压轴题练习——圆为背景

合集下载

九年级中考数学压轴题《圆》专题练习

九年级中考数学压轴题《圆》专题练习

九年级中考数学压轴题《圆》专题练习1、如图,BD为△ABC外接圆⊙O的直径,且∠BAE=∠C.(1)求证:AE与⊙O相切于点A;(2)若AE∥BC,BC=2,AC=2,求AD的长.2、如图,在△ABC中,BA=BC,以AB为直径作半圆⊙O,交AC于点D.连结DB,过点D作DE⊥BC,垂足为点E.(1)求证:DE为⊙O的切线;(2)求证:DB2=AB·BE.3、如图,△ABC为等腰三角形,O是底边BC的中点,腰AB与⊙O相切于点D,OB与⊙O相交于点E.(1)求证:AC是⊙O的切线;(2)若BD=,BE=1.求阴影部分的面积.4、如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=,求⊙O的半径.5、如图,△ABC 中,以BC 为直径的圆交AB 于点D ,∠ACD =∠ABC .(1)求证:CA 是圆的切线;(2)若点E 是BC 上一点,已知BE =6,tan ∠ABC =32,tan ∠AEC =35,求圆的直径.6、如图,AB 为⊙O 的直径,点E 在⊙O 上,C 为弧BE 的中点,过点C 作直线CD ⊥AE 于D ,连接AC ,BC 。

(1)试判断直线CD 与⊙O 的位置关系,并说明理由;(2)若AD=2,AC=6,求AB 的长。

7、如图,AB是⊙O的直径,AF是⊙O切线,CD是垂直于AB的弦,垂足为E,过点C作DA的平行线与AF相交于点F,CD=,BE=2.求证:(1)四边形F ADC是菱形;(2)FC是⊙O的切线.8、如图,A,P,B,C是半径为8的⊙O上的四点,且满足∠BAC=∠APC=60°,(1)求证:△ABC是等边三角形;(2)求圆心O到BC的距离OD.9、如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB 上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=23,BF=2,求阴影部分的面积(结果保留π)10、如图,在Rt△ABC中,∠ABC=900,点M是AC的中点,以AB为直径作⊙O分别交AC、BM于点D、E(1)求证:MD=ME(2)填空:①若AB=6,当AD=2DM时,DE= ;②连接OD,OE,当∠A的度数为时,四边形ODME是菱形。

2021中考数学压轴题满分训练 – 圆的专题含答案解析

2021中考数学压轴题满分训练 – 圆的专题含答案解析

2021中考数学压轴题满分训练–圆的专题1.如图,AB为⊙O直径,C为⊙O上的一点,过点C的切线与AB的延长线相交于点D,CA=CD.(1)连接BC,求证:BC=OB;(2)E是中点,连接CE,BE,若BE=4,求CE的长.2.如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=20,BC=16,求CD的长.3.如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,过点D作⊙O的切线DE交AB于E.(1)求证:DE⊥AB;(2)如果tan B=,⊙O的直径是5,求AE的长.4.阅读以下材料,并按要求完成相应的任务:莱昂哈德•欧拉(LeonhardEuler)是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面就是欧拉发现的一个定理:在△ABC中,R和r分别为外接圆和内切圆的半径,O和I分别为其中外心和内心,则OI2=R2﹣2Rr.如图1,⊙O和⊙I分别是△ABC的外接圆和内切圆,⊙I与AB相切于点F,设⊙O的半径为E,⊙I的半径为r,外心O(三角形三边垂直平分线的交点)与内心I(三角形三条角平分线的交点)之间的距离OI=d,则有d2=R2﹣2Rr.下面是该定理的证明过程(部分):延长AI交⊙O于点D,过点I作⊙O的直径MN,连接DM,AN.∵∠D=∠N,∴∠DMI=∠NAI(同弧所对的圆周角相等).∴△MDI∽△ANI.∴=,∴IA•ID=IM•IN,①如图2,在图1(隐去MD,AN)的基础上作⊙O的直径DE,连接BE,BD,BI,IF.∵DE是⊙O的直径,∴∠DBE=90°.∵⊙I与AB相切于点F,∴∠AFI=90°,∴∠DBE=∠IFA.∵∠BAD=∠E(同弧所对的圆周角相等),∴△AIF∽△EDB,∴=.∴IA•BD=DE•IF②任务:(1)观察发现:IM=R+d,IN=(用含R,d的代数式表示);(2)请判断BD和ID的数量关系,并说明理由.(3)请观察式子①和式子②,并利用任务(1),(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;(4)应用:若△ABC的外接圆的半径为6cm,内切圆的半径为2cm,则△ABC的外心与内心之间的距离为cm.5.【发现】如图(1),AB为⊙O的一条弦,点C在弦AB所对的优弧上,根据圆周角性质,我们知道∠ACB的度数(填“变”或“不变”);若∠AOB=150°,则∠ACB =°.爱动脑筋的小明猜想,如果平面内线段AB的长度已知,∠ACB的大小确定,那么点C是不是在某一个确定的圆上运动呢?【研究】为了解决这个问题,小明先从一个特殊的例子开始研究.如图(2),若AB=2,直线AB上方一点C满足∠ACB=45°,为了画出点C所在的圆,小明以AB为底边构造了一个等腰Rt△AOB,再以O为圆心,OA为半径画圆,则点C在⊙O上.请根据小明的思路在图(2)中完成作图(要求尺规作图,不写作法,保留作图痕迹,并用2B 铅笔或黑色水笔加黑加粗).后来,小明通过逆向思维及合情推理,得出一个一般性的结论,即:若线段AB的长度已知,∠ACB的大小确定,则点C一定在某一个确定的圆上,即定弦定角必定圆,我们把这样的几何模型称之为“定弦定角”模型.【应用】(1)如图(3),AB=2,平面内一点C满足∠ACB=60°,则△ABC面积的最大值为.(2)如图(4),已知正方形ABCD,以AB为腰向正方形内部作等腰△BAE,其中BE =BA,过点E作EF⊥AB于点F,点P是△BEF的内心.①∠BPE=°,∠BPA=°;②连接CP,若正方形ABCD的边长为2,则CP的最小值为.6.如图,BE为⊙O的直径,C为线段BE延长线上一点,CA为⊙O的切线,A为切点,连接AB,AE,AO.∠C=30°.(1)求∠ABC的度数;(2)求证:BO=CE;(3)已知⊙O的半径为6,求图中阴影部分的面积.(结果保留π)7.如图,在△ABC中,点D是AC边上一点,以AD为直径的⊙O与边BC切于点E,且AB=BE.(1)求证:AB是⊙O的切线;(2)若BE=3,BC=7,求⊙O的半径长;(3)求证:CE2=CD•CA.8.如图,AB是⊙O的直径,AC⊥AB,BC交⊙O于点D,点E在劣弧BD上,DE的延长线交AB的延长线于点F,连接AE交BD于点G.(1)求证:∠AED=∠CAD;(2)若点E是劣弧BD的中点,求证:ED2=EG•EA;(3)在(2)的条件下,若BO=BF,DE=1.5,求EF的长.9.定义:三角形一边上的点将该边分为两条线段,且这两条线段的积等于这个点到这边所对顶点连线的平方,则称这个点为三角形该边的“好点”.如图1,△ABC中,点D是BC边上一点,连接AD,若AD2=BD•CD,则称点D是△ABC中BC边上的“好点”.(1)如图2,△ABC的顶点是4×4网格图的格点,请仅用直尺画出(或在图中直接描出)AB边上的“好点”;(2)△ABC中,BC=14,tan B=,tan C=1,点D是BC边上的“好点”,求线段BD的长;(3)如图3,△ABC是⊙O的内接三角形,点H在AB上,连接CH并延长交⊙O于点D.若点H是△BCD中CD边上的“好点”.①求证:OH⊥AB;②若OH∥BD,⊙O的半径为r,且r=3OH,求的值.10.如图,DE是△DBC的外角∠FDC的平分线,交BC的延长线于点E,DE的延长线与△DBC的外接圆交于点A.(1)求证:AB=AC;(2)若∠DCB=90°,sin E=,AD=4,求BD的长.11.已知⊙O为△ABC的外接圆,点E是△ABC的内心,AE的延长线交BC于点F,交⊙O于点D.(1)如图1,求证:BD=ED.(2)如图2,AD为⊙O的直径.若BC=12,sin∠BAC=,求OE的长.12.如图,AB是大半圆O的直径.OA是小半圆O1的直径,点C是大半圆O上的一个动点(不与点A、B重合),AC交小半圆O1于点D,DE⊥OC,垂足为E.