北师大版七年级上册数学配套练习(带答案)

合集下载

2021-2021学年北师大版七年级数学上册全册配套课时作业(含答案)

2021-2021学年北师大版七年级数学上册全册配套课时作业(含答案)

2021-2021学年北师大版七年级数学上册全册配套课时作业(含答案)1.1 生活中的立体图形 1.如图甲所示,将三角形绕虚线旋转一周,可以得到图乙所示的立体图形的是( ) 2.下列几何体中,由4个面围成的几何体是( ) 3.在下列立体图形中,面数相同的是( )AB.(1)(2) .(1)(3) CD.(2)(3) .(3)(4) 4.以下四种说法:(1)正方形绕着它的一边旋转一周,能够形成圆柱; (2)梯形绕着它的下底边旋转一周,能够形成圆柱; (3)直角梯形绕着垂直于底边的腰旋转一周,能够形成圆锥; (4)直角三角形绕着一条直角边旋转一周能够形成圆锥.其中正确的说法为( )AB.(1)(2) .(1)(3) CD.(1)(4) .(2)(3) 5.如图所示: (1)这个棱柱的底面是________形. (2)这个棱柱有________个侧面,侧面的形状是________边形. (3)侧面的个数与底面的边数____. (4)这个棱柱有________条侧棱,一共有________条棱. cmcm(5)如果CC′=3 ,那么BB′=________. 6.如图,请将几何体进行分类,并说明理由.7.在横线上写出图中的几何体的名称. 8.如图中的图形绕虚线旋转一周,可以形成怎样的几何体?连一连,并说明名称.(义乌模拟)下列几何体中,不是柱体的是( )课后作业 B1.考查立体图形定义. C2.三棱锥有四个面. D3.正方体与长方体的面数相同. C4.考查基础知识. 5.(1)三角 (2)3 四 (3)相等 (4)3 9 (5)3 6.答案不唯一(只要能说出合情的理由即可). 7.圆锥长方体圆柱球五棱柱 bcda8.①―圆台②―圆锥③―球④―圆柱中考链接 B 圆锥不是柱体. 1.2.1 正方体的展开与折叠 1.如图,下面图形中不是正方体展开图的是( 2.下图是一个正方体的平面展开图,这个正方体是( ))3.如图是一个正方体的表面展开图,原正方体中“祝”的对面是( ) AB.考.试 CD.顺.利 4.下列四个图形中,每个小正方形都标上了颜色.若要求一个正方体两个相对面上的颜色都一样,那么不可能是这一个正方体表面展开图的是( )5.在正方体的表面上画有如图(1)中所示的粗线,图(2)是其展开图的示意图,但只在A面上面有粗线,那么将图(1)中剩余的两个面中的粗线画入图(2)中,画法正确的是( )6.如图是正方体的展开图,则原正方体相对两个面上的数字之和的最小值是________. 7.如图,在无阴影的方格中选出2个画阴影,使它们与图中4个有阴影的正方形一起可以构成一个正方体的表面展开图. 8.一个正方体的六个面上分别有“”,“●”,“+”,“○”,“?”,“” 六种不同的符号,如图所示给出了三种状态下的情形.请问:“●”所在面的相对面上的符号是哪一种?9.如图,已知一个正方体的六个面上分别写着六个连续的整数,且每两个相对面上的两个数的和都相等,图中所能看到的数是16,19和20,求这6个整数的和. (20212温州)下列各图中,经过折叠能围成一个正方体的是( )课后作业 D1.考查正方体的展开图. D2.考查正方体的展开图. C3.祝的对面是顺. C4.考查正方体的展开图. A5.考查正方体的展开图. 6.6 7.如图所示(答案不唯一). 8.“●”所在面的相对面上的符号是“○”.从有“○”的两个图形看,与“○”相邻的四个面都不是“●”,所以“○”与“●”所在面是相对面. 9.111 16的对面是21,19的对面是18,20的对面是17. 中考链接 A 考查正方体的展开图. 1.2.2 柱体及圆锥的展开图 1.如图是三棱柱的展开图的为( )2.若一个棱柱有12个顶点,则在下列说法中正确的为( )A.这个棱柱有五个侧面 B.这个棱柱有五条侧棱 C.这个棱柱的底面是六边形 D.这个棱柱是一个十二棱柱 3.用如图所示的五角星形状的图沿虚线折叠,可以得到( ) A.五棱柱B.五棱锥 C.五棱柱的侧面 D.五棱锥的侧面 4.如图是一个三棱柱,下列图形中,能通过折叠围成一个三棱柱的是( )5.如图所示,其中不可以折成棱柱的是( ) 6.圆柱,圆锥,正方体,棱柱的侧面展开图是圆的有________个. 7.长方体的表面沿某些棱剪开,展开成平面图形,共有________个________形,其中剪的过程中,需要剪________条棱. abc8.请你根据下图,所标的数字,在图的空格中填上相应的数字,使相对两面的数字之和相等. 9.将下面展开图与相应的几何体用线连接起来.10.如图是一个食品包装盒的表面展开图. (1)请写出该包装盒的几何体名称; (2)根据图中所标尺寸,用a,b表示这个几何体的全面积S(侧面积与底面积之和),并计算当a=1,b=4时,S的值. (20212绵阳)把如图中的三棱柱展开,所得到的展开图是( )课后作业 D1.考查立体图形的展开图. C2.六棱柱. B3.可以得到五棱锥. B4.考查立体图形的展开图. A5.棱柱侧面与底面的边数应该相同. 6.0 7.6 长方 7 8.设想把这两个正方体合为一体,5对面是8,7对面是6,4对面是9. dabc9.①― ②― ③― ④― 10.解:(1)长方体; 22(2)S=2ab32+232a3a+23a3b=4ab+4a+2ab=6ab+4a. 2当a=1,b=4时,S=63134+431=28. 中考链接 B 考查三棱柱的展开图. 1.3 截一个几何体 1.如图,用一个平面去截长方体,则截面形状为( )cm2.棱长是1的小立方体组成如图所示的几何体,那么这个几何体的表面积是( ) 22AcmBcm.36 .33 22CcmDcm.30 .27 3.如图中几何体的截面是( ) 4.如图所示,用平面截圆锥,所得的截面形状是( )5.用一个平面去截圆柱得到的图形不可能是( )CT6.在医学诊断上,有一种医学影像诊断技术叫,它的工作原理是______________. 7.用一个平面截一个正方体,所得截面是一个三角形,则留下的较大的一块几何体一定有________个面. 8.如图中几何体是一个圆锥被一平面截下的,由________个面围成,面与面的交线有________条,其中直线有____条.底面形状是________. 9.下面几何体的截面分别是什么?10.如图给出一个圆锥,用一个平面去截这个圆锥,若要得到下列图形,应怎样去截?11.如图,截一个正方体,可以得到三角形,但要得到一个最大的等边三角形,你会切吗?你能说出你的切法吗? 12.将图①的正方体切去一块,不同的切法可以得到图②~⑤的几何体,它们各有多少个面?多少条棱?多少个顶点?cmcm(20212温州模拟)把一个边长为2 的立方体截成八个边长为1 的小立方体,至少需要截______次.课后作业 B1.截面形状为长方形. 2Acm2.几何体共有36个面,即面积是36 . B3.截面是长方形. D4.考查截面形状. D5.圆柱的截面不可能是三角形. 6.利用射线截几何体,图象重建原理. 7.7 8.3 4 3 有可能是半圆,有可能是弓形,但不可能是扇形 9.长方形圆长方形圆 10.解:如图所示. 11.解:如图所示. 12. 图形面(个) 棱(条) 顶点(个) ② 7 15 10 ③ 7 14 9④ 7 13 8 ⑤ 7 12 7 中考链接 3 上表面截两次中间截一次. 1.4 从三个方向看物体的形状 1.如图所示,是由4个相同小正方体组合而成的几何体,从左面看感谢您的阅读,祝您生活愉快。

北师大版七年级数学上册各章测试卷(共7套,含答案)

北师大版七年级数学上册各章测试卷(共7套,含答案)

