河北省张家口宣化一中2020-2021学年高一上学期11月月考数学试卷Word版含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021学年上学期宣化一中高一年级月考
数学试卷(11月份)
一、选择题(本大题共12小题,共60.0分)
1.下列符号表述正确的是()
A. 0∈N∗
B. 1.732∉Q
C. ⌀∈{0}
D. ⌀⊆{x|x≤2}
2.已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁U A=()
A. {1,6}
B. {1,7}
C. {6,7}
D. {1,6,7}
3.已知函数y=f(x),部分x与y的对应关系如表:则f(4)=()
A. 1
B. −2
C. −3
D. 3
4.函数f(x)=√x+1
2−x
的定义域为()
A. [−1,2)∪(2,+∞)
B. (−1,+∞)
C. [−1,2)
D. [−1,+∞)
5.M={x|6x2−5x+1=0},P={x|ax=1},若P⊆M,则a的取值集合为()
A. {2}
B. {3}
C. {2,3}
D. {0,2,3}
6.函数y=f(x)的图象与直线x=m的交点的个数是()
A. 0B. 1C. 0或1D. 无法确定
7.下列函数为同一函数的是()
A. f(x)=|x|
x 与g(x)={
1,x≥0
−1,x<0B. f(x)=√x+√x+1与g(x)=√x(x+1)C. f(x)=x
2−2x−1
与g(t)=t2−2t−1D. f(x)=1与g(x)=x0(x≠0)
8. 某校高一(9)班共有49名同学,在学校举办的书法竞赛中有24名同学参加,在数学竟赛中有25名参
加,已知这两项都参赛的有12名同学,在这两项比赛中,该班没有参加过比赛的同学的人数为( )
A. 10
B. 1
C. 12
D. 13
9. 已知函数f(√x +2)=x +4√x +5,则f(x)的解析式为( )
A. f(x)=x 2+1
B. f(x)=x 2+1(x ≥2)
C. f(x)=x 2
D. f(x)=x 2(x ≥2)
10. 函数f(x)=|x 3+1|+|x 3−1|,则函数f(x)图象( )
A. 关于原点对称
B. 关与直线y =x 对称
C. 关于x 轴对称
D. 关于y 轴对称
11. f(x)={(3a −1)x +4a,(x <1)−ax,(x ≥1)
是定义在(−∞,+∞)上是减函数,则a 的取值范围是( ) A. [18,13)B. [0,13]C. (0,13)D. (−∞,13]
12. 设集合M 满足:若t ∈M ,则2020−t ∈M ,且集合M 中所有元素之和m ∈(2020×11,2020×12),
则集合M 中元素个数为( ) A. 22B. 22或23C. 23D. 23或24
二、填空题(本大题共4小题,共20.0分)
13. 已知幂函数y =f(x)的图象过点(2,√2),则f(9)=______.
14. 已知集合A ={2,4,6,8,9,11},B ={1,2,3,5,7,8},非空集合C 满足:C 中每一个元素都加
上2变成A 的一个子集,C 中每一个元素都减去2变成B 的一个子集,则集合C 中元素最多有______个.
15. 函数f(x)=√−x 2+5x−6的单调递减区间是______.
16. 设函数f(x)=(x+1)2+a 2x
x 2+1,a ∈R 的最大值为M ,最小值为m ,则M +m =______.
三、解答题(本大题共6小题,共70.0分)
17. 已知集合A =[−5,6],B =[2m −1,m +1].(1)当m =−3时、求A ∩B ,A ∪B ;(2)若A ∪B =A ,求
实数m 的取值范围.
18.已知函数f(x)=2x−3
.(1)判断函数f(x)在区间(0,+∞)上的单调性,并用定义证明其结论;(2)求函数x+1
f(x)在区间[2,9]上的最大值与最小值.
19.某地煤气公司规定,居民每个月使用的煤气费由基本月租费、保险费和超额费组成.每个月的保险费
为3元,当每个月使用的煤气量不超过am3时,只缴纳基本月租费c元;如果超过这个使用量,超出的部分按b元/m3计费.
