2020-2021初中数学代数式分类汇编及解析(1)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021初中数学代数式分类汇编及解析(1)
一、选择题
1.将(mx +3)(2﹣3x )展开后,结果不含x 的一次项,则m 的值为( ) A .0
B .92
C .﹣92
D .32 【答案】B
【解析】
【分析】
根据多项式乘以多项式的法则即可求出m 的值.
【详解】
解:(mx +3)(2-3x )
=2mx -3mx 2+6-9x
=-3mx 2+(2m -9)x +6
由题意可知:2m -9=0,
∴m =92
故选:B .
【点睛】
本题考查多项式乘以多项式,解题的关键是熟练运用整式的运算法则,本题属于基础题型.
2.下列各式中,计算正确的是( )
A .835a b ab -=
B .352()a a =
C .842a a a ÷=
D .23a a a ⋅= 【答案】D
【解析】
【分析】
分别根据合并同类项的法则、同底数幂的乘法法则、幂的乘方法则以及同底数幂除法法则解答即可.
【详解】
解:A 、8a 与3b 不是同类项,故不能合并,故选项A 不合题意;
B 、()326a a =,故选项B 不合题意;
C 、844a a a ÷=,故选项C 不符合题意;
D 、23a a a ⋅=,故选项D 符合题意.
故选:D .
【点睛】
本题主要考查了幂的运算性质以及合并同类项的法则,熟练掌握运算法则是解答本题的关键.
3.观察等式:232222+=-;23422222++=-;2345222222+++=-⋅⋅⋅已知按一定规律排列的一组数:502、512、522、⋅⋅⋅、992、1002.若502a =,用含a 的式子表示这组数的和是( )
A .222a a -
B .2222a a --
C .22a a -
D .22a a +
【答案】C
【解析】
【分析】
根据题意,一组数:502、512、522、⋅⋅⋅、992、1002的和为250+251+252+…+299+2100==a +(2+22+…+250)a ,进而根据所给等式的规律,可以发现2+22+…+250=251-2,由此即可求得答案.
【详解】
250+251+252+…+299+2100
=a +2a +22a + (250)
=a +(2+22+…+250)a ,
∵232222+=-, 23422222++=-,
2345222222+++=-,
…,
∴2+22+…+250=251-2,
∴250+251+252+…+299+2100
=a +(2+22+…+250)a
=a +(251-2)a
=a +(2 a -2)a
=2a 2-a ,
故选C.
【点睛】
本题考查了规律题——数字的变化类,仔细观察,发现其中哪些发生了变化,哪些没有发生变化,是按什么规律变化的是解题的关键.
4.观察下列图形:( )
它们是按一定规律排列的,依照此规律,那么第7个图形中共有五角星的个数为( ) A .20
B .21
C .22
D .23
【答案】C
【解析】
【分析】
设第n个图形共有a n(n为正整数)个五角星,根据各图形中五角星个数的变化可找出变化规律“a n=3n+1(n为正整数)”,再代入n=7即可得出结论.
【详解】
解:设第n个图形共有a n(n为正整数)个五角星,
∵a1=4=3×1+1,a2=7=3×2+1,a3=10=3×3+1,a4=13=3×4+1,…,
∴a n=3n+1(n为正整数),
∴a7=3×7+1=22.
故选:C.
【点睛】
本题考查了规律型:图形的变化类,根据各图形中五角星个数的变化,找出变化规律“a n=3n+1(n为正整数)”是解题的关键.
5.下列计算正确的是()
A.2x2•2xy=4x3y4B.3x2y﹣5xy2=﹣2x2y
C.x﹣1÷x﹣2=x﹣1D.(﹣3a﹣2)(﹣3a+2)=9a2﹣4
【答案】D
【解析】
A选项:2x2·2xy=4x3y,故是错误的;
B选项:3x2y和5xy2不是同类项,不可直接相加减,故是错误的;
C.选项:x-1÷x-2=x ,故是错误的;
D选项:(-3a-2)(-3a+2)=9a2-4,计算正确,故是正确的.
故选D.
6.计算的值等于()
A.1 B.C.D.
【答案】C
【解析】
【分析】
直接利用幂的乘方运算法则、积的乘方运算法则将原式变形进而得出答案.
【详解】
原式=

=.
故选C .
【点睛】
此题主要考查了幂的乘方运算以及积的乘方运算,正确将原式变形是解题关键.
