北师大版七年级数学上册第五章 一元一次方程 5.1 认识一元一次方程
北师大版七年级数学上册第5章第1节认识一元一次方程课件
问题2:列方程式 (1)y与它的 1 的和是19_________
7
(2)a的2倍与b的和为7__2_a_+_b_=_7____ (3)x的平方与3的差等于-2_x_2_-_3_=_-_2_.
学习新知
五个情境中的三个方程为:
⑴ 40+15χ=100 ⑵ 2[χ+(χ+25)]=310 ⑶ χ(1+147.30%)=8930
上面情境中的三个方程 , 有什么共同点?
在一个方程中,只含有一个未知数χ(元), 并且未知数的指数是1(次),这样的方程叫做一 元一次方程。
你来试试
判断下列各式是不是一元一次方程,是的打 “√”,不是的打“x”。
• 解:设张叔叔原计划每时行走 x km,可 以得到方程:
情境 4 第六次全国人口普查统计数据,截至 2010年11月1日0时,全国每10万人中具有 大学文化程度的人数为8930人,比2000年 第五次全国人口普查时增长了147.30%.
如果设2000年6月每10万人
中约有x人具有大学文化程度, 2000年6月底
拓展提升
1、根据题意先设未知数,再列出方程 ①一个数的 1 与3的差等于最大的一位数, 求这
6
个数. ②购买一本书, 打八折比打九折少花2元钱, 求原 价. ③甲、乙两队开展足球对抗赛, 规定每队胜一 场得3分, 平一场得1分, 负一场得0分.甲队与乙 队一共比赛了10场, 甲队保持了不败记录, 一共 得了22 分, 甲队胜了多少场? 平了多少场?
北师大版初一数学上册5.1 认识一元一次方程(第1课时)教学设计
《认识一元一次方程》教学设计(义务教育课程标准北师大版七年级上册第五章第1节第1课时)一、教材分析《认识一元一次方程》是义务教育课程标准北师大版七年级(上)第五章《认识一元一次方程》第1节,本节内容安排了两个课时,学生在小学认识方程和本册第3章字母表示数的基础上,进一步研究一元一次方程,本节课属于第一课时,研究一元一次方程概念.二、学情分析1.认知基础:在小学阶段学习过简易方程,不过与初中的要求相比,对知识的理解比较表层,大部分学生还没有真正体会到方程在解决实际问题时的优越性和重要性.2.活动经验基础:教材为学生提供了许多生动有趣的现实情境,七年级学生的思维活跃,喜欢参与探索活动,只要激发起兴趣,本课要贯彻的数学思想就能较好的实施.三、教学目标1.能根据给出的现实情境,找出其中的等量关系列出方程.2.通过观察,归纳出一元一次方程的概念.3.通过经历“建立数学模型”这一数学化的过程,提高学生的抽象概括能力.四、教学重点与难点教学重点:1.一元一次方程的概念.2.通过现实情境建立方程模型的思想.教学难点:1.对一元一次方程的概念、特征的理解.2.从现实情境中提炼等量关系.五、教法、学法1.教学方法:引导探究法2.学习方法:自主探究,合作交流3.教具准备:多媒体课件,配套学案【习得】建立方程数学模型知识点二:一元一次方程定义探究问题2:由上面得到的式子:40+5x=100; (1+147.30%)x=8930; 2[x+(2x-5=21; 2x-5=19.这些方程有什么共同点?【知识整理】定义:在一个方程中,只含有一个未知数代数式都是整式,未知数的指数都是1,这种方程叫做一元一次方程.。
北师版初中七上数学5.1.1 认识一元一次方程(课件)
议一议
探索&交流
上面的方程中有什么共同点?
2x-5=21 40+15x=100
可以发现
x(1+147.30%)=8930
1.含有一个未知数 2.未知数的最高次数为1次 3.等号的两边都是整式
在一个方程中,只含有一个未知数(元),未知数的次数都是 ,等号两边都是 的方程叫做一元一次方程.
例题欣赏 ☞
A.a与5的和的3倍
B.甲数的3倍与乙数的2倍的和
C.a与b的差的15%
D.一个数的5倍是18
练习&巩固
4.已知方程(a+3) x a-2 +2=a-3是关于x的一元一次方程,求a的 值.