(1)写出每个月的气费y(元)关于该月使用的煤气量x(m3)的函数解析式;(2)如果某个居民7−9月份使
用煤气与收费情况如上表,请确定a,b,c及y与x的函数关系式(其中,仅7月份煤气使用量未超过am3.).
20.已知二次函数f(x)的图象过点(0,4),对任意x满足f(3−x)=f(x),且有最小值是7
.(1)求f(x)的解
4析式;(2)在区间[−1,3]上,y=f(x)的图象恒在函数y=2x+m的图象上方,试确定实数m的范围.21.已知函数f(x)=x+a
,g(x)=x2−bx,a、b∈R.(1)若集合{x|f(x)=2x+2}只含有一个元素,试
x
求实数a的值;(2)在(1)的条件下,当m∈[2,4],n∈[1,5]时,有f(m)大于等于g(n)恒成立,试求实数b的取值范围.
22.设二次函数f(x)=x2−(4a−2)x+5a2−4a+2,x∈[0,1]的最小值为g(a).(1)求g(a)的解析式;
(2)求g(a)的最小值.
2020-2021学年上学期宣化一中高一年级月考
数学试卷(11月份)答案和解析
1.【答案】D
【解析】解:对于A ,0不是正数也不是负数,故A 错误,对于B ,Q 是有理数集,1.732是有理数,故B
错误,对于C ,“∈”是元素与集合的关系表示法,故C 错误,对于D ,⌀是任何集合的真子集,故D 正确.故
选:
D .A 根据N ∗定义可判断,B 根据Q 的定义判断即可,C 根据集合与集合的关系表示可判断,D 根据⌀的定义进行判断即可.本题考查了集合的基本概念,属于基础题.2.【答案】C
【解析】
【分析】本题主要考查集合的交集与补集的求解,属于基础题.先求出∁U A ,然后再求B ∩∁U A 即可求解.【解
答】解:∵U ={1,2,3,4,5,6,7},A ={2,3,4,5},B ={2,3,6,7},∴∁U A ={1,6,7},则B ∩∁U A ={6,7},
故选C .3.【答案】C
【解析】解:由表格可得f(4)═−3,故选:C .直接根据表格得结论即可.本题考查了函数值的求法.属基础题.4.【答案】A
【解析】解:由题意得:{x +1≥02−x ≠0
,解得:x ≥−1或x ≠2,故函数的定义域是[−1,2)∪(2,+∞),故选:A .根据二次根式的性质以及分母不为0,求出函数的定义域即可.本题考查了求函数的定义域问题,考查二次根式的性质,是一道基础题.5.【答案】D
【解析】
【分析】本题考查集合的求法,考查子集定义等基础知识,考查推理能力与计算能力,属于基础题.求出M ={x|6x 2−5x +1=0}={ },P ={x|ax =1},P ⊆M ,从而能求出a 的取值集合.【解答】解:M ={x|6x 2−5x +1=0}={13,12},P ={x|ax =1},P ⊆M ,∴P =⌀,P ={13}或P ={12},∴a =0或a =3或a =2.∴a 的取值集合为{0,2,3}.故选D .6.【答案】C
【解析】解:根据函数y =f(x)的定义,当x 在定义域内任意取一个值,都有唯一的一个函数值f(x)与之对应,函数y =f(x)的图象与直线x =m 有唯一交点.当x 不在定义域内时,函数值f(x)不存在,函数y =f(x)的图象与直线x =m 没有交点.故函数y =f(x)的图象与直线x =m 至多有一个交点,即函数y =f(x)
的图象与直线x =m 的交点的个数是0或1,故选:C .根据函数的定义可得函数y =f(x)的图象与直线x =m
至多有一个交点,由此得到结论.本题主要考查函数的定义,函数图象的作法,属于基础题.7.【答案】C
【解析】解:对于A ,f(x)=|x|x 的定义域为{x|x ≠0},g(x)={1,x ≥0−1,x <0
的定义域为R ,两个函数的定义域不同,故A 中两个函数不是同一函数;对于B ,f(x)=√x +√x +1的定义域为{x|x ≥0},g(x)=
√x(x +1)的定义域为{x|x ≥0或x ≤−1},两个函数的定义域不同,故B 中两个函数不是同一函数;对于C ,f(x)=x 2−2x −1与g(t)=t 2−2t −1定义域相同,对应法则一致,故C 中两个函数是同一函数;对于D ,f(x)=1的定义域是R ,g(x)=x 0(x ≠0)的定义域为{x|x ≠0},两个函数的定义域不同,故D 中两个函数不是同一函数.故选:C .两个函数只有满足:定义域相同,对应法则一致时,才是同一函数.本题考查两个函数是不是同一函数的判断,考查同一函数的定义等基础知识,考查运算求解能力,是基础题.8.