7.如图1所示,有一张长方形纸片,将其沿线剪开,正好可以剪成完全相同的8个长为a ,宽为b 的小长方形,用这8个小长方形不重叠地拼成图2所示的大正方形,则大正方形中间的阴影部分面积可以表示为( )
A .2()a b -
B .29b
C .29a
D .22a b -
【答案】B
【解析】
【分析】 根据图1可得出35a b =,即53
a b =,图1长方形的面积为8ab ,图2正方形的面积为2(2)a b +,阴影部分的面积即为正方形的面积与长方形面积的差.
【详解】
解:由图可知,图1长方形的面积为8ab ,图2正方形的面积为2(2)a b +
∴阴影部分的面积为:22(2)8(2)a b ab a b +-=-
∵35a b =,即53
a b = ∴阴影部分的面积为:2
22(2)()39
b b a b -=-= 故选:B .
【点睛】
本题考查的知识点是完全平方公式,根据图1得出a ,b 的关系是解此题的关键.
8.5. 某企业今年3月份产值为万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( )
A .(-10%)(+15%)万元
B .(1-10%)(1+15%)万元
C .(-10%+15%)万元
D .(1-10%+15%)万元
【解析】
列代数式.据3月份的产值是a万元,用a把4月份的产值表示出来a(1-10%),从而得出5月份产值列出式子a1-10%)(1+15%).故选B.
9.在长方形内,若两张边长分别为和()的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),长方形总未被这两张正方形纸片覆盖的部分用阴影表示,若图1中阴影部分的面积为,图2中阴影部分的面积和为,则关于,的大小关系表述正确的是()
A.B.C.D.无法确定
【答案】A
【解析】
【分析】
利用面积的和差分别表示出,,利用整式的混合运算计算他们的差即可比较.
【详解】
=(AB-a)·a+(CD-b)(AD-a)
=(AB-a)·a+(AD-a)(AB-b)
=(AB-a)(AD-b)+(CD-b)(AD-a)=(AB-a)(AD-b)+(AB-b)(AD-a)
∴-=(AB-a)(AD-b)+(AB-b)(AD-a)-(AB-a)·a-(AD-a)(AB-b)
=(AB-a)(AD-a-b)
∵AD<a+b,
∴-<0,

选A.
【点睛】
此题主要考查此题主要考查整式的运算,解题的关键是熟知整式的乘法法则.
10.多项式2a2b﹣ab2﹣ab的项数及次数分别是()
A.2,3 B.2,2 C.3,3 D.3,2
【解析】
【分析】
多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,根据这个定义即可判定.
【详解】
2a 2b ﹣ab 2﹣ab 是三次三项式,故次数是3,项数是3.
故选:C.
【点睛】
此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.
11.下列运算中,正确的是( )
A .236x x x ⋅=
B .333()ab a b =
C .33(2)6a a =
D .239-=-
【答案】B
【解析】
【分析】
分别根据同底数幂的乘法法则,积的乘方法则以及负整数指数幂的运算法则逐一判断即可.
【详解】
x 2•x 3=x 5,故选项A 不合题意;
(ab )3=a 3b 3,故选项B 符合题意;
(2a )3=8a 6,故选项C 不合题意; 3−2=19
,故选项D 不合题意. 故选:B .
【点睛】 此题考查同底数幂的乘法,幂的乘方与积的乘方以及负整数指数幂的计算,熟练掌握幂的运算法则是解题的关键.
12.图(1)是一个长为2a ,宽为2()b a b >的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )
A .ab
B .2()a b +
C .2()a b -
D .22a b -
【答案】C
【解析】
【分析】 图(2)的中间部分是正方形,边长为a-b ,根据图形列面积关系式子即可得到答案.
【详解】
中间部分的四边形是正方形,边长为:a+b-2b=a-b ,
∴面积是2()a b -,
故选:C.
【点睛】
此题考查完全平方公式的几何背景,观察图形得到线段之间的关系是解题的关键.
13.下列算式能用平方差公式计算的是( )
A .(2)(2)a b b a +-
B .11(1)(1)22x x +-
- C .(3)(3)x y x y --+
D .()()m n m n ---+ 【答案】D
【解析】
【分析】
利用平方差公式的结构特征判断即可.
【详解】
(-m-n )(-m+n )=(-m )2-n 2=m 2-n 2,
故选D .
【点睛】
此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.
14.按如图所示的运算程序,能使输出y 的值为1的是( )
A .a =3,b =2
B .a =﹣3,b =﹣1
C .a =1,b =3
D .a =4,b =2
【答案】A
【解析】
【分析】 根据题意,每个选项进行计算,即可判断.