小结&反思
1.方程:含有未知数的等式叫做方程. (5x-7=8,5,-7,8为已知数,x为未知数)
2.方程的解:能使方程左右两边的值相等的未知数的值叫做方程 的解.只含有一个未知数的方程的解也叫做方程的根. 3.解方程:求方程解的过程.
知识点一 一元一次方程的定义
探索&交流
我能猜出 你的年龄.
你的年龄乘 减 得数是多少?
你今年 岁. 他怎么知道的?
小华小彬
小华 小彬
小华 小彬
如果设小彬的年龄为x岁,那么“乘2再减5”就是_2_x_–__5__, 所以得到方程:__2_x_–__5_=_2_1__.
探索&交流
小颖种了一株树苗,开始时树苗高为40厘米,
例题&解析
例3.检验x=2是不是下列方程的解.
(1) 5x2=20;来自(2)3x-8=x-6.
解:(1)把x=2代入方程,左边=5×22=20,右边=20, 左边=右边,所以x=2是方程5x2=20的解. (2)把x=2代入方程,左边=3×2-8=-2,右边=2-6 =-4,左边≠右边,所以x=2不是方程3x-8=x-6的解.
5.1认识方程2024-2025学年+北师大版(2024)七年级数学上册+
B.2x+1=3
C.2x-1=2 D. x+1=7
D. +1=0
4.若方程(m-3)x=1是关于x的一元一次方程,则m的值是( ) C
A.m≠-3
B.m≠0
C.m≠3 D.m>3
5.七、八年级的学生分别到博物馆、科技馆参观,共 587人,到科技馆的
人数比到博物馆的人数的2倍多 56人。设到博物馆的人数为 x人,则可
,叫作方程的解。求方程解的
未知数的值
课堂互动
知识点1:方程的定义
例1 下列各式中,方程有
①④⑤
(填序号)。
2
⑦⑧
①3x-2=7;②4+8=12;③3x-6;④2m-3n=0;⑤3x
-2x-1=0;⑥x+2≠3;
⑦
-
=5;⑧
+
= 。
[方法技巧] 方程的判断必须看两点,一个是等式,二是含有未知数。当
3x+2=8, x-3=8, x-3=3x+2。
谢谢观赏!
.
然未知数的个数可以是一个,也可以是多个。
知识点2:一元一次方程的定义
例2 下列方程中,属于一元一次方程的是( ) D
A.2x+5y=6
B.3x-2
C.x2=1
D.3x+5=8
知识点3:根据题意列方程
例3 根据下列条件列方程,并判断所列方程是不是一元一次方程。
(1)m的2倍与m的相反数的和是5;
(2)半径为r的圆的面积是2。
(1)一个数的3倍比它的2倍多10,求这个数。
七年级数学上册 第五章 一元一次方程 5.1 认识一元一次方程教案 (新版)北师大版-(新版)北师大
5.1 认识一元一次方程(第1课时)一、学生起点分析学生在小学期间已学过等式、等式的基本性质以及方程、方程的解、解方程等知识,经历了分析简单数量的关系,并根据数量关系列出方程、求解方程、检验结果的过程。
对方程已有初步认识,但并没有学习“一元一次方程”准确的理性的概念。
二、学习任务分析本节从有趣的“猜年龄”游戏入手,通过对五个熟悉的实际问题的分析,学生结合已有知识,能得出一元一次方程。
在此过程中,学生逐渐体会方程是刻画现实世界、解决实际问题的有效数学模型。
本节的重点:学生在实际问题中分析、找到等量关系,准确列出方程,并总结所列方程的共同特点,归纳出一元一次方程的概念。
本节的难点:由特殊的几个方程的共同特点归纳一元一次方程的概念。
三、教学目标1、在对实际问题情境的分析过程中感受方程模型的意义;2、借助类比、归纳的方式概括一元一次方程的概念,并在概括的过程中体验归纳方法;3、使学生在分析实际问题情境的活动中体会数学与现实的密切联系。
四、教学过程设计环节一:阅读章前图内容1:请一位同学阅读章前图中关于“丟番图”的故事。
(大约1分钟)丢番图(Diophantus)是古希腊数学家。
人们对他的生平事迹知道得很少,但流传着一篇墓志铭叙述了他的生平:坟中安葬着丢番图,多么令人惊讶,它忠实地记录了其所经历的人生旅程。