(1)求证:AD=DC;(2)求证:DE是半圆O1的切线;(3)如果OE=EC,请判断四边形O1OED是什么四边形,并证明你的结论.13.已知△ABC是⊙O的内接三角形,AB为⊙O的直径.点D是⊙O外一点,连接AD 和OD,OD与AC相交于点E,且OD⊥AC.(1)如图1,若AD是⊙O的切线,tan∠BAC=,证明:AD=AB;(2)如图2,延长DO交⊙O于点F,连接CD,CF,AF.当四边形ADCF为菱形,且∠BAC=30°,BC=1时,求DF的长.14.如图1,在△ABC中,AB=AC,⊙O是△ABC的外接圆,过C作CD∥AB,CD交⊙O于D,连接AD交BC于点E,延长DC至点F,使CF=AC,连接AF.(1)求证:AF是⊙O的切线;(2)求证:AB2﹣BE2=BE•EC;(3)如图2,若点G是△ACD的内心,BC•BE=64,求BG的长.15.已知:△ABC内接于⊙O,连接CO并延长交AB于点E,交⊙O于点D,满足∠BEC =3∠ACD.(1)如图1,求证:AB=AC;(2)如图2,连接BD,点F为弧BD上一点,连接CF,弧CF=弧BD,过点A作AG⊥CD,垂足为点G,求证:CF+DG=CG;(3)如图3,在(2)的条件下,点H为AC上一点,分别连接DH,OH,OH⊥DH,过点C作CP⊥AC,交⊙O于点P,OH:CP=1:,CF=12,连接PF,求PF的长.参考答案1.解:(1)如图,连接OC,AE,过点A作AM⊥CE,垂足为M,∵PC是⊙O的切线,∴∠CAB=∠DCB,又∵CA=CD,∴∠CAB=∠CDB,∴∠DCB=∠CDB,∴BC=BD,又∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB+∠CBA=90°,∵∠CBA=2∠CDB=2∠CAB,∴∠CBA=90°×=60°,∵OC=OB,∴△OBC是正三角形,∴BC=OB;(2)连接AE,过点A作AM⊥CE,垂足为M,∵E是中点,∴AE=BE=4,∠ACE=∠BCE=∠ACB=×90°=45°,在Rt△AEM中,AE=4,∠AEM=∠CBA=60°,∴EM=AE=2,AM=AE=2,在Rt△ACM中,AM=2,∠ACM=45°,∴CM=AM=2,∴CE=EM+CM=2+2,答:CE的长为2+2.2.(1)证明:连接OC,∵DC切⊙O于C,∴OC⊥CD,∵AE⊥CD,∴AE∥OC,∵AO=BO,∴EC=BC,∴OC=AE,∵OC=OA=OB=AB,∴AE=AB;(2)解:连接AC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACE=90°,AC⊥BE,∵由(1)知:AB=AE,∴EC=BC,∵BC=16,∴EC=16,在RtACB中,由勾股定理得:AC===12,在Rt△ACE中,S△ACE==,∵AE=AB=20,∴=CD,解得:CD=9.6.3.(1)证明:连接AD,OD,∵AC为⊙O的直径,∴AD⊥BC,∵AB=AC,∴∠BAD=∠CAD,∵OA=OD,∴∠OAD=∠ODA,∴∠BAD=∠ODA,∴AB∥OD,∵DE是⊙O的切线,∴OD⊥DE,∴DE⊥AB;(2)解:∵tan B==,∴设AD=k,BD=2k,∴AB==k,∵AB=AC=5,∴k=,∴AD=,BD=2,∵S△ABD=AB•DE=AD•BD,∴DE==2,∴AE===1.4.解:(1)∵O、I、N三点共线∴OI+IN=ON∴IN=ON﹣OI=R﹣d故答案为:R﹣d.(2)BD=ID.理由如下:∵点I是△ABC的内心∴∠BAD=∠CAD,∠CBI=∠ABI∵∠DBC=∠CAD,∠BID=∠BAD+∠ABI ∠DBI=∠DBC+∠CBI∴∠BID=∠DBI∴BD=ID.(3)由(2)知BD=ID∴式子②可改写为IA•ID=DE•IF又∵IA•ID=IM•IN∴DE•IF=IM•IN∴2R•r=(R+d)(R﹣d)∴R2﹣d2=2Rr∴d2=R2﹣2Rr.(4)∵d2=R2﹣2Rr=62﹣2×6×2=12∴d=2.故答案为:2.5.解:【发现】根据圆周角性质,∠ACB的度数不变,∵∠AOB=150°,∴∠ACB=∠AOB=75°,故答案为:不变,75°;【研究】补全图形如图1所示,【应用】(1)如图2,记△ABC的外接圆的圆心为O,连接OA,OB,∵∠ACB=60°,∴∠AOB=2∠ACB=120°,∵OA=OB,∴∠OAB=30°,过点O作OH⊥AB于H,∴AH=AB=,在Rt△AHO中,设⊙O的半径为2r,则OH=r,根据勾股定理得,(2r)2﹣r2=3,∴r=1(舍去负数),∴OA=2,OH=1,∵点C到AB的最大距离h为r+OH=2+1=3,∴S△ABC最大=AB•h=×2×3=3,故答案为:3;(2)①∵EF⊥AB,∴∠EFB=90°,∴∠BEF+∠EBF=90°,∵点P是△BEF的内心,∴PE,PB分别是∠BEF和∠EBF的角平分线,∴∠BEP=∠BEF,∠EBP=∠ABP=∠ABE,∴∠BPE=180°﹣(∠BEP+∠EBP)=180°﹣(∠BEF+∠EBF)=180°﹣×90°=135°;在△BPE和△BPA中,,∴△BPE≌△BPA(SAS).∴∠BPA=∠BPE=135°,故答案为:135°,135°;②如图3,作△ABP的外接圆,圆心记作点O,连接OA,OB,在优弧AB上取一点Q,连接AQ,BQ,则四边形APBQ是⊙O的圆内接四边形,∴∠AQB=180°∠BPA=45°,∴∠AOB=2∠AQB=90°,∴OA=OB=AB=,连接OC,与⊙O相交于点P'此时,CP'是CP的最小值,过点O作OM⊥AB于M,ON⊥CB,交CB的延长线于N,则四边形OMBN是正方形,∴ON=BN=BM=AB=1,∴CN=BC+BN=3,在Rt△ONC中,OC==,∴CP 的最小值=CP'=OC﹣OP'=﹣,故答案为:﹣.6.(1)解:∵CA为⊙O的切线,∴∠OAC=90°,∴∠AOC=90°﹣∠C=60°,由圆周角定理得,∠ABC=∠AOC=30°;(2)证明:在Rt△AOC中,∠C=30°,∴OA=OC,∵OA=OB=OE,∴OB=CE;(3)解:在Rt△AOC中,AC==6,∴图中阴影部分的面积=×6×6﹣=18﹣6π.7.(1)证明:连接OB、OE,如图所示:在△ABO和△EBO中,,∴△ABO≌△EBO(SSS),∴∠BAO=∠BEO,∵⊙O与边BC切于点E,∴OE⊥BC,∴∠BEO=∠BAO=90°,即AB⊥AD,∴AB是⊙O的切线;(2)解:∵BE=3,BC=7,∴AB=BE=3,CE=4,∵AB⊥AD,∴AC===2,∵OE⊥BC,∴∠OEC=∠BAC=90°,∠ECO=∠ACB,∴△CEO∽△CAB,∴,即,解得:OE=,∴⊙O的半径长为.(3)证明:连接AE,DE,∵AD是⊙O的直径,∴∠AED=90°,∴∠AEB+∠DEC=90°,∵BA是⊙O的切线,∴∠BAC=90°,∴∠BAE+∠EAD=90°,∵AB=BE,∴∠BAE=∠BEA,∴∠DEC=∠EAD,∴△EDC∽△AEC,∴,∴CE2=CD•CA.8.(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∵AC⊥AB,∴∠CAB=90°,∴∠ABD=∠CAD,∵=,∴∠AED=∠ABD,∴∠AED=∠CAD;(2)证明:∵点E是劣弧BD的中点,∴=,∴∠EDB=∠DAE,∵∠DEG=∠AED,∴△EDG∽△EAD,∴,∴ED2=EG•EA;(3)解:连接OE,∵点E是劣弧BD的中点,∴∠DAE=∠EAB,∵OA=OE,∴∠OAE=∠AEO,∴∠AEO=∠DAE,∴OE∥AD,∴,∵BO=BF=OA,DE=,∴,∴EF=3.9.解:(1)如图:D即为△ABC边AB上的“好点”;(2)如答图1:过A作AH⊥BC于H,∵tan B=,tan C=1,∴,=1,设AH=3k,则BH=4k,CH=3k,∵BC=14,∴3k+4k=14,解得k=2,∴BH=8,AH=CH=6,设BD=x,则CD=14﹣x,DH=8﹣x,Rt△ADH中,AD2=AH2+DH2=62+(8﹣x)2,而点D是BC边上的“好点”,有AD2=BD•CD=x•(14﹣x),∴62+(8﹣x)2=x•(14﹣x),解得x=5或x=10,∴BD=5或BD=10;(3)①∵∠CAH=∠HDB,∠AHC=∠BHD,∴△ACH∽△DBH,∴,∴AH•BH=CH•DH,∵点H是△BCD中CD边上的“好点”,∴BH2=CH•DH,∴AH=BH,∴OH⊥AB;②如答图2:连接AD,∵OH⊥AB,OH∥BD,∴AB⊥BD,∴AD是直径,∵r=3OH,设OH=m,则OA=3m,BD=2m,Rt△AOH中,AH==2m,∴BH=2m,Rt△BHD中,HD==2m,∵点H是△BCD中CD边上的“好点”,∴BH2=CH•DH,∴CH==m,∴==.10.