2015-2016学年苏教版五年级(下)期末数学模拟试卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级(下)期末数学模拟试卷
一、填空
1.3米长的绳子剪成相等的5段,每段长是这根绳子的,每段长米.2.在横线里填上“<”“>”或“=”.
1
3.
3.(1)个是,等于个
(2)=÷=,5==.
4.写出三个不同的除法算式.=÷=÷=÷.5.在横线里填上合适的最简分数.
90秒=分150克=千克18分米=
米
250毫升=升40公顷=平方
千米
50分=
时.
6.分母是12的最简真分数有个,它们的和是.
7.按要求写数.
(1)一个两位数,既是2的倍数又是5的倍数,这个数最大是.
(2)一个数是3的倍数又是5的倍数,这个数最小是.
(3)一个数是48的因数,又是16的倍数,这个数最小是.
(4)一个数是合数又是奇数,这个数最小是.
8.一个两位数是5的倍数,它的各个数位上的数相加的和是9的倍数.这样的两位数一共个.
9.一个周长是125.6米的圆形花坛,它的直径是米,半径是米,面积是平方米.
10.买一本同样的书,小明用了自己所有零花钱的,小芳用了自己所有零花钱的.原来的零花钱多一些.
二、解方程
11.解方程
x÷0.08=2.5 x ﹣=
3x+4=5.5 4x+3﹣5=1.6.
三、计算
12.
直接写出得数.
﹣=+=﹣=
+=
1﹣=+=﹣=+=
13.计算下面各题.
﹣(﹣)
+﹣
﹣(﹣)14.怎样简便怎样算.
+(+)
﹣(+)
+++.
四、操作与计算
15.下面各图中的涂色部分大约各占所在图形的几分之几?先分一分、再填一填.
16.在下面的图形画一个面积最大的圆.
这个圆的面积是平方厘米,从长方形中剪去这个最大的圆,剩下的面积是平方厘米.
17.小力平均每秒跑6米,小军平均每秒跑4米.两人从百米跑道的两端同时出
发,相向而行.
(1)估计两人在何处相遇?在图中标一标.
(2)相遇时他们都已经跑了几秒?(列方程解)
18.图中的大圆直径是16厘米,你会计算涂色部分的面积吗?
五、解决实际问题
19.一支钢笔12.8元,比一支圆珠笔贵6.5元.买一支圆珠笔要用多少元?20.一个等腰三角形的周长是39厘米.它的底边长10厘米,一条腰长多少厘米?21.同学们去参加“科普图片展”,六年级去了248人,比五年级的2倍少2人.五
年级去了多少人?
22.小刚和小强在400米的环形跑道上,从同一地点相背出发,出发后40秒两人第一次相遇.已知小刚每秒跑4.5米,求小强每秒跑多少米.
23.右边是某汽车专卖店5月份汽车销售量∕辆销售数量的统计图.
(1)上旬卖出的汽车数量是全月的几分之几?
(2)根据图中的数据,再提两个用分数表示的问题,并回答!
24.同一种毛巾,在甲超市的标价是5元3条,在乙超市的标价为7元4条,在
丙超市的标价为8元5条.这种毛巾在哪一个超市里最便宜?在哪一个超市最贵?(写出主要判断过程)
25.在一个直径是10米的圆形喷水池周围有一条宽1米的环形小路,这条小路的面积是多少平方米?
26.星期天的上午,小亮和爸爸一起去爬山.他们先用30分钟走了全程的一半,接着又用25分钟走了全程的,最后用4分钟登上了山顶.
(1)小亮和爸爸在开始的55分钟里一共走了全程的几分之几?
(2)最后4分钟走了全程的几分之几?
2015-2016学年苏教版五年级(下)期末数学模拟试卷
参考答案与试题解析
一、填空
1.(2011秋•嘉禾县期末)3米长的绳子剪成相等的5段,每段长是这根绳子的
,每段长米.
【分析】3米长的绳子剪成相等的5段,根据分数的意义可知,即将这根绳子的全长当做单位“1”平均分成5份,则每段是这根绳子的1÷5=,每段的长为:3×=(米).
【解答】解:每段是这根绳子的1÷5=,
每段的长为:3×=(米).
故答案为:,.
【点评】完成本题的依据为:分数的意义,即将单位“1”平均分成若干份,表示这样一份或几份的数为分数.
2.在横线里填上“<”“>”或“=”.
<
1=
>
>3.
【分析】同分母分数大小比较,分子大的分数就大,反之就小;同分子的分数大小比较,分母大的分数就小,反之就大;异分母分数大小比较,先通分再比较大小;带分数的先化成假分数再比较大小即可.
