万载县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

万载县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 在△ABC 中,若A=2B ,则a 等于( )A .2bsinA
B .2bcosA
C .2bsinB
D .2bcosB
2. ,分别为双曲线(,)的左、右焦点,点在双曲线上,满足,
1F 2F 22
221x y a b
-=a 0b >P 120PF PF ⋅=
若 )
12PF F ∆
C. D. 11
+【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力.3. 将函数f (x )=3sin (2x+θ)(﹣
<θ<
)的图象向右平移φ(φ>0)个单位长度后得到函数g (x )的
图象,若f (x ),g (x )的图象都经过点P (0,),则φ的值不可能是(

A .
B .π
C .
D .
4. 已知向量||=, •=10,|+|=5,则||=( )
A .
B .
C .5
D .25
5. 设集合A={x|2x ≤4},集合B={x|y=lg (x ﹣1)},则A ∩B 等于( )
A .(1,2)
B .[1,2]
C .[1,2)
D .(1,2]
6. 袋中装有红、黄、蓝三种颜色的球各2个,无放回的从中任取3个球,则恰有两个球同色的概率为(
)A .B .
C .
D .
7. 数列1,,,,,,,,,,…的前100项的和等于( )
A .
B .
C .
D .
8. 已知三棱柱 的侧棱与底面边长都相等,在底面上的射影为的中点, 111ABC A B C -1A ABC BC 则异面直线与所成的角的余弦值为(

AB 1CC
A B D .
34
9. 设x ∈R ,则x >2的一个必要不充分条件是( )
A .x >1
B .x <1
C .x >3
D .x <3
10.给出函数,如下表,则的值域为(

()f x ()g x (())f g x
A .
B .
C .
D .以上情况都有可能
{}4,2{}1,3{}1,2,3,411.已知数列的首项为,且满足,则此数列的第4项是( ){}n a 11a =111
22
n n n a a +=+A .1
B . C.
D .1234
5
8
12.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若﹣
+1=0,则角B 的度数是(

A .60°
B .120°
C .150°
D .60°或120°
二、填空题
13.已知=1﹣bi ,其中a ,b 是实数,i 是虚数单位,则|a ﹣bi|= .
14.对于|q|<1(q 为公比)的无穷等比数列{a n }(即项数是无穷项),我们定义S n (其中S n 是数列{a n }
的前n 项的和)为它的各项的和,记为S ,即S=S n =
,则循环小数0. 的分数形式是 .
15.已知角α终边上一点为P (﹣1,2),则
值等于 .
16.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…其中从第三个数起,每一个数都等于他前面两个数的和.该数列是一个非常美丽、和谐的数列,有很多奇妙的属性.比如:随着数列项数的增加,前一项与后一项之比越逼近黄金分割0.6180339887….人们称该数列{a n }为“斐波那契数列”.若把该数列{a n }的每一项除以4所得的余数按相对应的顺序组成新数列{b n },在数列{b n }中第2016项的值是 . 
17.长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,则这个球的表面积是 .
18.方程(x+y﹣1)=0所表示的曲线是 .
三、解答题
19.已知函数f(x)=x|x﹣m|,x∈R.且f(4)=0
(1)求实数m的值.
(2)作出函数f(x)的图象,并根据图象写出f(x)的单调区间
(3)若方程f(x)=k有三个实数解,求实数k的取值范围.
20.我市某校某数学老师这学期分别用m,n两种不同的教学方式试验高一甲、乙两个班(人数均为60人,入学数学平均分和优秀率都相同,勤奋程度和自觉性都一样).现随机抽取甲、乙两班各20名的数学期末考试成绩,并作出茎叶图如图所示.
(Ⅰ)依茎叶图判断哪个班的平均分高?
(Ⅱ)现从甲班所抽数学成绩不低于80分的同学中随机抽取两名同学,用ξ表示抽到成绩为86分的人数,求ξ的分布列和数学期望;
(Ⅲ)学校规定:成绩不低于85分的为优秀,作出分类变量成绩与教学方式的2×2列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成绩优秀与教学方式有关?”
下面临界值表仅供参考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k 2.072 2.706 3.841 5.024 6.6357.87910.828
(参考公式:K 2=
,其中n=a+b+c+d )
21.一艘客轮在航海中遇险,发出求救信号.在遇险地点南偏西方向10海里的处有一艘海A 45
B 难搜救艇收到求救信号后立即侦查,发现遇险客轮的航行方向为南偏东,正以每小时9海里的速度向
75
一小岛靠近.已知海难搜救艇的最大速度为每小时21海里.
(1)为了在最短的时间内追上客轮,求海难搜救艇追上客轮所需的时间;(2)若最短时间内两船在处相遇,如图,在中,求角的正弦值.
C ABC B
22.(本题满分14分)已知函数.
x a x x f ln )(2
-=(1)若在上是单调递减函数,求实数的取值范围;
)(x f ]5,3[a (2)记,并设是函数的两个极值点,若,x b x a x f x g )1(2ln )2()()(--++=)(,2121x x x x <)(x g 2
7≥b 求的最小值.
)()(21x g x g -23.(本小题满分14分)
设函数,(其中,).
2
()1cos f x ax bx x =++-0,2
x π⎡⎤∈⎢⎥⎣⎦
a b R ∈(1)若,,求的单调区间;0a =1
2
b =-
()f x (2)若,讨论函数在上零点的个数.
0b =()f x 0,2π⎡⎤
⎢⎥⎣⎦
【命题意图】本题主要考查利用导数研究函数的单调性,最值、通过研究函数图象与性质,讨论函数的零点个数,考查考生运算求解能力、转化能力和综合应用能力,是难题.
24.在中已知,,试判断的形状.
ABC ∆2a b c =+2
sin sin sin A B C =ABC ∆
万载县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题
1. 【答案】D 【解析】解:∵A=2B ,
∴sinA=sin2B ,又sin2B=2sinBcosB ,∴sinA=2sinBcosB ,根据正弦定理==2R 得:
sinA=
,sinB=