(1)证明:∵DE是△DBC的外角∠FDC的平分线,∴∠FDE=∠CDE,∵∠ADB=∠ACB=∠FDE,∠ABC=∠CDE,∴∠ABC=∠ACB,∴AB=AC;(2)解:∵∠DCB=90°,∴∠DCE=∠BAD=90°,∴∠E+∠CDE=∠ABD+∠ADB=90°,∵∠ADB=∠FDE=∠CDE,∴∠ABD=∠E,∵sin E=,∴sin∠ABD==,∵AD=4,∴BD=4.11.(1)证明:如图1,连接BE.∵E是△ABC的内心,∴∠ABE=∠CBE,∠BAD=∠CAD,∵∠DBC=∠CAD.∴∠DBC=∠BAD,∵∠BED=∠BAD+∠ABE,∴∠DBE=∠DEB,∴BD=ED;(2)如图2 所示;连接OB.∵AD是直径,AD平分∠BAC,∴AD⊥BC,且BF=FC=6,∵,∴OB=10.在Rt△BOF中,BF=6,OB=10,∴,∴DF=2,在Rt△BDF中,BF2+DF2=BD2,∴,∴,∴.12.证明:(1)连接OD,∵AO为圆O1的直径,则∠ADO=90°.∵AC为⊙O的弦,OD为弦心距,∴AD=DC.(2)证明:∵D为AC的中点,O1为AO的中点,∴O1D∥OC.又DE⊥OC,∴DE⊥O1D∴DE与⊙O1相切.(3)如果OE=EC,又D为AC的中点,∴DE∥O1O,又O1D∥OE,∴四边形O1OED为平行四边形.又∠DEO=90°,O1O=O1D,∴四边形O1OED为正方形.13.解:(1)证明:∵OD⊥AC,∴AE=EC=AC,∠DEA=90°,∵AB为⊙O的直径,∴∠ACB=90°,∵tan∠BAC==,∴BC=AC,∴AE=BC,∵AD是⊙O的切线,∴DA⊥AB,∴∠DAO=∠ACB=90°,∴∠DAE+∠CAB=∠ABC+∠CAB=90°,∴∠DAE=∠ABC,在△DAE和△ABC中,,∴△DAE≌△ABC(ASA),∴AD=AB;(2)在Rt△ABC中,∠BAC=30°,BC=1,∴AB=2,AC=,∵∠ABC=∠AFC=60°,∵四边形ADCF为菱形,∴AC=FC=,∴△AFC是等边三角形,∴∠DFC=AFC=30°,∴CE=FC=,∴EF=CE=,∴DF=2EF=3.14.解:(1)如图1,连接OA,∵AB=AC,∴=,∠ACB=∠B,∴OA⊥BC,∵CA=CF,∴∠CAF=∠CFA,∵CD∥AB,∴∠BCD=∠B,∴∠ACB=∠BCD,∴∠ACD=∠CAF+∠CFA=2∠CAF,∵∠ACB=∠BCD,∴∠ACD=2∠ACB,∴∠CAF=∠ACB,∴AF∥BC,∴OA⊥AF,∴AF为⊙O的切线;(2)∵∠BAD=∠BCD=∠ACB,∠B=∠B,∴△ABE∽△CBA,∴,∴AB2=BC•BE=BE(BE+CE)=BE2+BE•CE,∴AB2﹣BE2=BE•EC;(3)由(2)知:AB2=BC•BE,∵BC•BE=64,∴AB=8,如图2,连接AG,∴∠BAG=∠BAD+∠DAG,∠BGA=∠GAC+∠ACB,∵点G为内心,∴∠DAG=∠GAC,又∵∠BAD+∠DAG=∠GAC+∠ACB,∠BAD=∠ACB,∴∠BAG=∠BGA,∴BG=AB=8.15.(1)证明:如图1中,连接AD.设∠BEC=3α,∠ACD=α.∵∠BEC=∠BAC+∠ACD,∴∠BAC=2α,∵CD是直径,∴∠DAC=90°,∴∠D=90°﹣α,∴∠B=∠D=90°﹣α,∵∠ACB=180°﹣∠BAC﹣∠ABC=180°﹣2α﹣(90°﹣α)=90°﹣α.∴∠ABC=∠ACB,∴AB=AC.(2)证明:如图2中,连接AD,在CD上取一点Z,使得CZ=BD.∵=,∴DB=CF,∵∠DBA=∠DCA,CZ=BD,AB=AC,∴△ADB≌△AZC(SAS),∴AD=AZ,∵AG⊥DZ,∴DG=GZ,∴CG=CZ+GZ=BD+DG=CF+DG.(3)解:连接AD,PA,作OK⊥AC于K,OR⊥PC于R,CT⊥FP交FP的延长线于T.∵CP⊥AC,∴∠ACP=90°,∴PA是直径,∵OR⊥PC,OK⊥AC,∴PR=RC,∠ORC=∠OKC=∠ACP=90°,∴四边形OKCR是矩形,∴RC=OK,∵OH:PC=1:,∴可以假设OH=a,PC=2a,∴PR=RC=a,∴RC=OK=a,sin∠OHK==,∴∠OHK=45°,∵OH⊥DH,∴∠DHO=90°,∴∠DHA=180°﹣90°﹣45°=45°,∵CD是直径,∴∠DAC=90°,∴∠ADH=90°﹣45°=45°,∴∠DHA=∠ADH,∴AD=AH,∵∠COP=∠AOD,∴AD=PC,∴AH=AD=PC=2a,∴AK=AH+HK=2a+a=3a,在Rt△AOK中,tan∠OAK==,OA===a,∴sin∠OAK==,∵∠ADG+∠DAG=90°,∠ACD+∠ADG=90°,∴∠DAG=∠ACD,∵AO=CO,∴∠OAK=∠ACO,∴∠DAG=∠ACO=∠OAK,∴tan∠ACD=tan∠DAG=tan∠OAK=,∴AG=3DG,CG=3AG,∴CG=9DG,由(2)可知,CG=DG+CF,∴DG+12=9DG,∴DG=,AG=3DG=3×=,∴AD===,∴PC=AD=,∵sin∠F=sin∠OAK,∴sin∠F==,∴CT=×FC=×12=,FT===,PT===,∴PF=FT﹣PT=﹣=.。

圆的综合压轴题(解析版)

圆的综合压轴题(解析版)

圆的综合压轴题命题趋势中考数学中《圆的综合压轴题》部分主要考向分为六类:一、圆中弧长和面积的综合题二、圆与全等三角形的综合题三、圆的综合证明问题四、圆与等腰三角形的综合题五、圆的阅读理解与新定义问题六、圆与特殊四边形的综合题圆的综合问题是中考数学中的压轴题中的一类,也是难度较大的一类,所以,对应的训练很有必要。

热考题型解读考向一:圆中弧长与面积的综合题考向二:圆与全等三角形综合题考向三:圆的综合证明问题考向四:圆与等腰三角形的综合考向五:圆的阅读理解与新定义问题考向六:圆与特殊四边形综合考向一:圆中弧长与面积的综合题1(2023•河北)装有水的水槽放置在水平台面上,其横截面是以AB 为直径的半圆O ,AB =50cm ,如图1和图2所示,MN 为水面截线,GH 为台面截线,MN ∥GH .计算:在图1中,已知MN =48cm ,作OC ⊥MN 于点C .(1)求OC 的长.操作:将图1中的水槽沿GH 向右作无滑动的滚动,使水流出一部分,当∠ANM =30°时停止滚动.如图2.其中,半圆的中点为Q ,GH 与半圆的切点为E ,连接OE 交MN 于点D .探究:在图2中.(2)操作后水面高度下降了多少?(3)连接OQ 并延长交GH 于点F ,求线段EF 与EQ的长度,并比较大小.【分析】(1)连接OM ,利用垂径定理得出MC =12MN =24cm ,由勾股定理计算即可得出答案;(2)由切线的性质证明OE ⊥GH ,进而得到OE ⊥MN ,利用锐角三角函数的定义求出OD ,再与(1)中OC 相减即可得出答案;(3)由半圆的中点为Q 得到∠QOB =90°,得到∠QOE =30°,分别求出线段EF 与EQ的长度,再相减比较即可.【解答】解:(1)连接OM ,∵O 为圆心,OC ⊥MN 于点C ,MN =48cm ,∴MC =圆的综合压轴题(解析版)MN =24cm ,∵AB =50cm ,∴OM =圆的综合压轴题(解析版)AB =25cm ,在Rt △OMC 中,OC =OM 2-MC 2=252-242=7(cm );(2)∵GH 与半圆的切点为E ,∴OE ⊥GH ,∵MN ∥GH ,∴OE ⊥MN 于点D ,∵∠ANM =30°,ON =25cm ,∴OD =12ON =252cπ,∴操作后水面高度下降高度为:252-7=112cπ;(3)∵OE ⊥MN 于点D ,∠ANM =30°,∴∠DOB =60°,∵半圆的中点为Q ,∴AQ =QB,∴∠QOB =90°,∴∠QOE =30°,∴EF =tan ∠QOE •OE =2533(cm ),EQ 的长为30×π×25180=25π6(cm ),∵2533-256π=503-25π6=2523-π 6>0,∴EF >EQ .2(2023•乐山)在学习完《图形的旋转》后,刘老师带领学生开展了一次数学探究活动.【问题情境】刘老师先引导学生回顾了华东师大版教材七年级下册第121页“探索”部分内容:如图1,将一个三角形纸板△ABC 绕点A 逆时针旋转θ到达的位置△AB ′C ′的位置,那么可以得到:AB =AB ′,AC =AC ′,BC =B ′C ′;∠BAC =∠B ′AC ′,∠ABC =∠AB ′C ′,∠ACB =∠AC ′B ′.