【答案】C
【解析】解:设在这两项比赛中,该班没有参加过比赛的同学的人数为x ,由题意作出韦恩图,得:
由韦恩图得:x +12+12+13=49,解得x =12.∴在这
两项比赛中,该班没有参加过比赛的同学的人数为12.故选:C .设在这两项比赛中,该班没有参加过比赛的同学的人数为x ,由题意作出韦恩图,由韦恩图列出方程,由此能求出在这两项比赛中,该班没有参加过比赛的同学的人数.本题考查在这两项比赛中,该班没有参加过比赛的同学的人数的求法,考查韦恩图的性质等基础知识,考查运算求解能力,是基础题.9.【答案】B
【解析】解:f(√x +2)=x +4√x +5=(√x +2)2+1;∴f(x)=x 2+1(x ≥2).故选:B .可变形原解析式得出f(√x +2)=(√x +2)2+1,将√x +2换上x(x ≥2)即可得出f(x)的解析式.考查函数解析式的定义及求法,换元求函数解析式的方法.10.【答案】D
【解析】解:根据题意,函数f(x)=|x 3+1|+|x 3−1|,其定义域为R ,有f(−x)=|(−x)3+1|+|(−x)3−1|=|x 3+1|+|x 3−1|=f(x),则函数f(x)为偶函数,f(x)的图象关于y 轴对称,故选:D .根据题意,先分析函数f(x)的定义域,求出f(−x)的表达式可得f(−x)=f(x),即可得f(x)为偶函数,由偶函数的定义可得答案.本题考查函数图象的对称性,注意分析f(−x)与f(x)的关系,属于基础题.11.【答案】A
【解析】解:由题意可得{3a −1<0−a <0−a <3a −1+4a
,求得18≤a <13,故选:A .由题意可得3a −1<0、−a <0、
且−a ≤3a −1+4a ,解由这几个不等式组成的不等式组,求得a 的范围.本题主要考查函数的单调性的性质,属于基础题.12.【答案】C
【解析】解:由题意可知,集合M 中的元素是成对出现的,每对元素的和为2020,又因为集合M 中所有元素之和m ∈(2020×11,2020×12),所以集合M 中的元素个数比11对多,比12对少,又因为,2020−1010=1010所以集合M 中有11+12=23个元素.故选:C .若t ∈M ,则2020−t ∈M ,可知,集合M 中的元素是对称出现的,由集合M 中所有元素之和m ∈(2020×11,2020×12),可知集合M 中的元素个数比11对多,比12对少,即可得到结果.本题考查了元素与集合的关系,属于基础题.13.【答案】3
【解析】
【分析】本题考查幂函数,解题的关键是熟练掌握幂函数的性质,能根据幂函数的性质求其解析式,求函数值.先由幂函数的定义用待定系数法设出其解析式,代入点的坐标,求出幂函数的解析式,再求f(9)的值.【解答】解:由题意令y =f(x)=x a ,由于图象过点(2,√2),得√2=2a ,a =12
∴y =f(x)=x 12 ∴f(9)=3.故答案为:3.14.【答案】3
【解析】解:集合A ={2,4,6,8,9,11},B ={1,2,3,5,7,8},∵非空集合C 满足:C 中每一个元素都加上2变成A 的一个子集,∴满足条件的可能元素有:0,2,4,6,7,9,∵C 中每一个元素都减去2变
