八年级三角形填空选择达标检测卷(Word版 含解析)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级三角形填空选择达标检测卷(Word 版 含解析) 一、八年级数学三角形填空题(难) 1.如图,C 在直线BE 上,∠=︒,∠A m ABC 与ACE ∠的角平分线交于点1A ,则1A =_____︒;若再作11A BE A CE ∠∠、的平分线,交于点2A ;再作22A BE A CE ∠∠、的平分线,交于点3A ;依此类推,10A ∠= _________︒.
【答案】(
2m ) (1024
m ) 【解析】
【分析】 根据“角平分线定义”和“三角形的外角等于与它不相邻的两个内角和”求出规律,直接利用规律解题.
【详解】
解:∵∠A 1=∠A 1CE-∠A 1BC=
12∠ACE-12∠ABC=12(∠ACE-∠ABC )=12∠A=2m °. 依此类推∠A 2=
224m m ︒︒=,∠A 3=328m m ︒︒=,…,∠A 10=1021024m m ︒︒=. 故答案为:(
)2m ;()1024
m . 【点睛】
此题主要考查了三角形的内角和外角之间的关系以及角平分线的定义,三角形的外角等于与它不相邻的两个内角和.
2.如图,ABC 中,点D 在AC 的延长线上,E 、F 分别在边AC 和AB 上,BFE ∠与BCD ∠的平分线相交于点P ,若ABC ∠=70°FEC ∠=80°,则P ∠=______.
【答案】85°
【解析】
【分析】
根据四边形内角和等于360°,在四边形FECB 中∠B +∠BFE +∠FEC +∠BCE =360°,结合角平分线的定义计算即可得∠1-∠2=15°;再在四边形EFPC 中求出∠1-∠2+∠P =110°即可解答.
【详解】
解:
∵∠BFE =2∠1,∠BCD =2∠2,
又∵∠BFE +∠ABC +∠FEC +∠BCE =360°,ABC ∠=70°,FEC ∠=80°,
∴2∠1+(180°-2∠2)+70°+80°=360°,
∴∠1-∠2=15°;
∵在四边形EFPC 中,∠PFE +∠FEC +∠P +∠PCE =360°,
∴∠1+80°+(180°-∠2)+∠P =360°,
∴∠1-∠2+∠P =100°,
∴∠P =85°,
故答案为:85°.
【点睛】
本题考查的是三角形内角和定理和四边形内角和定理的应用,掌握三角形内角和等于180°和四边形内角和等于360°是解题的关键.
3.小明在用计算器计算一个多边形的内角和时,得出的结果为2005°,小芳立即判断他的结构是错误的,小明仔细地复算了一遍,果然发现自己把一个角的度数输入了两遍.你认为正确的内角和应该是________.
【答案】1980
【解析】
【详解】
解:设多边形的边数为n ,多加的角度为α,则
(n-2)×180°=2005°-α,
当n=13时,α=25°,
此时(13-2)×180°=1980°,α=25°
故答案为1980.
4.一机器人以0.3m/s 的速度在平地上按下图中的步骤行走,那么该机器人从开始到停止所需时间为__s .
【答案】160.
【解析】
试题分析:该机器人所经过的路径是一个正多边形,利用360°除以45°,即可求得正多边形的边数,即可求得周长,利用周长除以速度即可求得所需时间.
试题解析:360÷45=8,
则所走的路程是:6×8=48m,
则所用时间是:48÷0.3=160s.
考点:多边形内角与外角.
5.如图,在△ABC中,∠B和∠C的平分线交于点O,若∠A=50°,则∠BOC=_____.
【答案】115°.
【解析】
【分析】
根据三角形的内角和定理得出∠ABC+∠ACB=130°,然后根据角平分线的概念得出
∠OBC+∠OCB,再根据三角形的内角和定理即可得出∠BOC的度数.
【详解】
解;∵∠A=50°,
∴∠ABC+∠ACB=180°﹣50°=130°,
∵∠B和∠C的平分线交于点O,
∴∠OBC=1
2
∠ABC,∠OCB=
1
2
∠ACB,
∴∠OBC+∠OCB=1
2
×(∠ABC+∠ACB)=
1
2
×130°=65°,
∴∠BOC=180°﹣(∠OBC+∠OCB)=115°,
故答案为:115°.
【点睛】
本题考查了三角形的内角和定理和三角形的角平分线的概念,关键是求出∠OBC+∠OCB 的度数.
6.一个等腰三角形的两边长分别为4cm和9cm,则它的周长为__cm.
【答案】22
【解析】
【分析】
底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.
【详解】
试题解析:①当腰是4cm,底边是9cm时:不满足三角形的三边关系,因此舍去.
②当底边是4cm,腰长是9cm时,能构成三角形,则其周长=4+9+9=22cm.
故填22.
【点睛】
本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.
7.如图,AD是△ABC的中线,CE是△ACD的中线,S△ACE=3cm2,则S△ABC=_____cm2.
【答案】12cm2.
【解析】
【分析】
根据三角形的面积公式,得△ACE的面积是△ACD的面积的一半,△ACD的面积是△ABC 的面积的一半.