代入sinA=2sinBcosB 得:a=2bcosB .故选D
2. 【答案】D
【解析】∵,∴,即为直角三角形,∴,120PF PF ⋅=
12PF PF ⊥12PF F ∆222212124PF PF F F c +==,则,
12||2PF PF a -=222221212122()4()PF PF PF PF PF PF c a ⋅=+--=-.所以内切圆半径
2222121212()()484PF PF PF PF PF PF c a +=-+⋅=-12PF F ∆
,外接圆半径.,整理,得12122
PF PF F F r c +-=
=R c =c =
,∴双曲线的离心率,故选D.2(4c
a
=+1e =+3. 【答案】C
【解析】函数f (x )=sin (2x+θ)(﹣<θ<
)向右平移φ个单位,得到g (x )=sin (2x+θ﹣2φ),
因为两个函数都经过P (0,),
所以sin θ=,
又因为﹣<θ<,
所以θ=

所以g (x )=sin (2x+﹣2φ),
sin (﹣2φ)=,
所以
﹣2φ=2k π+
,k ∈Z ,此时φ=k π,k ∈Z ,
或﹣2φ=2kπ+,k∈Z,此时φ=kπ﹣,k∈Z,
故选:C.
【点评】本题考查的知识点是函数y=Asin(ωx+φ)的图象变换,三角函数求值,难度中档
4.【答案】C
【解析】解:∵;
∴由得,=;
∴;
∴.
故选:C.
5.【答案】D
【解析】解:A={x|2x≤4}={x|x≤2},
由x﹣1>0得x>1
∴B={x|y=lg(x﹣1)}={x|x>1}
∴A∩B={x|1<x≤2}
故选D.
6.【答案】B
【解析】解:从红、黄、蓝三种颜色的球各2个,无放回的从中任取3个球,共有C63=20种,
其中恰有两个球同色C31C41=12种,
故恰有两个球同色的概率为P==,
故选:B.
【点评】本题考查了排列组合和古典概率的问题,关键是求出基本事件和满足条件的基本事件的种数,属于基础题.
7.【答案】A
【解析】解:
=1×
故选A.
8. 【答案】D 【解析】

