的相关知识和列举法是解题关键.
5、(1)120人;(2)见解析,36°;(3)126人
【分析】
(1)从条形图选择体育的人数÷从扇形图中体育所占百分比计算即可;
(2)从调查总人数减去阅读,体育和其它得出艺术人数,补画条形图,再求出其它12人除以120得出所占百分比,再乘以360°即可;
(3)先计算样本中选择阅读所占样本的百分比,再用样本中所含百分比乘以总数估计总体中的含量即可.
【详解】
解:(1)本次调查中从条形图得出选择体育有54人,从扇形统计图中体育所占百分比为45%,
本次调查人数为:5445%120
÷=(人);
(2)∵艺术:12018541236
---=(人),
∴补全的条形统计图如下图所示:
“其他”所对应的圆心角度数为12
36036 120
⨯︒=︒;
(3)样本中选择阅读的人数为18人,占样本的百分比为18
100%=15% 120
⨯,
该校学生总人数为840人,估计选择阅读的学生有:84015%126
⨯=(人),
∴选择“阅读”的学生大约有126人.
【点睛】
本题考查从条形图和扇形统计图获取信息和处理信息能力,样本容量,补画条形图,扇形圆心角,用样本的百分比含量估计总体中的数量,掌握以上知识是解题关键.。

相关文档
最新文档