【详解】
解:∵CE是△ACD的中线,
∴S△ACD=2S△ACE=6cm2.
∵AD是△ABC的中线,
∴S△ABC=2S△ACD=12cm2.
故答案为12cm2.
【点睛】
此题主要是根据三角形的面积公式,得三角形的中线把三角形的面积分成了相等的两部分.
8.两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于 ______ 度.
【答案】108°
【解析】
【分析】
如图,易得△OCD为等腰三角形,根据正五边形内角度数可求出∠OCD,然后求出顶角
∠COD,再用360°减去∠AOC、∠BOD、∠COD即可
【详解】
∵五边形是正五边形,
∴每一个内角都是108°,
∴∠OCD=∠ODC=180°-108°=72°,
∴∠COD=36°,
∴∠AOB=360°-108°-108°-36°=108°.
故答案为108°
【点睛】
本题考查正多边形的内角计算,分析出△OCD是等腰三角形,然后求出顶角是关键.
9.如果一个n边形的内角和等于它的外角和的3倍,则n=______.
【答案】8
【解析】
【分析】
根据多边形内角和公式180°(n-2)和外角和为360°可得方程180(n-2)=360×3,再解方程即可.
【详解】
解:由题意得:180(n-2)=360×3,
解得:n=8,
故答案为:8.
【点睛】
此题主要考查了多边形内角和与外角和,要结合多边形的内角和公式与外角和的关系来寻求等量关系,构建方程即可求解.
10.如图,在△ABC中,∠A=60°,若剪去∠A得到四边形BCDE,则∠1+∠2=______.
【答案】240.
【解析】
【详解】
试题分析:∠1+∠2=180°+60°=240°.
考点:1.三角形的外角性质;2.三角形内角和定理.
二、八年级数学三角形选择题(难)
11.如图,∠ABC =∠ACB ,BD 、CD 分别平分△ABC 的内角∠ABC 、外角∠ACP ,BE平分
外角∠MBC 交 DC 的延长线于点 E ,以下结论:①∠BDE =1
2
∠BAC ;② DB⊥BE ;
③∠BDC +∠ACB= 90︒;④∠BAC + 2∠BEC = 180︒ .其中正确的结论有()
A.1 个B.2 个C.3 个D.4 个【答案】D
【解析】
【分析】
根据角平分线的定义、三角形的内角和定理、三角形的外角的性质、判断即可.【详解】
① ∵BD、CD分别平分△ABC的内角∠ABC、外角∠ACP,
∴∠ACP=2∠DCP,∠ABC=2∠DBC,
又∵∠ACP=∠BAC+∠ABC,∠DCP=∠DBC+∠BDC,
∴∠BAC=2∠BDE,
∴∠BDE =1
2
∠BAC
∴①正确;
②∵BD、BE分别平分△ABC的内角∠ABC、外角∠MBC,
∴∠DBE=∠DBC+∠EBC=1
2
∠ABC+
1
2
∠MBC=
1
2
×180°=90°,
∴EB⊥DB,
故②正确,
③∵∠DCP=∠BDC+∠CBD,2∠DCP=∠BAC+2∠DBC,∴2(∠BDC+∠CBD)=∠BAC+2∠DBC,
∴∠BDC=1
2
∠BAC,
∵∠BAC+2∠ACB=180°,
∴12∠BAC+∠ACB=90°,
∴∠BDC+∠ACB=90°,
故③正确,
④∵∠BEC=180°−
12 (∠MBC+∠NCB) =180°−
12 (∠BAC+∠ACB+∠BAC+∠ABC) =180°−12
(180°+∠BAC) ∴∠BEC=90°−
12∠BAC, ∴∠BAC+2∠BEC=180°,故④正确,
即正确的有4个,
故选D
【点睛】
此题考查三角形的外角性质,平行线的判定与性质,三角形内角和定理,解题关键在于掌握各性质定理
12.如图:在△ABC 中,G 是它的重心,AG ⊥CD ,如果32BG AC ⋅=,则△AGC 的面积的最大值是( )
A .3
B .8
C .43
D .6 【答案】B
【解析】
分析:延长BG 交AC 于D .由重心的性质得到 BG =2GD ,D 为AC 的中点,再由直角三角形斜边上的中线等于斜边的一半,得到AC =2GD ,即有BG =AC ,从而得到AC 、GD 的长.当GD ⊥AC 时,△AGC 的面积的最大,最大值为:
12AC •GD ,即可得出结论. 详解:延长BG 交AC 于D .
∵G 是△ABC 的重心,∴BG =2GD ,D 为AC 的中点.
∵AG ⊥CG ,∴△AGC 是直角三角形,∴AC =2GD ,∴BG =AC .
∵BG •AC =32,∴AC 322,GD =22当GD ⊥AC 时,.△AGC 的面积的最大,最
大值为:1
2
AC•GD=
1
4222
2
⨯⨯=8.故选B.
点睛:本题考查了重心的性质.解题的关键是熟知三角形的重心到顶点的距离等于它到对边中点距离的2倍.