上帝赐予他的童年占六分之一,又过十二分之一他两颊长出了胡须,再过七分之一,点燃了新婚的蜡烛。
五年之后喜得贵子,可怜迟到的宁馨儿,享年仅及其父之半便入黄泉。
悲伤只有用数学研究去弥补,又过四年,他也走完了人生的旅途。
——出自《希腊诗文选》(The GreekAnthology)第 126 题目的:通过阅读章前图中的故事,激发同学们探索丟番图年龄的兴趣,进而引导学生通过列方程解决问题,感受利用方程可以解决实际问题,感受方程是刻画现实世界有效地模型。
效果:学生对丟番图的故事很感兴趣,有的学生提出问题:他的年龄是多少呢?教师借机也提出问题:用什么方法可以求解丟番图的年龄呢?紧接着呈现内容2。
(北师大版2024)七年级数学上册同步5.1 认识方程 教案
第五章 一元一次方程1 认识方程1.从生活的实际问题出发,通过小组讨论、教师引导发现数学与生活密不可分.2.通过列方程的过程,感受方程作为刻画现实世界的数学模型的意义,体会到由算式到方程式是数学的一大进步,从而体会方程思想.重点:初步认识一元一次方程的特征,形成一元一次方程的概念.难点:理解方程的解的概念.一、情境导入二、合作探究探究点一:方程及一元一次方程的概念【类型一】 方程的识别下列各式是方程的有( )(1)2x -3=7;(2)8+5=13;(3)2m -3n =0;(4)2+5x ;(5)x +2>3.A .0个B .1个C .2个D .3个解析:(1)2x -3=7,(3)2m -3n =0是含有未知数的等式,属于方程;(2)8+5=13中不含有未知数,不是方程;(4)2+5x 不是等式,不是方程;(5)x +2>3不是等式,不是方程.故选C .方法总结:含有未知数的表示量相等的等式称为方程.下列方程中,是一元一次方程的是( )A .2x +3y =5B .x 2-x +2=0C .3x -5=4x +1D .1x-x =1 解析:紧扣一元一次方程的概念,A 中含有两个未知数;B 中未知数的最高次数是2;D 中分母含有未知数.故选C .方法总结:识别一个方程是否为一元一次方程,不能仅以未知数的个数和次数去判断,必须先化简保证未知数的系数不为0.【类型二】 利用一元一次方程的概念求字母的值方程(m +1)x |m|+1=0是关于x 的一元一次方程,则( )A .m =±1B .m =1C .m =-1D .m ≠-1解析:由一元一次方程的概念,一元一次方程必须满足指数为1,系数不等于0,所以⎩⎨⎧|m|=1,m +1≠0,解得m =1.故选B . 方法总结:解决此类问题要明确:若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.据此可求方程中字母的值.探究点二:检验方程的解检验下列各数是不是方程5x -2=7+2x 的解,并写出检验过程.(1)x =2; (2)x =3.解析:将未知数的值代入,看左边是否等于右边,即可判断是不是方程5x -2=7+2x 的解.解:(1)将x =2代入方程,左边=8,右边=11,左边≠右边,故x =2不是方程5x -2=7+2x 的解.(2)将x =3代入方程,左边=13,右边=13,左边=右边,故x =3是方程5x -2=7+2x 的解.方法总结:检验一个数是否是方程的解,就是要看它能不能使方程的左、右两边相等.探究点三:由实际问题抽象出一元一次方程某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6·1儿童节”举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.若设铅笔卖出x 支,则依题意可列得的一元一次方程为( )A .1.2×0.8x +2×0.9(60+x )=87B .1.2×0.8x +2×0.9(60-x )=87C .2×0.9x +1.2×0.8(60+x )=87D .2×0.9x +1.2×0.8(60-x )=87解析:设铅笔卖出x 支,根据“铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元”,得出等量关系:x 支铅笔的售价+(60-x )支圆珠笔的售价=87,据此列出方程为1.2×0.8x +2×0.9(60-x )=87.