()刘老师进一步谈到:图形的旋转蕴含于自然界的运动变化规律中,即“变”中蕴含着“不变”,这是我们解决图形旋转的关键.故数学就是一门哲学.【问题解决】(1)上述问题情境中“()”处应填理由: 旋转前后的图形对应线段相等,对应角相等 ;(2)如图2,小王将一个半径为4cm ,圆心角为60°的扇形纸板ABC 绕点O 逆时针旋转90°到达扇形纸板A ′B ′C ′的位置.①请在图中作出点O ;②如果BB ′=6cm ,则在旋转过程中,点B 经过的路径长为 32π2cm ;【问题拓展】小李突发奇想,将与(2)中完全相同的两个扇形纸板重叠,一个固定在墙上,使得一边位于水平位置.另一个在弧的中点处固定,然后放开纸板,使其摆动到竖直位置时静止.此时,两个纸板重叠部分的面积是多少呢?如图3所示,请你帮助小李解决这个问题.【分析】【问题解决】(1)由旋转的性质即可知答案为旋转前后的图形对应线段相等,对应角相等;(2)①作线段BB ',AA '的垂直平分线,两垂直平分线交于O ,点O 为所求;②由∠BOB '=90°,OB =OB ',可得OB =62=32,再用弧长公式可得答案;【问题拓展】连接PA ',交AC 于M ,连接PA ,PD ,AA ',PB ',PC ,求出A 'D =A M ∠PA B cos =230o cos =433,DM =12A 'D =233,可得S △A 'DP =12×233×4=433;S 扇形PA 'B '=30π×42360=4π3,证明△PB ′D ≌△PCD (SSS )可知阴影部分关于PD 对称,故重叠部分面积为2(4π3-433)=8π-833(cm 2).【解答】解:【问题解决】(1)根据题意,AB =AB ′,AC =AC ′,BC =B ′C ′;∠BAC =∠B ′AC ′,∠ABC =∠AB ′C ′,∠ACB =∠AC ′B ′的理由是:旋转前后的图形对应线段相等,对应角相等,故答案为:旋转前后的图形对应线段相等,对应角相等;(2)①如图:作线段BB ',AA '的垂直平分线,两垂直平分线交于O ,点O 为所求;②∵∠BOB '=90°,OB =OB ',∴△BOB '是等腰直角三角形,∵BB '=6,∴OB =62=32,∵90π×32180=32π2(cm ),∴点B 经过的路径长为32π2cm ,故答案为:32π2cm ;【问题拓展】连接PA ',交AC 于M ,连接PA ,PD ,AA ',PB ',PC ,如图:∵点P 为BC中点,∴∠PAB =∠PAC =12∠BAC =30o ,由旋转得∠PA 'B '=30°,PA =PA ′=4,在Rt △PAM 中,PM =PA •sin ∠PAM =4×sin30°=2,∴A 'M =PA '-PM =4-2=2,在Rt △A ′DM 中,A 'D =A M ∠PAB cos =230ocos =433,DM =12A 'D =233,∴S △A 'DP =12×233×4=433;S 扇形PA 'B '=30π×42360=4π3,下面证明阴影部分关于PD 对称:∵∠PAC =∠PA 'B '=30°,∠ADN =∠A 'DM ,∴∠AND =∠A 'MD =90°,∴∠PNA '=90°,∴PN =12PA '=2,∴AN =PA -PN =2,∴AN =A ′M ,∴△AND ≌△A 'MD (AAS ),∴AD =A ′D ,∴CD =B 'D ,∵PD =PD ,PB '=PC ,∴△PB ′D ≌△PCD (SSS ),∴阴影部分面积被PD 等分,∴S 阴影=2(S 扇形PA 'B '-S △A 'DP )=2(4π3-433)=8π-833(cm 2).∴两个纸板重叠部分的面积是8π-833cm 2.考向二:圆与全等三角形综合题3(2023•济宁)如图,已知AB 是⊙O 的直径,CD =CB ,BE 切⊙O 于点B ,过点C 作CF ⊥OE 交BE 于点F ,EF =2BF .(1)如图1,连接BD ,求证:△ADB ≌△OBE ;(2)如图2,N 是AD 上一点,在AB 上取一点M ,使∠MCN =60°,连接MN .请问:三条线段MN ,BM ,DN 有怎样的数量关系?并证明你的结论.【分析】(1)根据CF ⊥OE ,OC 是半径,可得CF 是圆O 的切线,根据BE 是圆O 的切线,由切线长定理可得BF =CF ,进而根据sin E =CF EF =12,得出∠E =30°,∠EOB =60°,根据CD =CB 得出CD =CB ,根据垂径定理的推论得出OC ⊥BD ,进而得出∠ADB =90°=∠EBO ,根据含30度角的直角三角形的性质,得出AD =BO =12AB ,即可证明△ABD ≌△OEB (AAS );(2)延长ND 至H 使得DH =BM ,连接CH ,BD ,根据圆内接四边形对角互补得出∠HDC =∠MBC ,证明△HDC ≌△MBC (SAS ),结合已知条件证明△CNH ≌△CNM (SAS ),得出NH =MN ,即可得出结论.【解答】(1)证明:∵CF ⊥OE ,OC 是半径,∴CF 是圆O 的切线,∵BE 是圆O 的切线,∴BF =CF ,∵EF =2BF ,∴EF =2CF ,sin E =CF EF =12,∴∠E =30°,∠EOB =60°,∵CD =CB ,∴CD =CB,∴OC ⊥BD ,∵AB 是直径,∴∠ADB =90°=∠EBO ,∵∠E +∠EBD =90°,∠ABD +∠EBD =90°,∴∠E =∠ABD =30°,∴AD =BO =12AB ,∴△ABD ≌△OEB (AAS );(2)解:MN =BM +DN ,理由如下:延长ND 至H 使得DH =BM ,连接CH ,BD ,如图2所示,∵∠CBM +∠NDC =180°,∠HDC +∠NDC =180°,∴∠HDC =∠MBC ,∵CD =CB ,DH =BM ,∴△HDC ≌△MBC (SAS ),∴∠BCM =∠DCH ,CM =CH ,由(1)可得∠ABD =30°,∵AB 是直径,∴∠ADB =90°,∴∠A =60°,∴∠DCB =180°-∠A =120°,∵∠MCN =60°,∴∠BCM +∠NCD =120°-∠NCM =120°-60°=60°,∴∠DCH +∠NCD =∠NCH =60°,∴∠NCH =∠NCM ,∵NC =NC ,∴△CNH ≌△CNM (SAS ),∴NH =MN ,∴MN =DN +DH =DN +BM ,∴MN =BM +DN .4(2023•哈尔滨)已知△ABC 内接于⊙O ,AB 为⊙O 的直径,N 为AC的中点,连接ON 交AC 于点H .(1)如图①,求证:BC =2OH ;(2)如图②,点D 在⊙O 上,连接DB ,DO ,DC ,DC 交OH 于点E ,若DB =DC ,求证OD ∥AC ;(3)如图③,在(2)的条件下,点F 在BD 上,过点F 作FG ⊥DO ,交DO 于点G ,DG =CH ,过点F 作FR ⊥DE ,垂足为R ,连接EF ,EA ,EF :DF =3:2,点T 在BC 的延长线上,连接AT ,过点T 作TM ⊥DC ,交DC 的延长线于点M ,若FR =CM ,AT =42,求AB 的长.【分析】(1)连接OC ,证明OH 是△ABC 的中位线,即可得到BC =2OH ;(2)设∠BDC =2α,证明△DOB ≌△DOC (SSS ),可得∠BDO =∠CDO =12∠BDC =α,再推导出∠CDO =∠ACD ,即可证明DO ∥AC ;(3)连接AD ,延长AE 与BC 交于W 点,延长AC 、TM 交于L 点,先证明△DGF ≌△CHE (AAS ),得到DF =CE ,再证明△DFG ≌△AFH (ASA ),得到AE =DF ,从而判断出四边形ADFE 是矩形,得到EF ⊥BD ,求出tan ∠EDF =32,通过证明△FRK ≌△CML (AAS ),推导出CL =FK =2FG =CW ,再证明△AWC ≌△TLC (AAS ),则AC =TC ,在Rt △ACT 中,由AT =42,求出AC =CT =4,在Rt △ABC中,tan ∠BAC =32=BC AC,求出BC =6,在Rt △ABC 中,利用勾股定理求出AB =AC 2+BC 2=213.