【解答】解:;
;
因为,所以;
3=
因为,所以.
故答案为:<;=;>;>.
【点评】此题主要考查分数大小的比较方法的灵活应用.
3.(1)3个是,等于3个
(2)=6÷18=,5==.
【分析】(1)根据分数单位的意义,里面有3个;化成最简分数是,也就是3个;
(2)化成除法,就把分子看成被除数,分母看成除数,再把分子和分母同时除以6,即可得出最简分数;
把5化成分母是6的分数,分子就是5×6,同理化成分母是2的分数,分子就是5×2.
【解答】解:(1)3个是;
=,是3个;
(2)=6÷18=;
5==.
故答案为:3,3;6,18,3,30,10.
【点评】本题综合考查了分数的单位,分数与除法的关系,以及整数与假分数的互化.
4.(2009春•
中山校级期末)写出三个不同的除法算式.=1÷6=2
÷12=3÷18.
【分析】先把根据分数的基本性质变成另外两个和它相等的分数,再根据除法和分数的关系化成除法算式.
【解答】解:=1÷6;
==2÷12;
==3÷18;
故答案为:1,6,1,12,3,8.
【点评】本题考查了分数和除法的关系:分子相当于被除数,分母相当于除数,分数线相当于除号.
5.(2009春•中山校级期末)在横线里填上合适的最简分数.
90秒=
分150克=
千
克
18分米=
米
250毫升=
升40公顷=
平方
千米
50分=
时.
【分析】把90秒换算为分钟,用90除以进率60;把150克换算为千克,用150除以进率1000;
把18分米换算为米,用18除以进率10;
把250毫升换算为升,用250除以进率1000;
把40公顷换算为平方千米,用40除以进率1000;把50分换算为小时,用50除以进率60.
【解答】
解:90秒=150克
=千18分米
分克=米
250毫升
=
升40公顷=平方
千米
50分=
时
故答案为:,,,,,.
【点评】解决本题关键是要熟记单位间的进率,知道如果是高级单位的名数转化成低级单位的名数,就乘单位间的进率;反之,就除以进率来解决.
6.(2013•绥阳县校级模拟)分母是12的最简真分数有4个,它们的和是2.
【分析】在分数中,分子小于分母的分数为真分数;分子与分母只有公因数1的分数为最简分数.根据以上两个定义确定出分母是12的最简真分数是哪些后,即能求出它们的和是多少.
【解答】解:分母是12的最简真分数有:、,,共4个;
它们的和为:+++=2.
故答案为:4,2.
【点评】首先根据真分数与最简分数的意义,确定出分母是12的最简真分数是完成本题的关键.
7.按要求写数.
(1)一个两位数,既是2的倍数又是5的倍数,这个数最大是90.
(2)一个数是3的倍数又是5的倍数,这个数最小是15.
(3)一个数是48的因数,又是16的倍数,这个数最小是16.
(4)一个数是合数又是奇数,这个数最小是9.
【分析】(1)根据2、5倍数的特征可知:这个两位数的个位上必需是0,因为个位上是0的数同时是2和5的倍数,然后从最大的个位是0的两位数找起.(2)就是求3和5的最小公倍数,3与5是互质数,两数之积便是.
(3)一个数既是16的倍数又是48的因数,即求48以内的16的倍数,那就先求出48的因数和16的倍数,再找共同的数即可.
(4)在自然数中,除了1和它本身外,还有别的因数的数为合数.不能被2整数的数为奇数.据此可知,一个数是合数又是奇数,这个数最小是9.
【解答】解:(1)一个两位数,既是2的倍数又是5的倍数,这个数最大是90.(2)一个数是3的倍数又是5的倍数,这个数最小是15.
(3)一个数是48的因数,又是16的倍数,这个数最小是16.
(4)一个数是合数又是奇数,这个数最小是9
故答案为:90;15;16;9.
【点评】明确合数与奇数,倍数与因数的意义是完成本题的关键
8.一个两位数是5的倍数,它的各个数位上的数相加的和是9的倍数.这样的两位数一共2个.
【分析】首先根据5的倍数的特征,可得所求的三位数的个位上是0或5;先写出这些数,然后再再找出9的倍数的数即可.
【解答】解:一个两位数是5的倍数,那么这样的两位数有:10、20、30、40、50、60、70、80、90、15、25、35、45、55、65、75、85、95,在这些数中9+0=9,4+5=9是9的倍数,所以这样的两位数一共2个.