故选B .方法总结:解题的关键是读懂题意,设出未知数,找到题目当中的等量关系,最后列方程.三、板书设计认识方程 ⎩⎪⎨⎪⎧方程→含有未知数的表示量相等的等式叫作方程.一元一次方程→只含有一个未知数,且方程中的代数式都是整式,未知数的次数是1的方程叫作一元一次方程.方程的解→使方程左、右两边的值相等的未知数的值,叫作方程的解.教学过程中,通过对多种实际问题情境的分析,感受方程作为刻画现实世界有效模型的意义,通过观察、归纳一元一次方程的概念,使学生在分析实际问题情境的活动中体会数学与现实的密切联系.。
北师大版数学七年级上册5.1《认识一元一次方程》教学设计2
北师大版数学七年级上册5.1《认识一元一次方程》教学设计2一. 教材分析《认识一元一次方程》是北师大版数学七年级上册第五章第一节的内容。
本节课的主要任务是让学生了解一元一次方程的概念、性质和解法,培养学生解决实际问题的能力。
教材通过引入生动有趣的问题情境,激发学生的学习兴趣,引导学生逐步认识一元一次方程,并在解决实际问题的过程中体验到方程思想的重要性和应用价值。
二. 学情分析七年级的学生已经掌握了代数的基础知识,具备一定的逻辑思维能力。
但对于一元一次方程这一概念,学生可能较为陌生。
因此,在教学过程中,教师需要关注学生的认知水平,引导学生逐步理解和掌握一元一次方程的相关知识。
同时,学生对于实际问题的解决方法还不够成熟,需要教师在教学中给予引导和培养。
三. 教学目标1.了解一元一次方程的概念、性质和解法。
2.培养学生解决实际问题的能力。
3.培养学生的合作交流能力和创新思维。
四. 教学重难点1.重难点:一元一次方程的概念、性质和解法。
2.难点:如何将实际问题转化为方程,并运用方程思想解决问题。
五. 教学方法1.情境教学法:通过引入生动有趣的问题情境,激发学生的学习兴趣,引导学生主动参与课堂。
2.启发式教学法:教师引导学生从实际问题中发现规律,培养学生独立思考和解决问题的能力。
3.合作学习法:学生分组讨论,共同解决问题,提高学生的合作交流能力。
4.实践操作法:教师引导学生动手操作,加深对一元一次方程的理解。
六. 教学准备1.教学课件:制作课件,展示一元一次方程的相关知识点。
2.教学素材:准备一些实际问题,作为课堂练习和拓展的内容。
3.的黑板:提前准备好黑板,以便于教师在课堂上进行板书。
七. 教学过程1.导入(5分钟)教师通过一个简单的问题情境,引导学生发现实际问题中存在等量关系,从而引出一元一次方程的概念。
2.呈现(15分钟)教师讲解一元一次方程的定义、性质和解法,让学生初步认识一元一次方程。
3.操练(15分钟)教师给出一些实际问题,让学生尝试用一元一次方程解决。
北师大版七年级数学上册《第五章一元一次方程5.1认识一元一次方程(第1课时)》说课稿
北师大版七年级数学上册《第五章一元一次方程5.1认识一元一次方程(第1课时)》说课稿一. 教材分析北师大版七年级数学上册《第五章一元一次方程5.1认识一元一次方程(第1课时)》这一节的内容,主要让学生了解一元一次方程的概念,掌握一元一次方程的解法,以及学会运用一元一次方程解决实际问题。
教材通过引入生动的生活实例,让学生感受数学与生活的紧密联系,激发学生的学习兴趣。
同时,通过自主探究、合作交流的学习方式,培养学生的动手操作能力、逻辑思维能力和解决问题的能力。
二. 学情分析七年级的学生已经掌握了整数、分数、有理数等基础知识,对数学运算有一定的熟练程度。
但部分学生对抽象的数学概念理解不够深入,尤其是一元一次方程这种新的数学模型,可能一时难以接受。
因此,在教学过程中,需要关注学生的学习情况,针对性地进行辅导。