(新)北师大版七年级数学上册各章测试卷(共7套,含答案)第一章达标检测卷(120分,90分钟)题号一二三总分得分一、选择题(每题3分,共30分)1.生活中的“八宝粥”易拉罐同学们都很熟悉,你认为“八宝粥”易拉罐类似于( )A.棱柱B.圆柱C.圆锥D.长方体2.将图中的图形绕虚线旋转一周,形成的几何体是( )(第2题)3.如图是一个螺母的示意图,从上面看得到的图形是( )(第3题)4.一个无盖的正方体盒子的表面展开图可以是如图所示的( )(第4题)A.①B.①②C.②③D.①③5.下列说法正确的是( )A.有六条侧棱的棱柱的底面一定是三角形B.棱锥的侧面是三角形C.长方体和正方体不是棱柱D.柱体的上、下两底面可以大小不一样6.用一个平面去截下列几何体,所得截面与其他三个不同的是( )(第7题)7.如图为一个长方体截去两个角后的立体图形,如果照这样截去长方体的八个角,则所得新的立体图形的棱有( )A.26条B.30条C.36条D.42条8.能由如图所示的平面图形折叠而成的立体图形是( )(第8题)9.把一个棱长为3的正方体的每个面等分成9个小正方形,然后沿每个面正中心的一个正方形向里挖空(相当于挖去了7个小正方体),所得到的几何体的表面积是( ) A.78 B.72 C.54 D.4810.如图是由一些小立方块所搭的几何体从三个不同方向看到的图形,若在所搭的几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要的小立方块个数是( )(第10题) A.50 B.51 C.54 D.60二、填空题(每题3分,共24分)11.快速旋转一枚竖立的硬币(假定旋转轴在原地不动),旋转形成的立体图形是________.12.一个棱柱有12个顶点,所有侧棱长的和是48 cm,则每条侧棱长是________.13.如图,将七个小正方形中的一个去掉,就能成为一个正方体的展开图,则去掉的小正方形的序号是______或______.(第13题)(第14题)(第15题)14.如图是从不同方向看一个立体图形得到的平面图形,则这个立体图形的侧面积是________.15.正方体木块的六个面分别标有数字1,2,3,4,5,6,如图是从不同方向观察这个正方体木块看到的数字情况,数字1对面的数字是______.16.如图,木工师傅把一根长为1.6 m的长方体木料锯成3段后,表面积比原来增加了80 cm2,那么这根木料原来的体积是________.(第16题)(第17题)(第18题)17.如图,长方形ABCD的长AB=4,宽BC=3,以AB所在的直线为轴,将长方形旋转一周后所得几何体从正面看到的形状图的面积是________.18.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么该几何体从______面看到的形状图的面积最大.三、解答题(19~21题每题10分,其余每题12分,共66分)19.(1)如图是一些基本立体图形,在括号里写出它们的名称.(第19题)(2)将这些几何体分类,并写出分类的理由.20.如图①②都是几何体的表面展开图,先想一想,再折一折,然后说出图①②折叠后的几何体的名称、棱数与顶点数.(第20题)21.如图是一个立体图形从三个不同方向看所得到的形状图,请写出这个立体图形的名称,并计算这个立体图形的体积(结果保留π).(第21题)22.如图,在一次数学活动课上,张明用17个棱长为1的小正方体搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状).(1)王亮至少需要多少个小正方体?(2)王亮所搭几何体的表面积是多少?(第22题)23.如图①,在正方体中,点P,Q,S分别是所在边的中点,将此正方体展开,请在展开图(图②)中标出点P,Q,S的位置,当正方体的棱长为a时,求出展开图中三角形PSQ 的面积.(第23题)24.如图①至③是将正方体截去一部分后得到的几何体.(第24题)(1)根据要求填写表格:图面数(f) 顶点数(v) 棱数(e)①②③(2)猜想f,v,e三个数量间有何关系;(3)根据猜想计算,若一个几何体有2 013个顶点,4 023条棱,试求出它的面数.答案一、1.B 2.B 3.B 4.D 5.B 6.D 7.C 8.D 9.B 10.C二、11.球 12.8 cm 13.6;7 14.18 cm 215.3 16.3 200 cm 317.24 18.正三、19.解:(1)球;圆柱;圆锥;长方体;三棱柱(2)第一类:球、圆柱、圆锥,几何体的面中含有曲面;第二类:长方体、三棱柱,几何体的面中不含有曲面.(答案不唯一)20.解:图①折叠后是长方体,有12条棱,8个顶点;图②折叠后是六棱柱,有18条棱,12个顶点.21.解:这个立体图形是圆柱,体积为π×⎝ ⎛⎭⎪⎫822×10=160π(cm 3). 22.解:(1)两人所搭成的几何体拼成一个大长方体,该大长方体的长、宽、高至少为3,3,4,所以它的体积为36,则它是由36个棱长为1的小正方体搭成的,那么王亮至少需要36-17=19(个)小正方体.(2)王亮所搭几何体的上面面积为8,右侧面积为7,左侧面积为7,后面面积为9,前面面积为9,底面面积为8,故表面积为48.23.解:如图所示.(第23题)S 所在位置有两种情况.如图,过点Q 作QT ⊥BC 交直线BC 于点T.S 三角形PSQ =52a ·a -12a ·52a ·12-12a ·32a ·12-a ·a ·12=a 2.由图可以看出三角形PS ′Q 和三角形PSQ 的面积相等,所以三角形PS ′Q 的面积也是a 2.24.解:(1)7;9;14;6;8;12;7;10;15 (2)f +v -e =2.(3)因为v =2 013,e =4 023,f +v -e =2,所以f +2 013-4 023=2,f =2 012,即它的面数是2 012.第二章达标检测卷(120分,90分钟)题 号 一 二 三 总 分得 分一、选择题(每题3分,共30分) 1.下列各数中是正数的是( )A .-12B .2C .0D .-0.22.2的相反数是( )A .2B .12C .-2D .-123.在-1,-2,0,1这四个数中最小的数是( )A .-1B .-2C .0D .14.下列计算正确的是( )A .-2-1=-1B .3÷⎝ ⎛⎭⎪⎫-13×3=-1C .(-3)2÷(-2)2=32D .0-7-2×5=-175.有理数a ,b 在数轴上对应的位置如图所示,则( )(第5题)A .a +b <0B .a +b >0C .a -b >0D .a b>06.移动互联网已经全面进入人们的日常生活.截至2015年3月,全国4G 用户总数达到1.62亿,其中1.62亿用科学记数法表示为( )A .1.62×104B .162×106C .1.62×108D .0.162×1097.已知|a|=5,|b|=2,且a <b ,则a +b 的值为( )A .3或7B .-3或-7C .-3D .-78.下列说法中正确的是( )A .一个有理数不是正数就是负数B .|a|一定是正数C .如果两个数的和是正数,那么这两个数中至少有一个正数D .两个数的差一定小于被减数9.如图的数轴被墨迹盖住一部分,被盖住的整数点有( )(第9题)A .7个B .8个C .9个D .10个10.如图,下面每个表格中的四个数都是按相同规律填写的:(第10题)根据此规律确定x 的值为( )A .135B .170C .209D .252二、填空题(每题3分,共24分)11.-25的绝对值是________,倒数是________.12.某项科学研究,以45 min 为1个时间单位,并记每天上午10时为0,10时以前记为负,10时以后记为正.例如9:15记为-1,10:45记为1,以此类推,上午7:45应记为________.13.某商店出售三种品牌的洗衣粉,袋上分别标有质量为(500±0.1) g ,(500±0.2)g ,(500±0.3) g 的字样,从中任意拿出两袋,它们最多相差________.14.比较一个正整数a ,其倒数1a,相反数-a 的大小:________________.15.若x ,y 为有理数,且(5-x)4+|y +5|=0,则⎝ ⎛⎭⎪⎫x y 2 016=________.16.已知在如图所示没有标明原点的数轴上有四个点,且它们表示的数分别为a ,b ,c ,d ,若|a -c|=10,|a -d|=12,|b -d|=9,则|b -c|=________.(第16题)(第17题)17.按如图所示的程序进行计算,如果第一次输入的数是20,而结果不大于100时,应把结果作为输入的数再进行第二次运算,直到符合要求为止,则最后输出的结果为________.18.一列数a 1,a 2,a 3,…,a n .其中a 1=-1,a 2=11-a 1,a 3=11-a 2,…,a n =11-a n -1,则a 1+a 2+a 3+…+a 2 017=________.三、解答题(21题6分,19,22,23题每题8分,其余每题12分,共66分) 19.把下列各数填在相应的集合中:15,-12,0.81,-3,227,-3.1,-4,171,0,3.14,π,1.6·正数集合{ …} 负分数集合{ …} 非负整数集合{ …} 有理数集合{ …} 20.计算:(1)-5-(-3)+(-4)-[-(-2)];(2)-14+⎝ ⎛⎭⎪⎫-112-38+712×(-24);(3)-62×⎝ ⎛⎭⎪⎫-1122-32÷⎝ ⎛⎭⎪⎫-1123×3;(4)⎪⎪⎪⎪⎪⎪-⎝ ⎛⎭⎪⎫-232+⎝ ⎛⎭⎪⎫-59-(-1)1 000-2.45×8+2.55×(-8).21.如果a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为2,求a +b a +b +c +m 2-cd 的值.22.一辆货车从超市出发,向东走了1 km ,到达小明家,继续向东走了3 km 到达小兵家,然后向西走了10 km ,到达小华家,最后又向东走了6 km 结束行程.(1)如果以超市为原点,以向东为正方向,用1个单位长度表示1 km ,请你在如图所示的数轴上表示出小明家、小兵家和小华家的具体位置.(第22题)(2)请你通过计算说明货车最后回到什么地方?(3)如果货车行驶1 km 的用油量为0.25 L ,请你计算货车从出发到结束行程共耗油多少升?23.已知有理数a ,b 满足ab 2<0,a +b >0,且|a|=2,|b|=3,求⎪⎪⎪⎪⎪⎪a -13+(b -1)2的值.24.商人小周于上周日收购某农产品10 000 kg ,每千克2.3元,进入批发市场后共占5个摊位,每个摊位最多能容纳 2 000 kg 该农产品,每个摊位的市场管理价为每天20元.批发市场该农产品上周日的批发价为每千克 2.4元,下表为本周内该农产品每天的批发价格比前一天的涨跌情况.(涨记为正,跌记为负)星期一 二 三 四 五 与前一天相比价格的涨跌情况/元+0.3 -0.1 +0.25 +0.2 -0.5 当天的交易量/kg2 5002 0003 0001 5001 000(1)星期四该农产品价格为每千克多少元?(2)本周内该农产品的最高价格为每千克多少元?最低价格为每千克多少元? (3)小周在销售过程中采用逐步减少摊位个数的方法来降低成本,增加收益,这样他在本周的买卖中共赚了多少钱?请你帮他算一算.25.观察下列各式: -1×12=-1+12;-12×13=-12+13; -13×14=-13+14;… (1)你发现的规律是____________________;(用含n 的式子表示)(2)用以上规律计算:⎝ ⎛⎭⎪⎫-1×12+⎝ ⎛⎭⎪⎫-12×13+⎝ ⎛⎭⎪⎫-13×14+…+⎝ ⎛⎭⎪⎫-12 017×12 018.答案一、1.B 2.C 3.B 4.D 5.A 6.C 7.B 8.C 9.C10.C 点拨:首先根据图示,可得第n 个表格的左上角的数等于n ,左下角的数等于n +1;然后根据4-1=3,6-2=4,8-3=5,10-4=6,…,可得从第一个表格开始,右上角的数与左上角的数的差分别是3,4,5,…,n +2,据此求出a 的值是多少;最后根据每个表格中右下角的数等于左下角的数与右上角的数的积加上左上角的数,求出x 的值是多少即可.二、11.25;-5212.-3 13.0.6 g 14.-a <1a ≤a15.1 16.7 17.320 18.1 007三、19.解:正数集合{15,0.81,227,171,3.14,π,1.6·,…}负分数集合{-12,-3.1,…}非负整数集合{15,171,0,…}有理数集合{15,-12,0.81,-3,227,-3.1,-4,171,0,3.14,1.6·,…}20.解:(1)原式=-8. (2)原式=30. (3)原式=-73. (4)原式=-40.21.解:由题意,得a +b =0,cd =1, m =±2,所以m 2=4. 所以a +b a +b +c +m 2-cd=0+c+4-1 =0+4-1=3. 22.解:(1)略.(2)由题意得(+1)+(+3)+(-10)+(+6)=0(km ),因而货车最后回到超市. (3)由题意得,1+3+10+6=20(km ),货车从出发到结束行程共耗油0.25×20=5(L ).23.解:由ab 2<0,知a <0.因为a +b >0,所以b >0. 又因为|a|=2,|b|=3, 所以a =-2,b =3.所以⎪⎪⎪⎪⎪⎪a -13+(b -1)2=⎪⎪⎪⎪⎪⎪-2-13+(3-1)2=73+4 =613. 24.解:(1)2.4+0.3-0.1+0.25+0.2=3.05(元). 所以星期四该农产品价格为每千克3.05元. (2)星期一的价格是2.4+0.3=2.7(元); 星期二的价格是2.7-0.1=2.6(元); 星期三的价格是2.6+0.25=2.85(元); 星期四的价格是3.05元;星期五的价格是3.05-0.5=2.55(元).因而最高价格为每千克3.05元,最低价格为每千克2.55元.(3)(2 500×2.7-5×20)+(2 000×2.6-4×20)+(3 000×2.85-3×20)+(1 500×3.05-2×20)+(1 000×2.55-20)-10 000×2.3=6 650+5 120+8 490+4 535+2 530-23 000=27 325-23 000=4 325(元).所以他在本周的买卖中共赚了4 325元.25.解:(1)-1n ×1n +1=-1n +1n +1(n 为正整数)(2)原式=-1+12-12+13-13+14-…-12 017+12 018=-1+12 018=-2 0172 018.第三章达标检测卷(120分,90分钟)题 号 一 二 三 总 分得 分一、选择题(每题3分,共30分) 1.下列各式中,代数式的个数是( )①12; ②a +38; ③ab =ba ; ④1x +y ; ⑤2a -1; ⑥a ; ⑦12(a 2-b 2); ⑧5n +2.A .5B .6C .7D .82.单项式-π3a 2b 的系数和次数分别是( )A .π3,3 B .-π3,3 C .-13,4 D .13,43.下列各组是同类项的是( )A .xy 2与-12x 2y B .3x 2y 与-4x 2yz C .a 3与b 3 D .-2a 3b 与12ba 34.如果多项式(a -2)x 4-12x b +x 2-3是关于x 的三次多项式,那么( )A .a =0,b =3B .a =1,b =3C .a =2,b =3D .a =2,b =15.下列去括号正确的是( )A .a -(2b -3c)=a -2b -3cB .x 3-(3x 2+2x -1)=x 3-3x 2-2x -1C .2y 2+(-2y +1)=2y 2-2y +1D .-(2x -y)-(-x 2+y 2)=-2x +y +x 2+y 26.某校组织若干师生到活动基地进行社会实践活动.若学校租用45座的客车x 辆,则余下20人无座位;若租用60座的客车,则可少租用2辆,且最后一辆还没坐满,则乘坐最后一辆60座客车的人数是( )A .200-60xB .140-15xC .200-15xD .140-60x7.如图,阴影部分的面积是( )(第7题)A .112x yB .132xy C .6xy D .3xy8.已知-x +3y =5,则代数式5(x -3y)2-8(x -3y)-5的值为( )A .80B .-170C .160D .609.某同学计算一个多项式加上xy -3yz -2xz 时,误认为减去此式,计算出的错误结果为xy -2yz +3xz ,则正确答案是( )A .2xy -5yz +xzB .3xy -8yz -xzC .yz +5xzD .3xy -8yz +xz10.如图,小明用棋子摆放图形来研究数的规律.图①中棋子围成三角形,其颗数分别为3,6,9,….类似地,图②中棋子围成正方形,其颗数分别为4,8,12,….下列选项中既能围成三角形又能围成正方形的棋子颗数是( )(第10题)A .2 010B .2 012C .2 014D .2 016二、填空题(每题3分,共24分)11.用代数式表示“比a 的平方的一半小1的数”是____________. 12.已知15 m xn 和-29m 2n 是同类项,则|2-4x|+|4x -1|的值为________.13.已知有理数a ,b 在数轴上对应的点的位置如图所示,化简|a +b|-|b -a|的结果为________.(第13题)14.三角形三边的长分别为(2x +1) cm ,(x 2-2) cm 和(x 2-2x +1) cm ,则这个三角形的周长是________.15.若多项式2x 3-8x 2+x -1与多项式3x 3+2mx 2-5x +3的和不含二次项,则m 等于________.16.已知a 2-4ab =1,3ab +b 2=2,则整式3a 2+4b 2的值是________.17.随着通讯市场竞争的日益激烈,为了占领市场,甲公司推出的优惠措施是每分降低a 元后,再下调25%;乙公司推出的优惠措施是每分下调25%,再降低a 元.若甲、乙两公司原来每分的收费标准相同,则推出优惠措施后收费较便宜的是________公司.18.有一个正六面体骰子,放在桌面上,将骰子按如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2 017次后,骰子朝下一面的点数是________.(第18题)三、解答题(19,21,22题每题10分,其余每题12分,共66分) 19.先去括号,再合并同类项.(1)2a -(5a -3b)+(4a -b); (2)3(m 2n +mn)-4(mn -2m 2n)+mn.20.先化简,再求值:(1)-a 2+(-4a +3a 2)-(5a 2+2a -1),其中a =-23;(2)⎝ ⎛⎭⎪⎫32x 2-5xy +y 2-⎣⎢⎡⎦⎥⎤-3xy +2⎝ ⎛⎭⎪⎫14x 2-xy +23y 2,其中|x -1|+(y +2)2=0.21.已知A =y 2-ay -1,B =2by 2-4y -1,且2A -B 的值与字母y 的取值无关,求2(a 2b -1)-3a 2b +2的值.22.小刚在图书馆认识了新朋友小明,他想知道小明的年龄,于是说:“把你的年龄减去5,再乘2后减去结果的一半,再加11,把最后结果告诉我,我就能猜出你的年龄.”小明这样做后,小刚果然迅速猜到了小明的年龄.你能说出小刚是用了什么办法猜对的吗?23.A,B两家公司都准备向社会招聘人才,两家公司条件基本相同,只有工资待遇有如下差异:A公司年薪20万元,每年加工龄工资4 000元;B公司半年薪10万元,每半年加工龄工资2 000元.A,B两家公司第n年的年薪分别是多少?从经济角度考虑,选择哪家公司有利?24.如图是一个长方形娱乐场所的设计图.其中半圆形休息区和长方形游泳池以外的地方都是绿地.试解答下列问题:(1)游泳池和休息区的面积各是多少? (2)绿地的面积是多少?(3)如果这个娱乐场所的长是宽的1.5倍,要求绿地面积占整个面积的一半以上.小亮同学根据要求,设计的游泳池的长和宽分别是大长方形的长和宽的一半,你说他的设计符合要求吗?为什么?(第24题)答案一、1.C 2.B 3.D 4.C 5.C 6.C 7.A 8.C9.B 点拨:由题意可知原多项式为(xy -2yz +3xz)+(xy -3yz -2xz)=2xy -5yz +xz ,则正确的答案为(2xy -5yz +xz)+(xy -3yz -2xz)=3xy -8yz -xz.10.D 二、11.12a 2-112.13 点拨:因为15m xn 和-29m 2n 是同类项,所以x =2.所以|2-4x|+|4x -1|=6+7=13.13.-2b 14.2x 2cm 15.416.11 点拨:因为a 2-4ab =1,所以3a 2-12ab =3 ①.因为3ab +b 2=2,所以12ab +4b 2=8 ②.①+②得3a 2+4b 2=11.17.乙 点拨:设甲、乙两公司原来的收费为每分b(b >a)元,则推出优惠措施后,甲公司的收费为(b -a)×75%=0.75b -0.75a (元),乙公司的收费为(0.75b -a )元.因为0.75b -a <0.75b -0.75a ,所以乙公司收费较便宜.18.2三、19.解:(1)2a -(5a -3b)+(4a -b) =2a -5a +3b +4a -b =a +2b.(2)3(m 2n +mn)-4(mn -2m 2n)+mn =3m 2n +3mn -4mn +8m 2n +mn =11m 2n.20.解:(1)-a 2+(-4a +3a 2)-(5a 2+2a -1) =-a 2-4a +3a 2-5a 2-2a +1 =-3a 2-6a +1.当a =-23时,原式=-3×⎝ ⎛⎭⎪⎫-232-6×⎝ ⎛⎭⎪⎫-23+1=113.(2)⎝ ⎛⎭⎪⎫32x 2-5xy +y 2-[-3xy +2(14x 2-xy)+23y 2]=32x 2-5xy +y 2+3xy -12x 2+2xy -23y 2=x 2+13y 2. 因为|x -1|+(y +2)2=0, 所以x -1=0且y +2=0.所以x =1,y =-2.所以原式=12+13×(-2)2=73.21.解:2A -B =2(y 2-ay -1)-(2by 2-4y -1) =2y 2-2ay -2-2by 2+4y +1 =(2-2b)y 2+(4-2a)y -1. 由题意知2-2b =0,4-2a =0, 即a =2,b =1.2(a 2b -1)-3a 2b +2=2a 2b -2-3a 2b +2=-a 2b =-22×1=-4.22.解:设小明的年龄是x 岁,则2(x -5)-12×2(x -5)+11=x +6(小明说的这个数是x +6).所以只要小明说出这个数,小刚再把这个数减去6就能得知小明的年龄. 23.解:A 公司第n 年的年薪为200 000+4 000(n -1)=196 000+4 000n(元),B 公司第n 年的年薪为100 000×2+(2n -1)×2 000=198 000+4 000n(元). 因为n >0,所以196 000+4 000n <198 000+4 000n. 所以从经济角度考虑,选择B 公司有利. 24.解:(1)游泳池的面积为mn ; 休息区的面积为12×π×⎝ ⎛⎭⎪⎫n 22=18πn 2.(2)绿地的面积为ab -mn -18πn 2.(3)符合要求.理由如下:由已知得a =1.5b ,m =0.5a ,n =0.5b. 所以⎝ ⎛⎭⎪⎫ab -mn -18πn 2-12ab = 38b 2-π32b 2>0. 所以ab -mn -18πn 2>12ab ,即小亮设计的游泳池符合要求.第四章达标检测卷(120分,90分钟)题 号 一 二 三 总 分得 分一、选择题(每题3分,共30分)1.小辉同学画出了如下的四个图形,你认为是四边形的是( )2.在党中央、国务院“振兴中央苏区”的精神鼓舞下,老区人民掀起了建设家乡的热潮.某村把一条弯曲的公路改为直道以达到缩短路程的目的,其道理用数学知识解释应是( )A .两点之间线段最短B .两点确定一条直线C .线段可以比较大小D .线段有两个端点3.对于下列直线AB ,线段CD ,射线EF ,能相交的是( )4.如图,OB ,OC 都是∠AOD 内部的射线,如果∠AOB =∠COD ,那么( )A .∠AOC>∠BODB .∠AOC =∠BOD C .∠AOC<∠BOD D .以上均有可能(第4题)(第5题)5.如图,下列等式中错误的是( )A .AD -CD =AB +BC B .AC -BC =AD -BD C .AC -BC =AC +BD D .AD -AC =BD -BC6.晓敏早晨8:00出发,中午12:30到家,那么晓敏到家时时针和分针的夹角是( )A .160°B .165°C .120°D .125°7.下列说法正确的有( ) ①角的大小与所画边的长短无关;②比较角的大小就是比较它们的度数的大小;③从角的顶点出发的一条射线把这个角分成两个角,这条射线叫做这个角的平分线; ④如果∠AOC =12∠AOB ,那么OC 是∠AOB 的平分线.A .1个B .2个C .3个D .4个8.如图,射线OA 与正东方向所成的角是30°,射线OA 与射线OB 所成的角是100°,则射线OB 的方向为( )A .北偏西30°B .北偏西50°C .北偏西40°D .西偏北30°(第8题)(第9题)(第10题)9.如图,OC 是∠AOD 的平分线,OE 是∠BOD 的平分线.如果∠AOC =30°,∠BOD =80°,那么∠COE 的度数为( )A .50°B .60°C .65°D .70°10.如图,C ,D 为线段AB 上的两点,M 是AC 的中点,N 是BD 的中点,如果MN =a ,CD =b ,那么线段AB 的长为( )A .2(a -b)B .2a -bC .2a +2bD .2a +b二、填空题(每题3分,共24分)11.工人师傅在用地砖铺地时,常常打两个木桩然后沿着拉紧的线铺地,这样地砖就铺得整齐,这是根据________________________.12.如图,线段有________条,射线有________条.(第12题)13.时钟由2点30分到2点55分,时针走过的角度是________,分针走过的角度是________.14.如图,直径AC 与BD 互相垂直,则半径分别是______________________,扇形AOD 的圆心角是________,弧AD 可表示为________.(第14题)(第15题)(第16题)15.如图,已知线段AB ,延长AB 到C ,使BC =12AB ,D 为AC 的中点,DC =3 cm ,则DB=________.16.如图,∠AOB 是平角,∠AOC =30°,∠BOD =60°,OM ,ON 分别是∠AOC ,∠BOD 的平分线,则∠MON 等于________.17.如图,艺术节期间我班数学兴趣小组设计了一个长方形时钟作品,其中心为O ,数3,6,9,12标在各边中点处,数2在长方形顶点处,则数1应该标在________处(选填一个序号:①线段DE的中点;②∠DOE的平分线与DE的交点).(第17题)(第18题)18.点M,N在数轴上的位置如图所示,如果P是数轴上的另外一点,且3PM=MN,则点P对应的有理数是________.三、解答题(19题8分,20题6分,24题12分,其余每题10分,共66分)19.读句画图:如图,A,B,C,D四点在同一平面内.(1)过点A和点D画直线;(2)画射线CD;(3)画线段AB;(4)连接BC,并反向延长BC.(第19题)20.计算:(1)83°46′+52°39′16″;(2)96°-18°26′59″;(3)20°30′×8;(4)105°24′15″÷3.21.如图,由点O引出6条射线OA,OB,OC,OD,OE,OF,且∠AOB=90°,OF平分∠BOC,OE平分∠AOD.若∠EOF=170°,求∠COD的度数.(第21题)22.如图,在O点的观测站测得渔船A,B的方向分别为北偏东45°,南偏西30°,为了减少相互干扰并取得较好的捕鱼效益,渔船C恰好位于∠AOB的平分线上,求渔船C相对观测站的方向.(第22题)23.如图,已知A ,B ,C 三点在同一直线上,AB =24 cm ,BC =38AB ,E 是线段AC 的中点,D 是线段AB 的中点,求DE 的长.(第23题)24.如图,B 是线段AD 上一动点,沿A →D →A 以2 cm /s 的速度往返运动1次,C 是线段BD 的中点,AD =10 cm ,设点B 的运动时间为t s (0≤t ≤10).(1)当t =2时,①AB =________;②求线段CD 的长度. (2)用含t 的代数式表示运动过程中AB 的长.(3)在运动过程中,若AB 的中点为E ,则EC 的长是否发生变化?若不变,求出EC 的长;若发生变化,请说明理由.(第24题)25.如图,正方形ABCD 内部有若干个点,利用这些点以及正方形ABCD 的顶点A ,B ,C ,D 把原正方形分割成一些三角形(互相不重叠):(第25题)(1)填写下表:正方形ABCD 内点的个数 1 2 3 4 … n 分割成的三角形的个数46…(2)原正方形能否被分割成2 018个三角形?若能,求此时正方形ABCD 内部有多少个点;若不能,请说明理由.答案一、1.B 2.A 3.B 4.B 5.C 6.B 7.B 8.C 9.D 10.B 二、11.两点确定一条直线 12.6;813.12.5°;150°14.OA ,OB ,OC ,OD ;90°;AD ︵15.1 cm 16.135°17.② 点拨:根据钟表表盘的特征可得数1应该标在∠DOE 的平分线与DE 的交点处.故答案为②.18.-1或-5 点拨:因为3PM =MN ,所以PM =13×(3+3)=2.所以当点P 在点M 左侧时,点P 对应的有理数是-5;当点P 在点M 右侧时,点P 对应的有理数是-1.三、19.解:如图.(第19题)20.解:(1)83°46′+52°39′16″= 135°85′16″=136°25′16″.(2)96°-18°26′59 ″=95°59′60″-18°26′59″=77°33′1″. (3)20°30′×8=160°240′=164°. (4)105°24′15″÷3=35°8′5″.21.解:因为∠EOF =170°,∠AOB =90°,所以∠BOF +∠AOE =360°-∠EOF -∠AOB =360°-170°-90°=100°.又因为OF 平分∠BOC ,OE 平分∠AOD ,所以∠COF =∠BOF ,∠EOD =∠AOE. 所以∠COF +∠EOD =∠BOF +∠AOE =100°.所以∠COD =∠EOF -(∠COF +∠EOD)=170°-100°=70°.22.解:由题意可知∠AOB =180°-45°+30°=165°,165°÷2-30°=52.5°,所以渔船C 在观测站南偏东52.5°方向.23.解:因为AB =24 cm ,BC =38AB ,所以BC =38×24=9(cm ).所以AC =AB +BC =24+9=33(cm ). 因为E 是线段AC 的中点, 所以AE =12×33=16.5(cm ).因为D 是线段AB 的中点, 所以AD =12AB =12×24=12(cm ).所以DE =AE -AD =16.5-12=4.5(cm ). 24.解:(1)①4 cm②因为AD =10 cm ,AB =4 cm , 所以BD =10-4=6(cm ). 因为C 是线段BD 的中点, 所以CD =12BD =12×6=3(cm ).(2)因为B 是线段AD 上一动点,沿A →D →A 以2 cm /s 的速度往返运动,所以当0≤t ≤5时,AB =2t cm ;当5<t ≤10时,AB =10-(2t -10)=20-2t(cm ). (3)不变.因为AB 的中点为E ,C 是线段BD 的中点, 所以EC =12(AB +BD)=12AD =12×10=5(cm ).25.解:(1)填表如下: 正方形 ABCD 内点的个数,1,2,3,4,…,n 分割成的 三角形的个数,4,6,8,10,…,2n +2(2)能.当2n +2=2 018,即n =1 008时,原正方形被分割成2 018个三角形,此时正方形ABCD 内部有1 008个点.第五章达标检测卷(120分,90分钟)题 号 一 二 三 总 分得 分一、选择题(每题3分,共30分)1.下列方程中,是一元一次方程的是( )A .x =1B .2x+1=0 C .3x +y =2 D .x 2-1=5x2.下列等式变形正确的是( )A .若a =b ,则a -3=3-bB .若x =y ,则x a =y aC .若a =b ,则ac =bcD .若b a=d c,则b =d3.下列方程中,解是x =2的方程是( )A .23x =2B .-14x +12=0 C .3x +6=0 D .5-3x =14.下列解方程过程正确的是( )A .由47x =5-27x ,得4x =5-2xB .由30%x +40%(x +1)=5,得30x +40(x +1)=5C .由x0.2-1=x ,得5x -1=xD .由x -6=8,得x =25.若代数式4x -5与2x -12的值相等,则x 的值是( )A .1B .32C .23D .26.已知方程2x -3=m3+x 的解满足|x|-1=0,则m 的值是( )A .-6B .-12C .-6或-12D .任何数7.已知方程7x +2=3x -6与关于x 的方程x -1=k 的解相同,则3k 2-1的值为( )A .18B .20C .26D .-268.小明准备为希望工程捐款,他现在有20元,以后每月打算存10元,若设x 月后他能捐出100元,则下列方程中能正确计算出x 的是( )A .10x +20=100B .10x -20=100C .20-10x =100D .20x +10=1009.如图①,天平呈平衡状态,其中左侧秤盘中有一袋玻璃球,右侧秤盘中也有一袋玻璃球,还有2个各20 g 的砝码.现将左侧袋中一颗玻璃球移至右侧秤盘,并拿走右侧秤盘的一个砝码后,天平仍呈平衡状态,如图②,则被移动的玻璃球的质量为( )(第9题)A .10 gB .15 gC .20 gD .25 g10.学友书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元,但不超过200元,一律打九折;③一次性购书超过200元,一律打八折.如果小明同学一次性购书付款162元,那么他所购书的原价为( )A .180元B .202.5元C .180元或202.5元D .180元或200元二、填空题(每题3分,共24分) 11.方程2x -1=0的解是x =________. 12.已知关于x 的方程(a -3)x|2a -7|-5=0是一元一次方程,则a =________.13.若k 是方程3x +1=7的解,则4k +3=________.14.美术馆举办的一次画展中,展出的油画作品和国画作品共有100幅,其中油画作品数量比国画作品数量的2倍多7幅,则展出的油画作品有__________幅.15.一个两位数,个位上的数字是十位上的数字的2倍,如果把十位上与个位上的数字对调,那么所得的两位数比原两位数大27,求原两位数.若设原两位数个位上的数字为x ,则可列方程为____________________;若设原两位数十位上的数字为y ,则可列方程为______________________.16.甲、乙两个足球队连续进行对抗赛,规定胜一场得3分,平一场得1分,负一场得0分,共赛10场,甲队保持不败,得22分,甲队胜________场.(第18题)17.某商店一套服装的进价为200元,若按标价的80%销售可获利72元,则该服装的标价为________元.18.如图是一块在电脑屏幕上出现的长方形色块图,由6个不同颜色的正方形组成,已知中间最小的一个正方形的边长为1,那么这个长方形色块图的面积为________.三、解答题(20~22题每题10分,其余每题12分,共66分) 19.解下列方程:(1)5y -3=2y +6; (2)5x =3(x -4);(3)2x +13-5x -16=1; (4)x 0.7-0.17-0.2x 0.03=1.20.若x=5是方程ax-6=22+a的解.试求关于y的方程ay+5=a-3y的解.21.轮船在静水中的航行速度为20 km/h,水流速度为4 km/h,从甲码头顺流航行到乙码头,再返回甲码头,共用5 h(不计停留时间),求甲、乙两码头间的距离.22.某市为更有效地利用水资源,制定了居民用水收费标准:如果一户每月用水量不超过15 m3,按每立方米1.8元收费;如果超过15 m3,超过部分按每立方米2.3元收费,其余仍按每立方米1.8元收费.另外,每立方米加收污水处理费1元.若某户一月份共支付水费58.5元,求该户一月份的用水量.23.用一个长60 m的篱笆围成一个长方形鸡场(鸡场的一边靠墙,墙长为20 m).如图,若BC=2AB,求AB和BC的长,并检验是否符合要求;若不符合要求,提出改进意见,并求出改进后的AB,BC的长,使其仍满足BC=2AB.(1)一变:若不利用墙,使围成鸡场的长比宽多6 m,求鸡场的面积;(2)二变:不利用墙,若围成正方形、圆形,分别求出鸡场的面积,并猜想要使鸡场的面积更大一些,最好围成什么图形.(第23题)24.甲、乙两人想共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成,否则每超过一天罚款1 000元,甲、乙两人经商量后签了该合同.(1)正常情况下,甲、乙两人能否履行该合同?为什么?(2)现两人合做了这项工程的75%,因别处有急事,必须调走1人,问调走谁更合适?为什么?答案一、1.A 2.C 3.B 4.C 5.B 6.C 7.C 8.A 9.A 10.C 二、11.1212.4 点拨:由题意得|2a -7|=1且a -3≠0,解得a =4. 13.11 14.6915.10×x 2+x =10x +x2-27;10y +2y =10×2y +y -27 16.6 17.340 18.143 三、19.解:(1)y =3. (2)x =-6. (3)x =-3. (4)x =1417.20.解:把x =5代入方程ax -6=22+a ,得5a -6=22+a ,解得a =7, 把a =7代入关于y 的方程ay +5=a -3y ,得7y +5=7-3y , 解得y =15.21.解:设甲、乙两码头间的距离为x km ,由题意得x 20+4+x20-4=5.解这个方程得x=48.所以甲、乙两码头间的距离为48 km .22.解:若该户一月份的用水量为15 m 3,则需支付水费15×(1.8+1)=42(元),而42<58.5,所以该户一月份的用水量超过15 m 3.设该户一月份的用水量为x m 3,则列方程为42+(2.3+1)(x -15)=58.5,解得x =20. 所以该户一月份的用水量为20 m 3. 23.解:设AB =x m ,根据题意, 得x +x +2x =60,解得x =15, 所以BC =30 m >20 m . 所以不符合题意. 改进意见:墙AE 做鸡场一边AD 的一部分,如图,设AB =y m ,此时可得方程2(y +2y)-20=60,解得y =403,所以AB =403 m .AD =BC =803m >20 m ,符合题意.(第23题)(1)设宽为z m ,则长为(z +6) m . 由题意,得2(z +6+z)=60. 解得z =12,则长为12+6=18(m ),所以鸡场的面积为12×18=216(m 2). (2)若围成正方形, 则其边长为60÷4=15(m ), 所以面积为152=225(m 2);若围成圆形,则其半径为60÷2π=30π(m ),所以面积为π×⎝ ⎛⎭⎪⎫30π2=900π≈286.6(m 2).因为286.6>225,所以要使鸡场的面积更大一些,最好围成圆形. 24.解:(1)正常情况下,甲、乙两人能履行该合同.理由如下:设两人合做需x 天,由题意得x 30+x20=1,解得x =12,因为12<15,所以正常情况下,两人能履行该合同. (2)调走甲更合适.理由如下:完成这项工程的75%所用天数为34÷⎝ ⎛⎭⎪⎫130+120=9(天),若调走甲,设共需y 天完成,由题意得 34+y -920=1,解得y =14, 因为14<15,所以能履行该合同.若调走乙,设共需z 天完成,由题意得34+z -930=1,解得z =16.5,因为16.5>15,所以不能履行该合同.综上可知,调走甲更合适.第六章达标检测卷(120分,90分钟)题 号 一 二 三 总 分得 分一、选择题(每题3分,共30分)1.在下列调查中,适宜采用普查的是( )A .了解我省中学生的视力情况B .了解九(1)班学生校服的尺码情况C .检测一批电灯泡的使用寿命D .调查台州《600全民新闻》栏目的收视率2.为了了解某校1 500名学生的体重情况,从中抽取了100名学生的体重,就这个问题来说,下面说法正确的是( )A .1 500名学生的体重是总体B .1 500名学生是总体C .每名学生是个体D .100名学生是所抽取的一个样本3.PM 2.5指数是衡量空气污染程度的一个重要指标,在一年中最可靠的一种观测方法是( )A .随机选择5天进行观测B .选择某个月进行连续观测C .选择在春节7天期间连续观测D .每个月随机选中5天进行观测4.要反映北京市某周内每天最高气温的变化情况,采用的统计图比较合适的是( )A .条形统计图B .扇形统计图C .折线统计图D .上述三种统计图都可以5.如图是七年级(1)班参加课外兴趣小组人数的扇形统计图,则表示唱歌兴趣小组人数的扇形的圆心角的度数是( )A .36°B .72°C .108°D .180°。

北师大版七年级上册数学第五章一元一次方程应用题专项练习(附答案)

北师大版七年级上册数学第五章一元一次方程应用题专项练习(附答案)
北师大版七上数学第五章一元一次方程应用题专项练习
一、解答题
1.某人计划骑车以每小时 12 千米的速度由 A 地到 B 地,这样便可以在规定的时间到达 B 地,但他因有事将原计划 出发的时间推迟了 20 分钟,便只好以每小时 15 千米的速度前进,结果比规定时间早 4 分钟到达 B 地,求 A、B 两 地间的距离.(列方程解应用题)
(2)如果小聪行走的速度是 4 千米/小时,那么到几时几分,小明与小聪相距 3 千米?
21.列方程解应用题 为了迎接比赛,七年级学生准备买一些器材,现了解情况如下:甲乙两家商店出售同样品牌的乒乓球和球拍,乒乓 球拍每副定价 20 元,乒乓球每盒定价 5 元,经洽谈后,甲店:每买一副球拍赠一盒乒乓球;乙店按定价的九折优惠, 该班需购买球拍 4 副,乒乓球若干盒(不少于 4 盒).若你是负责人,你会决定到哪家商店购买?说明理由.
16.某行军纵队以 7 千米/时的速度行进,队尾的通讯员以 11 千米/时的速度赶到队伍前送一封信,送到后又立即返回 队尾,共用 13.2 分钟,求这支队伍的长度.
23.已知线段 AB,延长 AB 到点 C,使 ‫ﳀ‬
‫ ﳀ‬,D 为 AC 的中点,若 BD=3cm,求线段 AB 的长.
17.列方程解应用题:登山运动是最简单易行的健身运动,在秀美的景色中进行有氧运动,特别是山脉中森林覆盖率 高,负氧离子多,真正达到了身心愉悦的进行体育锻炼。张老师和李老师登一座山,张老师每分钟登高 10 米,并且 先出发 30 分钟,李老师每分钟登高 15 米,两人同时登上山顶,求这座山的高度。
7.一个角的余角比这个角的补角的一半还少 40°,求这个角的度数.
8.从甲地到乙地,公共汽车原需行驶 7 个小时,开通高速公路后,车速平均每小时增加了 20 千米,只需 5 个小时即 可到达,求甲、乙两地的路程.