成B 的一个子集,∴满足条件的可能元素有:10,9,7,5,4,3,则集合C 中元素最多时集合C ={4,7,
9}.∴集合C 中元素最多有3个.故答案为:3.由C 中每一个元素都加上2变成A 的一个子集,求出满足条件的可能元素有:0,2,4,6,7,9,由C 中每一个元素都减去2变成B 的一个子集,求出满足条件的可能元素有:10,9,7,5,4,3,由此能滶出集合C 中元素最多有多少个.本题考查集合中元素个数的求法,考查子集的定义等基础知识,考查运算求解能力,是基础题.15.【答案】(2,52]
【解析】解:由−x 2+5x −6>0,得x 2−5x +6<0,解得2<x <3,∴函数f(x)的定义域为(2,3),令t =−x 2+5x −6,其图象是开口向下的抛物线,且对称轴方程为x =52,当x ∈(2,52]时,函数t =−x 2+5x −6单调递增,则y =√t 单调递增,∴函数f(x)=√−x 2+5x−6在(2,52]上单调递减.故答案为:(2,52].由分母中根式内部的代数式大于0求得函数的定义域,再求出函数t =−x 2+5x −6单调递增区间,即可得到函数f(x)=√−x 2+5x−6的单调递减区间.本题主要考查函数单调性的判断,利用换元法结合复合函数单调性之间的关系是解决本题的关键,是中档题.16.【答案】2
【解析】解:令g(x)=a 2x ,∵函数g(x)=a 2x 为奇函数,∴g(−x)=−g(x),又f(x)=
(x+1)2+g(x)x 2+1=1+2x+g(x)
x 2+1的最大值为M ,最小值为m ,又ℎ(−x)=−2x+g(x)
x 2+1=−ℎ(x),即y =ℎ(x)为奇函数,且ℎ(x)=
2x+g(x)x 2+1的最大最小值分别为M −1,m −1,由奇函数的性质可得(M −1)+(m −1)=0,解得:M +m =2,故
答案为:2.由题意可得f(x)的最大最小值分别为M −1,m −1,由奇函数的性质可得(M −1)+(m −1)=0,变形可得答案.本题考查函数的奇偶性,涉及函数的最值问题,属基础题.17.【答案】解:(1)当m =−3
时,集合A =[−5,6],集合B =[−7,−2],
∴A ∩B =[−5,−2],A ∪B =[−7,6];(2)∵A ∪B =A ,∴B ⊆A ,由题意可得{2m −1<m +1
2m −1≥−5m +1≤6
,解得−2≤m <2,综上所述:实数m 的取值范围为[−2,2).
【解析】(1)利用集合的交集和并集的定义求解.(2)由题意可知B ⊆A ,根据集合间的包含关系列出不等式组解出m 的取值范围即可.本题主要考查了集合的基本运算,是基础题.18.【答案】解:(1)f(x)在区间[0,+∞)上是增函数.证明如下:任取x 1,x 2∈[0,+∞),且x 1<x 2,f(x 1)−f(x 2)=
2x 1−3x 1+1−2x 2−3x 2+1=5(x 1−x 2)
(x 1+1)(x 2+1),∵x 1−x 2<0,(x 1+1)(x 2+1)>0,∴f(x 1)−f(x 2)<0,即f(x 1)<f(x 2),∴函数f(x)在区间[0,+∞)上是增函数.(2)由(1)知函数f(x)在区间[2,9]上是增函数,故函数f(x)在区间[2,9]上的最大值为f(9)=32,最小值为f(2)=13.