三. 说教学目标1.知识与技能:让学生了解一元一次方程的概念,掌握一元一次方程的解法,能运用一元一次方程解决实际问题。
2.过程与方法:通过自主探究、合作交流的学习方式,培养学生动手操作、逻辑思维和解决问题的能力。
3.情感态度与价值观:让学生感受数学与生活的紧密联系,培养学生的数学兴趣,激发学生学习数学的积极性。
四. 说教学重难点1.重点:一元一次方程的概念,一元一次方程的解法。
2.难点:对一元一次方程的理解,以及运用一元一次方程解决实际问题。
五. 说教学方法与手段本节课采用自主探究、合作交流、讲授法、实践操作等多种教学方法。
利用多媒体课件、实物模型等教学手段,帮助学生直观地理解一元一次方程的概念和解法。
六. 说教学过程1.导入新课:通过生活实例,引导学生感受数学与生活的联系,激发学生的学习兴趣。
2.自主探究:让学生尝试解决实际问题,发现并总结一元一次方程的解法。
3.讲解演示:教师讲解一元一次方程的概念和解法,引导学生理解和掌握。
4.实践操作:让学生动手解一元一次方程,巩固所学知识。
5.合作交流:分组讨论,分享解题心得,互相学习,提高解题能力。
辽宁省辽阳市第九中学北师大版七年级数学上册教案:5.1认识一元一次方程
4.方程的解与方程的关系:通过实例让学生明白方程的解与方程是相互对应的,一个方程可能有多个解或无解。
本节课将结合实际例子,让学生在实际问题中感知方程的意义,培养他们运用数学知识解决实际问题的能力。
二、核心素养目标
实践活动和小组讨论的环节,学生们表现出了很高的热情。他们通过讨论和实验操作,对一元一次方程有了更深的理解。但是,我也观察到有些小组在讨论时,个别成员参与度不高,可能需要我进一步引导他们如何更好地进行团队合作。
在学生小组讨论的成果分享中,我发现有些学生能够很好地将所学知识应用到实际问题中,但也有一些学生对如何将现实问题转化为数学方程感到困惑。针对这一点,我计划在接下来的课程中,设计更多的实际问题案例,帮助学生建立起实际问题与数学模型之间的联系。
4.培养学生的合作交流意识:在小组讨论和互动中,让学生学会倾听他人意见,表达自己的观点,培养合作交流的能力。
5.激发学生的创新意识:鼓励学生在解决方程问题时,尝试多种方法,勇于创新,培养探索精神和创新意识。
三、教学难点与重点
1.教学重点
-方程的概念及其与等式的区别:重点讲解方程的含义,强调方程中的未知数和等式两边的平衡,通过具体例题使学生理解方程与等式的区别。
举例解释:
-例如,在讲解方程的概念时,可以给出如下例子:3x + 5 = 14,让学生观察等式两边的结构,理解方程中的未知数x是要求解的对象。
2.教学难点
-识别方程中的未知数和系数:对于一些复杂的问题,学生可能难以快速识别方程中的未知数和系数,需要通过具体的例子和练习来加强这一点。
-理解求解方程的过程:学生可能会对移项、合并同类项的操作感到困惑,不理解每一步的意义和目的。
认识一元一次方程课件北师大版初中数学七年级上册(1)
拓展延伸————数学文化
你会利用方程求出数学家丢番图去世时的年龄吗? 设丢番图去世时的年龄为x岁,得:
反馈作业
1.小颖种了一棵树苗,开始时树苗高为 40 厘米,栽 种后每周树苗长高约 15 厘米,大约几周后树苗长 高到 1 米?
2.把一些图书分给某班学生阅读,每人分3本,则剩 余20个,每人分4本,则还缺25本,问这个班有多少 名学生?
问题:1.本题的等量关系式是什么?
去年双十一小区 收到的包裹数
+
=
2.如果设去年双十一小区收到的 包裹数为x个,那么可
以得到程:
.
情境4:
某快递托运公司储存包裹的场地是一个长方形,它的面 积为5850平方米,长和宽之差为25米,这个长方形的长与 宽分别是多少米? 问题:1.本题的等量关系式是什么?4
⑨
πx=12.
判断一个方程是一元一次方程,化简后必须满足三个
条件: ①含有一个未知数; ②未知数的指数是1; ③方程两边的代数式都是整式.
练一练
1. xk1 21 0 是一元一次方程,则k=______.