七年级北师大版数学上册练习册答案

七年级北师大版数学上册练习册答案

七年级北师大版数学上册练习册答案【线段的比较和作法第2课时】1、略2、C3、D4、(1)-(2)略;(3)0.5厘米5、略6、P是AB的中点,因为AP=AC+CP=BD+DP=PB7、建在C.假设建在点D,当D在线段CB上时,CD=x,则所有员工到停车点所行总路程为10(100+x)+8x+13(200-x)=3600+5x.当x=0时,路程最小.同理,当D在线段AC上时,总路程也不是最小.【线段、射线和直线第2课时】1-2、略3、3;14、B5、略6、(1)8;(2)1,107、四部分;七部分【相反数与绝对值】1、C2、略3、4、略5、(1)2/5,-2/5,2/5;(2)1,1;(3)-3;+3;(4)-3,-2,-1,0,1,2,36、与标准质量相差-0.6克的排球最接近标准.这个排球的质量与标准质量只相差0.6克【有理数的混合运算】1、略2、03、A4、D5、(1)-140;(2)-8;(3)-8;(4)60;(5)38;(6)37.56、如:(1)3×[4+10+(-6)];(2)4-10×(-6)÷3;(3)10-(-6)×3-4;[(-13)×(-5)+7]÷3 7、1【利用计算器进行简单的计算】2、(1)4715;(2)28352.873、(1)113.0;(2)372,116.8;(3)3.84、(1)略;(2)当n<3时,nn+1<(n+1)n,当n≥3时,nn+1>(n+1)n;(3)>。

北师大版七年级(上册)数学配套练习[带答案解析]

北师大版七年级(上册)数学配套练习[带答案解析]

北师大七年级上第一章丰富的图形世界 第1.1.1课时家庭作业 生活中的立体图形1)学习目标:1.经历从现实世界中抽象出几何图表的过程,感受图形世界的丰富多彩。

2.在具体情境中认识圆柱、圆锥、正方体、长方体、棱柱、棱台、球,并能用自已的语言描述它们的某些特征。

一.填空题:1.立体图形的各个面都是__________的面,这样的立体图形称为多面体.; 2.图形是由________,_________,________构成的;3.物体的形状似于圆柱的有________________,类似于圆锥的有_____________________,类似于球的有__________________;(各举一例)4. 围成几何体的侧面中,至少有一个是曲面的是______________;(举一例) 5. 正方体有_____个顶点,经过每个顶点有_________条棱,这些棱都____________; 6. 圆柱、圆锥、球的共同点是_____________________________;7. 假如我们把笔尖看作一个点,当笔尖在纸上移动时,就能画出线,说明了______________,时钟秒针旋转时,形成一个圆面,这说明了_______________,三角板绕它的一条直角边旋转一周,形成一个圆锥体,这说明了___________________;8. 圆可以分割成_____ 个扇形,每个扇形都是由___________________;9. 从一个七边形的某个顶点出发,分别连结这个点与其余各顶点,可以把七边形分割成__________个三角形;10.在乒乓球、橄榄球、足球、羽毛球、冰球中,是球体的有 ; 11.将下列几何体分类,柱体有: ,锥体有 (填序号) ;12.长方体由_______________个面_______________条棱_______________个顶点; 13.半圆面绕直径旋转一周形成__________; 二.选择题新知识点要小心呦!14.观察下图,请把左边的图形绕着给定的直线旋转一周后可能形成的几何体选出来()A B C D15.从一个十边形的某个点出发,分别连接这个顶点与其余各顶点,可以把这个多边形分割成三角形()(A) 10个(B) 9个(C) 8个(D) 7个16.如图的几何体是下面()平面图形绕轴旋转一周得到的()(A)(B)(C)(D)18.下面图形不能围成封闭几何体的是()(A)(B)(C)(D)三.解答题:19.指出下列平面图形是什么几何体的展开图:A CB20. ⑴.下面这些基本图形和你很熟悉,试一试在括号里写出它们的名称.( ) ( ) ( ) ( ) ( )⑵. 将这些几何体分类,并写出分类的理由.第1.1.1课时家庭作业参考答案一、1.平 ;2.点、线、面;3.略;4.略;5.8,3,相等;6.都有一个面是曲面; 7.点动成线,线动成面,面动成体;8.无数,一条弧和两条半径组成的;9.5; 10.乒乓球、足球;11.(1)(2)(3),(5)(6);12.6,12,8;13.球体; 二、14.D ;15.C ;16.B ; 17.A ; 三、18.长方体(四棱柱),圆锥,圆柱;19.(1)(从左至右)球、圆柱、圆锥、长方体、三棱柱; (2)按面分:曲面:球、圆柱、圆锥;平面:长方体、三棱柱; 按柱体分:圆柱、长方体、三棱柱;球;圆锥;北师大七年级上第一章丰富的图形世界第1.1.2课时家庭作业 (平面内的立体图形2)姓名 学习目标:1.通过丰富的实例,进一步认识点、线、面、初步感受点、线、面之间的关系.2.进一步经历从现实世界中抽象出图形的过程,从构成图形的基本元素的角度认识常见图形; 二.填空题:1.围成球的面有 个;2.圆柱有_____ 个面组成,这些面相交共得____ 条线,圆锥的侧面展开图是____ ; 3.圆锥是由_ __个面围成,其中__ _个平面,___ _个曲面,圆锥的侧面与底面新知识点要小心呦!相交成条线,是线;4.圆柱的表面展开图是________________________ (用语言描述);5.图形所表示的各个部分不在同一个平面内,这样的图形称为图形;6.图形所表示的各个部分都在同一个平面内,称为图形;二.选择题:7.圆锥的侧面展开图是()(A)长方形(B)正方形(C)圆(D)扇形8.将半圆绕它的直径旋转一周形成的几何体是()(A)圆柱(B)圆锥(C)球(D)正方体9.如图所示的图形绕虚线旋转一周,所形成的几何体是()()10.以下立体图形中是棱柱的有()(A)①⑤ (B)①②③ (C)①②④⑤ (D)①②⑤[ 11.下列说法中,正确的是()(A)正方体不是棱柱(B)圆锥是由3个面围成(C)正方体的各条棱都相等(D)棱柱的各条棱都相等12.将一个直角三角形绕它的最长边旋转一周,得到的几何体是()(A)(B)(C)(D)13.按组成面的平或曲划分,与圆锥为同一类几何体的是()(A)正方体(B)长方体(C)球(D)棱柱14.如图,沿着虚线旋转一周得到的图形为()(A)(B)(C)(D)15.一个正方体锯掉一个角后,顶点的个数是()(A) 7个(B) 8个(C) 9个(D) 7个或8个或9个或10个三、解答题16.请写出下列几何体的名称( ) ( ) ( ) ( )( ) ( ) ( ) ( ) 17.如图,第二行的图形绕点划线旋转一周,便形成第一行的某个图形(几何体),将对应的两个图形用线联结起来.第1.1.2课时家庭作业参考答案一、1.一个;2.三,二,扇形;3.二,一,一,一,曲;4.由一个长方形和两个相等的圆形组成;5.平面; 6.立体;[二、7.D;8.C;9.B;10.A;11.C;12.D;13.C;14.C;15.D;三、16.略;17.略;截一个几何体练习卷(1)一、填空题1.用一个平面去截一个球体所得的截面图形是__________.2.如图1,长方体中截面BB1D1D是长方体的对角面,它是__________.3.在正方体中经过从一个顶点出发的三条棱的中点的截面是_________.4.一座大楼,小明只看到了楼顶,则小明的看到的图叫__________.5.现有一张长52cm,宽28cm的矩形纸片,要从中剪出长15cm,宽12cm的矩形小纸片(不能粘贴),则最多能剪出__________张.6.一个正方体的主视图、左视图及俯视图都是__________.二、选择题7.用一个平面去截一个正方体,截面图形不可能是()A.长方形; B.梯形; C.三角形; D.圆8.用一个平面去截一个几何体,如果截面的形状是圆,则这个几何体不可能是()A.圆柱; B.圆锥; C.正方体; D.球9.小明看到了“实验楼”三个字,而且能看到该楼所有的门窗,则小明看到的图是()A.俯视图; B.左视图; C.主视图; D.都有可能10.截去四边形的一个角,剩余图形不可能是()A.三角形; B.四边形; C.五边形; D.圆三、解答题11.如图2,将等腰三角形对折沿着中间的折痕剪开,得到两个形状和大小都相同的直角三角形,将这两个直角三角形拼在一起,使得它有一条相等的边是公有的,你能拼出多少种不同的几何图形?并请你分别说出所拼的图形的名称.12.用火柴棒拼搭等边三角形(1)用火柴棒拼搭出两个边长等于棒长的等边三角形,你有几种拼法,最少需要几根火柴棒?(2)拼6个边长等于棒长的等边三角形,看谁用的棒最少?(3)用6根火柴棒拼搭等边三角形,若允许搭成的等边三角形不在同一平面内,那么可以搭多少个?13.选择你所熟悉的实物模型作出它的俯视图、主视图及左视图.14.用一个平面去截圆锥,可以得到几种不同的图形?动手试一试.参考答案一、1.圆2.矩形3.三角形4.俯视图5.7 6.正方形二、7.D 8.C 9.C 10.D三、11.共可以拼出以下六种图形((1)~(6))(1)、(3)是等腰三角形;(2)、(4)是平行四边形;(5)是长方形;(6)可以称它为筝形.12.(1)2、5 (2)12 (3)4(1)有两种情况,至少要用5根火柴棒,如图(2);而图(1)则用6根火柴棒.(2)最少要12根火柴棒,如图(4);图(3)用了13根.(3)若可以不在同一个平面内拼搭,可以搭4个等边三角形,如图(5).13.略14.略截一个几何体练习卷(2)一、判断题1.用一个平面去截一个正方体,截出的面一定是正方形或长方形. ()2.用一个平面去截一个圆柱,截出的面一定是圆. ()3.用一个平面去截圆锥,截出的面一定是三角形. ()4.用一个平面去截一个球,无论如何截,截面都是一个圆. ()二、选择题1.用一个平面去截圆锥,得到的平面不可能是()2.用一个平面去截一个圆柱,得到的图形不可能是()三、用平面去截一个正方体,截面的形状可能是平行四边形吗?截一截,想一想.四、指出下列几何体的截面形状.___________ ___________*自我陶醉编写一道自己感兴趣并与本节内容相关的题,解答出来.参考答案一、1.×2.×3.×4.√二、1.C 2.D三、可能四、五边形圆形1.3 截一个几何体一、选择题1、有下列几何体:(1)圆柱;(2)正方体;(3)棱柱;(4)球;(5)圆锥;(6)长方体。

北师大版七年级数学上册全册课时作业(共109页,附答案)

北师大版七年级数学上册全册课时作业(共109页,附答案)

北师大版七年级数学上册全册课堂练习(共109页,附答案)1.1生活中的立体图形1. 下面几何体中,全是由曲面围成的是()A. 圆柱B. 圆锥C. 球D. 正方体2. 下列说法错误的是()A. 长方体、正方体都是棱柱B. 三棱柱的侧面是三角形C. 直六棱柱有六个侧面、侧面为长方形D. 球体的三种视图均为同样大小的图形3. 如图,在一个棱长为6cm的正方体上摆放另一个正方体,使得上面正方体的四个顶点恰好均落在下面正方体的四条棱上,则上面正方体体积的可能值有()A. 1个B. 2个C. 3个D. 无数个4. 如图,左排的平面图形绕轴旋转一周,可以得到右排的立体图形,那么与甲、乙、丙、丁各平面图形顺序对应的立体图形的编号应为()A. ③④①②B. ①②③④C. ③②④①D. ④③②①5. 在下列几何体中,由三个面围成的有____,由四个面围成的有____.(填序号)6. 如图,在直六棱柱中,棱AB与棱CD的位置关系为____,大小关系是_____.7. 用五个面围成的几何体可能是_______.8. 若一个直四棱柱的底面是边长为1cm的正方形,侧棱长为2cm,则这个直棱柱的所有棱长的和是___cm.9. 由一个平面图形绕着它的一条边所在的直线旋转一周形成的几何体,叫做旋转体.如果有一个几何体,围成它的各个面都是多边形,那么这个几何体叫做________.在你所熟悉的立体图形中,旋转体有________,多面体有________.(要求各举两个例子)10. 一只小蚂蚁从如图所示的正方体的顶点A沿着棱爬向有蜜糖的点B,它只能经过三条棱,请你数一数,小蚂蚁有__种爬行路线.11. 探究:将一个正方体表面全部涂上颜色,试回答:(1)把正方体的棱三等分,然后沿等分线把正方体切开,得到27个小正方体,我们把仅有i个面涂色的小正方体的个数记为x i,那么x3=____,x2=____,x1=____,x0=____;(2)如果把正方体的棱四等分,同样沿等分线把正方体切开,得到64个小正方体,与(1)同样的记法,则x3=____,x2=____,x l=____,x0=____;(3)如果把正方体的棱n等分(n≥3),然后沿等分线把正方体切开,得到n3个小正方体,与(1)同样的记法,则x3=____,x2=____,x1=____,x0=____.答案1. C2. B3. D4. A5.(2)(6)6.平行相等7.四棱锥或三棱柱8. 169. 多面体圆柱、圆锥六棱柱、三棱锥10. 611.(1) 8 12 6 1(2) 8 24 24 8(3) 8 12(n﹣2) 6(n﹣2)2(n﹣2)3.(1)根据长方体的分割规律可得x3=8,x2=12,x1=6,x0=1.(2)把正方体的棱四等分时,顶点处的小正方体三面涂色共8个;有一条边在棱上的正方体有24个,两面涂色;每个面的正中间的4个只有一面涂色,共有24个;正方体正中心处的8个小正方体各面都没有涂色.故x3=8,x2=24,x1=24,x0=8.(3)由以上可发现规律:三面涂色8个,两面涂色12(n ﹣2)个,一面涂色6(n﹣2)2个,各面均不涂色(n﹣2)3个.1.2展开与折叠一、选择题1. 如图是一个长方体包装盒,则它的平面展开图是A. B.C. D.2. 圆锥的侧面展开图是A. 扇形B. 等腰三角形C. 圆D. 矩形3. 下列图形中,能通过折叠围成一个三棱柱的是( )A. B. C. D.4. 图(1)是一个小正方体的表面展开图,小正方体从图(2)所示的位置依次翻到第格、第格、第格、第格,这时小正方体朝上一面的字是( )A. 梦B. 水C. 城D. 美5. 将一边长为的正方形纸片折成四部分,再沿折痕折起来,恰好能不重叠地搭建成一个三棱锥,则三棱锥四个面中最小的面积是( )A. B. C. D.7. 如图,点,,是正方体三条相邻的棱的中点,沿着,,三点所在的平面将该正方体的一个角切掉,然后将其展开,其展开图可能是( )A. B.C. D.8. 右图中是左面正方体的展开图的是( )A. B. C. D.9. 图1是一个正方体的展开图,该正方体从图 2 所示的位置依次翻到第格、第格、第格、第格、第格,此时这个正方体朝上一面的字是( )A. 我B. 的C. 梦D. 中10. 如图 1 是一个小正方体的侧面展开图,小正方体从图 2 所示的位置依次翻到第格、第格、第格、第格,这时小正方体朝上一面的字是( )A. 北B. 京C. 精D. 神二、填空题11. 小明在正方体盒子的每个面上都写了一个字,其平面展开图如下图所示,那么在该正方体盒子的表面,与“祝”相对的面上所写的字应是.12.图 1 是边长为的正方形纸板,裁掉阴影部分后将其折叠成如图 2 所示的长方体盒子,已知该长方体的宽是高的倍,则它的体积是.13. 若下图是某几何体的表面展开图,则这个几何体是.14. 立方体木块的六个面分别标有数字,,,,,,下图是从不同方向观察这个立方体木块看到的数字情况,数字和对面的数字的和是.15. 以下三组图形都是由四个等边三角形组成.能折成多面体的选项序号是.16. 印刷一本书,为了使装订成书后页码恰好为连续的自然数,可按如下方法操作:先将一张整版的纸,对折一次为页,再对折一次为页,连续对折三次为页,;然后再排页码.如果想设计一本页的毕业纪念册,请你按图 1、图 2 、图 3 (图中的,表示页码)的方法折叠,在图 4 中填上按这种折叠方法得到的各页在该面相应位置上的页码 .17. 马小虎准备制作一个封闭的正方体盒子,他先用 个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在右图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子(添加所有符合要求的正方形,添加的正方形用阴影表示) .18. 有一个正方体的六个面上分别标有数字 ,,,,,,从三个不同的角度观察这个正方体所得到的结果如图所示,如果标有数字 的面所对面上的数字记为 , 的面所对面上数字记为 ,那么的值为 .19. 如图是一个没有完全剪开的正方体,若再剪开一条棱,则得到的平面展开图可能是下列六种图中的 .(填写字母)三、解答题20. 把正方体的六个面分别涂上六种不同的颜色,并画上朵数不等的花,各面上的颜色与花的朵数情况见下表:体,如图所示.问:长方体的下底面共有多少朵花?21. 如图所示,一个长方体的长、宽、高分别是,,,有一只蚂蚁从点出发沿棱爬行,每条棱不允许重复,则蚂蚁回到点时,最多爬行多远?并把蚂蚁所爬行的路线用字母按顺序表示出来.22. 如图所示是一个底面为正方形的长方体,把它的侧面展开后,恰好是一个边长为的正方形,求这个长方体的体积.答案1. A2. A3. C4. A5. C 7. D 8. D 9. A 10. A11. “成”12.【答案】13. 圆柱14. 715. (1)(3)16.17.18. 719. 、、20.解:因为长方体是由大小相同,颜色、花朵分布也完全相同的四个正方体拼成的,所以根据图中与红色的面相邻的有紫、白、蓝、黄色的面,可以确定出每个小正方体红色面对绿色面,与黄色面相邻的有白、蓝、红、绿色的面,所以黄色面对紫色面,与蓝色面相邻的有黄、红、绿、紫色的面,所以蓝色面对白色面,所以可知长方体下底面从左到右依次是紫色、黄色、绿色、白色,再由表格中花的朵数可知共有(朵).21.解:由于不能重复且最后回到点处,那么经过的棱数便等于经过的顶点数,当走的路线最长时必过所有顶点,则选择合理的路线时尽可能多地经过长为的棱即可.,所以最多爬行.路线举例:.22.解:答:这个长方体的体积是.1.3 截一个几何体1. 如图,用一个平面去截长方体,则截面形状为( )A. B. C. D.2. 棱长是1 cm的小立方体组成如图所示的几何体,那么这个几何体的表面积是( )A. 36 cm2B. 33 cm2C. 30 cm2D. 27 cm23. 如图中几何体的截面是( )A. B. C. D.4. 如图所示,用平面截圆锥,所得的截面形状是( )A. B. C. D.5. 用一个平面去截圆柱得到的图形不可能是( )A. B. C. D.6. 在医学诊断上,有一种医学影像诊断技术叫CT,它的工作原理是______________.7. 用一个平面截一个正方体,所得截面是一个三角形,则留下的较大的一块几何体一定有________个面.8. 如图中几何体是一个圆锥被一平面截下的,由________个面围成,面与面的交线有________条,其中直线有____条.底面形状是________.9. 下面几何体的截面分别是什么?__________ ____________ __________ ________10. 如图给出一个圆锥,用一个平面去截这个圆锥,若要得到下列图形,应怎样去截?11. 把一个边长为2 cm的立方体截成八个边长为1 cm的小立方体,至少需要截___次.12.如图,截一个正方体,可以得到三角形,但要得到一个最大的等边三角形,你会切吗?你能说出你的切法吗?13. 将图①的正方体切去一块,不同的切法可以得到图②~⑤的几何体,它们各有多少个面?多少条棱?多少个顶点?答案1. B2. A3. B4. D5. D6. 利用射线截几何体,图象重建原理7. 78.【答案】 (1). 3 (2). 4 (3). 3 (4). 有可能是半圆,有可能是弓形,但不可能是扇形9. (1). 长方形 (2). 圆 (3). 长方形 (4). 圆10. 解:如图所示.11. 312.解:如图所示.沿着对角线切即可.13. 解:1.4从三个方向看物体的形状一、选择题1. 如图,是由三个相同的小正方体组成的几何体,该几何体的左视图是( )A. B. C. D.2. 如图,下面的几何体是由一个圆柱和一个长方体组成的,则它的俯视图是( )A. B. C. D.3. 如图是一个螺母的示意图,它的俯视图是( )A. B. C. D.4. 下面是一个正方体被截去一个直三棱柱得到的几何体,则该几何体的左视图是( )A. B. C. D.5. 如图是由正方体和圆锥组成的几何体,他的俯视图是( )A. B. C. D.6. 如图,这个几何体的主视图是( )A. B. C. D.7. 如图,是由若干个大小相同的正方体搭成的几何体的三视图,该几何体所用的正方体的个数是()A.6B.4C. 3D. 28. 如图,是由若干个完全相同的小正方体组成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数是()A. 3个或4个或5个B.4个或5个C. 5个或6个D. 6个或7个二、填空题9. 观察图1中的几何体,指出图2的三幅图分别是从哪个方向看到的.甲是从__________看到的,乙是从____________看到的,丙是从____________看到的.10. 如图所示是一个包装盒的三视图,则这个包装盒的体积是________________.11. 如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是(_______)12. 如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要________________个小立方块.三、解答题13. 如图是一个由若干个小正方体搭成的几何体从上面看到的形状图,其中小正方形内的数字是该位置小正方体的个数,请你画出它从正面和从左面看到的形状图.14. 图中是由几个小立方块搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,请画出这个几何体的主视图和左视图.15. 从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.16. 用小立方块搭一个几何体,使它从正面和从上面看的形状图如图所示.从上面看的形状图中,小方形中的字母表示该位置小立方块的个数,试回答下列问题.(1)x,z各表示多少?(2)y可能是多少?这个几何体最少由几个小立方块搭成?最多呢?答案1. C2. D3. B4. A5. D6. A7. A8. A9. (1). 上面 (2). 正面 (3). 左面10.11. 7212.【答案】5413. 解:如图所示,14.解: 如图所示:15.解:16.解:(1),.(2)可能是或,, .这个几何体最少由个立方体搭成,最多由个立方体搭成.2.1有理数1. 中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元,那么-80元表示()A. 支出20元B. 收入20元C. 支出80元D. 收入80元2. 下列说法错误的是()A. 负整数和负分数统称为负有理数B. 正整数、0、负整数统称为整数C. 正有理数与负有理数组成全体有理数D. 3.14是小数,也是分数3. 在-3.5,227,0,π2,0.616 116 111 6…(相邻两个6之间1的个数逐次加1)中,有理数的个数为()A. 1B. 2C. 3D. 44. 下列选项,具有相反意义的量是()A. 增加20个与减少30个B. 6个老师和7个学生C. 走了100米和跑了100米D. 向东行30米和向北行30米5. 吐鲁番盆地低于海平面155 m,记作-155 m,福州鼓山绝顶峰高于海平面919 m,记作_____m.6. 在有理数中,是整数而不是正数的是_________,是负数而不是分数的是______ .7. 某栏目有一竞猜游戏:两人搭档,一人用语言描述,一人回答,要求描述者不能说出答案中的字或数.如果现在给的数是0,那么你给搭档描述的是_______.8. 把有理数-3,2 017,0,37,-237填入它所属的集合内(如图).9. 一名足球守门员练习折返跑,从守门员守门的位置出发,向前记作正数,返回记作负数,他的记录(单位:m)如下:+5,-3,+10,-8,-6,+12,-10.(1)守门员是否回到了守门的位置?(2)守门员离开守门的位置最远是多少?10. 将一串有理数按下列规律排列,解答下列问题:(1)在A处的数是正数还是负数?(2)负数排在A,B,C,D中的什么位置?(3)第2018个数是正数还是负数?排在对应于A,B,C,D中的什么位置?答案1.C2.C3.C4.A5.+9196.负整数负整数7.既不是正数也不是负数的数(答案不唯一)8.解:如图所示,9. (1)守门员回到了守门的位置;(2)守门员离开守门的位置最远是12 m.10. (1)在A处的数是正数;(2)负数排在B和D的位置;(3)第2 018个数是正数,排在对应于C的位置.2.2数轴一.选择题1. 下列所画的数轴中正确的是()A. B.C. D.2. 在数轴上表示数-3,0,5,2,的点中,在原点右边的有()A. 0个B. 1个C. 2个D. 3个3. 在数轴上原点以及原点左边的点表示的数是()A. 正数B. 负数C. 零和正数D. 零和负数4. 下列说法正确的是()A. -4是相反数B. -与互为相反数C. -5是5的相反数D. -是2的相反数5. 如图所示,根据有理数a,b,c在数轴上的位置,下列关系正确的是()A. b>a>0>cB. a<b<0<cC. b<a<0<cD. a<b<c<06. 比较-2,-,0,0.02的大小,正确的是()A. -2<-<0<0.02B. -<-2<0<0.02C. -2<-<0.02<0D. 0<-<-2<0.02二.填空题7. 数轴上表示-3的点在原点____侧,距原点的距离是______;+7.3在原点的_____侧,距原点的距离是_____。

北师大七上数学练习题答案

北师大七上数学练习题答案

北师大七上数学练习题答案北师大版七年级上册数学练习题答案如下:一、选择题1. C。

根据题意,设未知数为x,列出方程求解即可。

2. B。

利用绝对值的性质,将绝对值内的表达式化简,再根据绝对值的性质求解。

3. A。

根据有理数的加减法法则,将两个数相加即可得出答案。

4. D。

根据有理数的乘除法法则,将两个数相乘或相除即可得出答案。

5. B。

根据有理数的比较大小,找出绝对值较大的数即可。

二、填空题1. 3x - 5 = 14。

根据等式的性质,将等式两边同时加5,再同时除以3即可。

2. -2。

根据有理数的乘方运算法则,将-1的指数2次方计算得出。

3. 2。

根据有理数的除法法则,将等式两边同时乘以-1/3即可。

4. 5。

根据有理数的加减法法则,将等式两边同时减去2即可。

三、解答题1. 解:设未知数为x,根据题意列出方程:\[ 3x + 7 = 26 \]解得:\[ x = 19/3 \]2. 解:根据题意,列出不等式:\[ -5x + 3 > 2x - 1 \]解得:\[ x < 1 \]3. 解:首先将分数化简,然后根据有理数的加法法则进行计算:\[ \frac{1}{2} + \frac{1}{3} = \frac{5}{6} \]4. 解:根据题意,将绝对值的表达式化简,然后根据绝对值的性质求解:\[ |-2 - 3| = |-5| = 5 \]四、综合题1. 解:设未知数为x,根据题意列出方程组:\[ \begin{cases} x + y = 10 \\ 2x - y = 4 \end{cases} \] 解方程组得:\[ \begin{cases} x = 4 \\ y = 6 \end{cases} \]2. 解:根据题意,列出不等式组:\[ \begin{cases} x + y \geq 10 \\ x - y \leq 6 \end{cases} \]解不等式组得:4 ≤ x ≤ 7。