故答案为:2.
【点评】此题主要考查了找一个数的倍数的方法,要熟练掌握,解答此题的关键是熟练掌握5的倍数的特征.
9.一个周长是125.6米的圆形花坛,它的直径是40米,半径是20米,面积是1256平方米.
【分析】由“圆的周长=πd”可得d=圆的周长÷π,r=d÷2于是可以求出花坛的半径,再根据圆的面积公式S=πr2即可求出花坛的面积.
【解答】解:直径:125.6÷3.14=40(米),
半径:40÷2=20(米),
面积:3.14×202=1256(平方米),
答:这个花坛的直径是40米,半径是20米,面积是1256平方米.
故答案为:40、20、1256.
【点评】此题主要考查圆的面积的计算方法,关键是先求出花坛的半径.
10.买一本同样的书,小明用了自己所有零花钱的,小芳用了自己所有零花钱的.小明原来的零花钱多一些.
【分析】将两个分数先通分,看哪一个分数大,用的零花钱就多,反之那么原来的零花钱就少.
【解答】解:=,=,
所以,
小芳用的零花钱多,那么小芳原来的零花钱少一些,小明原来的零花钱多一些.故答案为:小明.
【点评】本题主要考查分数大小的比较方法,分母相同的分子大的分数大,分子相同的分母大的反而小,分子与分母都不相同的可以通分化成分母相同的分数再比较,也可以化成小数来比较.
二、解方程
11.解方程
x÷0.08=2.5
x﹣=
3x+4=5.5
4x+3﹣5=1.6.
【分析】①依据等式的性质,方程两边同时乘0.08求解;
②依据等式的性质,方程两边同时加求解;
③依据等式的性质,方程两边同时减去4,再同时除以3求解;
④先计算左边,依据等式的性质,方程两边同时加2,再同时除以4求解.
【解答】解:①x÷0.08=2.5
x÷0.08×0.08=2.5×0.08
x=0.2
②x ﹣
=
x ﹣+
=+
x=
③3x+4=5.5
3x+4﹣4=5.5﹣4
3x=1.5
3x÷3=1.5÷3
x=0.5
④4x+3﹣5=1.6
4x﹣2=1.6
4x﹣2+2=1.6+2
2x=3.6
2x÷2=3.6÷2
x=1.8
【点评】此题考查了运用等式的性质解方程,即等式两边同加上或同减去、同乘上或同除以一个数(0除外),两边仍相等,同时注意“=”上下要对齐.
三、计算
12.(2015春•汉寿县期末)
直接写出得数.
+=
﹣
=
+
=
﹣
=
1﹣=
+
=
﹣
=
+=
【分析】1﹣先把1变成再计算;+,﹣,+先通分再相加减;其它题目直接相加减.
【解答】
解
:
+=1,
﹣
=0,
+=,
﹣
=,
1﹣
=,
+
=
,
﹣
=,
+=.
故答案为:1,0,,,,,,.
【点评】本题考查了分数的加减法,同分母分数相加减,分母不变,分子相加减;异分母分数先通分,再相减;注意把运算结果化成最简分数.
13.计算下面各题.
﹣(﹣)
+﹣
﹣(﹣)
【分析】(1)先算小括号内的减法,再算小括号外的减法;
(2)按照从左到右的顺序进行计算;
(3)先算小括号内的减法,再算小括号外的减法.
【解答】解:(1)﹣(﹣)
=﹣
=;
(2)+﹣
=﹣
=;
(3)﹣(﹣)
=﹣
=.
【点评】考查了分数四则混合运算,注意运算顺序和运算法则,然后再进一步计算.
14.(2009春•中山校级期末)怎样简便怎样算.
+(+)
﹣(+)
+++.
【分析】(1)去括号,运用加法交换律与结合律简算;
(2)运用减法的性质,去括号,再运用加法结合律计算;
(3)运用加法交换律与结合律简算.
【解答】解:(1)+(+),
=++,
=1+,
=1;
(2)﹣(+),
=﹣﹣,
=﹣,
=;
(3)+++,
=++(+),
=1+1,
=2.
【点评】此题主要考查了加法交换律和结合律的掌握与运用.
四、操作与计算
15.下面各图中的涂色部分大约各占所在图形的几分之几?先分一分、再填一填.
【分析】分数的意义:把一个物体或一个计量单位平均分成若干份,这样的一份或几份可用分数表示.
第一个图形大约是平均分成5份,表示其中的1份是,
图2是把图形平均分成4份,表示其中的1份是,
图3是把图形平均分成3份,表示其中的1份是.