变式: x|k| 21 0 是 一元一次方程,则k=______.
2. (k 1)x|k| 21 0 是一元一次方程,k=_____.
课堂小结
一元一次方程的定义
认识一元 方程的解 一次方程
列一元一次方程
实际问题
抓关键词,列表等分析找等量关系 一元一次方程
设未知数列方程
第五章 一元一次方程 5.1 认识一元一次方程
导入新课
小游戏:猜老师收到的包裹个数
双十一期间,老师收到的包裹数乘以 2 再减去 5 刚好为 15, 那现在你能知道老师收到的包裹数量吗?你是怎么猜的?
北师大版七年级数学上册认识一元一次方程上册课件
(√ ) ( ×)
注意:判断前,要将原方程化简、整理后,再作判断!
✓ 知识归纳
使方程左、右两边的值相等的未知数的值,叫做方程的 解.(注:我国古代称未知数为元,只含有一个未知数的方 程叫做一元方程,一元方程的解也叫根。)
判断一个数是不是方程的解,把这个数代入方程的左、 右两边,如果左、右两边的值相等,那么这个数是方程的解, 如果左、右两边的值不相等,那么这个数就不是方程的解。
✓ 随堂练习
1. 下列方程中,解为x=-2的是( C )
A 3x 2 2x
B 4x 1 2x 3
C 3x 1 2x 1 D 5x 3 6x 2
判断是否为方程的解的方法步骤:
1、代值;2、计算;3、判断左边值是 否等于右边的值。
✓ 随堂练习 2.(1)如果 5xa2 8是一元一次方程,则 a __3_____
判断一元一次方程的条件: ①只含有一个未知数; ②方程中的代数式都是整式; ③未知数的指数都是1.
✓ 变式练习
判断下列各式是不是一元一次方程,并说说你的根据。
(1)、2x2 - 5x+6=0 (×)
(2)、3χ-1=7 ( √ )
(3)、m=0 (√) (5)、χ+y=8 (×)
(4)、 (6)、
由此可以得到方程: x(x+25)=5850 .
✓ 探究新知
下列方程有什么共同特点? 2x-5=21 40+15x=100 (1+147.30%)x=8930
共同特点:⑴只含有一个未知数 ⑵所含的代数式都为整式 ⑶未知数的指数为1
✓ 知识归纳
在一个方程中,只含有一个未知数,而且方程中的代数式都 是整式,未知数的指数都是1,这样的方程叫做一元一次方程。
北师大版七年级数学上册5.1《认识一元一次方程》优秀教学案例
一、案例背景
在我国初中数学教学中,一元一次方程是学生接触到的第一个方程类型,对于培养学生的数学思维和解决问题的能力具有重要意义。本教学案例以北师大版七年级数学上册5.1《认识一元一次方程》为蓝本,旨在帮助学生在实际情境中理解一元一次方程的概念,掌握解一元一次方程的方法,并能在生活中发现和解决相关问题。
(二)过程与方法
1.通过自主探究、合作交流等方式,培养学生提出问题、分析问题、解决问题的能力。
2.在解决实际问题的过程中,学会运用数学思维,培养学生的抽象概括能力,提高数学素养。
3.引导学生总结Байду номын сангаас元一次方程的解题规律,培养学生的逻辑推理能力和反思能力。
4.结合实际情境,让学生体会数学建模的过程,培养学生将现实问题转化为数学问题的能力。
5.引导学生认识到数学在科技发展和社会进步中的重要作用,培养学生的数学责任感和社会责任感。
三、教学策略
(一)情景创设
1.结合学生生活实际,创设趣味性、启发性的教学情境,让学生在情境中发现问题、提出问题,激发学生的学习兴趣。
2.利用多媒体、实物等教学资源,为学生提供丰富的感性材料,帮助学生从具体情境中抽象出一元一次方程的概念。
2.让学生尝试用不同的方法解决问题,引导学生发现这个问题实质上是一个一元一次方程问题。
3.通过这个问题,教师引出一元一次方程的概念,让学生初步感受方程在生活中的应用。
(二)讲授新知
1.教师详细讲解一元一次方程的定义、一般形式,并通过示例进行解释,使学生更好地理解一元一次方程的基本性质。
2.探讨一元一次方程的解法,包括移项、合并同类项、系数化为1等方法,结合具体例子进行讲解。
北师大版数学七年级上册5.1《认识一元一次方程》(第1课时)教学设计