北师大版七年级数学上册 同步练习 全套含答案详解

北师大版七年级数学上册 同步练习 全套含答案详解

北师大版七年级数学上册同步练习目录2017年秋北师大七年级上《1.1生活中的立体图形》同步练习含答案2017年秋北师大七年级上《1.2展开与折叠》同步练习含答案解析2017年秋北师大七年级上《1.4从三个方向看物体的形状》同步练习含答案解析2017年秋北师大七年级上《2.1有理数》同步练习含答案解析2017年秋北师大七年级上《2.2数轴》同步练习含答案解析2017年秋北师大七年级上《2.3绝对值》同步练习含答案解析2017年秋北师大七年级上《2.4有理数的加法》同步练习含答案解析2017年秋北师大七年级上《2.5有理数的减法》同步练习含答案解析2017年秋北师大七年级上《2.6有理数的加减混合运算》同步练习含答案解析2017年秋北师大七年级上《2.7有理数的乘法》同步练习含答案解析2017年秋北师大七年级上《2.8有理数的除法》同步练习含答案解析2017年秋北师大七年级上《2.9有理数的乘方》同步练习含答案解析2017年秋北师大七年级上《2.10科学记数法》同步练习含答案解析2017年秋北师大七年级上《2.11有理数的混合运算》同步练习含答案解析2017年秋北师大七年级上《3.1字母表示数》同步练习含答案解析2017年秋北师大七年级上《3.2代数式》同步练习含答案解析2017年秋北师大七年级上《3.3整式》同步练习含答案解析2017年秋北师大七年级上《3.4整式的加减》同步练习含答案解析2017年秋北师大七年级上《3.5探索与表达规律》同步练习含答案解析2017年秋北师大七年级上《4.1线段、射线、直线》同步练习含答案解析2017年秋北师大七年级上《4.2比较线段的长短》同步练习含答案解析2017年秋北师大七年级上《4.3角》同步练习含答案解析2017年秋北师大七年级上《4.4角的比较》同步练习含答案解析2017年秋北师大七年级上《4.5多边形和圆的初步认识》同步练习含答案解析2017年秋北师大七年级上《5.1认识一元一次方程》同步练习含答案解析2017年秋北师大七年级上《5.2求解一元一次方程》同步练习含答案解析2017年秋北师大七年级上《5.3应用一元一次方程——水箱变高了》同步练习含答案解析2017年秋北师大七年级上《5.4应用一元一次方程——打折销售》同步练习含答案解析2017年秋北师大七年级上《5.5应用一元一次方程——希望工程义演》同步练习含答案解析2017年秋北师大七年级上《5.6应用一元一次方程——能追上小明吗》同步练习含答案解析1生活中的立体图基础巩固1.(题型二)如图1-1-1,属于棱柱的有( )图1-1-1A.2个 B.3个 C.4个 D.5个2.(知识点3)雨滴从空中落下、流星从空中划过,这些现象都给我们以_____的形象;汽车的雨刷摆动、将教室前的投影幕展开,这些现象给我们以_____的形象;硬币在桌面上快速旋转、向玻璃杯中注水水面的上升,这些现象给我们以______的形象.3.(题型一)将下列物体的名称与相应的几何体用线连接起来.螺丝帽塔尖字典足球蜡烛魔方长方体正方体圆锥球圆柱棱柱4.(题型三)如图1-1-2的几何体,分别由哪个平面图形绕某条直线旋转一周得到?请画出相应的平面图形.图1-1-2能力提升5.(题型四)观察下列多面体,把下表补充完整,并回答问题.(1)根据上表中的规律推断,十四棱柱共有___个面,共有___个顶点,共有____条棱.(2)若某个棱柱由30个面构成,则这个棱柱为____棱柱.(3)若一个棱柱的底面多边形的边数为n,则它有____个侧面,共有___个面,共有____个顶点,共有_____条棱.(4)观察表中的结果,你能发现a,b,c之间有什么关系吗?请写出关系式.答案1.B解析:正方体、长方体、三棱柱是棱柱,共3个.故选B.2.点动成线线动成面面动成体解析:观察现象,我们可以从中发现它们运动的形象.3.解:4.解:如图D1-1-1.图D1-1-1能力提升5. 解:填表如下:(1)16 28 42.(2)二十八.(3)n n+2 2n3n.(4)a+c-b=2.2展开与折叠基础巩固1.(知识点1)下列选项能折叠成正方体的是()2.(知识点1)将图1-2-1的表面带有图案的正方体沿某些棱展开后,得到的图形是()图1-2-13.(题型四)图1-2-2是一个长方体形状包装盒的表面展开图.折叠制作完成后得到长方体包装盒的容积是(包装材料厚度不计)()图1-2-2A.40×40×70 B.70×70×80C.80×80×80 D.40×70×804.(题型三)若过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图1-2-3的几何体,则其表面展开图正确的为()图1-2-35.(题型一)若要使图1-2-4中的平面展开图折叠成正方体后,相对面上两个数之和为6,则x=___,y=____.图1-2-4能力提升6.(题型二)已知下列各图形都由5个大小相同的正方形组成,则其中沿正方形的边不能折成无盖小方盒的是()7.(题型四)如图1-2-5,李明用若干个正方形和长方形准备拼成一个长方体的展开图.拼完后,王华看来看去总觉得所拼图形似乎存在问题.图1-2-5(1)请你帮李明分析一下拼图是否存在问题.若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全.(2)若图中的正方形边长为2 cm,长方形的长为3 cm,宽为2 cm,请直接写出修正后所折叠而成的长方体的容积为_____ cm3.答案基础巩固1.D解析:根据正方体表面展开图的特点可知选D.2.C解析:此题只要想象出其空间立体图形与平面展开图的对应关系,就容易得出三个表面带有图案的图形的位置特征.故选C.3.D解析:先根据所给的图形折成长方体,再根据长方体的容积公式即可得出长方体包装盒的容积为40×70×80.故选D.4.B解析:选项A,C,D折叠后都不符合题意,只有选项B折叠后两个剪去三角形与另一个剪去的三角形交于一个顶点,与正方体三个剪去三角形交于一个顶点相符合.故选B.5. 53 解析:这是一个正方体的表面展开图,共有六个面,其中面“1”与面“x”相对,面“3”与面“y”相对,则1+x=6,3+y=6,解得x=5,y=3.能力提升6.B解析:因为选项A,D各添加一个小正方形后,均符合“一四一”型;选项C添加一个小正方形后符合“一三二”型或“二二二”型,而选项B无论怎样添加,都不符合正方体表面展开图的特征.故选B.7.解:(1)拼图存在问题,如图D1-2-1.图D1-2-1(2)12.折叠而成的长方体的容积为3×2×2=12(cm3).4 从三个方向看物体的形状基础巩固1.(题型一)图1-4-1是由6个相同的小正方体搭成的几何体,那么从上面看这个几何体得到的图形是()图1-4-12.(知识点1)如图1-4-2(1)是放置的一个水管三叉接头,若从正面看这个接头时,看到的图形如图1-4-2(2),则从上面看这个接头时,看到的图形是()图1-4-23.(题型二)由若干个相同的小正方体组合而成的一个几何体从不同方向看到的图形如图1-4-3,则组成这个几何体的小正方体的个数是()图1-4-3A.3 B.4 C.5 D.64.(知识点1)从正面、上面、左面看一个球时,看到的图形都是______.如果一个几何体从正面、上面、左面看时,看到的图形都是圆,那么这个几何体可能是______.5.(题型一)图1-4-4是一个工件的示意图,请你画出从正面、左面、上面看这个工件时所得到的图形.能力提升6.(题型三)把一个圆锥和一个正方体放在水平桌面上,当分别从正面和左面看这两个几何体时,看到的图形如图1-4-5,请问,当你从上面看这两个几何体时,看到的图形是什么?把你看到的图形画出来.图1-4-57.(题型四)某学校设计了如图1-4-6的一个雕塑,取名“阶梯”,现在工人师傅打算用油漆喷刷所有的暴露面.经测量,已知每个小正方体的棱长为0.5 m,请你帮助工人师傅算一下,需喷刷油漆的总面积是多少?图1-4-6答案基础巩固1.A解析:从上面看易得上面第一层中间有1个正方形,第二层有3个正方形,第三层左边有1个正方形.故选A.2.A解析:根据接头的实物图和从正面看到的图形可知,从上面看这个接头时,得到的图形为一个圆和一个长方形相接在一起,且圆在左边,长方形在右边.故选A.3.C 解析:综合三个方向看到的图形,我们可以得出,这个几何体的底层有3+1=4(个)小正方体,第二层有1个小正方体,因此搭成这个几何体所用的小正方体的个数是4+1=5.故选C.4.圆球5.解:从正面、左面、上面看这个工件时所得到的图形如图D1-4-1.图D1-4-1能力提升6.解:从上面看这两个几何体时所看到的图形如图D1-4-2.图D1-4-27.解:从三个方向看物体得到的形状图如图D1-4-3,则从正面与从左面看到的形状图的面积都是0.5×0.5×6=1.5(m2),从上面看到的形状图的面积是0.5×0.5×5=1.25(m2).图D1-4-3因为暴露的面是从前、后、左、右、上看到的面,从左面看到的形状图和从右面看到的形状图的面积是一样的,从前面看到的形状图和从后面看到的形状图的面积是一样的,所以需喷刷油漆的总面积为1.5×4+1.25=7.25(m2).第二章有理数及其运算1 有理数基础巩固1.(题型一)[广东广州中考]中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元,那么-80元表示()A.支出20元 B.收入20元C.支出80元 D.收入80元2.(题型二)下列说法错误的是()A.负整数和负分数统称为负有理数B.正整数、0、负整数统称为整数C.正有理数与负有理数组成全体有理数D.3.14是小数,也是分数3.(知识点3)在-3.5,227,0,π2,0.616 116 111 6…(相邻两个6之间1的个数逐次加1)中,有理数的个数为()A.1 B.2 C.3 D.44.(题型一)下列选项,具有相反意义的量是()A.增加20个与减少30个B.6个老师和7个学生C.走了100米和跑了100米D.向东行30米和向北行30米5.(题型一)吐鲁番盆地低于海平面155 m,记作-155 m,福州鼓山绝顶峰高于海平面919 m,记作_____m.6.(题型二)在有理数中,是整数而不是正数的是,是负数而不是分数的是______ .7.(知识点2)某栏目有一竞猜游戏:两人搭档,一人用语言描述,一人回答,要求描述者不能说出答案中的字或数.如果现在给的数是0,那么你给搭档描述的是_______.8.(题型二)把有理数-3,2 017,0,37,-237填入它所属的集合内(如图2-1-1).图2-1-1能力提升9.(题型一)一名足球守门员练习折返跑,从守门员守门的位置出发,向前记作正数,返回记作负数,他的记录(单位:m)如下:+5,-3,+10,-8,-6,+12,-10.(1)守门员是否回到了守门的位置?(2)守门员离开守门的位置最远是多少?10.(题型三)将一串有理数按下列规律排列,解答下列问题:(1)在A处的数是正数还是负数?(2)负数排在A,B,C,D中的什么位置?(3)第2 018个数是正数还是负数?排在对应于A,B,C,D中的什么位置?-1 4→-5 8→-9 A→B↓↑↓↑↓↑↓2→-3 6 -7 10 …C→D7222 答案 基础巩固1.C 解析:若收入为正,则支出为负,所以-80元表示支出80元.故选C.2.C 解析:负整数和负分数统称为负有理数,故A 正确,不符合题意;整数分为正整数、负整数和0,故B 正确,不符合题意;正有理数、负有理数和0组成全体有理数,故C 错误,符合题意;3.14是小数,也是分数,故D 正确,不符合题意.故选C.3.C 解析:有理数有-3.5,,0,共3个.虽然是分数形式,但π是一个无限不循环小数,不是有理数,0.616 116 111 6…(相邻两个6之间1的个数逐次加1)虽然有规律,但是不存在循环节,故也是无限不循环小数,不是有理数.所以有理数一共有3个.故选C. 4.A 解析:增加20个与减少30个是具有相反意义的量.故选A. 5.+919 解析:若低于海平面记作负数,则高于海平面应记作正数,所以高于海平面919 m 记作+919 m.6.负整数和0负整数7.既不是正数也不是负数的数(答案不唯一) 8.如图D2-1-1.图D2-1-1能力提升9.解:(1)守门员回到了守门的位置.守门员的运动情况为:前进5 m ,后退3 m ,前进10 m ,后退8 m ,后退6 m ,前进12 m ,后退10 m ,共前进了27 m ,后退了27 m.因为前进的总路程与后退的总路程相等,所以守门员回到了守门的位置.(2)几次运动后,守门员的位置相对于最初的位置分别为:前5 m ,前2 m ,前12 m ,前4 m ,后2 m ,前10 m ,0 m ,所以守门员离开守门的位置最远是12 m. 10.解:(1)在A 处的数是正数. (2)负数排在B 和D 的位置.(3)第2 018个数是正数,排在对应于C 的位置.第二章有理数及其运算2 数轴基础巩固1.(题型一)在数轴上表示-2,0,6.3,15的点中,在原点右边的点有()A. 0个B. 1个C. 2个D. 3个2.(题型三)在数轴上表示-3和2 017的点之间的距离是()A.2 017 B.2 014C.2 020 D.-2 0203.(题型二)写出两个比-4.2大的负整数:_____.4.(题型四)如图2-2-1,数轴上的点P表示的数是-1,将点P向右移动3个单位长度得到点P′,则点P′表示的数是;数轴上到原点的距离等于2的点所表示的数是______.图2-2-15.(1)(题型一)把数-4.4, 5,-1.5,3,2.2,0.5,4.1,-3在数轴上表示出来;(2)(题型一)指出如图2-2-2的数轴上A,B,C,D,O各点分别表示什么数.图2-2-2(3)(题型二)用“>”连接下列各数:32,-5,0,3.6,-3,-12,-112.能力提升6.(题型五)李林准备利用星期天休息时间到老板、经理、处长和科长的家登门拜访,王敏告诉他:“老板的家在工厂的正东方向,距离工厂8 000 m;经理的家在老板家的正西方向,距离老板家1 000 m;处长的家在经理家的正东方向,距离经理家5 000 m;科长的家在处长家的正东方向,距离处长家3 000 m.”(1)利用数轴确定四家的位置.(2)从工厂出发,走哪条路线才能使往返路程最短?7.(题型六)点A从数轴上表示+2的点开始移动,第一次先向左移动1个单位长度,再向右移动2个单位长度;从第一次移动后的位置开始,第二次先向左移动3个单位长度,再向右移动4个单位长度;从第二次移动后的位置开始,第三次先向左移动5个单位长度,再向右移动6个单位长度;……依此规律,解答下列各题.(1)第一次移动后这个点在数轴上表示的数为____;(2)第二次移动后这个点在数轴上表示的数为____;(3)第五次移动后这个点在数轴上表示的数为____;(4)第n次移动后这个点在数轴上表示的数为____;(5)如果第m次移动后这个点在数轴上表示的数为56,求m的值.答案基础巩固1.C解析:在原点右边的点所对应的数是6.3,15,共2个.故选C.2.C解析:从数轴上可以看出,表示-3的点到原点的距离为3个单位长度,表示2 017的点到原点的距离为2 017个单位长度,且两点分布在原点两侧,所以距离为2 020.故选C.3.-4,-3(答案不唯一)4. 2 - 2和25.解:(1)各数在数轴上的位置如图D2-2-1.图D2-2-1(2)点A表示的数为-2.5,点B表示的数为-0.5,点O表示的数为0,点C表示的数为2,点D表示的数为2.5.(3)将各数用数轴上的点表示,如图D2-2-2.图D2-2-2根据“在数轴上右边的点表示的数总比左边的点表示的数大”可得3.6>32>0>-12>-112>-3>-5.能力提升6.解:(1)规定一个单位长度代表1 000 m,向东为正方向,如图D2-2-3.图D2-2-3(2)李林从工厂出发,按照路线:经理家老板家处长家科长家,然后返回工厂,这样往返路程最短.(答案不唯一)7.解:(1)3.(2)4.(3)7.(4)n+2.(5)由(4)可知,m+2=56,解得m=54.第二章有理数及其运算3 绝对值基础巩固1.(题型一)|-2|的相反数是()A.-2 B.2 C.- 3 D.32.(知识点2)若|x|=-x,则x一定是()A.负数B.负数或零C.零D.正数3.(题型三)将有理数-|0.67|,-(-0.68),23,|-0.67|,0.67·,0.66用“<”连接起来为 .4.(题型三)把-3.5,|-2|,-1.5,|0|,|-3.5|在数轴上表示出来,并按从小到大的顺序排列出来.5.(题型一)化简下列各式,并解答问题:①-(-2);②+(-1/8);③-\[-(-4)\];④-\[-(+3.5)\];⑤-{-\[-(-5)\]};⑥-{-\[-(+5)\]}.问:(1)当+5前面有2 018个负号时,化简后结果是多少?(2)当-5前面有2 019个负号时,化简后的结果是多少?你能总结出什么规律?能力提升6.(题型四)出租车司机李伟一天下午的营运全是在南北走向的光明大街上进行的,假定向南为正,向北为负,他这天下午的行车记录(单位:km)如下:+15,-3,+14,-11,+10,+4,-26.(1)李伟在送第几位乘客时行驶的路程最远?最远有多远?(2)若该出租车的耗油量为0.1 L/km,则这天下午该出租车共耗油多少升?7.(题型五)认真阅读下面的材料,解答有关问题:材料:在学习绝对值时,老师教过我们绝对值的几何含义,如|5-3|表示5,3在数轴上对应的两点之间的距离;|5+3|=|5-(-3)|,所以|5+3|表示5,-3在数轴上对应的两点之间的距离;|5|=|5-0|,所以|5|表示5在数轴上对应的点到原点的距离.一般地,如果点A,B在数轴上分别表示有理数a,b,那么A,B之间的距离可以表示为|a-b|.(1)如果点A,B,C在数轴上分别表示有理数x,-2,1,那么点A到点B的距离与点A到点C的距离之和可表示为什么?(用含绝对值的式子表示)(2)利用数轴探究:①找出满足|x-3|+|x+1|=6的x的所有值;②设|x-3|+|x+1|=p,当x取不小于-1且不大于3的数时,p的值是不变的,而且是p的最小值,这个最小值是;当x在范围内取值时,|x|+|x-2|取得最小值,最小值是.答案基础巩固1.A解析:|-2|=2,所以|-2|的相反数是-2.故选A.2.B解析:根据绝对值的定义,可知x一定是负数或零.故选B.3. -|0.67|<0.66<23<|-0.67|<0.67•<-(-0.68)解析:因为-|0.67|=-0.67,|-0.67|=0.67,-(-0.68)=0.68,23=0.6•,所以-|0.67|<0.66<23<|-0.67|<0.67•<-(-0.68).4.解:将各数在数轴上表示如图D2-3-1.图D2-3-1按从小到大的顺序排列出来为:-3.5<-1.5<|0|<|-2|<|-3.5|.5.解:①-(-2)=2;②+-81=-81; ③-[-(-4)]=-4;④-[-(+3.5)]=3.5; ⑤-{-[-(-5)]}=5;⑥-{-[-(+5)]}=-5.(1)当+5前面有2 018个负号时,化简后的结果是+5. (2)当-5前面有2 019个负号时,化简后的结果是+5.总结规律:一个数的前面有奇数个负号,化简后的结果等于它的相反数,有偶数个负号,化简后的结果等于它本身. 能力提升6.解:(1)小李在送最后一名乘客时行驶的路程最远,是 26 km. (2)总耗油量为0.1×(|+15|+|-3|+|+14|+|-11|+|+10|+|+4|+|-26|)=8.3(L ). 即这天下午该出租车共耗油8.3 L.7.解:(1)点A 到点B 的距离与点A 到点C 的距离之和可表示为|x +2|+|x -1|. (2)①满足|x -3|+|x +1|=6的x 的所有值是-2,4.② 4不小于0且不大于22.第二章 有理数及其运算4 有理数的加法基础巩固1.(题型一)有理数-5与20的和与它们的绝对值之和分别为( ) A.15,15 B.25,15 C.25,25 D.15,252.(题型二)李老师的存储卡中有5 500元,取出1 800元,又存入1 500元,又取出2 200元,这时存储卡中的钱为( ) A.11 000元 B.0元 C.3 000元 D.2 500元3.(题型一)若m ,n 分别表示一个有理数,且m ,n 互为相反数,则|m +(-2)+n |= .4.(考点一)计算下列各题:(1) 354215+-+-++-+-9+7777()(4)()(); (2) 15115++-+0.125+-82(4.5)(). 5.(题型二)某检修小组乘汽车沿南北走向的公路检修输电线路,约定向南为正,向北为负,某天从M 地出发到收工时所走路程依次为(单位:km ):+10,-4,+2,-5,-2,+8,+5. (1)该检修小组收工时在M 地什么方向,距M 地多远?(2)若该汽车在行驶过程中,每千米耗油0.09升,则该汽车从M 地出发到收工时共耗油多少升? 能力提升6.(题型三)如果两个数互为相反数,那么这两个数的和为0.例如,若x 和y 互为相反数,则必有x +y =0.(1)已知|a |+a =0,求a 的取值范围.(2)已知|a -1|+(a -1)=0,求a 的取值范围. 7.(考点一)阅读下面解题过程: 计算: 解:原式== =0+ = 上面的计算,是先把带分数拆分为整数部分和小数部分后再计算,可使运算简便,这种简便运算的方法叫作拆项法.请你仿照上面的方法计算:521-2018+-+4035+-1632()(2017)().5231-5+9)17(3)6342-++-(52(5)()(9)()6331(17)(3)().42⎡⎤⎡⎤-+-+-+-⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤+++-+-⎢⎥⎣⎦[](5)(9)(3)175213(-+-+-+6324-+-+-+⎡⎤+⎢⎥⎣⎦)()()1-14()1-1.4答案 基础巩固1.D 解析:(-5)+20=15,|-5|+|20|=5+20=25.故选D.2.C 解析:根据题意,得5 500+(-1 800)+1 500+(-2 200)=3 000(元),故此时存储卡还有3 000元.故选C.3. 2 解析:因为m ,n 互为相反数,所以m +n =0,则|m +(-2)+n |= |(m +n )+(-2)|=|0+(-2)|=2.4.解:(1)15+(-73)+(-4)+75+(-74)+(-9)+72 =(75+72)+[(-73)+(-74)] + [15+(-4)+(-9)]=1+(-1)+2 =2.(2)10+815+(-4.5)+0.125+(-21) =10+815+(-4.5)+81+(-0.5)=10+(815+81)+[(-4.5)+(-0.5)]=10+2+(-5) =7.5.解:(1)(+10)+(-4)+(+2)+(-5)+(-2)+(+8)+(+5) =10-4+2-5-2+8+5 =14.答:该检修小组收工时在M 地的南边,距M 地14 km.(2)|+10|+|-4|+|+2|+|-5|+|-2|+|+8|+|+5|=36(km ),36×0.09=3.24(L ). 答:汽车从M 地出发到收工时共耗油3.24 L. 能力提升6.解:(1)因为|a |≥0,|a |+a =0,所以a ≤0.(2)因为|a -1|≥0,|a -1|+(a -1)=0,所以a -1≤0.解得a ≤1.7.解:原式=[(-2 018)+(-65)]+[(- 2 017)+(-32)]+4 035+[(-1)+(-21)] =[(-2 018)+(-2 017)+4 035+(-1)]+[(-65)+(-32)+(-21)]=(-1)+(-2)=-3.第二章有理数及其运算5 有理数的减法基础巩固1.(题型一)有理数a,b在数轴上的对应点的位置如图2-5-1,则()A.a+b<0 B.a+b>0 C.a-b=0 D.a-b<图2-5-12.(题型一)李明的练习册上有这样一道题:计算|(-3)+▉|,其中“▉”是被墨水污染而看不到的一个数,他翻看了后边的答案得知该题的计算结果为6,那么“▉”表示的数应该是 .3.(考点一)计算:(1)-2-(+10);(2)0-(-3.6);(3)(-30)-(-6)-(+6)-(-15);(4)232-3--2--1-+1.75 343()()()().4.(题型二)已知某种植物成活的主要条件是该地四季的温差不得超过20 ℃.若不考虑其他因素,在下表的四个地区中,哪个地区适合大面积的栽培这种植物?请说明理由.地区夏季最高温/℃冬季最低温/℃A地区41 -5 B地区38 20 C地区27 -17 D地区-2 -42能力提升5.(题型一)若a,b,c是有理数,|a|=3,|b|=10,|c|=5,且a,b异号,b,c同号,求a-b-(-c)的值.6.(题型一)已知M,N都为数轴上的点,当M,N分别表示下列各数时:①+3和+6;②-3和+6;③3和-6;④-3和-6.(1)请你分别求点M,N之间的距离.(2)根据(1)的求解过程,你能从中得出求数轴上任意两点间的距离的规律吗?试试看.答案 基础巩固1.B 解析:由数轴,得a >0,b <0,且|a |>|b |,所以a +b >0,a -b >0.故选B.2.-3或9 解析:因为|(-3)+▉|=6,所以(-3)+▉=6或(-3)+▉=-6. 当(-3)+▉=6时,▉=6-(-3)=6+(+3)=9;当(-3)+▉=-6时,▉=-6-(-3)=(-6)+(+3)=-3. 3.解:(1)-2-(+10)=-2+(-10)=-12. (2)0-(-3.6)=0+3.6=3.6.(3)(-30)-(-6)-(+6)-(-15)=(-30)+(+6)+(-6)+(+15)=-30+0+15=-15.(4)(-332)-(-243)-(-132)-(+1.75) =-332+243+132+(-143)=(-332+132)+ [(+243)+(-143)]=-2+1 =-1.4.解:B 地区.理由如下:A 地区的四季温差是41-(-5)=46(℃);B 地区的四季温差是38-20=18(℃);C 地区的四季温差是27-(-17)=44(℃);D 地区的四季温差是-2-(-42)=40(℃). 因为B 地区的四季温差不超过20 ℃,所以B 地区适合大面积的栽培这种植物. 能力提升5.解:因为|a |=3,所以a =3或a =-3. 因为|b |=10,所以b =10或b =-10. 因为|c |=5,所以c =5或c =-5. 又因为a ,b 异号,b ,c 同号,所以a=-3,b=10,c=5或a=3,b=-10,c=-5.当a=-3,b=10,c=5时,a-b-(-c)=-3-10-(-5)=-8 ;当a=3,b=-10,c=-5时,a-b-(-c)=3-(-10)- 5=8.所以a-b-(-c)的值为8或-8.6.解:把-6,-3,+3,+6分别用数轴上的点表示出来,如图D2-5-1.图D2-5-1(1)①点M,N之间的距离为|6|-|3|=6-3=3.②点M,N之间的距离为|6|+|-3|=6+3=9.③点M,N之间的距离为|-6|+|3|=6+3=9.④点M,N之间的距离为|-6|-|-3|=6-3=3.(2)能.在(1)中,①可以写成|6|-|3|=|6-3|=3;②可以写成|6|+|-3|=|6-(-3)|=9;③可以写成|-6|+|3|=|-6-3|=9;④可以写成|-6|-|-3|=|-6-(-3)|=3,所以点M,N之间的距离为这两个点所表示的数的差的绝对值.故求数轴上任意两点间的距离可以转化为求这两点在数轴上所表示的数的差的绝对值.第二章 有理数及其运算 6有理数的加减混合运算基础巩固1.(题型一)不改变原式的值,将6-(+3)-(-7)+(-2)写成省略加号的和的形式是( ) A.-6-3+7-2 B.6-3-7-2 C.6-3+7-2 D.6+3-7-22.(题型二)某天股票B 的开盘价为10元,上午11:00下跌了1.8元,下午收盘时上涨了1元,则该股票这天的收盘价为( )A .-0.8元B .12.8元C .9.2元D .7.2元 3.(题型三)已知|a +2|+|b -1|=0,则(a +b )-(b -a )-a =______. 4.(题型一)计算:(1) (-23)-(-38)-(+12)+(+7);(2)16-(+2.8)+(-65)+1.8; (3)-0.5-(-341)+2.75-(+521);(4)|+3118|-|-1127|-|+1119|+|-59|.5.(题型二)为了宣传节约用水的意义,李丽记录了金地庄园小区6月份1~6日每天的用水量,并根据记录结果制成折线统计图,如图2-6-1.请你求出该小区6天的平均用水量是多少吨.图2-6-1能力提升6.(题型一)数学活动课上,王老师给同学们出了一道题,规定一种新运算“☆”,对于任意有理数a 和b ,a ☆b =a -b +1,请你根据新运算,计算[2☆(-3)]☆(-2)的值.7.(题型四)(1)有1,2,3,…,11,12共12个数,请在每两个数之间添上“+”或“-”,使它们的和为0;(2)若有1,2,3,…,2 015,2 016共2 016个数字,请在每两个数之间添上“+”或“-”,使它们的和为0;(3)根据(1)(2)的规律,试判断能否在1,2,3,…,2 016,2 017共2 017个数的每两个数之间添上“+”或“-”,使它们的和为0.若能,请说明添加的方法;若不能,请说明理由.答案1.C 解析:原式=6+(-3)+(+7)+(-2)=6-3+7-2.故选C.2.C 解析:由题意可得,该股票这天的收盘价为10-1.8+1=9.2(元).故选C.3. -2 解析:因为|a +2|+|b -1|=0,所以a +2=0,b -1=0,即a =-2,b =1,则原式=a +b -b +a -a =a =-2.4.解:(1)原式=-23+38-12+7=(-23-12)+(38+7) =-35+45 =10. (2)原式=61-2.8-65+1.8=(61-65)+(-2.8+1.8)=-32 -1=-132. (3)原式=-0.5+3.25+2.75-5.5=(-0.5-5.5)+(3.25+2.75)=-6+6=0. (4)原式=3118-1027-1119+59=3118-1119-(—1027-59)=2-109=1101.5.解:若选3日的用水量为标准,则这6天的用水量分别为-2吨,+2吨,0吨,+5吨,-4吨,-1吨.所以这6天的平均用水量为[(-2)+(+2)+0+(+5)+(-4)+(-1)]÷6+32=(-2+2+0+5-4-1)÷6+32=32(吨). 答:该小区6天的平均用水量是32吨. 能力提升6.解:根据新运算法则,得[2☆(-3)]☆(-2)=[2-(-3)+1]☆(-2)=6☆(-2)=6-(-2)+1=6+2+1=9. 7.解:(1)答案不唯一,如1+12-2-11+3+10-4-9+5+8-6-7=0.(2)答案不唯一,如1+2 016-2-2 015+3+2 014-4-2 013+…+1 007+1 010-1 008-1 009=0. (3)不能.理由如下: 因为(1)与(2)是偶数个数,它们的第一个数与最后一个数的和,第二个数与倒数第二个数的和,……中间位置两个数的和都分别相等,在适当的位置添加“+”或“-”其和可以为0,而1,2,3,…,2 016,2 017共2 017个数,中间的数2 009是无法抵消的,所以根据(1)(2)的规律,不能在1,2,3,…,2 016,2 017共2 017个数的每两个数之间添上“+”或“-”,使它们的和为0.第二章 有理数及其运算7有理数的乘法基础巩固1.(知识点1)从-4,5,-3,2中任取两个数相乘,所得积最大的是( ) A.-20 B.12C.10D.-82.(知识点1、题型一)下列计算正确的是( )A .(-5)×(-4)×(-2)×(-2)=5×4×2×2=80B .(-12)×(31-41-1)=-4+3+1=0C .(-9)×5×(-4)×0=9×5×4=180D .(-2)×5-2×(-1)-(-2)×2=(-2)×(5+1-2)=-8 3.(知识点2)如果□×(-52)=1,那么“□”内应填的数是( ) A.25B.52C.-52D.-254.(题型二)绝对值小于4的所有整数的积是____.5.(题型二)有理数a ,b ,c ,d 在数轴上对应的点的位置如图2-7-1,则abc ____0,abcd ____0.(填“>”或“<”)图2-7-16.(题型二)若|a |=5,b =-2,且ab >0,则a +b =_____.7.(题型一)用简便方法计算:(1)(-231-321+12524)×(-76); (2)(-5)×(-372)+(-7)×(-372)+(-12)×372.8.(题型二)在数轴上,点A 到原点的距离为3,点B 到原点的距离为5,如果点A 表示的有理数为a ,点B 表示的有理数为b ,求a 与b 的乘积. 能力提升9.(题型三)某数学小组的10位同学站成一列玩报数游戏,规则:从前面第一位同学开始,每位同学依次报自己序号的倒数的2倍加1,第1位同学报(12+1),第2位同学报(22+1),第3位同学报(23+1),……这样得到的10个数的积为______.10.(题型一)阅读下面材料:(1+21)×(1-31)=23×32=1, (1+21)×(1+41)×(1-31)×(1-51)=23×45×32×54 =23×32×45×54=1×1=1.根据以上信息,求出下式的结果.(1+21)×(1+41)×(1+61)×…×(1+201)×(1-31)×(1-51)×(1-71)×(1-91)×…×(1-211).答案 基础巩固1.B 解析:(-4)×5=-20,(-4)×(-3)=12,(-4)×2=-8,5×(-3)=-15,5×2=10,-3×2=-6.故选B.2.A 解析:A.(-5)×(-4)×(-2)×(-2)=5×4×2×2=80,故正确;B.(-12)×(31-41-1)=-4+3+12=11,故错误;C.(-9)×5×(-4)×0=0,故错误;D.-2×5-2×(-1)-(-2)×2=-2×(5-1-2)=-4,故错误.故选A.3.D 解析:互为倒数的两个数的积为1,反之,如果两个数的积为1,那么这两个数互为倒数.所以“□”内应填的数为-25.故选D. 4. 0 解析:绝对值小于4的整数有3,2,1,0,-1,-2,-3,因为因数中有一个数为0,所以它们的积为0.5.>> 解析: 观察数轴可知,a <0,b <0,c >0,d >0,故abc >0,abcd >0.6. -7 解析:因为|a |=5,所以a =5或a =-5.又因为ab >0,b =-2,所以a =-5,所以a +b =(-5)+(-2)=-7.7.解:(1)原式=(-37-27+2549)×(-76) =(-37)×(-76)+(-27)×(-76)+2549×(-76)=2+3-2542=3258.(2)原式=5×372+7×372-12×372=372×(5+7-12)=372×0=0.8.解:由题意知,a =3或a =-3,b =5或b =-5.当点A 与点B 位于原点的同侧时,a ,b 的符号相同,则ab =3×5=15或ab =(-3)×(-5)=15; 当点A 与点B 位于原点的异侧时,a ,b 的符号相反,则ab =3×(-5)=-15或ab =(-3)×5=-15.综上所述,a 与b 的乘积为15或-15.。