【解答】解:如图:
【点评】这道题是考查分数的意义,分数表示把单位“1”平均分成若干份,表示其中的一份或几份的数.
16.在下面的图形画一个面积最大的圆.
这个圆的面积是12.56平方厘米,从长方形中剪去这个最大的圆,剩下的面积是11.44平方厘米.
【分析】根据长方形的面积计算公式“S=ab”即可求出这个长方形的面积;在正方形中剪去一个最大的圆,圆的直径等于长方形的宽,根据圆面积计算公式即可求出剪去的圆的面积,用长方形面积减去圆的面积就是剩下的面积.
【解答】解:3.14×()2
=3.14×4
=12.56(cm2)
6×4﹣12.56
=24﹣12.56
=11.44(cm2)
答:这个圆的面积是12.56平方厘米,从长方形中剪去这个最大的圆,剩下的面积是11.44平方厘米.
故答案为:12.56,11.44.
【点评】此题主要是考查圆面积的计算、长方形面积的计算.关键记住计算公式;弄清圆的直径.
17.小力平均每秒跑6米,小军平均每秒跑4米.两人从百米跑道的两端同时出发,相向而行.
(1)估计两人在何处相遇?在图中标一标.
(2)相遇时他们都已经跑了几秒?(列方程解)
【分析】(1)根据速度×时间=路程,可得时间一定时,路程和速度成正比,所
以两人在相遇时,小力和小军跑的路程的比是6:4,据此在图中标一标即可.(2)设相遇时他们都已经跑了x秒,根据:两人的速度之和×两人相遇用的时间=100,列出方程,求出相遇时他们都已经跑了几秒即可.
【解答】解:(1).
(2)设相遇时他们都已经跑了x秒,
则(6+4)x=100
10x=100
10x÷10=100÷10
x=10
答:相遇时他们都已经跑了10秒.
【点评】(1)此题主要考查了行程问题中速度、时间和路程的关系:速度×时间=路程,路程÷时间=速度,路程÷速度=时间,要熟练掌握.
(2)此题还考查了一元一次方程的应用,弄清题意,找出合适的等量关系,进而列出方程是解答此类问题的关键.
18.图中的大圆直径是16厘米,你会计算涂色部分的面积吗?
【分析】四个阴部部分拼成两个直等于大圆半径的小圆,根据圆的面积计算公式“S=πr2”即可求出.
【解答】解:3.14×()2×2
=3.14×16×2
=50.24×2
=100.488(cm)
答:涂色部分的面积是100.48平方厘米.
【点评】此题不难,也可不拼,求出每个半圆的面积乘4就是阴影部分面积.
五、解决实际问题
19.一支钢笔12.8元,比一支圆珠笔贵6.5元.买一支圆珠笔要用多少元?【分析】根据减法的意义,用一支钢笔的价格减去一支钢笔比一支圆珠笔贵的钱数,求出买一支圆珠笔要用多少元即可.
【解答】解:12.8﹣6.5=6.3(元)
答:买一支圆珠笔要用6.3元.
【点评】此题主要考查了减法的意义的应用,要熟练掌握,解答此题的关键是要明确:求比一个数少几的数是多少,用减法解答.
20.(2016春•江苏校级期末)一个等腰三角形的周长是39厘米.它的底边长10厘米,一条腰长多少厘米?
【分析】三角形的周长和底边长已知,因为等腰三角形的两条腰相等,所以利用三角形的周长减去底边长,再除以2即可解答.
【解答】解:(39﹣10)÷2,
=29÷2,
=14.5(厘米).
答:一条腰长是14.5厘米.
【点评】此题考查三角形的周长的定义以及等腰三角形两腰相等的性质的灵活应用.
21.(2011秋•肥城市校级期末)同学们去参加“科普图片展”,六年级去了248人,比五年级的2倍少2人.五年级去了多少人?
【分析】六年级去的人数,比五年级的2倍少2人,如果六年级去的人数多加上2人,就正好是五年级的2倍.据此解答.
【解答】解:(248+2)÷2,
=250÷2,
=125(人).
答:五年级去了125人.
【点评】本题的关键是求出五年级人数的2倍是多少,然后再根据除法的意义列式解答.
22.小刚和小强在400米的环形跑道上,从同一地点相背出发,出发后40秒两人第一次相遇.已知小刚每秒跑4.5米,求小强每秒跑多少米.
【分析】首先根据路程÷时间=速度,用跑道的长度除以两人第一次相遇用的时间,求出两人的速度之和是多少;然后用它减去小刚每秒跑的路程,求出小强每秒跑多少米即可.