北师大版数学七年级上册5.1《认识一元一次方程》(第1课时)教学设计一. 教材分析《认识一元一次方程》是北师大版数学七年级上册第五章第一节的内容。
本节内容通过实际问题引入方程的概念,使学生了解一元一次方程的定义、组成及解法。
通过本节课的学习,培养学生解决实际问题的能力,为后续学习一元一次方程的解法及应用打下基础。
二. 学情分析学生在小学阶段已经接触过简易的方程,对用字母表示数有一定的了解。
但他们对一元一次方程的定义、组成及解法还不够明确。
因此,在教学过程中,需要关注学生的认知基础,通过实例让学生感受方程的实际意义,引导学生掌握一元一次方程的知识。
三. 教学目标1.知识与技能:使学生了解一元一次方程的概念,理解一元一次方程的组成及解法。
2.过程与方法:培养学生解决实际问题的能力,提高学生分析问题、解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作精神。
四. 教学重难点1.重点:一元一次方程的概念、组成及解法。
2.难点:一元一次方程的实际应用。
五. 教学方法1.情境教学法:通过实际问题引入方程的概念,让学生感受方程的实际意义。
2.案例教学法:分析具体案例,使学生掌握一元一次方程的解法。
3.小组讨论法:引导学生分组讨论,培养学生的团队合作精神。
4.引导发现法:教师引导学生发现一元一次方程的规律,提高学生的分析问题、解决问题的能力。
六. 教学准备1.课件:制作课件,展示实际问题及解题过程。
2.练习题:准备适量的一元一次方程练习题,巩固所学知识。
3.教学工具:黑板、粉笔、投影仪等。
七. 教学过程1.导入(5分钟)利用课件展示实际问题,引导学生思考如何用数学方法解决问题。
例如,甲、乙两地相距120千米,一辆汽车从甲地出发,以60千米/小时的速度前往乙地,问多少小时后汽车到达乙地?2.呈现(10分钟)介绍一元一次方程的概念,讲解一元一次方程的组成及解法。
例如,方程60x = 120表示汽车行驶的时间x与速度60的关系,其中x为未知数,解这个方程可得到汽车到达乙地所需的时间。
5.1认识一元一次方程课件北师大版数学七年级上册
52×2000-(1-0.
A将.数-值5代B入.方5程C左.边7 进D.①行-计7未算;知数的次数为1;②未知数的系数不为0.
巩固新知
1.方程3x5-2k -8=0是关于x的一元一次方程,则 k=___2__.
2.方程x|m| +4=0是关于x的一元一次方程,则 m=1_或__-_1_. 3.方程(m-1)x -2=0是关于x的一元一次方程, 则m_≠__1__.
示意图
x千米
王家庄
50千米 70千米
青山 翠湖
秀水
合作探究
0 B. 新知一 方程和一元一次方程的概念
例 x=1000和x=2000中哪一个是方程 0.
典例精析 (3)
根;据实际1问.小题列彬出方和程 小华在进行猜年龄游戏,我们来看一看.
(1) 上述问题中涉及到了哪些量? 将数值代入方程左边进行计算;
典例精析 方程的解的识别
例 x=1000和x=2000中哪一个是方程 0.52x-(1-0.52)x=80的解? 解:当x=1000时, 方程左边=0.52×1000-(1-0.52)×1000=520-480=40,右边=80,
左边≠右边,所以x=1000不是此方程的解. 当x=2000时, 方程左边= 0.52×2000-(1-0.52)×2000=1040-960=80,右边=80, 左边=右边,所以x=2000是此方程的解.
.
未知数的次数是2
含有两个未知数.
巩固新知
7a+8=10 √ √
合作探究
典例精析2 判断下列式子是不是方程? 利用一元一次方程的定义求字母的值
D.12(1-a2%)=5
某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?
北师大七年级数学上册教学课件:第5章 一元一次方程
小试牛刀
2、解下列方程
(1)x-3x=-4(2) -x+3x=4
(3) 3x-x=8-0.5×8(4) -x+3x-6=-2
注意这4道题的符号和结果哟!