北师大版七年级数学上册全册课时作业(共109页,附答案)

北师大版七年级数学上册全册课时作业(共109页,附答案)

北师大版七年级数学上册全册课堂练习(共109页,附答案)1.1生活中的立体图形1. 下面几何体中,全是由曲面围成的是()A. 圆柱B. 圆锥C. 球D. 正方体2. 下列说法错误的是()A. 长方体、正方体都是棱柱B. 三棱柱的侧面是三角形C. 直六棱柱有六个侧面、侧面为长方形D. 球体的三种视图均为同样大小的图形3. 如图,在一个棱长为6cm的正方体上摆放另一个正方体,使得上面正方体的四个顶点恰好均落在下面正方体的四条棱上,则上面正方体体积的可能值有()A. 1个B. 2个C. 3个D. 无数个4. 如图,左排的平面图形绕轴旋转一周,可以得到右排的立体图形,那么与甲、乙、丙、丁各平面图形顺序对应的立体图形的编号应为()A. ③④①②B. ①②③④C. ③②④①D. ④③②①5. 在下列几何体中,由三个面围成的有____,由四个面围成的有____.(填序号)6. 如图,在直六棱柱中,棱AB与棱CD的位置关系为____,大小关系是_____.7. 用五个面围成的几何体可能是_______.8. 若一个直四棱柱的底面是边长为1cm的正方形,侧棱长为2cm,则这个直棱柱的所有棱长的和是___cm.9. 由一个平面图形绕着它的一条边所在的直线旋转一周形成的几何体,叫做旋转体.如果有一个几何体,围成它的各个面都是多边形,那么这个几何体叫做________.在你所熟悉的立体图形中,旋转体有________,多面体有________.(要求各举两个例子)10. 一只小蚂蚁从如图所示的正方体的顶点A沿着棱爬向有蜜糖的点B,它只能经过三条棱,请你数一数,小蚂蚁有__种爬行路线.11. 探究:将一个正方体表面全部涂上颜色,试回答:(1)把正方体的棱三等分,然后沿等分线把正方体切开,得到27个小正方体,我们把仅有i个面涂色的小正方体的个数记为x i,那么x3=____,x2=____,x1=____,x0=____;(2)如果把正方体的棱四等分,同样沿等分线把正方体切开,得到64个小正方体,与(1)同样的记法,则x3=____,x2=____,x l=____,x0=____;(3)如果把正方体的棱n等分(n≥3),然后沿等分线把正方体切开,得到n3个小正方体,与(1)同样的记法,则x3=____,x2=____,x1=____,x0=____.答案1. C2. B3. D4. A5.(2)(6)6.平行相等7.四棱锥或三棱柱8. 169. 多面体圆柱、圆锥六棱柱、三棱锥10. 611.(1) 8 12 6 1(2) 8 24 24 8(3) 8 12(n﹣2) 6(n﹣2)2(n﹣2)3.(1)根据长方体的分割规律可得x3=8,x2=12,x1=6,x0=1.(2)把正方体的棱四等分时,顶点处的小正方体三面涂色共8个;有一条边在棱上的正方体有24个,两面涂色;每个面的正中间的4个只有一面涂色,共有24个;正方体正中心处的8个小正方体各面都没有涂色.故x3=8,x2=24,x1=24,x0=8.(3)由以上可发现规律:三面涂色8个,两面涂色12(n ﹣2)个,一面涂色6(n﹣2)2个,各面均不涂色(n﹣2)3个.1.2展开与折叠一、选择题1. 如图是一个长方体包装盒,则它的平面展开图是A. B.C. D.2. 圆锥的侧面展开图是A. 扇形B. 等腰三角形C. 圆D. 矩形3. 下列图形中,能通过折叠围成一个三棱柱的是( )A. B. C. D.4. 图(1)是一个小正方体的表面展开图,小正方体从图(2)所示的位置依次翻到第格、第格、第格、第格,这时小正方体朝上一面的字是( )A. 梦B. 水C. 城D. 美5. 将一边长为的正方形纸片折成四部分,再沿折痕折起来,恰好能不重叠地搭建成一个三棱锥,则三棱锥四个面中最小的面积是( )A. B. C. D.7. 如图,点,,是正方体三条相邻的棱的中点,沿着,,三点所在的平面将该正方体的一个角切掉,然后将其展开,其展开图可能是( )A. B.C. D.8. 右图中是左面正方体的展开图的是( )A. B. C. D.9. 图1是一个正方体的展开图,该正方体从图 2 所示的位置依次翻到第格、第格、第格、第格、第格,此时这个正方体朝上一面的字是( )A. 我B. 的C. 梦D. 中10. 如图 1 是一个小正方体的侧面展开图,小正方体从图 2 所示的位置依次翻到第格、第格、第格、第格,这时小正方体朝上一面的字是( )A. 北B. 京C. 精D. 神二、填空题11. 小明在正方体盒子的每个面上都写了一个字,其平面展开图如下图所示,那么在该正方体盒子的表面,与“祝”相对的面上所写的字应是.12.图 1 是边长为的正方形纸板,裁掉阴影部分后将其折叠成如图 2 所示的长方体盒子,已知该长方体的宽是高的倍,则它的体积是.13. 若下图是某几何体的表面展开图,则这个几何体是.14. 立方体木块的六个面分别标有数字,,,,,,下图是从不同方向观察这个立方体木块看到的数字情况,数字和对面的数字的和是.15. 以下三组图形都是由四个等边三角形组成.能折成多面体的选项序号是.16. 印刷一本书,为了使装订成书后页码恰好为连续的自然数,可按如下方法操作:先将一张整版的纸,对折一次为页,再对折一次为页,连续对折三次为页,;然后再排页码.如果想设计一本页的毕业纪念册,请你按图 1、图 2 、图 3 (图中的,表示页码)的方法折叠,在图 4 中填上按这种折叠方法得到的各页在该面相应位置上的页码 .17. 马小虎准备制作一个封闭的正方体盒子,他先用 个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在右图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子(添加所有符合要求的正方形,添加的正方形用阴影表示) .18. 有一个正方体的六个面上分别标有数字 ,,,,,,从三个不同的角度观察这个正方体所得到的结果如图所示,如果标有数字 的面所对面上的数字记为 , 的面所对面上数字记为 ,那么的值为 .19. 如图是一个没有完全剪开的正方体,若再剪开一条棱,则得到的平面展开图可能是下列六种图中的 .(填写字母)三、解答题20. 把正方体的六个面分别涂上六种不同的颜色,并画上朵数不等的花,各面上的颜色与花的朵数情况见下表:体,如图所示.问:长方体的下底面共有多少朵花?21. 如图所示,一个长方体的长、宽、高分别是,,,有一只蚂蚁从点出发沿棱爬行,每条棱不允许重复,则蚂蚁回到点时,最多爬行多远?并把蚂蚁所爬行的路线用字母按顺序表示出来.22. 如图所示是一个底面为正方形的长方体,把它的侧面展开后,恰好是一个边长为的正方形,求这个长方体的体积.答案1. A2. A3. C4. A5. C 7. D 8. D 9. A 10. A11. “成”12.【答案】13. 圆柱14. 715. (1)(3)16.17.18. 719. 、、20.解:因为长方体是由大小相同,颜色、花朵分布也完全相同的四个正方体拼成的,所以根据图中与红色的面相邻的有紫、白、蓝、黄色的面,可以确定出每个小正方体红色面对绿色面,与黄色面相邻的有白、蓝、红、绿色的面,所以黄色面对紫色面,与蓝色面相邻的有黄、红、绿、紫色的面,所以蓝色面对白色面,所以可知长方体下底面从左到右依次是紫色、黄色、绿色、白色,再由表格中花的朵数可知共有(朵).21.解:由于不能重复且最后回到点处,那么经过的棱数便等于经过的顶点数,当走的路线最长时必过所有顶点,则选择合理的路线时尽可能多地经过长为的棱即可.,所以最多爬行.路线举例:.22.解:答:这个长方体的体积是.1.3 截一个几何体1. 如图,用一个平面去截长方体,则截面形状为( )A. B. C. D.2. 棱长是1 cm的小立方体组成如图所示的几何体,那么这个几何体的表面积是( )A. 36 cm2B. 33 cm2C. 30 cm2D. 27 cm23. 如图中几何体的截面是( )A. B. C. D.4. 如图所示,用平面截圆锥,所得的截面形状是( )A. B. C. D.5. 用一个平面去截圆柱得到的图形不可能是( )A. B. C. D.6. 在医学诊断上,有一种医学影像诊断技术叫CT,它的工作原理是______________.7. 用一个平面截一个正方体,所得截面是一个三角形,则留下的较大的一块几何体一定有________个面.8. 如图中几何体是一个圆锥被一平面截下的,由________个面围成,面与面的交线有________条,其中直线有____条.底面形状是________.9. 下面几何体的截面分别是什么?__________ ____________ __________ ________10. 如图给出一个圆锥,用一个平面去截这个圆锥,若要得到下列图形,应怎样去截?11. 把一个边长为2 cm的立方体截成八个边长为1 cm的小立方体,至少需要截___次.12.如图,截一个正方体,可以得到三角形,但要得到一个最大的等边三角形,你会切吗?你能说出你的切法吗?13. 将图①的正方体切去一块,不同的切法可以得到图②~⑤的几何体,它们各有多少个面?多少条棱?多少个顶点?答案1. B2. A3. B4. D5. D6. 利用射线截几何体,图象重建原理7. 78.【答案】 (1). 3 (2). 4 (3). 3 (4). 有可能是半圆,有可能是弓形,但不可能是扇形9. (1). 长方形 (2). 圆 (3). 长方形 (4). 圆10. 解:如图所示.11. 312.解:如图所示.沿着对角线切即可.13. 解:1.4从三个方向看物体的形状一、选择题1. 如图,是由三个相同的小正方体组成的几何体,该几何体的左视图是( )A. B. C. D.2. 如图,下面的几何体是由一个圆柱和一个长方体组成的,则它的俯视图是( )A. B. C. D.3. 如图是一个螺母的示意图,它的俯视图是( )A. B. C. D.4. 下面是一个正方体被截去一个直三棱柱得到的几何体,则该几何体的左视图是( )A. B. C. D.5. 如图是由正方体和圆锥组成的几何体,他的俯视图是( )A. B. C. D.6. 如图,这个几何体的主视图是( )A. B. C. D.7. 如图,是由若干个大小相同的正方体搭成的几何体的三视图,该几何体所用的正方体的个数是()A.6B.4C. 3D. 28. 如图,是由若干个完全相同的小正方体组成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数是()A. 3个或4个或5个B.4个或5个C. 5个或6个D. 6个或7个二、填空题9. 观察图1中的几何体,指出图2的三幅图分别是从哪个方向看到的.甲是从__________看到的,乙是从____________看到的,丙是从____________看到的.10. 如图所示是一个包装盒的三视图,则这个包装盒的体积是________________.11. 如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是(_______)12. 如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要________________个小立方块.三、解答题13. 如图是一个由若干个小正方体搭成的几何体从上面看到的形状图,其中小正方形内的数字是该位置小正方体的个数,请你画出它从正面和从左面看到的形状图.14. 图中是由几个小立方块搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,请画出这个几何体的主视图和左视图.15. 从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.16. 用小立方块搭一个几何体,使它从正面和从上面看的形状图如图所示.从上面看的形状图中,小方形中的字母表示该位置小立方块的个数,试回答下列问题.(1)x,z各表示多少?(2)y可能是多少?这个几何体最少由几个小立方块搭成?最多呢?答案1. C2. D3. B4. A5. D6. A7. A8. A9. (1). 上面 (2). 正面 (3). 左面10.11. 7212.【答案】5413. 解:如图所示,14.解: 如图所示:15.解:16.解:(1),.(2)可能是或,, .这个几何体最少由个立方体搭成,最多由个立方体搭成.2.1有理数1. 中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元,那么-80元表示()A. 支出20元B. 收入20元C. 支出80元D. 收入80元2. 下列说法错误的是()A. 负整数和负分数统称为负有理数B. 正整数、0、负整数统称为整数C. 正有理数与负有理数组成全体有理数D. 3.14是小数,也是分数3. 在-3.5,227,0,π2,0.616 116 111 6…(相邻两个6之间1的个数逐次加1)中,有理数的个数为()A. 1B. 2C. 3D. 44. 下列选项,具有相反意义的量是()A. 增加20个与减少30个B. 6个老师和7个学生C. 走了100米和跑了100米D. 向东行30米和向北行30米5. 吐鲁番盆地低于海平面155 m,记作-155 m,福州鼓山绝顶峰高于海平面919 m,记作_____m.6. 在有理数中,是整数而不是正数的是_________,是负数而不是分数的是______ .7. 某栏目有一竞猜游戏:两人搭档,一人用语言描述,一人回答,要求描述者不能说出答案中的字或数.如果现在给的数是0,那么你给搭档描述的是_______.8. 把有理数-3,2 017,0,37,-237填入它所属的集合内(如图).9. 一名足球守门员练习折返跑,从守门员守门的位置出发,向前记作正数,返回记作负数,他的记录(单位:m)如下:+5,-3,+10,-8,-6,+12,-10.(1)守门员是否回到了守门的位置?(2)守门员离开守门的位置最远是多少?10. 将一串有理数按下列规律排列,解答下列问题:(1)在A处的数是正数还是负数?(2)负数排在A,B,C,D中的什么位置?(3)第2018个数是正数还是负数?排在对应于A,B,C,D中的什么位置?答案1.C2.C3.C4.A5.+9196.负整数负整数7.既不是正数也不是负数的数(答案不唯一)8.解:如图所示,9. (1)守门员回到了守门的位置;(2)守门员离开守门的位置最远是12 m.10. (1)在A处的数是正数;(2)负数排在B和D的位置;(3)第2 018个数是正数,排在对应于C的位置.2.2数轴一.选择题1. 下列所画的数轴中正确的是()A. B.C. D.2. 在数轴上表示数-3,0,5,2,的点中,在原点右边的有()A. 0个B. 1个C. 2个D. 3个3. 在数轴上原点以及原点左边的点表示的数是()A. 正数B. 负数C. 零和正数D. 零和负数4. 下列说法正确的是()A. -4是相反数B. -与互为相反数C. -5是5的相反数D. -是2的相反数5. 如图所示,根据有理数a,b,c在数轴上的位置,下列关系正确的是()A. b>a>0>cB. a<b<0<cC. b<a<0<cD. a<b<c<06. 比较-2,-,0,0.02的大小,正确的是()A. -2<-<0<0.02B. -<-2<0<0.02C. -2<-<0.02<0D. 0<-<-2<0.02二.填空题7. 数轴上表示-3的点在原点____侧,距原点的距离是______;+7.3在原点的_____侧,距原点的距离是_____。

北师大版七年级上册数学配套练习(带答案)+同步练习全套

北师大版七年级上册数学配套练习(带答案)+同步练习全套

北师大版七年级上册数学配套练习(带答案)+同步练习全套北师大七年级上第一章丰富的图形世界第1.1.1课时家庭作业生活中的立体图形1)学习目标:1.经历从现实世界中抽象出几何图表的过程,感受图形世界的丰富多彩。