13.如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF交AD于点G,交BE于点H,下面说法正确的是()
①△ABE的面积与△BCE的面积相等;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CH
A.①②③B.②③④C.①③④D.①②③④
【答案】A
【解析】
根据三角形中线的性质可得:△ABE的面积和△BCE的面积相等,故①正确,
因为∠BAC=90°,所以∠AFG+∠ACF=90°,因为AD是高,所以∠DGC+∠DCG=90°,
因为CF是角平分线,所以∠ACF=∠DCG,所以∠AFG=∠DGC,又因为∠DGC=∠AGF,所以
∠AFG=∠AGF,故②正确,
因为∠FAG+∠ABC=90°,∠ACB+∠ABC=90°,所以∠FAG=∠ACB,又因为CF是角平分线,所以
∠ACB=2∠ACF,所以∠FAG=2∠ACF,故③正确,
④假设BH=CH,∠ACB=30°,则∠HBC=∠HCB =15°,∠ABC=60°,
所以∠ABE=60°-15°=45°,因为∠BAC=90°,所以AB=AE,因为AE=EC,所以AB=1
2
AC,这与在直
角三角形中30°所对直角边等于斜边的一半相矛盾,所以假设不成立,故④不一定正确,故选A.
14.有下列说法:
①有一个角为60°的等腰三角形是等边三角形;
②三边长为、、3的三角形为直角三角形;
③等腰三角形的两边长为3、4,则等腰三角形的周长为10;
④一边上的中线等于这边长的一半的三角形是等腰直角三角形.
其中正确的个数是()
A.4个 B.3个 C.2个 D.1个
【答案】C
试题分析:根据等边三角形的性质可知,有一个角为60°的等腰三角形是等边三角形,故①正确;
根据三边可知:,,3²=9,因此可知:,由勾股定理的逆定理可知其是直角三角形,故②正确;
由等腰三角形的三边可知其边长为:3,3,4或3,4,4,则周长为10或11,故③不正确;由一边上的中线等于这边长的一半的直角三角形是等腰直角三角形,故④不正确.
故选:C
的度数15.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则3
等于()
A.50°B.30°C.20°D.15°
【答案】C
【解析】
【分析】
根据平行和三角形外角性质可得∠2=∠4=∠1+∠3,代入数据即可求∠3.
【详解】
如图所示,
∵AB∥CD
∴∠2=∠4=∠1+∠3=50°,
∴∠3=∠4-30°=20°,
故选C.
16.如图,直线a∥b,若∠1=50°,∠3=95°,则∠2的度数为()
A.35°B.40°C.45°D.55°
【答案】C
【分析】
根据三角形的一个外角等于与它不相邻的两个内角的和,得到∠4的度数,再根据平行线的性质,即可得出∠2的度数.
【详解】
解:如图,
根据三角形外角性质,可得∠3=∠1+∠4,
∴∠4=∠3-∠1=95°-50°=45°,
∵a∥b,
∴∠2=∠4=45°.
故选C.
【点睛】
本题考查了平行线的性质,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.
17.如图,三角形ABC中,D为BC上的一点,且S△ABD=S△ADC,则AD为()
A.高B.角平分线C.中线D.不能确定
【答案】C
【解析】
试题分析:三角形ABD和三角形ACD共用一条高,再根据S△ABD=S△ADC,列出面积公式,可得出BD=CD.
解:设BC边上的高为h,
∵S△ABD=S△ADC,
∴,
故BD=CD,即AD是中线.故选C.
考点:三角形的面积;三角形的角平分线、中线和高.
18.如果一个多边形的内角和是1800°,这个多边形是()
A.八边形B.十四边形C.十边形D.十二边形
【答案】D
【解析】
【分析】
n边形的内角和可以表示成(n﹣2)•180°,设这个正多边形的边数是n,就得到方程,从而求出边数.
【详解】
这个正多边形的边数是n,根据题意得:
(n﹣2)•180°=1800°
解得:n=12.
故选D.
【点睛】
本题考查了多边形的内角和定理.注意多边形的内角和为:(n﹣2)×180°.
19.下列长度的三根小木棒能构成三角形的是( )
A.2cm,3cm,5cm B.7cm,4cm,2cm C.3cm,4cm,8cm D.3cm,3cm,4cm 【答案】D
【解析】
【详解】
A.因为2+3=5,所以不能构成三角形,故A错误;
B.因为2+4<6,所以不能构成三角形,故B错误;
C.因为3+4<8,所以不能构成三角形,故C错误;
D.因为3+3>4,所以能构成三角形,故D正确.
故选D.
20.如图,AB∥CD,DE⊥BE,BF、DF分别为∠ABE、∠CDE的角平分线,则∠BFD=()
A.110°B.120°C.125°D.135°
【答案】D
【解析】
【分析】
【详解】
如图所示,过E作EG∥AB.∵AB∥CD,∴EG∥CD,
∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,
∴∠ABE+∠BED+∠CDE=360°.
又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,
∴∠FBE+∠FDE=1
2
(∠ABE+∠CDE)=1
2
(360°﹣90°)=135°,
∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.
故选D.
【点睛】
本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.。

相关文档
最新文档