点:异面直线所成的角.9. 【答案】A
【解析】解:当x >2时,x >1成立,即x >1是x >2的必要不充分条件是,x <1是x >2的既不充分也不必要条件,x >3是x >2的充分条件,
x <3是x >2的既不充分也不必要条件,故选:A
【点评】本题主要考查充分条件和必要条件的判断,比较基础. 
10.【答案】A 【解析】
试题分析:故值域为
()()()()((1))14,((2))14,((3))32,((4))34,f g f f g f f g f f g f ========.
{}4,2考点:复合函数求值.11.【答案】B 【解析】
12.【答案】A
【解析】解:根据正弦定理有: =,
代入已知等式得:

+1=0,
即﹣1=,
整理得:2sinAcosB﹣cosBsinC=sinBcosC,
即2sinAcosB=sinBcosC+cosBsinC=sin(B+C),
又∵A+B+C=180°,
∴sin(B+C)=sinA,
可得2sinAcosB=sinA,
∵sinA≠0,
∴2cosB=1,即cosB=,
则B=60°.
故选:A.
【点评】此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键. 
二、填空题
13.【答案】 .
【解析】解:∵=1﹣bi,∴a=(1+i)(1﹣bi)=1+b+(1﹣b)i,
∴,解得b=1,a=2.
∴|a﹣bi|=|2﹣i|=.
故答案为:.
【点评】本题考查了复数的运算法则、模的计算公式,考查了计算能力,属于基础题. 
14.【答案】 .
【解析】解:0.=++…+==,
故答案为:.
【点评】本题考查数列的极限,考查学生的计算能力,比较基础.
15.【答案】 .
【解析】解:角α终边上一点为P(﹣1,2),
所以tanα=﹣2.
===﹣.
故答案为:﹣.
【点评】本题考查二倍角的正切函数,三角函数的定义的应用,考查计算能力.
16.【答案】 0 .
【解析】解:1,1,2,3,5,8,13,…除以4所得的余数分别为1,1,2,3,1,0,;1,1,2,3,1,0…,
即新数列{b n}是周期为6的周期数列,
∴b2016=b336×6=b6=0,
故答案为:0.
【点评】本题主要考查数列的应用,考查数列为周期数性,属于中档题.
17.【答案】 50π .
【解析】解:长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,
所以长方体的对角线就是球的直径,长方体的对角线为:,
所以球的半径为:;则这个球的表面积是:=50π.
故答案为:50π.
【点评】本题是基础题,考查球的内接多面体的有关知识,球的表面积的求法,注意球的直径与长方体的对角线的转化是本题的解答的关键,考查计算能力,空间想象能力.
18.【答案】 两条射线和一个圆 .
【解析】解:由题意可得x2+y2﹣4≥0,表示的区域是以原点为圆心的圆的外部以及圆上的部分.
由方程(x+y﹣1)=0,可得x+y﹣1=0,或x2+y2=4,
故原方程表示一条直线在圆外的地方和一个圆,即两条射线和一个圆,
故答案为:两条射线和一个圆.
【点评】本题主要考查直线和圆的方程的特征,属于基础题.
三、解答题
19.【答案】
【解析】解:(1)∵f(4)=0,
∴4|4﹣m|=0
∴m=4,
(2)f(x)=x|x﹣4|=图象如图所示:
由图象可知,函数在(﹣∞,2),(4,+∞)上单调递增,在(2,4)上单调递减.
(3)方程f(x)=k的解的个数等价于函数y=f(x)与函数y=k的图象交点的个数,
由图可知k∈(0,4).
20.【答案】
【解析】
【专题】综合题;概率与统计.
【分析】(Ⅰ)依据茎叶图,确定甲、乙班数学成绩集中的范围,即可得到结论;
(Ⅱ)由茎叶图知成绩为86分的同学有2人,其余不低于80分的同学为4人,ξ=0,1,2,求出概率,可得ξ的分布列和数学期望;