【详解】
解:A 、当a =3,b =2时,y =12a -=132
-=1,符合题意; B 、当a =﹣3,b =﹣1时,y =b 2﹣3=1﹣3=﹣2,不符合题意;
C 、当a =1,b =3时,y =b 2﹣3=9﹣3=6,不符合题意;
D 、当a =4,b =2时,y =
12a -=142-=12
,不符合题意. 故选:A .
【点睛】
本题考查有理数的混合运算,代数式求值等知识,解题的关键是理解题意,属于中考常考题型.
15.计算1.252 017×2?01945⎛⎫ ⎪⎝⎭
的值是( ) A .45 B .1625 C .1 D .-1
【答案】B
【解析】
【分析】
根据同底数幂的乘法底数不变指数相加,可得积的乘方,根据积的乘方等于乘方的积,可得答案.
【详解】
原式=1.252017×(
45)2017×(45)2 =(1.25×
45)2012×(45)2 =1625
. 故选B .
【点睛】
本题考查了积的乘方,利用同底数幂的乘法底数不变指数相加得出积的乘方是解题关键.
16.下列计算正确的是()
A .4482a a a +=
B .236a a a •=
C .4312()a a =
D .623a a a ÷=
【答案】C
【解析】
【分析】
根据合并同类项、同底数幂的乘除法公式、幂的乘方公式逐项判断,即可求解.
【详解】
A 、4442a a a +=,故错误;
B 、235a a a •=,故错误;
C 、4312()a a =,正确;
D 、624a a a ÷=,故错误;
故答案为:C.
【点睛】
本题考查了整式的运算,解题的关键是熟练掌握合并同类项的运算法则、同底数幂的乘除法公式、幂的乘方公式.
17.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()
A .y=2n+1
B .y=2n +n
C .y=2n+1+n
D .y=2n +n+1
【答案】B
【解析】
【详解】 ∵观察可知:左边三角形的数字规律为:1,2,…,n ,
右边三角形的数字规律为:2,
,…,, 下边三角形的数字规律为:1+2,
,…,, ∴最后一个三角形中y 与n 之间的关系式是y=2n +n.
故选B .
【点睛】
考点:规律型:数字的变化类.
18.在很小的时候,我们就用手指练习过数数,一个小朋友按如图所示的规则练习数数,数到2019时对应的指头是( )(说明:数1、2、3、4、5对应的指头名称依次为大拇指、食指、中指、无名指、小指)
A .食指
B .中指
C .小指
D .大拇指
【答案】B
【解析】
【分析】
根据题意,观察图片,可得小指、大拇指所表示的数字的规律,及其计数的顺序,进而可得答案.
【详解】
解:∵大拇指对的数是1+8n ,小指对的数是5+8n .食指、中指、无名指对的数介于它们之间.
又∵2019是奇数,201925283=⨯+,
∴数到2019时对应的指头是中指.
故选:B .
【点睛】
此题主要考查了数字变化类,只需找出大拇指和小指对应的数的规律即可.关键规律为:大拇指对的数是1+8n ,小指对的数是5+8n .食指、中指、无名指对的数介于它们之间.
19.若x 2+2(m+1)x+25是一个完全平方式,那么m 的值( )
A .4 或-6
B .4
C .6 或4
D .-6
【答案】A
【解析】
【详解】
解:∵x 2+2(m+1)x+25是一个完全平方式,
∴△=b 2-4ac=0,
即:[2(m+1)]2-4×25=0
整理得,m 2+2m-24=0,
解得m 1=4,m 2=-6,
所以m 的值为4或-6.
故选A.
20.下列说法正确的是()
A .若 A 、
B 表示两个不同的整式,则
A B 一定是分式 B .()2442a a a ÷=
C .若将分式xy x y
+中,x 、y 都扩大 3 倍,那么分式的值也扩大 3 倍 D .若35,34m n ==则253
2m n -= 【答案】C
【解析】
【分析】
根据分式的定义、幂的乘方、同底数幂相除、分式的基本性质解答即可.
【详解】
A. 若 A 、B 表示两个不同的整式,如果B 中含有字母,那么称
A B 是分式.故此选项错误. B. ()244844a a a a a ÷=÷=,故故此选项错误.
C. 若将分式
xy x y +中,x 、y 都扩大 3 倍,那么分式的值也扩大 3 倍,故此选项正确. D. 若35,34m n ==则()22253
332544
m n m n -=÷=÷=,故此选项错误. 故选:C
【点睛】 本题考查的是分式的定义、幂的乘方、同底数幂相除、分式的基本性质,熟练掌握各定义、性质及运算法则是关键.。

相关文档
最新文档