(2) X=-25
(3)
问题1: 某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机?
设前年购买x台。可以表示出:去年购买计算机 台,今年购买计算机 台。你能找出问题中的相等关系吗?
2 x
4 x
6÷(-0.2)
填一填:(1)如果3x+4=7,那么3x=________,其依据是________ ,在等式的两边都________.(2)如果- 2x=8,那么x=________,依据是________ ,在等式的两边都________.(3)如果-x=3,那么x=________(4) 如果-2x=4, ,那么x =________。(5) 如果2x- ,那么6x-1=________.
右
左
c
a = b
右
左
c
a = b
右
左
a = b
右
左
a = b
a-c b-c
=
右
左
等式的性质1:等式的两边加(或减)同一个数(或式子),结果仍相等.
如果a=b,那么a+c=b+c.
等式的性质1: 等式两边同加(或同减)同一个数(或式子),结果仍相等。
b
a
a = b
设A、B两地相距x km,则根据题意得:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x x 1 1、都只含有一个未知数, ⑤ 60 70 2、未知数的次数都是1 一元一次方程的概念: 只含有一个未知数(元),未知数的次数 都是1,这样的方程叫做一元一次方程。
二、根据条件列方程
1、一个数的2倍比10大3 ; 2、某数x的30%比它的2倍少34;
思考
第2题为什么不用设未知数?
设A、B两地相距x km,则根 据题意得:
x x 1 60 70
想一想
构建方程解决实际问题的关键是什么?
一般步骤又是什么呢? 关键是:找等量关系
分析题意
找等量关系 根据等量关系列方程
设未知数
以下五个方程具有什么样的共同特征呢?
2x+5=27 1700+150x=2450 ④4x=24 52%x-(1-52%)x=80
问题三:你是怎么得到的?
方法一:(27-5)÷2=11 方法二:设牌面数字为x,则 2x+5=27得x=11,也就是牌面数字
为11。
方程的定义:含有未知数的等式叫做方程。判断 源自程 的条 件:1、含有未知数
2、是等式
问题四:什么是方程的解呢?
使得方程左右两边相等的未知数的值叫做方程的解
看谁答得又快又准确! 1、x=2是2x=4的解吗? 2、x=3是2x-1=7的解吗?
未知量 等量关系
情境二
我校女生人数占全体学生数的52%,比 男生多80人,我们学校有多少学生? (只列方程)
x
女生数--男生数=80或 等量关系: 女生数=男生数+80或 女生数-80=男生数 52%x-(1-52%)x=80或 52%x=(1-52%)x+80或 52%x-80=(1-52%)x
情境三
用一根长为24cm的铁丝围成一个正方形,正 方形的边长为多少?(只列方程)
x
等量关系:正方形的周长=边长×4
4x=24
情境四
一辆客车和一辆卡车同时从A地出发沿同一公 路同方向行驶,客车的行驶速度是70km/h,
卡车的行驶速度是60km/h,客车比卡车早1h
经过B地,A,B两地间的路程是多少?
5.1 认识一元一次方程 第1课时 一元一次方程
数学活动:猜数字游戏
问题一:请你从这幅扑克牌中任 意抽出一张,然后用牌面上的数
字乘2加5,并把结果告诉我,我
能很快知道牌面上的数字是多少,
同学们相信吗?
问题二:
我从这幅扑克牌中任意抽取一张,乘2加5的结果是27,请问同学们 能知道我抽到的扑克牌牌面数字是多少吗?
课时小结
通过这节课你们有哪些收获和感想?请把你们的 收获和感想写在你们的学案上,然后与同桌交 流。
课后练习
见《学练优》本课练习“课后巩固提升 ”
情境一:
一台电脑已经使用 1700h,预计每个月再使用 x 150h,经过多少个月这台电脑的使用时间达 1700+150x=2450 到规定的检修时间2450h?(只列方程) 已知量 1、已经使用了1700h; 2、预计每月再使用150h; 想一想 3、这台电脑规定检修时间 是2450h 问题中有哪些已知量、 这台电脑还能用几个月 未知量和等量关系? 达到规定的检修时间 原来使用时间+还可以使 用的时间=规定的检修时 间