【解答】(1)证明:如图①,连接OC ,∵N 是AC 的中点,∴AN =CN ,∴∠AON =∠CON ,∵OA=OC,∴AH=HC,∵OA=OB,∴OH是△ABC的中位线,∴BC=2OH;(2)证明:如图②,设∠BDC=2α,∵BD=CD,DO=DO,BO=OC,∴△DOB≌△DOC(SSS),∠BDC=α,∴∠BDO=∠CDO=12∵OB=OD,∴∠DBO=∠BDO=α,∵∠ACD=∠ABD=α,∴∠CDO=∠ACD,∴DO∥AC;(3)解:如图③,连接AD,延长AE与BC交于W点,延长AC、TM交于L点,∵FG⊥OD,∴∠DGF=90°,∵∠CHE=90°,∴∠DGF=∠CHE,∵∠FDG=∠ECH,DG=CH,∴△DGF≌△CHE(AAS),∴DF=CE,∵AH=CH,∴OH⊥AC,∴∠EHC=∠DGF,∵AH=HC,∴△AEC是等腰三角形,∴AE=EC,∠EAC=∠ECA,∵∠BDO=∠ODE=∠ECA,∴∠EAH=∠FDG,∵DG=CH,∴DG=AH,∴△DFG≌△AFH(ASA),∴AE=DF,∵∠DEA=2∠ECA,∠FDE=2∠ODE,∴∠FDE=∠DEA,∴DF∥AE,∴四边形AEFD是平行四边形,∵AB是圆O的直径,∴∠ADB=90°,∴四边形ADFE是矩形,∴EF⊥BD,∵EF:DF=3:2,∴tan∠EDF=32,∵FR⊥CD,FG⊥DO,∴∠ODE=∠RFK=90°,∵∠ECA=∠MCL,∴∠RFK=∠LCM,∵CM⊥MT,∴∠CML=90°,∵FR=CM,∴△FRK≌△CML(AAS),∴CL=FK=2FG,∵BC=2OH,EH=OH,∴EH是△AWC的中位线,∴CW=2EH,∵EH=FG,∴CL=FK=2FG=CW,∵∠TCL=∠CMT=90°,∴∠MCL=∠CTM,∵∠ACE=∠ECA=∠LCM,∴∠CTM=∠WAC,∴△AWC≌△TLC(AAS),∴AC=TC,在Rt△ACT中,AT=42,∴AC=CT=4,∵AW∥BD,∴∠BAW=∠DBC,∵∠DBO=∠BDO,∠EAC=∠BDO=∠ODE,∴∠BAC=∠BDE,在Rt△ABC中,tan∠BAC=32=BCAC,∴BC=6,在Rt△ABC中,AB=AC2+BC2=213.5(2023•长春)【感知】如图①,点A、B、P均在⊙O上,∠AOB=90°,则锐角∠APB的大小为45度.【探究】小明遇到这样一个问题:如图②,⊙O是等边三角形ABC的外接圆,点P在弧AC上(点P不与点A、C重合),连接PA、PB、PC.求证:PB=PA+PC.小明发现,延长PA至点E,使AE=PC,连接BE,通过证明△PBC≌△EBA.可推得△PBE是等边三角形,进而得证.下面是小明的部分证明过程:证明:延长PA至点E,使AE=PC,连接BE.∵四边形ABCP是⊙O的内接四边形,∴∠BAP+∠BCP=180°,∵∠BAP+∠BAE=180°,∴∠BCP=∠BAE,∵△ABC是等边三角形,∴BA=BC,∴△PBC≌△EBA(SAS).请你补全余下的证明过程.【应用】如图③,⊙O是△ABC的外接圆,∠ABC=90°,AB=BC,点P在⊙O上,且点P与点B在AC的两侧,连接PA、PB、PC,若PB=22PA,则PBPC的值为 223 .【分析】【感知】根据圆周角定理即可得出答案;【探究】先构造出△PBC≌△EBA(SAS),得出PB=EB,进而得出△PBE是等边三角形,即可得出结论;【应用】先构造出△PBC≌△GBA(SAS),进而判断出∠PBG=90°,进而得出△PBG是等腰直角三角形,即可得出结论;【解答】【感知】解:∵∠AOB=90°,∴∠APB=12∠AOB=45°(在同圆中,同弧所对的圆周角是圆心角的一半),故答案为:45;【探究】证明:延长PA至点E,使AE=PC,连接BE.∵四边形ABCP是⊙O的内接四边形,∴∠BAP+∠BCP=180°,∵∠BAP+∠BAE=180°,∴∠BCP=∠BAE,∵△ABC是等边三角形,∴BA=BC,∴△PBC≌△EBA(SAS),∴PB=EB,∵△ABC是等边三角形,∴∠ACB=60°,∴∠APB=60°,∴△PBE为等边三角形,∴PB=PE=AE+AP=PC+AP;【应用】解:如图③,延长PA至点G,使AG=PC,连接BE.∵四边形ABCP是⊙O的内接四边形,∴∠BAP+∠BCP=180°,∵∠BAP+∠BAG=180°,∴∠BCP =∠BAG ,∵BA =BC ,∴△PBC ≌△GBA (SAS ),∴PB =GB ,∠PBC =∠GBA ,∵∠ABC =90°,∴∠PBG =∠GBA +∠ABP =∠PBC +∠ABP =∠ABC =90°,∴PG =2BP ,∵PG =PA +AG =PA +PC ,∴PC =PG -PA =2×22PA -PA =3PA ,∴PB PC =22PA 3PA=223,故答案为:223考向三:圆的综合证明问题6(2023•黄石)如图,AB 为⊙O 的直径,DA 和⊙O 相交于点F ,AC 平分∠DAB ,点C 在⊙O 上,且CD ⊥DA ,AC 交BF 于点P .(1)求证:CD 是⊙O 的切线;(2)求证:AC •PC =BC 2;(3)已知BC 2=3FP •DC ,求AF AB的值.【分析】(1)连接OC ,由等腰三角形的性质得∠OAC =∠OCA ,再证∠DAC =∠OCA ,则DA ∥OC ,然后证OC ⊥CD ,即可得出结论;(2)由圆周角定理得∠ACB =90°,∠DAC =∠PBC ,再证∠BAC =∠PBC ,然后证△ACB ∽△BCP ,得AC BC =BC PC,即可得出结论;(3)过P 作PE ⊥AB 于点E ,证AC •PC =3FP •DC ,再证△ACD ∽△BPC ,得AC •PC =BP •DC ,则BP •DC =3FP •DC ,进而得BP =3FP ,然后由角平分线的性质和三角形面积即可得出结论.【解答】(1)证明:如图1,连接OC ,∵OA =OC ,∴∠OAC =∠OCA ,∵AC 平分∠DAB ,∴∠DAC =∠OAC ,∴∠DAC =∠OCA ,∴DA ∥OC ,∵CD ⊥DA ,∴OC ⊥CD ,∴CD 是⊙O 的切线;(2)证明:∵AB 为⊙O 的直径,∴∠ACB =90°,∵AC 平分∠DAB ,∴∠DAC =∠BAC ,∵∠DAC =∠PBC ,∴∠BAC =∠PBC ,又∵∠ACB =∠BCP ,∴△ACB ∽△BCP ,∴AC BC =BC PC,∴AC •PC =BC 2;(3)解:如图2,过P 作PE ⊥AB 于点E ,由(2)可知,AC •PC =BC 2,∵BC 2=3FP •DC ,∴AC •PC =3FP •DC ,∵CD ⊥DA ,∴∠ADC =90°,∵AB 为⊙O 的直径,∴∠BCP =90°,∴∠ADC =∠BCP ,∵∠DAC =∠CBP ,∴△ACD ∽△BPC ,∴AC BP =DC PC,∴AC •PC =BP •DC ,∴BP •DC =3FP •DC ,∴BP =3FP ,∵AB 为⊙O 的直径,∴∠AFB =90°,∴PF ⊥AD ,∵AC 平分∠DAB ,PE ⊥AB ,∴PF =PE ,∵==,∴===.7如图,在⊙O 中,直径AB 垂直弦CD 于点E ,连接AC ,AD ,BC ,作CF ⊥AD 于点F ,交线段OB 于点G (不与点O ,B 重合),连接OF .(1)若BE=1,求GE的长.(2)求证:BC2=BG•BO.(3)若FO=FG,猜想∠CAD的度数,并证明你的结论.【分析】(1)由垂径定理可得∠AED=90°,结合CF⊥AD可得∠DAE=∠FCD,根据圆周角定理可得∠DAE=∠BCD,进而可得∠BCD=∠FCD,通过证明△BCE≌△GCE,可得GE=BE=1;(2)证明△ACB∽△CEB,根据对应边成比例可得BC2=BA•BE,再根据AB=2BO,BE=12BG,可证BC2=BG•BO;(3)方法一:设∠DAE=∠CAE=α,∠FOG=∠FGO=β,可证a=90°-β,∠OCF=90-3α,通过SAS 证明△COF≌△AOF,进而可得∠OCF=∠OAF,即90°-3a=a,则∠CAD=2a=45°.方法二:延长FO交AC于点H,连接OC,证明△AFC是等腰直角三角形,即可解决问题.