【解答】解:400÷40﹣4.5
=10﹣4.5
=5.5(米)
答:小强每秒跑5.5米.
【点评】此题主要考查了行程问题中速度、时间和路程的关系:速度×时间=路程,路程÷时间=速度,路程÷速度=时间,要熟练掌握,解答此题的关键是求出两人的速度之和是多少.
23.右边是某汽车专卖店5月份汽车销售量∕辆销售数量的统计图.
(1)上旬卖出的汽车数量是全月的几分之几?
(2)根据图中的数据,再提两个用分数表示的问题,并回答!
【分析】(1)从图上可以看出:上旬卖出10辆,中旬卖出15辆,下旬卖出18辆.求上旬卖出的汽车数量是全月的几分之几?用上旬卖出的数量除以全月卖出的量数即可;
(2)根据(1)题提两个用分数解决的问题再解答出即可.
【解答】解:(1)从图上可以看出:
上旬卖出10辆,中旬卖出15辆,下旬卖出18辆.
10÷(10+15+18)
=10÷43
=
答:上旬卖出的汽车数量是全月的四十三分之十.
(2)①上旬卖出的汽车数量是中旬的几分之几?
10÷15=
答:上旬卖出的汽车数量是中旬的三分之二.
②中旬卖出的汽车数量是全月的几分之几?
15÷(10+15+18)
=15÷43
=
答:中旬卖出的汽车数量是全月的十五分之四十三.
【点评】本题考查谁占谁的几分之几,用除法来解决,并且把结果化成最简分数即可.
24.(2015春•无锡校级期末)同一种毛巾,在甲超市的标价是5元3条,在乙超市的标价为7元4条,在丙超市的标价为8元5条.这种毛巾在哪一个超市里最便宜?在哪一个超市最贵?(写出主要判断过程)
【分析】本题先求出每个超市每条毛巾的价钱,用分数表示出来,然后进行通分转化成同分母的分数进行比较,判断出在那个超市最便宜,最便宜.
【解答】解:甲超市每条毛巾价格是:5÷3=(元),
乙超市每条毛巾的价格是:7÷4=(元),
丙超市每条毛巾的价格是:8÷5=(元),
因为这三个分数的分母分别是3、4、5两两互质,
所以它们的最小公分母是:3×4×5=60,
因为元=元,
元=元,
元=元,
所以元<元<元,
即:丙<甲<乙,
因此丙超市的毛巾最便宜,乙超市的最贵.
答:这种毛巾在丙超市卖的最便宜,乙超市最贵.
【点评】本题考查了分数的大小比较及分数的通分.
25.(2015秋•元江县校级期末)在一个直径是10米的圆形喷水池周围有一条宽1米的环形小路,这条小路的面积是多少平方米?
【分析】这条小路的面积就是这个外圆半径为10÷2+1=6米,内圆半径为10÷2=5米的圆环的面积,由此利用圆环的面积公式即可计算.
【解答】解:10÷2=5(米),5+1=6(米)
所以小路的面积为:
3.14×(62﹣52)
=3.14×(36﹣25)
=3.14×11
=34.54(平方米)
答:小路的面积是34.54平方米.
【点评】此题重点是明确小路的面积就是外圆半径6米,内圆半径5米的圆环的面积.
26.星期天的上午,小亮和爸爸一起去爬山.他们先用30分钟走了全程的一半,
接着又用25分钟走了全程的,最后用4分钟登上了山顶.
(1)小亮和爸爸在开始的55分钟里一共走了全程的几分之几?
(2)最后4分钟走了全程的几分之几?
【分析】(1)们先用30分钟走了全程的一半即,接着又用25分钟走了全程的
,同,则此时共走了30+25=55分钟,根据分数加法的意义,将30分钟与25分钟走的占全长的分率相加,即得小亮和爸爸在开始的55分钟里一共走了全程的几分之几.
(2)将全长当作单位“1”,根据分数减法的意义,用单位“1”减去前55分钟走的占全长的分率,即得后4分钟走了全程的几分之几.
【解答】解:(1)+=
答:前55分钟共走了全程的.
(2)1﹣=
答:后4分钟走了全程的.
【点评】本题考查了学生完成简单的分数加法与减法应用题的能力.
参与本试卷答题和审题的老师有:admin;zrw;ZGR;忘忧草;pysxzly;晶优;刘勇;duaizh;zlx;齐敬孝;chenyr;奋斗;WX321;lqt;陆老师;TGT(排名不分先后)
菁优网
2017年6月4日。