【解析】(1)利用函数的单调性的定义证明即可;(2)利用函数的单调性,求解函数的最值即可.本题考查函数的单调性的判断与应用,函数的最值的求法,考查计算能力.19.【答案】解:(1)y =
{3+c,x ≤a 3+c +b(x −a),x >a .(2)由表可得,{3+c =43+c +b(25−a)=143+c +b(35−a)=19
,解得a =5,b =12,c =1,∴y ={4,x ≤512x +32,x >5. 【解析】(1)根据题意,分x ≤a 和x >a 两段写出y 关于x 的关系式;(2)把表中的数据代入(1)中的函数关系式,可得关于a 、b 、c 的方程组,解之即可.本题考查分段函数的实际应用,合理选择函数模型是解题的关键,考查学生的逻辑推理能力和运算能力,属于基础题.20.【答案】解:(1)由题意知,二次函数图象的对称轴为x =32,又最小值是74,则可设f(x)=a(x −32)2+74(a ≠0),又图象过点(0,4),则a(0−32)2+74=
4,解得a =1,
∴f(x)=(x −32)2+74=x 2−3x +4.(2)由已知,f(x)>2x +m 对x ∈[−1,3]恒成立,∴m <x 2−5x +4对x ∈[−1,3]恒成立,∴m <(x 2−5x +4)min (x ∈[−1,3]),∵g(x)=x 2−5x +4在x ∈[−1,3]上的最小值为g(52)=−94.∴m <−94.
【解析】(1)求出二次函数图象的对称轴为x =32,又最小值是74,设f(x)=a(x −32)2+74(a ≠0),图象过点(0,4),求出a ,然后求解函数的解析式.(2)已知转化为f(x)>2x +m 对x ∈[−1,3]恒成立,分离变量,求解的最值即可.本题考查函数恒成立,二次函数的简单性质的应用,考查计算能力.21.【答案】解:
(1)f(x)=2x +2,即x +a x =2x +2,∴x 2+2x −a =0.∵集合{x|f(x)=2x +2}只含有一个元素,∴△=4+4a =0,∴a =−1;(2)f(m)=m −1m ,∵m ∈[2,4],∴f(m)min =2−12=32,∵当m ∈[2,4],n ∈[1,5]时有f(m)大于等于g(n)恒成立,∴n 2−bn ≤32,n ∈[1,5]时恒成立,∴b ≥n −32n ,∵y =n −32n ,n ∈[1,5]时单调递增,∴b ≥5−310=4710.
【解析】(1)f(x)=2x +2}转化为x 2+2x −a =0,利用根的判别式为0,可求若集合{x|f(x)=2x +2}只含有一个元素,实数a 的值;(2)求出f(m)的最小值,问题转化为n 2−bn ≤32,n ∈[1,5]时恒成立,分离参数求最值,即可求实数b 的取值范围.本题考查函数恒成立问题,考查函数的最值,考查分离参数法的运用,考查学生分析解决问题的能力,属于中档题.22.
【答案】解:(1)f(x)=x 2−(4a −2)x +5a 2−4a +2=[x −(2a −1)]2+a 2+1,图象开口向上,对称轴是x =2a −1,①2a −1<0即a <12时,f(x)在[0,1]
递增,g(a)=f(0)=5a 2−4a +2,②0≤2a −1≤1即12≤a ≤1时,
f(x)在[0,2a −1)递减,在(2a −1,1]递增,故g(a)=f(2a −1)=a 2+1,③2a −1>1即a >1时,f(x)在[0,1]递减,故g(a)=f(1)=5a 2−
8a +5,综上:g(a)={5a 2−4a +2,a <
12a 2+1,12≤a ≤1
5a 2−8a +5,a >1
;(2)a <12时,g(a)=5a 2−4a +2,对称轴是a =25,故g(a)
在(−∞,25)递减,在(25,12)递增,故g(a)min =g(25)=65,12≤a ≤1时,g(a)=a 2+1,故g(a)在[12,1]递增,g(a)min =g(12)=54,a >1时,g(a)=5a 2−8a +5,对称轴是a =45,故g(a)在(1,+∞)递增,
g(a)>g(1)=2,综上,g(a)的最小值是65.
【解析】(1)化简函数的解析式,可得函数图象为开口向上的抛物线,对称轴为直线x =2a −1,分当2a −1<0、当0≤2a −1≤1、当2a −1>1三种情况,分别求得g(a),综合可得结论;(2)求出函数g(a)在各个区间上的函数的最小值,再在几个最小值中取最小值即可.本题主要考查二次函数的性质应用,求二次函数在闭区间上的最值,体现了分类讨论的数学思想,属于中档题.。