【解答】(1)解:直径AB垂直弦CD,∴∠AED=90°,∴∠DAE+∠D=90°,∵CF⊥AD,∴∠FCD+∠D=90°,∴∠DAE=∠FCD,由圆周角定理得∠DAE=∠BCD,∴∠BCD=∠FCD,在△BCE和△GCE中,,∴△BCE≌△GCE(ASA),∴GE=BE=1;(2)证明:∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACB=∠CEB=90°,∵∠ABC=∠CBE,∴△ACB∽△CEB,∴BC BE =BA BC,∴BC2=BA•BE,由(1)知GE=BE,∴BE=12BG,∴BC2=BA•BE=2BO•1BG=BG•BO;2(3)解:∠CAD=45°,证明如下:解法一:如图,连接OC,∵FO=FG,∴∠FOG=∠FGO,∵直径AB垂直弦CD,∴CE=DE,∠AED=∠AEC=90°,∵AE=AE,∴△ACE≌△ADE(SAS),∴∠DAE=∠CAE,设∠DAE=∠CAE=α,∠FOG=∠FGO=β,则∠FCD=∠BCD=∠DAE=α,∵OA=OC,∴∠OCA=∠OAC=α,∵∠ACB=90°,∴∠OCF=∠ACB-∠OCA-∠FCD-∠BCD=90°-3α,∵∠CGE=∠OGF=β,∠GCE=α,∠CGE+∠GCE=90°,∴β+α=90°,∴α=90°-β,∵∠COG=∠OAC+∠OCA=α+α=2α,∴∠COF=∠COG+∠GOF=2α+β=2(90°-β)+β=180°-β,∴∠COF=∠AOF,在△COF和△AOF中,,∴△COF≌△AOF(SAS),∴∠OCF=∠OAF,即90°-3α=α,∴α=22.5°,∴∠CAD=2a=45°.解法二:如图,延长FO交AC于点H,连接OC,∵FO=FG,∴∠FOG=∠FGO,∴∠FOG=∠FGO=∠CGB=∠B,∴BC∥FH,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACB=∠AHO=90°,∵OA=OC,∴AF =CF ,∵CF ⊥AD ,∴△AFC 是等腰直角三角形,∴∠CAD =45°.8(2023•永州)如图,以AB 为直径的⊙O 是△ABC 的外接圆,延长BC 到点D .使得∠BAC =∠BDA ,点E 在DA 的延长线上,点M 在线段AC 上,CE 交BM 于N ,CE 交AB 于G .(1)求证:ED 是⊙O 的切线;(2)若AC =6,BD =5,AC >CD ,求BC 的长;(3)若DE •AM =AC •AD ,求证:BM ⊥CE .【分析】(1)由AB 是⊙O 的直径得∠ACB =90°,故∠BAC +∠ABC =90°,由∠BAC =∠BDA 得∠BDA +∠ABC =90°,有∠BAD =90°,即可得证;(2)证明△ACB ∽△DCA ,则BC AC =AC DC =AC BD -BC ,可得BC 6=65-BC ,解得BC =2或BC =3,由AC >CD 即可得到BC 的长;(3)先证明△ABC ∽△DAC ,则AC DC =AB AD ,得到AC •AD =CD •AB ,由DE •AM =AC •AD 得到DE •AM =CD •AB ,故AM DC=AB DE ,由同角的余角相等得∠BAM =∠CDE ,有△AMBB ∽△DCE ,得∠E =∠ABM ,进一步得到∠EGA +∠E =∠ABM +∠BGN =90°,则∠BNG =90°,即可得到结论.【解答】(1)证明:∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠BAC +∠ABC =90°,∵∠BAC =∠BDA ,∴∠BDA +∠ABC =90°,∴∠BAD =90°,∴ED 是⊙O 的切线;(2)解:∵∠BAC =∠BDA ,∠ACB =∠DCA =90°,∴△ACB ∽△DCA ,∴BC AC=AC DC =AC BD -BC ,∴BC 6=65-BC ,解得BC =2或BC =3,当BC =2时,CD =BD -BC =3,当BC =3时,CD =BD -BC =2,∵AC >CD ,即6>CD ,∴BC =3;(3)证明:∵AB 是⊙O 的直径,∴∠ACB =∠DCA =90°,∵∠BAC =∠BDA ,∴△ABC ∽△DAC ,∴AC DC =AB AD,∴AC •AD =CD •AB ,∵DE •AM =AC •AD ,∴DE .AM =CD •AB ,∴AM DC=AB DE ,∵∠BAM +∠CAD =∠CDE +∠CAD =90°,∴∠BAM =∠CDE ,∴△AMB ∽△DCE ,∴∠E =∠ABM ,∵∠EGA =∠BGN ,∴∠EGA +∠E =∠ABM +∠BGN =90°,∴∠BNG =90°,∴BM ⊥CE .9(2023•广东)综合探究如图1,在矩形ABCD 中(AB >AD ),对角线AC ,BD 相交于点O ,点A 关于BD 的对称点为A ′.连接AA ′交BD 于点E ,连接CA ′.(1)求证:AA '⊥CA ';(2)以点O 为圆心,OE 为半径作圆.①如图2,⊙O 与CD 相切,求证:AA =3CA ;②如图3,⊙O 与CA ′相切,AD =1,求⊙O 的面积.【分析】(1)根据轴对称的性质可得AE =A ′E ,AA ′⊥BD ,根据四边形ABCD 是矩形,得出OA =OC ,从而OE ∥A ′C ,从而得出AA ′⊥CA ′;(2)①设CD ⊙O 与CD 切于点F ,连接OF ,并延长交AB 于点G ,可证得OG =OF =OE ,从而得出∠EAO =∠GAO =∠GBO ,进而得出∠EAO =30°,从而AA =3CA ;②设⊙O 切CA ′于点H ,连接OH ,可推出AA ′=2OH ,CA ′=2OE ,从而AA ′=CA ′,进而得出∠A ′AC =∠A ′CA =45°,∠AOE =∠ACA ′=45°,从而得出AE =OE ,OD =OA =2AE ,设OA =OE =x ,则OD =OA =2x ,在Rt △ADE 中,由勾股定理得出x 2+2-1 x 2=1,从而求得x 2=2+24,进而得出⊙O的面积.【解答】(1)证明:∵点A关于BD的对称点为A′,∴AE=A′E,AA′⊥BD,∵四边形ABCD是矩形,∴OA=OC,∴OE∥A′C,∴AA′⊥CA′;(2)①证明:如图2,设CD⊙O与CD切于点F,连接OF,并延长交AB于点G,∴OF⊥CD,OF=OE,∵四边形ABCD是矩形,∴OB=OD=12BD,AB∥CD,AC=BD,OA=12AC,∴OG⊥AB,∠FDO=∠GBO,OA=OB,∴∠GAO=∠GBO,∵∠DOF=∠BOG,∴△DOF≌△BOG(ASA),∴OG=OF,∴OG=OE,由(1)知:AA′⊥BD,∴∠EAO=∠GAO,∵∠EAB+∠GBO=90°,∴∠EAO+∠GAO+∠GBO=90°,∴3∠EAO=90°,∴∠EAO=30°,由(1)知:AA′⊥CA′,∴tan∠EAO=CAAA,∴tan30°=CAAA,∴AA =3CA ;②解:如图3,设⊙O切CA′于点H,连接OH,∴OH⊥CA′,由(1)知:AA′⊥CA′,AA′⊥BD,OA=OC,∴OH∥AA′,OE∥CA′,∴△COH∽△CAA′,△AOE∽△ACA′,∴OH AA =OCAC=12,OECA=OAAC=12,∴AA′=2OH,CA′=2OE,∴AA′=CA′,∴∠A′AC=∠A′CA=45°,∴∠AOE=∠ACA′=45°,∴AE=OE,OD=OA=2AE,设AE=OE=x,则OD=OA=2x,∴DE=OD-OE=(2-1)x,在Rt△ADE中,由勾股定理得,x2+2-1x2=1,∴x2=2+24,⋅π.∴S⊙O=π•OE2=2+24考向四:圆与等腰三角形的综合10(2023•宁波)如图,在Rt△ABC中,∠C=90°,E为AB边上一点,以AE为直径的半圆O与BC 相切于点D,连结AD,BE=3,BD=35.P是AB边上的动点,当△ADP为等腰三角形时,AP的长为 6或230 .【分析】连接OD,DE,根据切线的性质和勾股定理求出OD=6,然后分三种情况讨论:①当AP=PD时,此时P与O重合,②如图2,当AP′=AD时,③如图3,当DP′′=AD时,分别进行求解即可.【解答】解:如图1,连接OD,DE,∵半圆O与BC相切于点D,∴OD⊥BC,在Rt△OBD中,OB=OE+BE=OD+3,BD=35.∴OB2=BD2+OD2,∴(OD+3)2=(35)2+OD2,解得OD=6,∴AO=EO=OD=6,①当AP=PD时,此时P与O重合,∴AP=AO=6;②如图2,当AP′=AD时,在Rt△ABC中,∵∠C=90°,∴AC⊥BC,∴OD∥AC,∴△BOD∽△BAC,∴==,∴==,∴AC=10,CD=25,∴AD===230,∴AP′=AD=230;③如图3,当DP′′=AD时,∵AD=230,∴DP′′=AD=230,∵OD=OA,∴∠ODA=∠BAD,∴OD∥AC,∴∠ODA=∠CAD,∴∠BAD=∠CAD,∴AD平分∠BAC,过点D作DH⊥AE于点H,∴AH=P″H,DH=DC=25,∵AD=AD,∴Rt△ADH≌Rt△ADC(HL),∴AH=AC=10,∴AH=AC=P″H=10,∴AP″=2AH=20(P为AB边上一点,不符合题意,舍去),综上所述:当△ADP为等腰三角形时,AP的长为6或230.