2.在具体情境中认识圆柱、圆锥、正方体、长方体、棱柱、棱台、球,并能用自已的语言描述它们的某些特征。

一.填空题:1.立体图形的各个面都是__________的面,这样的立体图形称为多面体.;2.图形是由________,_________,________构成的;3.物体的形状似于圆柱的有________________,类似于圆锥的有_____________________,类似于球的有__________________;(各举一例)4.围成几何体的侧面中,至少有一个是曲面的是______________;(举一例)5.正方体有_____个顶点,经过每个顶点有_________条棱,这些棱都____________;6.圆柱、圆锥、球的共同点是_____________________________;7.假如我们把笔尖看作一个点,当笔尖在纸上移动时,就能画出线,说明了______________,时钟秒针旋转时,形成一个圆面,这说明了_______________,三角板绕它的一条直角边旋转一周,形成一个圆锥体,这说明了___________________;8.圆可以分割成_____ 个扇形,每个扇形都是由___________________;9.从一个七边形的某个顶点出发,分别连结这个点与其余各顶点,可以把七边形分割成__________个三角形;10.在乒乓球、橄榄球、足球、羽毛球、冰球中,是球体的有;11.将下列几何体分类,柱体有:,锥体有(填序号);12.长方体由_______________个面_______________条棱_______________个顶点;13.半圆面绕直径旋转一周形成__________;二.选择题14.观察下图,请把左边的图形绕着给定的直线旋转一周后可能形成的几何体选出来()A B C D15.从一个十边形的某个点出发,分别连接这个顶点与其余各顶点,可以把这个多边形分割成三角形()(A) 10个(B) 9个(C) 8个(D) 7个16.如图的几何体是下面()平面图形绕轴旋转一周得到的()(A)(B)(C)(D)18.下面图形不能围成封闭几何体的是()(A)(B)(C)(D)三.解答题:19.指出下列平面图形是什么几何体的展开图:A CB20. ⑴.下面这些基本图形和你很熟悉,试一试在括号里写出它们的名称.( ) ( ) ( ) ( ) ( )⑵. 将这些几何体分类,并写出分类的理由.第1.1.1课时家庭作业参考答案一、1.平 ;2.点、线、面;3.略;4.略;5.8,3,相等;6.都有一个面是曲面; 7.点动成线,线动成面,面动成体;8.无数,一条弧和两条半径组成的;9.5; 10.乒乓球、足球;11.(1)(2)(3),(5)(6);12.6,12,8;13.球体; 二、14.D ;15.C ;16.B ; 17.A ; 三、18.长方体(四棱柱),圆锥,圆柱;19.(1)(从左至右)球、圆柱、圆锥、长方体、三棱柱; (2)按面分:曲面:球、圆柱、圆锥;平面:长方体、三棱柱; 按柱体分:圆柱、长方体、三棱柱;球;圆锥;北师大七年级上第一章丰富的图形世界第1.1.2课时家庭作业 (平面内的立体图形2)姓名 学习目标:1.通过丰富的实例,进一步认识点、线、面、初步感受点、线、面之间的关系.2.进一步经历从现实世界中抽象出图形的过程,从构成图形的基本元素的角度认识常见图形; 二.填空题:1.围成球的面有 个;2.圆柱有_____ 个面组成,这些面相交共得____ 条线,圆锥的侧面展开图是____ ;3.圆锥是由_ __个面围成,其中__ _个平面,___ _个曲面,圆锥的侧面与底面相交成 条线,是 线;4.圆柱的表面展开图是________________________ (用语言描述); 5.图形所表示的各个部分不在同一个平面内,这样的图形称为 图形; 6.图形所表示的各个部分都在同一个平面内,称为 图形; 二.选择题:7.圆锥的侧面展开图是 ( ) (A ) 长方形 (B ) 正方形 (C ) 圆 (D ) 扇形 8.将半圆绕它的直径旋转一周形成的几何体是 ( ) (A ) 圆柱 (B ) 圆锥 (C ) 球 (D ) 正方体9.如图所示的图形绕虚线旋转一周,所形成的几何体是 ( )新知识点要小心呦!()10.以下立体图形中是棱柱的有()(A)①⑤ (B)①②③ (C)①②④⑤ (D)①②⑤[11.下列说法中,正确的是()(A)正方体不是棱柱(B)圆锥是由3个面围成(C)正方体的各条棱都相等(D)棱柱的各条棱都相等12.将一个直角三角形绕它的最长边旋转一周,得到的几何体是()(A)(B)(C)(D)13.按组成面的平或曲划分,与圆锥为同一类几何体的是()(A)正方体(B)长方体(C)球(D)棱柱14.如图,沿着虚线旋转一周得到的图形为()(A)(B)(C)(D)15.一个正方体锯掉一个角后,顶点的个数是()(A) 7个(B) 8个(C) 9个(D) 7个或8个或9个或10个三、解答题16.请写出下列几何体的名称( ) ( ) ( ) ( )( ) ( ) ( ) ( )17.如图,第二行的图形绕点划线旋转一周,便形成第一行的某个图形(几何体),将对应的两个图形用线联结起来.第1.1.2课时家庭作业参考答案一、1.一个;2.三,二,扇形;3.二,一,一,一,曲;4.由一个长方形和两个相等的圆形组成;5.平面; 6.立体;[二、7.D;8.C;9.B;10.A;11.C;12.D;13.C;14.C;15.D;三、16.略;17.略;截一个几何体练习卷(1)一、填空题1.用一个平面去截一个球体所得的截面图形是__________.2.如图1,长方体中截面BB1D1D是长方体的对角面,它是__________.3.在正方体中经过从一个顶点出发的三条棱的中点的截面是_________.4.一座大楼,小明只看到了楼顶,则小明的看到的图叫__________.5.现有一张长52cm,宽28cm的矩形纸片,要从中剪出长15cm,宽12cm的矩形小纸片(不能粘贴),则最多能剪出__________张.6.一个正方体的主视图、左视图及俯视图都是__________.二、选择题7.用一个平面去截一个正方体,截面图形不可能是()A.长方形; B.梯形; C.三角形; D.圆8.用一个平面去截一个几何体,如果截面的形状是圆,则这个几何体不可能是()A.圆柱; B.圆锥; C.正方体; D.球9.小明看到了“实验楼”三个字,而且能看到该楼所有的门窗,则小明看到的图是()A.俯视图; B.左视图; C.主视图; D.都有可能10.截去四边形的一个角,剩余图形不可能是()A.三角形; B.四边形; C.五边形; D.圆三、解答题11.如图2,将等腰三角形对折沿着中间的折痕剪开,得到两个形状和大小都相同的直角三角形,将这两个直角三角形拼在一起,使得它有一条相等的边是公有的,你能拼出多少种不同的几何图形?并请你分别说出所拼的图形的名称.12.用火柴棒拼搭等边三角形(1)用火柴棒拼搭出两个边长等于棒长的等边三角形,你有几种拼法,最少需要几根火柴棒?(2)拼6个边长等于棒长的等边三角形,看谁用的棒最少?(3)用6根火柴棒拼搭等边三角形,若允许搭成的等边三角形不在同一平面内,那么可以搭多少个?13.选择你所熟悉的实物模型作出它的俯视图、主视图及左视图.14.用一个平面去截圆锥,可以得到几种不同的图形?动手试一试.参考答案一、1.圆2.矩形3.三角形4.俯视图5.7 6.正方形二、7.D 8.C 9.C 10.D三、11.共可以拼出以下六种图形((1)~(6))(1)、(3)是等腰三角形;(2)、(4)是平行四边形;(5)是长方形;(6)可以称它为筝形.12.(1)2、5 (2)12 (3)4(1)有两种情况,至少要用5根火柴棒,如图(2);而图(1)则用6根火柴棒.(2)最少要12根火柴棒,如图(4);图(3)用了13根.(3)若可以不在同一个平面内拼搭,可以搭4个等边三角形,如图(5).13.略14.略截一个几何体练习卷(2)一、判断题1.用一个平面去截一个正方体,截出的面一定是正方形或长方形. ()2.用一个平面去截一个圆柱,截出的面一定是圆. ()3.用一个平面去截圆锥,截出的面一定是三角形. ()4.用一个平面去截一个球,无论如何截,截面都是一个圆. ()二、选择题1.用一个平面去截圆锥,得到的平面不可能是()2.用一个平面去截一个圆柱,得到的图形不可能是()三、用平面去截一个正方体,截面的形状可能是平行四边形吗?截一截,想一想.四、指出下列几何体的截面形状.___________ ___________*自我陶醉编写一道自己感兴趣并与本节内容相关的题,解答出来.参考答案一、1.×2.×3.×4.√二、1.C 2.D三、可能四、五边形圆形1.3 截一个几何体一、选择题1、有下列几何体:(1)圆柱;(2)正方体;(3)棱柱;(4)球;(5)圆锥;(6)长方体。

(完整)北师大版七年级上册数学配套练习(带答案)

(完整)北师大版七年级上册数学配套练习(带答案)

北师大七年级上第一章丰富的图形世界 第 1.1.1课时家庭作业 生活中的立体图形1)学习目标:1.经历从现实世界中抽象出几何图表的过程,感受图形世界的丰富多彩。

2.在具体情境中认识圆柱、圆锥、正方体、长方体、棱柱、棱台、球,并能用自已的语言描述它们的某些特征。

一.填空题:1.立体图形的各个面都是__________的面,这样的立体图形称为多面体.; 2.图形是由________,_________,________构成的;3.物体的形状似于圆柱的有________________,类似于圆锥的有_____________________,类似于球的有__________________;(各举一例)4. 围成几何体的侧面中,至少有一个是曲面的是______________;(举一例) 5. 正方体有_____个顶点,经过每个顶点有_________条棱,这些棱都____________; 6. 圆柱、圆锥、球的共同点是_____________________________;7. 假如我们把笔尖看作一个点,当笔尖在纸上移动时,就能画出线,说明了______________,时钟秒针旋转时,形成一个圆面,这说明了_______________,三角板绕它的一条直角边旋转一周,形成一个圆锥体,这说明了___________________;8. 圆可以分割成_____ 个扇形,每个扇形都是由___________________;9. 从一个七边形的某个顶点出发,分别连结这个点与其余各顶点,可以把七边形分割成__________个三角形;10.在乒乓球、橄榄球、足球、羽毛球、冰球中,是球体的有 ; 11.将下列几何体分类,柱体有: ,锥体有 (填序号) ;12.长方体由_______________个面_______________条棱_______________个顶点; 13.半圆面绕直径旋转一周形成__________; 二.选择题新知识点要小心呦!14.观察下图,请把左边的图形绕着给定的直线旋转一周后可能形成的几何体选出来()A B C D15.从一个十边形的某个点出发,分别连接这个顶点与其余各顶点,可以把这个多边形分割成三角形()(A)10个(B)9个(C)8个(D)7个16.如图的几何体是下面()平面图形绕轴旋转一周得到的()(A)(B)(C)(D)18.下面图形不能围成封闭几何体的是()(A)(B)(C)(D)三.解答题:19.指出下列平面图形是什么几何体的展开图:A CB20. ⑴.下面这些基本图形和你很熟悉,试一试在括号里写出它们的名称.( ) ( ) ( ) ( ) ( ) ⑵. 将这些几何体分类,并写出分类的理由.第1.1.1课时家庭作业参考答案一、1.平 ;2.点、线、面;3.略;4.略;5.8,3,相等;6.都有一个面是曲面; 7.点动成线,线动成面,面动成体;8.无数,一条弧和两条半径组成的;9.5; 10.乒乓球、足球;11.(1)(2)(3),(5)(6);12.6,12,8;13.球体; 二、14.D ;15.C ;16.B ; 17.A ; 三、18.长方体(四棱柱),圆锥,圆柱;19.(1)(从左至右)球、圆柱、圆锥、长方体、三棱柱; (2)按面分:曲面:球、圆柱、圆锥;平面:长方体、三棱柱; 按柱体分:圆柱、长方体、三棱柱;球;圆锥;北师大七年级上第一章丰富的图形世界第1.1.2课时家庭作业 (平面内的立体图形2)姓名 学习目标:1.通过丰富的实例,进一步认识点、线、面、初步感受点、线、面之间的关系.2.进一步经历从现实世界中抽象出图形的过程,从构成图形的基本元素的角度认识常见图形; 二.填空题:1.围成球的面有 个;2.圆柱有_____ 个面组成,这些面相交共得____ 条线,圆锥的侧面展开图是____ ; 3.圆锥是由_ __个面围成,其中__ _个平面,___ _个曲面,圆锥的侧面与底面相新知识点要小心呦!交成条线,是线;4.圆柱的表面展开图是________________________ (用语言描述);5.图形所表示的各个部分不在同一个平面内,这样的图形称为图形;6.图形所表示的各个部分都在同一个平面内,称为图形;二.选择题:7.圆锥的侧面展开图是()(A)长方形(B)正方形(C)圆(D)扇形8.将半圆绕它的直径旋转一周形成的几何体是()(A)圆柱(B)圆锥(C)球(D)正方体9.如图所示的图形绕虚线旋转一周,所形成的几何体是()()10.以下立体图形中是棱柱的有()(A)①⑤(B)①②③(C)①②④⑤(D)①②⑤[ 11.下列说法中,正确的是()(A)正方体不是棱柱(B)圆锥是由3个面围成(C)正方体的各条棱都相等(D)棱柱的各条棱都相等12.将一个直角三角形绕它的最长边旋转一周,得到的几何体是()(A)(B)(C)(D)13.按组成面的平或曲划分,与圆锥为同一类几何体的是()(A)正方体(B)长方体(C)球(D)棱柱14.如图,沿着虚线旋转一周得到的图形为()(A)(B)(C)(D)15.一个正方体锯掉一个角后,顶点的个数是()(A)7个(B)8个(C)9个(D)7个或8个或9个或10个三、解答题16.请写出下列几何体的名称( ) ( ) ( ) ( )( ) ( ) ( ) ( ) 17.如图,第二行的图形绕点划线旋转一周,便形成第一行的某个图形(几何体),将对应的两个图形用线联结起来.第1.1.2课时家庭作业参考答案一、1.一个;2.三,二,扇形;3.二,一,一,一,曲;4.由一个长方形和两个相等的圆形组成;5.平面;6.立体;[二、7.D;8.C;9.B;10.A;11.C;12.D;13.C;14.C;15.D;三、16.略;17.略;截一个几何体练习卷(1)一、填空题1.用一个平面去截一个球体所得的截面图形是__________.2.如图1,长方体中截面BB1D1D是长方体的对角面,它是__________.3.在正方体中经过从一个顶点出发的三条棱的中点的截面是_________.4.一座大楼,小明只看到了楼顶,则小明的看到的图叫__________.5.现有一张长52cm,宽28cm的矩形纸片,要从中剪出长15cm,宽12cm的矩形小纸片(不能粘贴),则最多能剪出__________张.6.一个正方体的主视图、左视图及俯视图都是__________.二、选择题7.用一个平面去截一个正方体,截面图形不可能是()A.长方形; B.梯形; C.三角形; D.圆8.用一个平面去截一个几何体,如果截面的形状是圆,则这个几何体不可能是()A.圆柱; B.圆锥; C.正方体; D.球9.小明看到了“实验楼”三个字,而且能看到该楼所有的门窗,则小明看到的图是()A.俯视图; B.左视图; C.主视图; D.都有可能10.截去四边形的一个角,剩余图形不可能是()A.三角形; B.四边形; C.五边形; D.圆三、解答题11.如图2,将等腰三角形对折沿着中间的折痕剪开,得到两个形状和大小都相同的直角三角形,将这两个直角三角形拼在一起,使得它有一条相等的边是公有的,你能拼出多少种不同的几何图形?并请你分别说出所拼的图形的名称.12.用火柴棒拼搭等边三角形(1)用火柴棒拼搭出两个边长等于棒长的等边三角形,你有几种拼法,最少需要几根火柴棒?(2)拼6个边长等于棒长的等边三角形,看谁用的棒最少?(3)用6根火柴棒拼搭等边三角形,若允许搭成的等边三角形不在同一平面内,那么可以搭多少个?13.选择你所熟悉的实物模型作出它的俯视图、主视图及左视图.14.用一个平面去截圆锥,可以得到几种不同的图形?动手试一试.参考答案一、1.圆2.矩形3.三角形4.俯视图5.7 6.正方形二、7.D 8.C 9.C 10.D三、11.共可以拼出以下六种图形((1)~(6))(1)、(3)是等腰三角形;(2)、(4)是平行四边形;(5)是长方形;(6)可以称它为筝形.12.(1)2、5 (2)12 (3)4(1)有两种情况,至少要用5根火柴棒,如图(2);而图(1)则用6根火柴棒.(2)最少要12根火柴棒,如图(4);图(3)用了13根.(3)若可以不在同一个平面内拼搭,可以搭4个等边三角形,如图(5).13.略14.略截一个几何体练习卷(2)一、判断题1.用一个平面去截一个正方体,截出的面一定是正方形或长方形. ()2.用一个平面去截一个圆柱,截出的面一定是圆. ()3.用一个平面去截圆锥,截出的面一定是三角形. ()4.用一个平面去截一个球,无论如何截,截面都是一个圆. ()二、选择题1.用一个平面去截圆锥,得到的平面不可能是()2.用一个平面去截一个圆柱,得到的图形不可能是()三、用平面去截一个正方体,截面的形状可能是平行四边形吗?截一截,想一想.四、指出下列几何体的截面形状.___________ ___________*自我陶醉编写一道自己感兴趣并与本节内容相关的题,解答出来.参考答案一、1.×2.×3.×4.√二、1.C 2.D三、可能四、五边形圆形1.3 截一个几何体一、选择题1、有下列几何体:(1)圆柱;(2)正方体;(3)棱柱;(4)球;(5)圆锥;(6)长方体。

七年级数学上册《第二章-有理数的乘方》练习题-带答案(北师大版)

七年级数学上册《第二章-有理数的乘方》练习题-带答案(北师大版)

七年级数学上册《第二章有理数的乘方》练习题-带答案(北师大版)一、选择题1.35的4次幂的相反数记做( )A.(-354) B.345C.-(35)4 D.-35×42.下列说法正确的是( )A.23表示2×3的积B.任何有理数的偶次方都是正数C.一个数的平方是9,这个数一定是3D.-32与(-3)2互为相反数3.下列各对数中,是互为相反数的是( )A.+(﹣2)和﹣(+2)B.﹣(﹣2)和﹣2C.+(+2)和﹣(﹣2)D.(﹣2)3和324.下列计算错误的是( )A.(﹣1)2028=1B.﹣3﹣2=﹣1C.(﹣1)×3=﹣3D.0×2027×(﹣2028)=05.下列各式中,一定成立的是( )A.(-3)2=32B.(-3)3=33C.-32=|-32|D.(-3)3=|(-3)3|6.计算(-2)3-(-2)2的结果是( )A.-4B.4C.12D.-127.下列各式:①﹣(﹣2);②﹣|﹣2|;③﹣22;④﹣(﹣2)2,计算结果为负数的个数有( )A.4个B.3个C.2个D.1个8.按一定规律排列的一列数依次为:2,3,10,15,26,35,…,按此规律排列下去,则这列数中的第100个数是( )A.9999B.10000C.10001D.10002二、填空题9.计算:(﹣2)3= .10.计算:|﹣22|=11.计算:(1)(-5)2=_______;(2)-52=_______;(3)(-27)3=_____;(4)-237=______.12.将它们-24,(-2)3,(-2)2按从小到大的顺序排列.13.如果(x+3)2+|y﹣2|=0,则x y= .14.将从1开始的连续自然数按以下规律排列:第1行 1第2行 2 3 4第3行9 8 7 6 5第4行10 11 12 13 14 15 16第5行25 24 23 22 21 20 19 18 17…则2023在第行.三、解答题15.计算:(-1)2029×(-2);16.计算:-(-3)2÷(-2)3;17.计算:-(-3-5)+(-2)2×5+(-2)318.计算:22×(5-7)÷(-0.5)+3×(-2)2.19.(1)在数轴上把下列各数表示出来:﹣1,﹣|﹣2.5|,﹣(﹣2),(﹣1)100,﹣22 (2)将上列各数用“<”连接起来: .20.a,b为有理数,若规定一种新的运算“⊕”,定义a⊕b=a2-b2-ab+1,请根据“⊕”的定义计算:(1)-3⊕4;(2)(-1⊕1)⊕(-2).21.已知|a|=5,b2=4,且a<b,求ab-(a+b)的值.22.先阅读材料,再根据材料中所提供的方法解答下列问题:我们在求1+2+3+…+99+100的值时,可以用下面的方法:我们设S=1+2+3+…+99+100①,那么S=100+99+98+…+3+2+1②.然后,我们由①+②,得2S=(100+1)+(99+2)+(98+3)+…+(99+2)+(100+1),共100个101.2S=101+101+101+…+101=100×101所以S=100×101÷2=5050.依据上述方法,求下列各式的值:(1)1+3+5+…+97+99;(2)5+10+15+…+195+200.参考答案1.C2.D3.B4.B5.A6.D7.B8.A.9.答案为:﹣8.10.答案为:4.11.答案为:(1)25 (2)-25 (3)-8343(4)-8712.答案为:-24<(-2)3<(-2)213.答案为:9.14.答案为:45.15.解:原式=(-1)×(-2)=2.16.解:原式=-9÷(-8)=9 8 .17.解:原式=1418.解:原式=4×(-2)(-2)+3×4=16+12=28.19.解:如图所示;(2)由图可知,﹣22<﹣|﹣2.5|<﹣1<(﹣1)100<﹣(﹣2).20.解:(1)-3⊕4=(-3)2-42-(-3)×4+1=6(2)(-1⊕1)⊕(-2)=[(-1)2-12-(-1)×1+1]⊕(-2)=2⊕(-2)=22-(-2)2-2×(-2)+1=5 21.解:由|a|=5得:a=±5,由b2=4得b=±2又∵a<b,∴a=-5,b=±2∴当a=-5,b=2时,ab-(a+b)=(-5)×2-(-5+2)=-7;当a=-5,b=-2时,ab-(a+b)=(-5)×(-2)-[-5+(-2)]=1722.解:(1)设S=1+3+5+…+97+99①,那么S=99+97+…+5+3+1②①+②,得2S=(1+99)+(3+97)+…+(97+3)+(99+1),共50个100.2S=100+100+…+100=50×100,所以S=2500即1+3+5+…+97+99=2500.(2)设S=5+10+15+…+195+200①,那么S=200+195+…+15+10+5②①+②得2S=(5+200)+(10+195)+(15+190)+…+(195+10)+(200+5),共40个205. 2S=205+205+…+205=205×40,所以S=4100即5+10+15+…+195+200=4100.。