(Ⅲ)根据成绩不低于85分的为优秀,可得2×2列联表,计算K2,从而与临界值比较,即可得到结论.
【解答】解:(Ⅰ)由茎叶图知甲班数学成绩集中于60﹣9之间,而乙班数学成绩集中于80﹣100分之间,所以乙班的平均分高┉┉┉┉┉┉
(Ⅱ)由茎叶图知成绩为86分的同学有2人,其余不低于80分的同学为4人,ξ=0,1,2
P(ξ=0)==,P(ξ=1)==,P(ξ=2)==┉┉┉┉┉┉
则随机变量ξ的分布列为
ξ0
12
P
数学期望E ξ=0×+1×+2×=人﹣┉┉┉┉┉┉┉┉
(Ⅲ)2×2列联表为
甲班
乙班合计优秀
31013不优秀
171027合计
202040┉┉┉┉┉
K 2=≈5.584>5.024
因此在犯错误的概率不超过0.025的前提下可以认为成绩优秀与教学方式有关.┉┉
【点评】本题考查概率的计算,考查独立性检验知识,考查学生的计算能力,属于中档题.
21.【答案】(1)
小时;(2
23
【解析】试
题解析:(1)设搜救艇追上客轮所需时间为小时,两船在处相遇.
C 在中,,,,.ABC ∆4575120BAC ∠=+=
10AB =9AC t =21BC t =由余弦定理得:,2222cos BC AB AC AB AC BAC =+-∠A A
所以,2221
(21)10(9)2109()2
t t t =+-⨯⨯⨯-化简得,解得或(舍去).2
369100t t --=23t =512
t =-所以,海难搜救艇追上客轮所需时间为小时.23
(2)由,.2963AC =⨯=22114
3BC =⨯=在
中,由正弦定理得.ABC ∆sin 6sin120sin 14
AC BAC B BC ∠==== A A
所以角B 考点:三角形的实际应用.
【方法点晴】本题主要考查了解三角形的实际应用,其中解答中涉及到正弦定理、余弦定理的灵活应用,注重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,可先根据题意,画出图形,由搜救艇和渔船的速度,那么可设时间,并用时间表示,再根据正弦定理和余弦定理,即,AC BC 可求解此类问题,其中正确画出图形是解答的关键.
22.【答案】
【解析】【命题意图】本题综合考查了利用导数研究函数的单调问题,利用导数研究函数的最值,但本题对函数的构造能力及运算能力都有很高的要求,判别式的技巧性运用及换元方法也是本题的一大亮点,本题综合性很强,难度大,但有梯次感.
(2)∵,x b x x x b x a x a x x g )1(2ln 2)1(2ln )2(ln )(2
2--+=--++-=
23.【答案】
【解析】(1)∵,,0a =12b =-
∴,,.(2分)1()1cos 2f x x x =-+-1()sin 2f x x '=-+0,2x π⎡⎤∈⎢⎥⎣⎦
令,得.()0f x '=6x π=
当时,,当时,,06x π<<()0f x '<62
x ππ<<()0f x '>所以的单调增区间是,单调减区间是.(5分)()f x ,62ππ⎡⎤⎢⎥⎣⎦0,6π⎡⎤⎢⎥⎣⎦若
,则,又,由零点存在定理,,使112a -<<-π(102f a π'=π+<()(0)0f f θ''>=00,2θπ⎛⎫∃∈ ⎪⎝⎭
,所以在上单调增,在上单调减.0()0f θ'=()f x 0(0,)θ0,2θπ⎛⎫ ⎪⎝⎭
又,.(0)0f =2
()124
f a ππ=+
故当时,,此时在上有两个零点;2142a -<≤-π2()1024f a ππ=+≤()f x 0,2π⎡⎤⎢⎥⎣⎦当时,,此时在上只有一个零点.241a -<<-ππ2(1024f a ππ=+>()f x 0,2π⎡⎤⎢⎥⎣⎦
24.【答案】为等边三角形.
ABC ∆【解析】
试题分析:由,根据正弦定理得出,在结合,可推理得到,2sin sin sin A B C =2
a bc =2a
b
c =+a b c ==即可可判定三角形的形状.
考点:正弦定理;三角形形状的判定.。

相关文档
最新文档