故答案为:6或230.11(2023•上海)如图(1)所示,已知在△ABC中,AB=AC,O在边AB上,点F是边OB中点,以O 为圆心,BO为半径的圆分别交CB,AC于点D,E,连接EF交OD于点G.(1)如果OG=DG,求证:四边形CEGD为平行四边形;(2)如图(2)所示,连接OE,如果∠BAC=90°,∠OFE=∠DOE,AO=4,求边OB的长;(3)连接BG,如果△OBG是以OB为腰的等腰三角形,且AO=OF,求的值.【分析】(1)由∠ABC=∠C,∠ODB=∠ABC,即得∠C=∠ODB,OD∥AC,根据F是OB的中点,OG =DG,知FG是△OBD的中位线,故FG∥BC,即可得证;(2)设∠OFE=∠DOE=α,OF=FB=a,有OE=OB=2a,由(1)可得OD∥AC,故∠AEO=∠DOE =α,得出∠OFE=∠AEO=α,进而证明△AEO∽△AFE,AE2=AO-AF,由AE2=EO2-AO2,有EO2 -AO2=AO×AF,解方程即可答案;(3)△OBG是以OB为腰的等腰三角形,①当OG=OB时,②当BG=OB时,证明△BGO∽△BPA,得出,设OG=2k,AP=3k,根据OG∥AE,得出△FOG∽△FAE,即得AE=2OG=4k,PE=AE-AP=k,连接OE交PG于点Q,证明△QPE∽△QGO,在△PQE与△BQO中,,,得出==,可得△PQE∽△OQB,根据相似三角形的性质得出a=2k,进而即可求得答案.【解答】(1)证明:如图:∵AC=AB,∴∠ABC=∠C,∵OD=OB,∴∠ODB=∠ABC,∴∠C=∠ODB,∴OD∥AC,∵F是OB的中点,OG=DG,∴FG是△OBD的中位线,∴FG∥BC,即GE∥CD,∴四边形CEGD是平行四边形;(2)解:如图:由∠OFE=∠DOE,AO=4,点F边OB中点,设∠OFE=∠DOE=α,OF=FB=a,则OE=OB=2a,由(1)可得OD∥AC,∴∠AEO=∠DOE=α,∴∠OFE=∠AEO=α,∵∠A=∠A,∴△AEO∽△AFE,∴,即AE2=AO•AF,在Rt△AEO中,AE2=EO2-AO2,∴EO2-AO2=AO×AF,∴(2a)2-42=4×(4+a),解得:或(舍去),∴OB=2a=1+33;(3)解:①当OG=OB时,点G与点D重合,不符合题意,舍去;②当BG=OB时,延长BG交AC于点P,如图所示,∵点F是OB的中点,AO=OF,∴AO=OF=FB,设AO=OF=FB=a,∵OG∥AC,∴△BGO∽△BPA,∴,设OG=2k,AP=3k,∵OG∥AE,∴△FOG∽△FAE,∴,∴AE=2OG=4k,∴PE=AE-AP=k,设OE交PG于点Q,∵OG∥PE,∴△QPE∽△QGO,∴,∴PQ=a,QG=a,,在△PQE与△BQO中,,,∴,又∠PQE=∠BQO,∴△PQE∽△OQB,∴,∴,∴a=2k,∵OD=OB=2a,OG=2k,∴,∴的值为12.12(2023•泰州)已知:A、B为圆上两定点,点C在该圆上,∠C为所对的圆周角.知识回顾(1)如图①,⊙O中,B、C位于直线AO异侧,∠AOB+∠C=135°.①求∠C的度数;②若⊙O的半径为5,AC=8,求BC的长;逆向思考(2)如图②,若P为圆内一点,且∠APB<120°,PA=PB,∠APB=2∠C.求证:P为该圆的圆心;拓展应用(3)如图③,在(2)的条件下,若∠APB=90°,点C在⊙P位于直线AP上方部分的圆弧上运动.点D在⊙P上,满足CD=2CB-CA的所有点D中,必有一个点的位置始终不变.请证明.【分析】(1)①根据∠AOB+∠C=135°,结合圆周角定理求∠C的度数;②构造直角三角形;(2)只要说明点P到圆上A、B和另一点的距离相等即可;(3)根据CD=2CB-CA,构造一条线段等于2CB-CA,利用三角形全等来说明此线段和CD相等.【解答】(1)解:①∵∠AOB+∠C=135°,∠AOB=2∠C,∴3∠C=135°,∴∠C=45°.②连接AB,过A作AD⊥BC,垂足为M,∵∠C=45°,AC=8,∴△ACM是等腰直角三角形,且AM=CM=42,∵∠AOB=2∠C=90°,OA=OB,∴△AOB是等腰直角三角形,∴AB=2OA=52,在直角三角形ABM中,BM==32,∴BC=CM+BM=42+32=72.(2)延长AP交圆于点N,则∠C=∠N,∵∠APB=2∠C,∴∠APB=2∠N,∵∠APB=∠N+∠PBN,∴∠N=∠PBN,∴PN=PB,∵PA=PB,∴PA=PB=PN,∴P为该圆的圆心.(3)过B作BC的垂线交CA的延长线于点E,连接AB,延长AP交圆于点F,连接CF,FB,∵∠APB=90°,∴∠C=45°,∴△BCE是等腰直角三角形,∴BE=BC,∵BP⊥AF,PA=PF,∴BA=BF,∵AF是直径,∴∠ABF=90°,∴∠EBC=∠ABF=90°,∴∠EBA=∠CBF,∴△EBA≌△CBF(SAS),∴AE=CF,∵CD=2CB-CA=CE-CA=AE,∴CD=CF,∴必有一个点D的位置始终不变,点F即为所求.考向五:圆的阅读理解与新定义问题13(2023•青海)综合与实践车轮设计成圆形的数学道理小青发现路上行驶的各种车辆,车轮都是圆形的.为什么车轮要做成圆形的呢?这里面有什么数学道理吗?带着这样的疑问,小青做了如下的探究活动:将车轮设计成不同的正多边形,在水平地面上模拟行驶.(1)探究一:将车轮设计成等边三角形,转动过程如图1,设其中心到顶点的距离是2,以车轮转动一次(以一个顶点为支点旋转)为例,中心的轨迹是,BA=CA=DA=2,圆心角∠BAD=120°.此时中心轨迹最高点是C(即的中点),转动一次前后中心的连线是BD(水平线),请在图2中计算C到BD的距离d1.(2)探究二:将车轮设计成正方形,转动过程如图3,设其中心到顶点的距离是2,以车轮转动一次(以一个顶点为支点旋转)为例,中心的轨迹是,BA=CA=DA=2,圆心角∠BAD=90°.此时中心轨迹最高点是C(即的中点),转动一次前后中心的连线是BD(水平线),请在图4中计算C到BD的距离d2(结果保留根号).(3)探究三:将车轮设计成正六边形,转动过程如图5,设其中心到顶点的距离是2,以车轮转动一次(以一个顶点为支点旋转)为例,中心的轨迹是,圆心角∠BAD=60°.此时中心轨迹最高点是C(即的中点),转动一次前后中心的连线是BD(水平线),在图6中计算C 到BD的距离d3= 2-3 (结果保留根号).(4)归纳推理:比较d1,d2,d3大小:d1>d2>d3 ,按此规律推理,车轮设计成的正多边形边数越多,其中心轨迹最高点与转动一次前后中心连线(水平线)的距离越小(填“越大”或“越小”).(5)得出结论:将车轮设计成圆形,转动过程如图7,其中心(即圆心)的轨迹与水平地面平行,此时中心轨迹最高点与转动前后中心连线(水平线)的距离d=0.这样车辆行驶平稳、没有颠簸感.所以,将车轮设计成圆形.【分析】(1)△ABC是等边三角形,进而求得AE,进一步得出结果;(2)△ABE是等腰直角三角形,进而求得AE,进一步得出结果;(3)△ABD是等边三角形,进而求得AE,进一步得出结果;(4)比较大小得出结果;(5)圆的半径相等,从而得出结果.解:(1)图1,【解答】Array 3∵AB=AD=2,AC⊥BD,∴∠BAC=∠CAD=1∠BAD=60°,2∵AB=AC,∴△ABC是等边三角形,∴AC=AB=2,∴d1=CE=1AC=1;2(2)如图2,∴∠ABD=∠ADB=45°,=2,∴AE=AB•sin∠ABD=2×22∴d2=CE=AC-AE=2-2;(3)如图3,∴AB=BD,∠ABD=60°,∴△ABD是等边三角形,∴∠BAD =60°,在Rt △ABE 中,AE =AB •sin ∠ABD =2•sin 60°=3,∴d 3=AC -AE =2-3,故答案为:60°,2-3;(4)∵1>2-2>2-3,∴d 1>d 2>d 3,越小;故答案为:d 1>d 2>d ,越小;(5)∵圆的半径相等,∴d =0,故答案为:0.14(2023•陕西)(1)如图①,∠AOB =120°,点P 在∠AOB 的平分线上,OP =4.点E ,F 分别在边OA ,OB 上,且∠EPF =60°,连接EF .求线段EF 的最小值;(2)如图②,是一个圆弧型拱桥的截面示意图.点P 是拱桥AB的中点,桥下水面的宽度AB =24m ,点P 到水面AB 的距离PH =8m .点P 1,P 2均在AB上,PP 1=PP 2,且P 1P 2=10m ,在点P 1,P 2处各装有一个照明灯,图中△P 1CD 和△P 2EF 分别是这两个灯的光照范围.