北师版七年级数学上册全册配套练习

北师版七年级数学上册全册配套练习

第一章 丰富的图形世界1 生活中的立体图形第1课时 认识几何体1.从下列物体抽象出来的几何体可以看成圆柱的是()2.下列图形不是立体图形的是( ) A.球 B.圆柱 C.圆锥 D.圆3.下列图形属于棱柱的有()A.2个B.3个C.4个D.5个4.如图,电镀螺杆呈现出了两个几何体的组合,则这两个几何体分别是()A.圆柱和圆柱B.六棱柱和六棱柱C.长方体和六棱柱D.圆柱和六棱柱5.一个四棱柱一共有 条棱,有 个面;如果四棱柱的底面边长都是2cm ,侧棱长都是4cm ,那么它所有棱长的和是 .6.将下列几何体分类:其中柱体是 ,锥体是 ,球体是 (填序号).第2课时 立体图形的构成1.下列几何体没有曲面的是( ) A.圆柱 B.圆锥 C.球 D.长方体2.围成圆柱的面有( ) A.1个 B.2个 C.3个 D.4个3.汽车的雨刷把玻璃上的雨水刷干净所属的实际应用是( ) A.点动成线 B.线动成面 C.面动成体 D.以上答案都不对4.下列选项中的图形,绕其虚线旋转一周能得到左边的几何体的是()5.图中的立体图形是由哪个平面图形旋转后得到的?请用线连起来.6.如图所示的立体图形是由几个面围成的?它们是平面还是曲面?2 展开与折叠第1课时 正方体的展开图1.下面图形中是正方体的展开图的是()2.如图是正方体的一种展开图,其中每个面上都有一个数字,那么在原正方体中,与数字6相对面上的数字是()A.1B.4C.5D.23.如图,该几何体的展开图可能是()4.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示).第2课时 柱体、锥体的展开与折叠1.下列立体图形中,侧面展开图是扇形的是()2.下面图形中,是三棱柱的侧面展开图的是()3.下列选项中,左边的平面图形能够折成右边封闭的立体图形的是()4.如图,沿虚线折叠能形成一个立体图形,它的名称是.5.指出下列图形分别是什么几何体的展开图(将对应的几何体名称写在下方的横线上).3 截一个几何体1.如图,用一个平面去截一个圆柱,截得的形状应为()2.用平面去截一个几何体,若截面为长方形,则该几何体不可能是( ) A.正方体 B.长方体 C.圆柱 D.圆锥3.用一个平面去截:①圆锥;②圆柱;③球;④五棱柱,得到的截面可能是圆的几何体是( )A.①②④B.①②③C.②③④D.①③④4.如果用一个平面截一个几何体,截面形状是三角形,那么这个几何体可能是 (写出两个几何体名称).5.如图是一个正方体,用一个平面去截这个正方体,截面形状不可能是 (填序号).6.说出下列几何体被阴影部分所截得的截面的形状.4 从三个方向看物体的形状1.如图是由5个相同的小正方体搭成的几何体,从正面看到的图形是()2.如图是某几何体从三个方向看到的图形,则这个几何体是()A.三棱柱B.三棱锥C.圆锥D.圆柱3.如图是由三个相同小正方体组成的几何体从上面看到的图形,那么这个几何体可以是()4.一个积木由若干个大小相同且棱长为1的正方体搭成,如图分别是从三个方向看到的形状图,则该积木中棱长为1的正方体的个数是()A.6个B.7个C.8个D.9个5.下面是用几个相同的小正方体搭成的两种几何体,分别画出从三个方向看到的几何体的形状图.第二章 有理数及其运算1 有理数1.下列各数中是负数的是( ) A.-3 B.0 C.1.7 D.122.飞机在飞行过程中,如果上升23米记作“+23米”,那么下降15米应记作( ) A.-8米 B.+8米 C.-15米 D.+15米3.下列说法正确的是( )A.非负数包括0和整数B.正整数包括自然数和0C.0是最小的整数D.整数和分数统称为有理数4.在“1,-0.3,+13,0,-3.3”这五个数中,非负有理数是 (写出所有符合题意的数).5.我们的梦想:2022年中国足球挺进世界杯!如果小组赛中中国队胜3场记为+3场,那么-1场表示 .6.把下列各数填入表示它所在的数集的圈里.-18,227,3.1416,0,2001,-35,-0.142857,95%.数轴1.下列所画数轴正确的是()2.如图,点M表示的数是()A.1.5B.-1.5C.2.5D.-2.53.在0,-2,1,12这四个数中,最小的数是()A.0B.-2C.1D.124.比较下列各组数的大小:(1)-31;(2)0-2.3;(3)-23-35.5.在数轴上,与表示数-1的点的距离为1的点表示的数是.6.如图,数轴的一部分被墨水污染,被污染的部分内含有的整数是.7.在数轴上表示下列各数,并用“〉”连接起来.1.8,-1,52,3.1,-2.6,0,1.3 绝对值第1课时 相反数1.-3的相反数是( ) A.-3 B.3 D.-13 D.132.下列各组数互为相反数的是( )A.4和-(-4)B.-3和13C.-2和-12 D.0和03.若一个数的相反数是1,则这个数是 .4.写出下列各数的相反数:(1)-3.5的相反数为 ; (2)35的相反数为 ;(3)0的相反数为 ; (4)28的相反数为 ; (5)-2018的相反数为 .第2课时 绝对值1.-14的绝对值是( )A.4B.-4C.14D.-142.某生产厂家检测4个篮球的质量,结果如图所示.超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是()3.比较大小:-5 -2,-12 -23(填“〉”或“〈”).4.计算:(1)|7|= ; (2)⎪⎪⎪⎪-58= ; (3)|5.4|= ; (4)|-3.5|= ; (5)|0|= .4 有理数的加法第1课时 有理数的加法法则1.计算(-5)+3的结果是( ) A.-8 B.-2 C.2 D.82.计算(-2)+(-3)的结果是( ) A.-1 B.-5 C.-6 D.53.静静家冰箱冷冻室的温度为-4℃,调高5℃后的温度为( ) A.-1℃ B.1℃ C.-9℃ D.9℃4.下列计算正确的是( )A.⎝⎛⎭⎫-112+0.5=-1 B.(-2)+(-2)=4 C.(-1.5)+⎝⎛⎭⎫-212=-3 D.(-71)+0=71 5.每袋大米以50kg 为标准,其中超过标准的千克数记为正数,不足的千克数记为负数,则图中第3袋大米的实际质量是kg.6.计算:(1)(-5)+(-21); (2)17+(-23);(3)(-2016)+0; (4)(-3.2)+315;(5)(-1.25)+5.25; (6)⎝⎛⎭⎫-718+⎝⎛⎭⎫-16.第2课时 有理数加法的运算律1.计算7+(-3)+(-4)+18+(-11)=(7+18)+[(-3)+(-4)+(-11)]是应用了( ) A.加法交换律 B.加法结合律 C.分配律 D.加法交换律与加法结合律2.填空:(-12)+(+2)+(-5)+(+13)+(+4)=(-12)+(-5)+(+2)+(+13)+(+4)(加法 律) =[(-12)+(-5)]+[(+2)+(+13)+(+4)](加法 律) =( )+( )= . 3.简便计算:(1)(—6)+8+(—4)+12; (2)147+⎝⎛⎭⎫-213+37+13;(3)0.36+(-7.4)+0.3+(-0.6)+0.64.4.某运动员在东西走向的公路上练习跑步,跑步情况记录如下(向东为正,单位:m):1000,-1200,1100,-800,1400,该运动员跑完后位于出发点的什么位置?有理数的减法1.计算4-(-5)的结果是()A.9B.1C.-1D.-92.计算(-9)-(-3)的结果是()A.-12B.-6C.+6D.123.下列计算中,错误的是()A.-7-(-2)=-5B.+5-(-4)=1C.-3-(-3)=0D.+3-(-2)=54.计算:(1)9-(-6);(2)-5-2;(3)0-9;(4)⎝⎛⎭⎫-23-112-⎝⎛⎭⎫-14.5.某地连续五天内每天的最高气温与最低气温记录如下表所示,哪一天的温差(最高气温与最低气温的差)最大?哪一天的温差最小?有理数的加减混合运算第1课时有理数的加减混合运算1.把7-(-3)+(-5)-(+2)写成省略加号和的形式为()A.7+3-5-2B.7-3-5-2C.7+3+5-2D.7+3-5+22.计算8+(-3)-1所得的结果是()A.4B.-4C.2D.-23.算式“-3+5-7+2-9”的读法正确的是()A.3、5、7、2、9的和B.减3正5负7加2减9C.负3,正5,减7,正2,减9的和D.负3,正5,负7,正2,负9的和4.设a是最小的自然数,b是最大的负整数,c是绝对值最小的有理数,则a-b+c的值为()A.-1B.0C.1D.25.计算下列各题:(1)-3.5-(-1.7)+2.8-5.3;(2)⎝⎛⎭⎫-312-⎝⎛⎭⎫-523+713.6.某地的温度从清晨到中午时上升了8℃,到傍晚时温度又下降了5℃.若傍晚温度为-2℃,求该地清晨的温度.第2课时 有理数加减混合运算中的简便运算1.下列各题运用加法结合律变形错误的是( ) A .1+(-0.25)+(-0.75)=1+[(-0.25)+(-0.75)] B .1-2+3-4+5-6=(1-2)+(3-4)+(5-6) C .34-16-12+23=⎝⎛⎭⎫34+12+⎝⎛⎭⎫-16+23 D .7-8-3+6+2=(7-3)+(-8)+(6+2) 2.计算-256+15-116的结果是( )A .-345B .345C .-415D .4153.计算:(1)27+18-(-3)-18; (2)23-18-⎝⎛⎭⎫-13+⎝⎛⎭⎫-38;(3)-0.5+⎝⎛⎭⎫-14-(-2.75)-12; (4)314+⎝⎛⎭⎫-718+534+718;(5)7.54+(-5.72)-(-12.46)-4.28; (6)0.125+⎝⎛⎭⎫-418+⎝⎛⎭⎫-234+0.75.第3课时有理数加减混合运算的应用1.下表是某种股票某一周每天的收盘价情况(收盘价:股票每天交易结束时的价格):(1)填表,并回答哪天的收盘价最高,哪天的收盘价最低;(2)最高价与最低价相差多少?2.某次数学单元检测,708班A1小组六位同学计划平均成绩达到80分,组长在登记成绩时,以80分为基准,超过80分的分数记为正,低于80分的分数记为负,成绩记录如下:+10,-2,+15,+8,-13,-7.(1)本次检测成绩最好的为多少分?(2)该小组实际总成绩与计划相比是超过还是不足,超过或不足多少分?(3)本次检测该小组成员中得分最高与最低相差多少分?7 有理数的乘法第1课时 有理数的乘法法则1.计算-3×2的结果为( ) A .-1 B .-5 C .-6 D .12.-74的倒数是( )A .-74B .74C .-47D .473.下列运算中错误的是( ) A .(+3)×(+4)=12 B .-13×(-6)=-2C .(-5)×0=0D .(-2)×(-4)=8 4.下列计算结果是负数的是( ) A .(-3)×4×(-5) B .(-3)×4×0C .(-3)×4×(-5)×(-1)D .3×(-4)×(-5) 5.填表(想法则,写结果):6.计算:(1)(-15)×13; (2)-218×0;(3)334×⎝⎛⎭⎫-1625; (4)(-2.5)×⎝⎛⎭⎫-213.第2课时 有理数乘法的运算律1.用简便方法计算(-27)×(-3.5)+27×(-3.5)时,要用到( ) A .乘法交换律 B .乘法结合律C .乘法交换律、结合律D .乘法对加法的分配律 2.计算(-4)×37×0.25的结果是( )A .-37B .37C .73D .-733.下列计算正确的是( ) A .-5×(-4)×(-2)×(-2)=80 B .-9×(-5)×(-4)×0=-180C .(-12)×⎝⎛⎭⎫13-14-1=(-4)+3+1=0 D .-2×(-5)+2×(-1)=(-2)×(-5-1)=124.计算(-2)×⎝⎛⎭⎫3-12,用分配律计算正确的是( ) A .(-2)×3+(-2)×⎝⎛⎭⎫-12 B .(-2)×3-(-2)×⎝⎛⎭⎫-12 C .2×3-(-2)×⎝⎛⎭⎫-12 D .(-2)×3+2×⎝⎛⎭⎫-12 5.填空:(1)21×⎝⎛⎭⎫-45×⎝⎛⎭⎫-621×(-10) =21×( )×( )×(-10)(利用乘法交换律)=[21×( )]×⎣⎡⎦⎤⎝⎛⎭⎫-45×( )(利用乘法结合律) =( )×( )= ; (2)⎝⎛⎭⎫14+18+12×(-16)=14× +18× +12× (分配律) = = .1计算(-18)÷6的结果是( ) A .-3 B .3 C .-13 D .132.计算(-8)÷⎝⎛⎭⎫-18的结果是( ) A .-64 B .64 C .1 D .-1 3.下列运算错误的是( )A .13÷(-3)=3×(-3) B .-5÷⎝⎛⎭⎫-12=-5×(-2) C .8÷(-2)=-8×12 D .0÷3=04.下列说法不正确的是( ) A .0可以作被除数 B .0可以作除数C .0的相反数是它本身D .两数的商为1,则这两数相等 5.(1)6的倒数是 ;(2)-12的倒数是 .6.计算:(1)(-6)÷14; (2)0÷(-3.14);(3)⎝⎛⎭⎫-123÷⎝⎛⎭⎫-212; (4)⎝⎛⎭⎫-34÷⎝⎛⎭⎫-37÷⎝⎛⎭⎫-116.1.计算(-3)2的结果是( ) A .-6 B .6 C .-9 D .92.下列运算正确的是( ) A .-(-2)2=4 B .-⎝⎛⎭⎫-232=49 C .(-3)4=34 D .(-0.1)2=0.13.把34×34×34×34写成乘方的形式为 ,读作 .4.计算:(1)(-2)3; (2)-452; (3)-⎝⎛⎭⎫-372; (4)⎝⎛⎭⎫-233.10 科学记数法1.据报道,2018年某市有关部门将在市区完成130万平方米老住宅小区综合整治工作,130万(即1300000)用科学记数法可表示为( )A .1.3×104B .1.3×105C .1.3×106D .1.3×1072.长江三峡工程电站的总装机容量用科学记数法表示为1.82×107千瓦,把它写成原数是( )A .182000千瓦B .182000000千瓦C .18200000千瓦D .1820000千瓦 3.用科学记数法表示下列各数: (1)地球的半径约为6400000m ; (2)赤道的总长度约为40000000m .11 有理数的混合运算1.计算-5-3×4的结果是( ) A .-17 B .-7 C .-8 D .-322.下列各式中,计算结果是负数的是( ) A .(-1)×(-2)×(-3)×0 B .5×(-0.5)÷(-0.21) C .(-5)×|-3.25|×(-0.2) D .-(-3)2+(-2)2 3.计算(-8)×3÷(-2)2的结果是( ) A .-6 B .6 C .-12 D .124.按照下图所示的操作步骤,若输入x 的值为-3,则输出的值为 . 输入x 平方乘以2减去5输出5.计算:(1)9×(-1)12+(-8); (2)-9÷3+⎝⎛⎭⎫12-23×12+32.6.室温是32℃,小明开空调后,温度下降了6℃,关掉空调后,空气温度每小时回升2℃,求关掉空调2小时后室内的温度.12 用计算器进行运算1.用完计算器后,应该按( )A .DEL 键B .=键C .ON 键D .OFF 键 2.用计算器求(-3)5的按键顺序正确的是( ) A .(-)()3x ■5= B .3x ■5()(-)=C .()(-)3x ■5= D .()(-)35x ■=3.按键顺序1-3x ■2÷2×3=对应下面算式( ) A .(1-3)2÷2×3 B .1-32÷2×3 C .1-32÷2×3 D .(1-3)2÷2×34.用计算器计算7.783+(-0.32)2≈ (精确到0.01).第三章 整式及其加减1 字母表示数1.一辆汽车的速度是v 千米/时,行驶t 小时所走的路程为 千米.2.每台电脑售价x 元,降价10%后每台售价为 元.3.若买一个足球需要m 元,买一个篮球需要n 元,则买4个足球、7个篮球共需要( ) A .(4m +7n)元 B .28mn 元 C .(7m +4n)元 D .11mn 元4.用字母表示图中阴影部分的面积.2 代数式第1课时 代数式1.下列书写格式正确的是( ) A .x5 B .4m÷n C .x(x +1)34 D .-12ab2.某种品牌的计算机,进价为m 元,加价n 元后作为定价出售.如果“五一”期间按定价的八折销售,那么售价为( )A .(m +0.8n)元B .0.8n 元C .(m +n +0.8)元D .0.8(m +n)元3.在式子:①m +5;②ab ;③a =1;④0;⑤π;⑥3(m +n);⑦3x >5中,代数式有 个.4.某超市的苹果价格如图所示,则代数式100-9.8x 可表示的实际意义是 .第2课时 代数式的求值1.当x =1时,代数式4-3x 的值是( ) A .1 B .2 C .3 D .42.当x =3,y =2时,代数式2x -y3的值是( ) A .43B .2C .0D .3 3.公安人员在破案时常常根据案发现场作案人员留下的脚印推断犯人的身高.已知犯人的身高比其脚印长度a cm 的7倍少3cm .(1)用含a 的代数式表示出犯人的身高为 cm ; (2)若a =24,求犯人的身高.整式1.下列各式中不是单项式的是()A.a3B.-15C.0 D.3a2.单项式-2x2y3的系数和次数分别是()A.-2,3B.-2,2C.-23,3 D.-23,23.多项式3x2-2x-1的各项分别是()A.3x2,2x,1B.3x2,-2x,1C.-3x2,2x,-1D.3x2,-2x,-14.在代数式a+b,37x2,5a,-m,0,a+b3a-b,3x-y2中,单项式的个数是个.5.多项式3x3y+2x2y-4xy2+2y-1是次项式,它的最高次项的系数是.6.下列代数式中哪些是单项式?哪些是多项式?xy3,-34xy2z,a,x-y,1x,3.14,-m,-m2+2m-1.7.若关于a,b的单项式-58a2b m与-117x3y4是次数相同的单项式,求m的值.整式的加减第1课时合并同类项1.在下列单项式中与2xy是同类项的是()A.2x2y2B.3yC.xyD.4x2.下列选项中的两个单项式能合并的是()A.4和4xB.3x2y3和-y2x3C.2ab2和100ab2cD.m和m23.下列运算中,正确的是()A.3a+2b=5abB.2a3+3a2=5a5C.3a2b-3ba2=0 C.5a2-4a2=14.计算2m2n-3nm2的结果为()A.-1B.-5m2nC.-m2nD.不能合并5.合并同类项:(1)3a-5a+6a;(2)2x2-7-x-3x-4x2;(3)-3mn2+8m2n-7mn2+m2n.6.当x=-2,y=3时,求代数式4x2+3xy-x2-2xy-9的值.第2课时 去括号1.化简-2(m -n)的结果为( )A .-2m -nB .-2m +nC .2m -2nD .-2m +2n 2.下列去括号错误的是( )A .a -(b +c)=a -b -cB .a +(b -c)=a +b -cC .2(a -b)=2a -bD .-(a -2b)=-a +2b 3.-(2x -y)+(-y +3)去括号后的结果为( ) A .-2x -y -y +3 B .-2x +3 C .2x +3 D .-2x -2y +34.数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题:(x 2+3xy)-(2x 2+4xy)=-x 2【】,其中空格的地方被钢笔水弄污了,那么空格中一项是( )A .-7xyB .7xyC .-xyD .xy 5.去掉下列各式中的括号:(1)(a +b)-(c +d)= ; (2)(a -b)-(c -d)= ; (3)(a +b)-(-c +d)= ; (4)-[a -(b -c)]= . 6.化简下列各式:(1)3a -(5a -6); (2)(3x 4+2x -3)+(-5x 4+7x +2);(3)(2x -7y)-3(3x -10y); (4)6a 2-4ab -4⎝⎛⎭⎫2a 2+12ab .第3课时 整式的加减1.化简x +y -(x -y)的结果是( ) A .2x +2y B .2y C .2x D .02.已知A =5a -3b ,B =-6a +4b ,则A -B 等于( ) A .-a +b B .11a +b C .11a -7b D .-a -7b3.已知多项式x 3-4x 2+1与关于x 的多项式2x 3+mx 2+2相加后不含x 的二次项,则m 的值是( )A .-4B .4C .12D .-124.若某个长方形的周长为4a ,一边长为(a -b),则另一边长为( ) A .3a +b B .2a +2b C .a +b D .a +3b5.化简:(1)(-x 2+5x +4)+(5x -4+2x 2);(2)-2(3y 2-5x 2)+(-4y 2+7xy).6.先化简,再求值:3a 2-ab +7-(5ab -4a 2+7),其中a =2,b =13.探索与表达规律第1课时探索数字规律1.观察下列数据:0,3,8,15,24…它们是按一定规律排列的,依照此规律,第201个数据是()A.40400B.40040C.4040D.4042.一组数23,45,67,89…按一定的规律排列,请你根据排列规律,推测这组数的第10个数应为()A.1819B.2021C.2223D.24253.已知2+23=22×23,3+38=32×38,4+415=42×415…,若9+nm=92×nm(m,n为正整数),则m+n的值为()A.86B.88C.89D.904.填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a,b的值分别为()A.9,10B.9,91C.10,91D.10,1105.观察下列各式,完成问题.1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,……(1)仿照上例,计算:1+3+5+7+…+99=;(2)根据上述规律,请你用自然数n(n≥1)表示一般规律.第2课时 探索图形规律1.如图,第①个图形中一共有1个正方形,第②个图形中一共有3个正方形,第③个图形中一共有5个正方形……则第⑩个图形中正方形的个数是()A .18个B .19个C .20个D .21个2.如图是用长度相等的小棒按一定规律摆成的一组图案,第1个图案中有6根小棒,第2个图案中有11根小棒……则第n 个图案中有 根小棒.第2题图 第3题图3.如图,按这种规律堆放圆木,第n 堆应有圆木 根.4.如图是用棋子摆成的“T ”字图案.从图案中可以看出,第1个“T ”字图案需要5枚棋子,第2个“T ”字图案需要8枚棋子,第3个“T ”字图案需要11枚棋子……(1)照此规律,摆成第4个图案需要几枚棋子? (2)摆成第n 个图案需要几枚棋子? (3)摆成第2018个图案需要几枚棋子?第四章基本平面图形线段、射线、直线1.给出下列图形,其表示方法不正确的是()2.下列语句正确的是()A.延长线段AB到C,使BC=ACB.反向延长线段AB,得到射线BAC.取直线AB的中点D.连接A,B两点,并使直线AB经过C点3.小红家分了一套住房,她想在自己房间的墙上钉一根细木条,挂上自己喜欢的装饰物,那么小红至少需要几根钉子使细木条固定()A.1根B.2根C.3根D.4根4.根据图形填空:点B在直线上,图中有条线段,以点B为端点的射线有条.第4题图第5题图5.如图,工人砌墙时在墙的两端各固定一根木桩,再拉一条线,然后沿线砌砖,用数学知识解释其中的道理是.6.已知平面上四点A、B、C、D如图所示.(1)画直线AB;(2)画射线AD;(3)直线AB、CD相交于点E;(4)连接AC、BD相交于点F.比较线段的长短1.下列说法正确的是()A.两点之间的连线中,直线最短B.若P是线段AB的中点,则AP=BPC.若AP=BP,则P是线段AB的中点D.两点之间的线段叫作这两点之间的距离2.如图,已知线段AB=6cm,点C是AB的中点,则AC的长为()A.6cmB.5cmC.4cmD.3cm3.现实生活中为何有人宁愿乱穿马路,也不愿从天桥或斑马线通过?用数学知识解释图中这一现象,其原因为()A.两点之间线段的长度,叫作这两点之间的距离B.过一点有无数条直线C.两点确定一条直线D.两点之间,线段最短4.如图,D是AB的中点,E是BC的中点.若AC=8,EC=3,则AD=.5.如图,已知线段AB.(1)请用尺规按下列要求作图:①延长线段AB到C,使BC=AB;②延长线段BA到D,使AD=AC(不写画法,但要保留画图痕迹);(2)观察(1)中所作的图,直接写出线段BD与线段AC之间的长短关系;(3)若AB=2cm,求线段BD和CD的长度.角1.下列关于角的说法中,正确的是()A.角是由两条射线组成的图形B.角的边越长,角越大C.在角一边的延长线上取一点D.角可以看作由一条射线绕着它的端点旋转而形成的图形2.如图,能用∠1,∠ACB,∠C三种方法表示同一个角的是()3.将21.54°用度、分、秒表示为()A.21°54′B.21°50′24″C.21°32′40″D.21°32′24″4.如图,能用一个字母表示的角是,用三个大写字母表示∠1为,∠2为.第4题图第5题图第6题图5.如图,点Q位于点O的方向上.6.某钟面上午8时整时针和分针的位置如图所示,则时针和分针所成角的度数是.7.计算:(1)33°52′+21°50′;(2)108°8′-36°56′.角的比较1.如图,将∠1、∠2的顶点和其中一边重合,且∠1的另一边落在∠2的外部,则∠1与∠2的关系是()A.∠1〉∠2B.∠1〈∠2C.∠1=∠2D.无法确定2.如图,已知∠AOB、∠COD都是直角,则∠1与∠2的关系是()A.∠1>∠2B.∠1<∠2C.∠1=∠2D.无法确定第1题图第2题图第4题图第5题图3.射线OC在∠AOB的内部,下列四个选项中不能判定OC是∠AOB的平分线的是()A.∠AOB=2∠AOCB.∠AOC=12∠AOBC.∠AOC+∠BOC=∠AOBD.∠AOC=∠BOC4.如图,点O在直线AB上,射线OC平分∠DOB.若∠DOC=35°,则∠AOD等于()A.35°B.70°C.110°D.145°5.把一副三角板按照如图所示的位置摆放形成两个角,分别设为∠α、∠β.若∠α=65°,则∠β的度数为.6.如图,∠AOC=15°,∠BOC=45°,OD平分∠AOB,求∠COD的度数.多边形和圆的初步认识1.下列图形中,多边形有()A.1个B.2个C.3个D.4个2.过某个多边形一个顶点的所有对角线将这个多边形分成了5个三角形,则这个多边形是()A.五边形B.六边形C.七边形D.八边形3.边长为1cm的正六边形的周长是cm.4.已知扇形的圆心角为120°,半径为3cm,则这个扇形的面积为cm2.5.某校学生来自甲、乙、丙三个地区,其人数比为2:3:5,如图所示的扇形图表示上述分布情况,求扇形甲、乙、丙圆心角的度数.6.如图,将多边形分割成三角形.(1)图①中可分割出个三角形;(2)图②中可分割出个三角形;(3)图③中可分割出个三角形;由此你能猜测出,n边形可以分割出个三角形.第五章一元一次方程认识一元一次方程第1课时一元一次方程1.下列是一元一次方程的是()A.x2-x=4B.2x-y=0C.2x=1D.1x=22.方程x+3=-1的解是()A.x=2B.x=-4C.x=4D.x=-23.若关于x的方程2x+a-4=0的解是x=-2,则a的值是.4.把一些图书分给某班学生阅读,若每人分3本,则剩余20本;若每人分4本,则还缺25本.设这个班有x名学生,则由题意可列方程为.第2课时等式的基本性质1.下列变形符合等式的基本性质的是()A.若2x-3=7,则2x=7-3B.若3x-2=x+1,则3x-x=1-2C.若-2x=5,则x=5+2D.若-13x=1,则x=-32.解方程-34x=12时,应在方程两边()A.同时乘-34B.同时乘4 C.同时除以34D.同时除以-343.利用等式的基本性质解方程:(1)x+1=6;(2)3-x=7;(3)-3x=21.求解一元一次方程第1课时利用移项解一元一次方程1.下列变形属于移项且正确的是()A.由3x=5+2得到3x+2=5B.由-x=2x-1得到-1=2x+xC.由5x=15得到x=155D.由1-7x=-6x得到1=7x-6x2.解方程-3x+4=x-8时,移项正确的是()A.-3x-x=-8-4B.-3x-x=-8+4C.-3x+x=-8-4D.-3x+x=-8+43.一元一次方程3x-1=5的解为()A.x=1B.x=2C.x=3D.x=44.解下列方程:(1)13x+1=12;(2)3x+2=5x-7.5.下面是某位同学的作业,他的解答正确吗?如果不正确,请把正确的步骤写出来. 解方程:2x-1=-x+5.解:移项,得2x-x=1+5,合并同类项,得x=6.1.方程3-(x+2)=1去括号正确的是()A.3-x+2=1B.3+x+2=1C.3+x-2=1D.3-x-2=12.方程1-(2x-3)=6的解是()A.x=-1B.x=1C.x=2D.x=03.当x=时,代数式-2(x+3)-5的值等于-9.4.解下列方程:(1)5(x-8)=-10;(2)8y-6(y-2)=0;(3)4x-3(20-x)=-4;(4)-6-3(8-x)=-2(15-2x).5.李强是学校的篮球明星,在一场比赛中,他一人得了23分.如果他投进的2分球比3分球多4个,那么他一共投进了多少个2分球,多少个3分球?1.对于方程5x -13-2=1+2x 2,去分母后得到的方程是( ) A .5x -1-2=1+2x B .5x -1-6=3(1+2x)C .2(5x -1)-6=3(1+2x)D .2(5x -1)-12=3(1+2x)2.方程x 4=x -15的解为( ) A .x =4 B .x =1 C .x =-1 D .x =-43.(1)若式子x -83与14x +5的值相等,则x = ; (2)若x 3+1与2x -73互为相反数,则x = . 4.解方程:(1)3x -52=2x 3; (2)4x +95-3+2x 3=1;(3)15(x +15)=12-13(x -7); (4)2y -13=y +24-1.5.某班同学分组参加活动,原来每组8人,后来重新编组,每组6人,这样比原来增加了2组,则这个班共有多少名学生?应用一元一次方程——水箱变高了1.内径为120mm的圆柱形玻璃杯,和内径为300mm、内高为32mm的圆柱形玻璃盆可以盛同样多的水,则玻璃杯的内高为()A.150mmB.200mmC.250mmD.300mm2.用一根长12cm的铁丝围成一个长方形,使得长方形的宽是长的12,则这个长方形的面积是()A.4cm2B.6cm2C.8cm2D.12cm23.将一个底面半径是5cm,高为10cm的圆柱体冰淇淋盒改造成一个直径为20cm的圆柱体.若体积不变,则改造后圆柱体的高为多少?4.把一个三边长分别为3dm,4dm,5dm的三角形挂衣架,改装成一个正方形挂衣架.求这个正方形挂衣架的面积.应用一元一次方程——打折销售1.如图是“大润发”超市中“飘柔”洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚,请你帮忙算一算,该洗发水的原价为()A.22元B.23元C.24元D.26元2.某商品的售价比原售价降低了15%,如果现在的售价是51元,那么原来的售价是()A.28元B.62元C.36元D.60元3.某商品进价是200元,标价是300元,要使该商品的利润率为20%,则该商品销售时应打()A.7折B.8折C.9折D.6折4.一件商品在进价基础上提价20%后,又以9折销售,获利20元,则进价是多少元?5.一件商品的标价为1100元,进价为600元,为了保证利润率不低于10%,最低可打几折销售?应用一元一次方程——“希望工程”义演1.已知甲仓库储粮35吨,乙仓库储粮19吨,现调粮食15吨给两仓库,则应分配给两仓库各多少吨,才能使得甲仓库的储粮是乙仓库的两倍?2.希望中学团委组织65名新团员为学校建花坛搬砖,女同学每人每次搬6块,男同学每人每次搬8块.每人搬了4次,共搬了1800块,问这些新团员中有多少名男同学?3.在广州亚运会中,志愿者们手上、脖子上的丝巾非常美丽.某车间70名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1800条或者脖子上的丝巾1200条,一条脖子上的丝巾要配两条手上的丝巾.为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾?应用一元一次方程——追赶小明1.甲、乙两人练习赛跑,甲每秒跑7米,乙每秒跑6.5米,甲让乙先跑5米.设x秒后甲可追上乙,则下列所列方程中正确的是()A.6.5+x=7.5B.7x=6.5x+5C.7x+5=6.5xD.6.5+5x=7.52.小明和爸爸在一条长400米的环形跑道上,小明每秒跑9米,爸爸骑车每秒骑16米,两人同时同地反向而行,经过秒两人首次相遇.3.一轮船往返于A,B两港之间,逆水航行需3小时,顺水航行需2小时,水速是3千米/时,求轮船在静水中的速度.4.甲、乙两站相距300千米,一列慢车从甲站开往乙站,每小时行40千米,一列快车从乙站开往甲站,每小时行80千米.已知慢车先行1.5小时,快车再开出,则快车开出多少小时后与慢车相遇?第六章数据的收集与整理数据的收集1.下面获取数据的方法不正确的是()A.了解我们班同学的身高用测量方法B.快捷了解历史资料情况用观察方法C.抛硬币看正反面的次数用试验方法D.了解全班同学最喜爱的体育活动用访问方法2.在设计调查问卷时,下面的提问比较恰当的是()A.我认为猫是一种很可爱的动物B.难道你不认为科幻片比武打片更有意思吗C.你给我回答到底喜不喜欢猫D.请问你家有哪些使用电池的电器2普查和抽样调查1.下列调查方式不合适的是()A.了解我市人们保护海洋的意识采取抽样调查的方式B.为了调查一个省的环境污染情况,调查该省的省会城市C.了解观众对《红海行动》这部电影的评价情况,调查座位号为奇数的观众D.了解飞行员视力的达标率采取普查方式2.下列调查的样本具有代表性的是()A.了解全校同学喜欢课程情况,对某班男生进行调查B.了解某小区居民的防火意识,从每幢居民随机抽若干人进行调查C.了解商场的平均日营业额,选在周末进行调查D.了解某城区空气质量,在某个固定位置进行调查3.为了调查一批灯泡的使用寿命,适合采用的调查方式是(填“普查”或“抽样调查”).4.某中学为了解本校2000名学生所需运动服的尺码,在全校范围内随机抽取100名学生进行调查,这次调查的个体是.数据的表示第1课时扇形统计图1.某学生某月有零花钱100元,其支出情况如图所示,则下列说法不正确的是()A.捐赠款所对应的圆心角的度数为240°B.该学生捐赠款为60元C.捐赠款是购书款的2倍D.其他消费占10%2.为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并调查了所有学生对该方案的意见.根据赞成、反对、无所谓三种意见的人数之比画出如图所示的扇形统计图,图中α的度数为.3.某地中小学大力提倡“2+2”素质教育,开展几年后取得了重大成果.小明对本学期全班50名同学所选择的活动项目进行了统计,根据收集的数据制作了下表:(1)请完善表格中的数据;(2)根据上述表格中的人数百分比,制作扇形统计图.第2课时 频数直方图1.已知一组数据的最大值为46,最小值为27,在绘制频数直方图时,取组距为3,则这组数据应分成( )A .5组B .6组C .7组D .8组2.某校测量了初三(1)班学生的身高(精确到1cm ),按10cm 为一段进行分组,得到如图所示的频数分布直方图,则下列说法正确的是()A .该班人数最多的身高段的学生数为7人B .该班身高最高段的学生数为7人C .该班身高最高段的学生数为20人D .该班身高低于160.5cm 的学生数为15人3.阳泉同学参加周末社会实践活动,到“富乐花乡”蔬菜大棚中收集到20株西红柿秧上小西红柿的个数如下:32 39 45 55 60 54 60 28 56 41 51 36 44 46 40 53 37 47 45 46(1)若对这20个数按组距为8进行分组,请补全频数分布表及频数直方图;(2)通过频数直方图分析此大棚中西红柿的长势.。

北师版七年级上册数学书答案

北师版七年级上册数学书答案

精心整理[标签:标题]篇一:北师大版七年级上册数学配套练习(带答案)北师大七年级上第一章丰富的图形世界学习目标:1.经历从现实世界中抽象出几何图表的过程,感受图形世界的丰富多彩。

2.在具体情境中认识圆柱、圆锥、正方体、长方体、棱柱、棱台、球,并能用自已的语言描述它们的某些特征。

一.填空题:1.立体图形的各个面都是__________的面,这样的立体图形称为多面体.;2.图形是由________,_________,________构成的;3.物体的形状似于圆柱的有________________,类似于圆锥的有_____________________,类似于球的有__________________;(各举一例)4.围成几何体的侧面中,至少有一个是曲面的是______________;(举一例)5.正方体有_____个顶点,经过每个顶点有_________条棱,这些棱都____________;6.圆柱、圆锥、球的共同点是_____________________________;7.假如我们把笔尖看作一个点,当笔尖在纸上移动时,就能画出线,说明了______________,时钟秒针旋转时,形成一个圆面,这说明了_______________,三角板绕它的一条直角边旋转一周,形成一个圆锥体,这说明了___________________;8.圆可以分割成_____ 个扇形,每个扇形都是由___________________;9.从一个七边形的某个顶点出发,分别连结这个点与其余各顶点,可以把七边形分割成__________个三角形;10.在乒乓球、橄榄球、足球、羽毛球、冰球中,是球体的有;11.将下列几何体分类,柱体有:,锥体有(填序号);12.长方体由_______________个面_______________条棱_______________个顶点;13.半圆面绕直径旋转一周形成__________;二.选择题114.观察下图,请把左边的图形绕着给定的直线旋转一周后可能形成的几何体选出来()A B CD 15.从一个十边形的某个点出发,分别连接这个顶点与其余各顶点,可以把这个多边形分割成三角形()(A)10个(B)9个(C)8个(D)7个16.如图的几何体是下面()平面图形绕轴旋转一周得到的()(A)(B)(C)(D)18.下面图形不能围成封闭几何体的是()(A)(B)(C)(D)三.解答题:19.指出下列平面图形是什么几何体的展开图:ACB20. ⑴.下面这些基本图形和你很熟悉,试一试在括号里写出它们的名称.2() () ( ) ()( )⑵. 将这些几何体分类,并写出分类的理由.一、1.平;2.点、线、面;3.略;4.略;5.8,3,相等;6.都有一个面是曲面;7.点动成线,线动成面,面动成体;8.无数,一条弧和两条半径组成的;9.5;10.乒乓球、足球;11.(1)(2)(3),(5)(6);12.6,12,8;13.球体;二、14.D;15.C;16.B;17.A;三、18.长方体(四棱柱),圆锥,圆柱;19.(1)(从左至右)球、圆柱、圆锥、长方体、三棱柱;(2)按面分:曲面:球、圆柱、圆锥;平面:长方体、三棱柱;按柱体分:圆柱、长方体、三棱柱;球;圆锥;北师大七年级上第一章丰富的图形世界姓名学习目标:1.通过丰富的实例,进一步认识点、线、面、初步感受点、线、面之间的关系.2.进一步经历从现实世界中抽象出图形的过程,从构成图形的基本元素的角度认识常见图形;二.填空题:1.围成球的面有个;2.圆柱有_____ 个面组成,这些面相交共得____ 条线,圆锥的侧面展开图是____ ;3.圆锥是由_ __个面围成,其中__ _个平面,____个曲面,圆锥的侧面与底面3相交成条线,是线;4.圆柱的表面展开图是________________________ (用语言描述);5.图形所表示的各个部分不在同一个平面内,这样的图形称为图形;6.图形所表示的各个部分都在同一个平面内,称为图形;二.选择题:7.圆锥的侧面展开图是()(A)长方形(B)正方形(C)圆(D)扇形8.将半圆绕它的直径旋转一周形成的几何体是()(A)圆柱(B)圆锥(C)球(D)正方体9.如图所示的图形绕虚线旋转一周,所形成的几何体是(()10.以下立体图形中是棱柱的有((A)①⑤(B)①②③(C)①②④⑤(D)①②⑤[ 11.下列说法中,正确的是((A)正方体不是棱柱(B)圆锥是由3个面围成(C)正方体的各条棱都相等(D)棱柱的各条棱都相等12.将一个直角三角形绕它的最长边旋转一周,得到的几何体是((A)(B)(C)(D)13.按组成面的平或曲划分,与圆锥为同一类几何体的是(4)))))(A)正方体(B)长方体(C)球(D)棱柱14.()(A)(B)(D)15.一个正方体锯掉一个角后,顶点的个数是()(A)7个(B)8个(C)9个(D)7个或8个或9个或10个三、解答题16.请写出下列几何体的名称() ( ) ( ) ( )( ) ( ) ( ) ( )17.如图,第二行的图形绕点划线旋转一周,便形成第一行的某个图形(几何体),将对应的两个图形用线联结起来.一、1.一个;2.三,二,扇形;3.二,一,一,一,曲;4.由一个长方形和两个相等的圆形组成;5.平面;6.立体;[二、5篇二:2014年练习册上册数学七年级C北师大版答案篇三:七年级上册-北师大版-数学练习册解析与答案七年级上册-北师大版-数学练习册解析与答案北师大版七年级数学上册教学建议及期末调研要求⒈本学期(春节1月29日)的教学时间虽然不太长,但除去节假日外,实际上课也在20周左右(课时数120节),相对的下学期的时间短些;而七上教材教学课时为69—108节,七下教材教学课时为66—100节。

七年级数学上册《第三章 代数式》练习题-带答案-(北师大版)

七年级数学上册《第三章 代数式》练习题-带答案-(北师大版)

七年级数学上册《第三章代数式》练习题-带答案(北师大版)一、选择题1.对于a2+b2解释不恰当的是( )A.a,b两数的平方和B.边长分别是a,b的两正方形的面积和C.买a支单价为a元的铅笔和买b支单价为b元的铅笔所花的总钱数D.边长是a+b的正方形的面积2.一个篮球的单价为a元,一个足球的单价为b元(b>a).小明买6个篮球和2个足球,小刚买5个篮球和3个足球,则小明比小刚少花( )A.(a﹣b)元B.(b﹣a)元C.(a﹣5b)元D.(5b﹣a)元3.我国启动“家电下乡”工程,国家对购买家电补贴13%.若某种品牌彩电每台售价a元,则购买时国家需要补贴 ( )A.a元B.13%a元C.(1-13%)a元D.(1+13%)a元4.某企业今年3月份的产值为a万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( )A.(a-10%)(a+15%)万元B.a(1-10%)(1+15%)万元C.(a-10%+15%)万元D.a(1-10%+15%)万元5.某服装店新开张,第一天销售服装a件,第二天比第一天少销售14件,第三天的销售量是第二天的2倍多10件,则这三天销售了()件.A.3a﹣42B.3a+42C.4a﹣32D.3a+326.已知代数式2y2﹣2y+1的值是7,那么y2﹣y+1的值是( )A.1B.2C.3D.47.已知a﹣7b=﹣2,则4﹣2a+14b的值是( )A.0B.2C.4D.88.已知当x=1时,代数式2ax3+3bx+4值为6,那么当x=﹣1时,代数式2ax3+3bx+4值为( )A.2B.3C.﹣4D.﹣5二、填空题9.一个两位数个位为a,十位数字为b,这个两位数为.10.某厂第一年生产a件产品,第二年比第一年增加了20%,则两年共生产产品件.11.如果手机通话每分钟收费m元,那么通话n分钟收费元.12.某音像社对外出租光盘的收费方法是:每张光盘在租出后的头两天每天收0. 8元,以后每天收0.5元,那么一张光盘在租出的第n天(n是大于2的自然数),应收租金______元.13.若a-2b=3,则9-2a+4b的值为.14.如图是一个数值转换器,若输入的a的值为2,则输出的值为________.三、解答题15.用代数式表示:(1)m的倒数的3倍与m的平方差的50%;(2)x的14与y的差的14;(3)甲数a与乙数b的差除以甲、乙两数的积.16.如图,四边形ABCD与四边形CEFG是两个边长分别为a、b的正方形.(1)用a、b的代数式表示三角形BGF的面积;(2)当a=4cm,b=6cm时,求阴影部分的面积.17.移动公司开设了两种通讯业务:①“全球通”用户先交10元月租费,然后每通话一分钟,付话费0.2元;②“快捷通”用户不交月租费,每通话一分钟付话费0.4元.(1)按一个月通话a分钟计算,请你写出两种收费方式中用户应付的费用?(2)某用户一个月内通话300分钟,你认为选择哪种移动通讯业务较合适?18.已知a-b=-3,求代数式(a-b)2-2(a-b)+3的值.19.如图,在一块长为a,宽为2b的长方形铁皮中,以2b为直径分别剪掉两个半圆.(1)求剩下铁皮的面积(用含a,b的式子表示);(2)当a=4,b=1时,求剩下铁皮的面积是多少?(π取3.14)20.服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一套西装送一条领带;②西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条(x>20).(1)若该客户按方案①购买,需付款元(用含x的代数式表示);若该客户按方案②购买,需付款元(用含x的代数式表示). (2)若x=30,通过计算说明此时按哪种方案购买较为合算?参考答案1.D2.B3.B4.B5.C6.D.7.D.8.A.9.答案为:10b+a .10.答案为:2.2a.11.答案为:mn12.答案为:(0.5n+0.6)13.答案为:314.答案为:0;15.解:(1); (2)14(14x ﹣y); (3)(a ﹣b)÷ab.16.解:17.解:(1)①0.2a +10;②0.4a(2)当a=300时,0.2a +10=70(元);0.4a=120(元)因为70<100所以选择“全球通”移动通讯业务较合适18.答案为:1819.解:(1)长方形的面积为:a×2b=2ab两个半圆的面积为:π×b2=πb2∴阴影部分面积为:2ab﹣πb2(2)当a=4,b=1时∴2ab﹣πb2=2×4×1﹣3.14×1=4.8620.解:(1)40x+3200;3600+36x.(2)当x=30时,方案①:40x+3200=4400元,方案②:3600+36x=4680元因为4400<4680,所以选择方案①购买合算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大七年级上第一章丰富的图形世界第1.1.1课时家庭作业 生活中的立体图形1)学习目标:1.经历从现实世界中抽象出几何图表的过程,感受图形世界的丰富多彩。

2.在具体情境中认识圆柱、圆锥、正方体、长方体、棱柱、棱台、球,并能用自已的语言描述它们的某些特征。

一.填空题:1.立体图形的各个面都是__________的面,这样的立体图形称为多面体.; 2.图形是由________,_________,________构成的;3.物体的形状似于圆柱的有________________,类似于圆锥的有_____________________,类似于球的有__________________;(各举一例)4. 围成几何体的侧面中,至少有一个是曲面的是______________;(举一例) 5. 正方体有_____个顶点,经过每个顶点有_________条棱,这些棱都____________; 6. 圆柱、圆锥、球的共同点是_____________________________;7. 假如我们把笔尖看作一个点,当笔尖在纸上移动时,就能画出线,说明了______________,时钟秒针旋转时,形成一个圆面,这说明了_______________,三角板绕它的一条直角边旋转一周,形成一个圆锥体,这说明了___________________;8. 圆可以分割成_____ 个扇形,每个扇形都是由___________________;9. 从一个七边形的某个顶点出发,分别连结这个点与其余各顶点,可以把七边形分割成__________个三角形;10.在乒乓球、橄榄球、足球、羽毛球、冰球中,是球体的有 ; 11.将下列几何体分类,柱体有: ,锥体有 (填序号) ;12.长方体由_______________个面_______________条棱_______________个顶点; 13.半圆面绕直径旋转一周形成__________; 二.选择题新知识点要小心呦!14.观察下图,请把左边的图形绕着给定的直线旋转一周后可能形成的几何体选出来()A B C D15.从一个十边形的某个点出发,分别连接这个顶点与其余各顶点,可以把这个多边形分割成三角形()(A)10个(B)9个(C)8个(D)7个16.如图的几何体是下面()平面图形绕轴旋转一周得到的()(A)(B)(C)(D)18.下面图形不能围成封闭几何体的是()(A)(B)(C)(D)三.解答题:19.指出下列平面图形是什么几何体的展开图:A CB20. ⑴.下面这些基本图形和你很熟悉,试一试在括号里写出它们的名称.( ) ( ) ( ) ( ) ( ) ⑵. 将这些几何体分类,并写出分类的理由.第1.1.1课时家庭作业参考答案一、1.平 ;2.点、线、面;3.略;4.略;5.8,3,相等;6.都有一个面是曲面; 7.点动成线,线动成面,面动成体;8.无数,一条弧和两条半径组成的;9.5; 10.乒乓球、足球;11.(1)(2)(3),(5)(6);12.6,12,8;13.球体; 二、14.D ;15.C ;16.B ; 17.A ; 三、18.长方体(四棱柱),圆锥,圆柱;19.(1)(从左至右)球、圆柱、圆锥、长方体、三棱柱; (2)按面分:曲面:球、圆柱、圆锥;平面:长方体、三棱柱; 按柱体分:圆柱、长方体、三棱柱;球;圆锥;北师大七年级上第一章丰富的图形世界第1.1.2课时家庭作业 (平面内的立体图形2)姓名 学习目标:1.通过丰富的实例,进一步认识点、线、面、初步感受点、线、面之间的关系.2.进一步经历从现实世界中抽象出图形的过程,从构成图形的基本元素的角度认识常见图形; 二.填空题:1.围成球的面有 个;2.圆柱有_____ 个面组成,这些面相交共得____ 条线,圆锥的侧面展开图是____ ; 3.圆锥是由_ __个面围成,其中__ _个平面,___ _个曲面,圆锥的侧面与底面新知识点要小心呦!相交成条线,是线;4.圆柱的表面展开图是________________________ (用语言描述);5.图形所表示的各个部分不在同一个平面内,这样的图形称为图形;6.图形所表示的各个部分都在同一个平面内,称为图形;二.选择题:7.圆锥的侧面展开图是()(A)长方形(B)正方形(C)圆(D)扇形8.将半圆绕它的直径旋转一周形成的几何体是()(A)圆柱(B)圆锥(C)球(D)正方体9.如图所示的图形绕虚线旋转一周,所形成的几何体是()()10.以下立体图形中是棱柱的有()(A)①⑤ (B)①②③ (C)①②④⑤ (D)①②⑤[ 11.下列说法中,正确的是()(A)正方体不是棱柱(B)圆锥是由3个面围成(C)正方体的各条棱都相等(D)棱柱的各条棱都相等12.将一个直角三角形绕它的最长边旋转一周,得到的几何体是()(A)(B)(C)(D)13.按组成面的平或曲划分,与圆锥为同一类几何体的是()(A)正方体(B)长方体(C)球(D)棱柱14.如图,沿着虚线旋转一周得到的图形为()(A)(B)(C)(D)15.一个正方体锯掉一个角后,顶点的个数是()(A)7个(B)8个(C)9个(D)7个或8个或9个或10个三、解答题16.请写出下列几何体的名称( ) ( ) ( ) ( )( ) ( ) ( ) ( ) 17.如图,第二行的图形绕点划线旋转一周,便形成第一行的某个图形(几何体),将对应的两个图形用线联结起来.第1.1.2课时家庭作业参考答案一、1.一个;2.三,二,扇形;3.二,一,一,一,曲;4.由一个长方形和两个相等的圆形组成;5.平面;6.立体;[二、7.D;8.C;9.B;10.A;11.C;12.D;13.C;14.C;15.D;三、16.略;17.略;截一个几何体练习卷(1)一、填空题1.用一个平面去截一个球体所得的截面图形是__________.2.如图1,长方体中截面BB1D1D是长方体的对角面,它是__________.3.在正方体中经过从一个顶点出发的三条棱的中点的截面是_________.4.一座大楼,小明只看到了楼顶,则小明的看到的图叫__________.5.现有一张长52cm,宽28cm的矩形纸片,要从中剪出长15cm,宽12cm的矩形小纸片(不能粘贴),则最多能剪出__________张.6.一个正方体的主视图、左视图及俯视图都是__________.二、选择题7.用一个平面去截一个正方体,截面图形不可能是()A.长方形; B.梯形; C.三角形; D.圆8.用一个平面去截一个几何体,如果截面的形状是圆,则这个几何体不可能是()A.圆柱; B.圆锥; C.正方体; D.球9.小明看到了“实验楼”三个字,而且能看到该楼所有的门窗,则小明看到的图是()A.俯视图; B.左视图; C.主视图; D.都有可能10.截去四边形的一个角,剩余图形不可能是()A.三角形; B.四边形; C.五边形; D.圆三、解答题11.如图2,将等腰三角形对折沿着中间的折痕剪开,得到两个形状和大小都相同的直角三角形,将这两个直角三角形拼在一起,使得它有一条相等的边是公有的,你能拼出多少种不同的几何图形?并请你分别说出所拼的图形的名称.12.用火柴棒拼搭等边三角形(1)用火柴棒拼搭出两个边长等于棒长的等边三角形,你有几种拼法,最少需要几根火柴棒?(2)拼6个边长等于棒长的等边三角形,看谁用的棒最少?(3)用6根火柴棒拼搭等边三角形,若允许搭成的等边三角形不在同一平面内,那么可以搭多少个?13.选择你所熟悉的实物模型作出它的俯视图、主视图及左视图.14.用一个平面去截圆锥,可以得到几种不同的图形?动手试一试.参考答案一、1.圆2.矩形3.三角形4.俯视图5.7 6.正方形二、7.D 8.C 9.C 10.D三、11.共可以拼出以下六种图形((1)~(6))(1)、(3)是等腰三角形;(2)、(4)是平行四边形;(5)是长方形;(6)可以称它为筝形.12.(1)2、5 (2)12 (3)4(1)有两种情况,至少要用5根火柴棒,如图(2);而图(1)则用6根火柴棒.(2)最少要12根火柴棒,如图(4);图(3)用了13根.(3)若可以不在同一个平面内拼搭,可以搭4个等边三角形,如图(5).13.略14.略截一个几何体练习卷(2)一、判断题1.用一个平面去截一个正方体,截出的面一定是正方形或长方形. ()2.用一个平面去截一个圆柱,截出的面一定是圆. ()3.用一个平面去截圆锥,截出的面一定是三角形. ()4.用一个平面去截一个球,无论如何截,截面都是一个圆. ()二、选择题1.用一个平面去截圆锥,得到的平面不可能是()2.用一个平面去截一个圆柱,得到的图形不可能是()三、用平面去截一个正方体,截面的形状可能是平行四边形吗?截一截,想一想.四、指出下列几何体的截面形状.___________ ___________*自我陶醉编写一道自己感兴趣并与本节内容相关的题,解答出来.参考答案一、1.×2.×3.×4.√二、1.C 2.D三、可能四、五边形圆形1.3 截一个几何体一、选择题1、有下列几何体:(1)圆柱;(2)正方体;(3)棱柱;(4)球;(5)圆锥;(6)长方体。

则这些几何体中截面可能是圆的有()A、2种B、3种C、4种D、5种2、下列说法中,正确的是()A、用一个平面去截一个圆锥,可以是椭圆B、棱柱的所有侧棱长都相等C、用一个平面去截一个圆柱体,截面可以是梯形D、用一个平面去截一个长方体截面不能是正方形3、正方体被一个平面所截,所得边数最多的多边形是()A、四边形B、五边形C、六边形D、七边形4、如图1–16,用一个平面去截下列几何体,所得截面与其他三个不同的是()二、填空题1、如果用一个平面去截一个几何体,所得任意截面都是圆,则这个几何体是______.2、用一个平面去截长方体、二棱柱、圆柱和圆锥,其中不能截出三角形的几何体是_.3、说一说,图1–17中的截面分别是:4、用一个平面截一个几何体,所截出的面如图1–18所示,共有四种形式,试猜想,该几何体可能是______.三、试一试1、如图1–19,下列立体图形被一刀切入一部分,写出剩下部分几何体的名称。

2、用平面去截一个三棱柱,很容易截出一个三角形,你还能截出一个平行四边形吗?能截出一个梯形吗?能截出一个五边形吗?(借助下图进行分析,不必画出截面)3、一个四棱往被一刀切去一部分,试举例说明剩下的部分是否可能还是四棱柱.四、议一议1、如果用平面截掉一个长方体的一个角,剩下的几何体有几个顶点、几条棱、几个面?2、把一个三陵柱分割成四个小三棱柱,你能找出多少种个同的分割方法?请把你的想法与同伴进行交流.3、在一个圆柱体中你能用一个平面截出一个三角形吗?能截出一个半圆吗?在什么条件下,你能截出一个正方形?1.5生活中的平面图形一、选择题1.如图,图中三角形的个数为()A, 2 B, 18 C, 19 D, 20第1题图第2题图2.将两个完全相同的三角形,如图,拼在一起成为四边形,使它们有一条线等的边完全重合,则能拼出不同的平面图形()种A, 2 B, 4 C, 6 D, 8二、填空题1. 如图,如果OA,OB,OC是圆的三条半径,那么图中有个扇形.2.如果从一个多边形的一个顶点出发,分别连接这个定点与其余各顶点,可将这个多边形分割成2003个三角形,那么此多边形的边数为3(1)若将n边形内部任意取一点P,将P与各顶点连接起来,则可将多边形分割成个三角形.(2)若点P取载多边形的一条边上(不是顶点),在将P与n边形各顶点连接起来,则可将多边形分割成个三角形.4.如图,图中共有个梯形。

相关文档
最新文档