两灯可以分别绕点P 1,P 2左右转动,且光束始终照在水面AB 上.即∠CP 1D ,∠EP 2F 可分别绕点P 1,P 2按顺(逆)时针方向旋转(照明灯的大小忽略不计),线段CD ,EF 在AB 上,此时,线段ED 是这两灯照在水面AB 上的重叠部分的水面宽度.已知∠CP 1D =∠EP 2F =90°,在这两个灯的照射下,当整个水面AB 都被灯光照到时,求这两个灯照在水面AB 上的重叠部分的水面宽度.(可利用备用图解答)【分析】(1)过P 作PC ⊥OB 于C ,作PD ⊥OA 于D ,证明△PCF ≌△PDE (AAS ),可得CF =DE ,即可得OE +OF =(OD -DE )+(OC +CF )=OD +OC ,而∠POD =∠POC =60°,知OD =OC =12OP =2,故OE +OF =4,设OF =x ,则OE =4-x ,过F 作FG ⊥AO 于G ,有OG =12x ,GF =32x ,由勾股定理得EF ====,即知线段EF 的最小值是23;(2)当整个水面AB 都被灯光照到时,①C 与A 重合,F 与B 重合,设PH 交P 1P 2于K ,圆心为O ,连接HO ,AO ,P 1O ,过P 1作P 1T ⊥AB 于T ,由点P 是拱桥AB的中点,PH ⊥AB ,设⊙O 半径为r m ,则OH =OP -PH =(r -8)m ,可得122+(r -8)2=r 2,r =13,求出P 1K =P 2K =5m ,OK ===12(m ),PK =OP -OK =13-12=1(m ),KH =PH -PK =8-1=7(m ),可得P 1T =KH =7m ,故AT =P 1T ,∠P 1AT =45°,可得△AP 1D 是等腰直角三角形,即得AD =2AT =14(m ),即CD =14m ,同理可得BE =14m ,即FE =14m ,故DE =EF -DB =14-10=4(m ),这两个灯照在水面AB 上的重叠部分的水面宽度为4m ;②当E 与A 重合,D 与B 重合时,可得AP 2==(m ),而cos ∠P 2AM ==,可得AF =,同理BC =,故CF =AF +BC -AB =(m ).【解答】解:(1)过P 作PC ⊥OB 于C ,作PD ⊥OA 于D ,如图:∵∠AOB =120°,∠EPF =60°,∴∠OEP +∠OFP =180°,∵∠OEP +∠PED =180°,∴∠OFP =∠PED ,即∠PFC =∠PED ,∵OP 平分∠AOB ,PC ⊥OB ,PD ⊥OA ,∴PC =PD ,∵∠PCF =∠PDE =90°,∴△PCF ≌△PDE (AAS ),∴CF =DE ,∴OE +OF =(OD -DE )+(OC +CF )=OD +OC ,∵∠POD =∠POC =60°,∴∠OPD =∠OPC =30°,∴OD =OC =12OP =2,∴OE +OF =4,设OF =x ,则OE =4-x ,过F 作FG ⊥AO 于G ,如图:∵∠OFG =∠AOB -∠G =120°-90°=30°,∴OG =12x ,GF =32x ,∴EG =OE +OG =4-12x ,∴EF ====,∴当x =2时,EF 取最小值12=23,∴线段EF 的最小值是23;(2)当整个水面AB 都被灯光照到时,①C 与A 重合,F 与B 重合,设PH 交P 1P 2于K ,圆心为O ,连接HO ,AO ,P 1O ,过P 1作P 1T ⊥AB 于T ,如图:∵点P 是拱桥AB的中点,PH ⊥AB ,∴O ,P ,H 共线,AH =BH =12AB =12m ,设⊙O 半径为r m ,则OH =OP -PH =(r -8)m ,在Rt △AHO 中,AH 2+OH 2=OA 2,∴122+(r -8)2=r 2,解得r =13,∴OP 1=13m ,∵PP 1=PP 2,且P 1P 2=10m ,∴P 1K =P 2K =5m ,∴OK ===12(m ),∴PK =OP -OK =13-12=1(m ),∴KH =PH -PK =8-1=7(m ),∴P 1T =KH =7m ,∵AT =AH -TH =12-5=7(m ),∴AT =P 1T ,∴∠P 1AT =45°,∵∠CP 1D =90°,即∠AP 1D =90°,∴△AP 1D 是等腰直角三角形,∴AD =2AT =14(m ),即CD =14m ,∴DB =AB -AD =24-14=10(m ),同理可得BE =14m ,即FE =14m ,∴DE =EF -DB =14-10=4(m ),∴这两个灯照在水面AB 上的重叠部分的水面宽度为4m ;②当E 与A 重合,D 与B 重合时,如图:∵AT =P 1T =7m =P 2M ,P 1P 2=10m ,∴AM =AT +TF =17m ,∴AP 2===(m ),∵cos ∠P 2AM ==,∴=,∴AF =,同理BC =,∴CF =AF +BC -AB =+-24=(m );∴这两个灯照在水面AB 上的重叠部分的水面宽度为m ;综上所述,这两个灯照在水面AB 上的重叠部分的水面宽度为4m 或m .15(2023•北京)在平面直角坐标系xOy 中,⊙O 的半径为1.对于⊙O 的弦AB 和⊙O 外一点C 给出如下定义:若直线CA ,CB 中一条经过点O ,另一条是⊙O 的切线,则称点C 是弦AB 的“关联点”.(1)如图,点A (-1,0),B 1(-22,22),B 2(22,-22).①在点C 1(-1,1),C 2(-2,0),C 3(0,2)中,弦AB 1的“关联点”是C 1,C 2 ;②若点C 是弦AB 2的“关联点”,直接写出OC 的长;(2)已知点M (0,3),N (655,0),对于线段MN 上一点S ,存在⊙O 的弦PQ ,使得点S 是弦PQ 的“关联点”.记PQ 的长为t ,当点S 在线段MN 上运动时,直接写出t 的取值范围.【分析】(1)根据题目中关联点的定义分情况讨论即可;(2)根据M (0,3),N (655,0)两点来求最值情况,共有两种情况,分别位于点M 和经过点O 的MN 的垂直平分线上,根据相似三角形的判定和性质即可得到结论.【解答】解:(1)①由关联定义可知,若直线CA 、CB 中一条经过点O ,另一条是⊙O 的切线,则称点C 是弦AB 的“关联点”,∵点A (-1,0),B 1(-22,22),点C 1(-1,1),C 2(-2,0),C 3(0,2),∴直线AC 2经过点O ,且B 1C 2与⊙O 相切,∴C 2是弦AB 1的“关联点”,∵C 1(-1,1),A (-1,0)的横坐标相同,与B 1(-22,22)在直线y =-x 上,∴AC 1与⊙O 相切,B 1C 1经过点O ,∴C 1是弦AB 1的“关联点”;故答案为:C 1,C 2;②∵A (-1,0),B 2(22,-22),设C (a ,b ),如图所示,共有两种情况,a、若C1B2与⊙O相切,AC经过点O,则C1B2,AC1所在直线为,解得,∴C1(2,0),∴OC1=2,b、若AC2与⊙O相切,C2B2经过点O,则直线C2B2,AC2所在直线为,解得,∴C2(-1,1),∴OC2=2,综上所述,OC=2;(2)∵线段MN上一点S,存在⊙O的弦PQ,使得点S是弦PQ的“关联点”,∵弦PQ随着S的变动在一定范围内变动,且M(0,3),N(655,0),OM>ON,∴S共有2种情况,分别位于点M和经过点O的MN的垂线上,如图所示,①当S位于点M(0,3)时,MP为⊙O的切线,作PJ⊥OM,∵M(0,3),⊙O的半径为1,且MP是⊙O的切线,∴OP⊥MP,∵PJ⊥OM,∴△MPO∽△POJ,∴,即,解得OJ=,∴PJ==,Q1J=,∴PQ1==233,同理PQ2==26 3,∴当S位于M(0,3)时,PQ1的临界值为233和26 3;②当S位于经过点O的MN的垂线上的点K时,,∵M(0,3),N(655,0),∴MN=,∴=2,∵⊙O的半径为1,∴∠OKZ=30°,∴△OPQ为等边三角形,∴PQ=1或3,∴当S位于经过点O且垂直于MN的直线上即点K时,PQ1的临界点为1和3,∴在两种情况下,PQ的最小值在1≤t≤233内,最大值在263≤t≤3,综上所述,t的取值范围为1≤t≤233,263≤t≤3.16在探究“四点共圆的条件”的数学活动课上,小霞小组通过探究得出:在平面内,一组对角互补的四边形的四个顶点共圆.请应用此结论,解决以下问题:如图1,△ABC中,AB=AC,∠BAC=α(60°<α<180°).点D是BC边上的一动点(点D不与B,C重合),将线段AD绕点A顺时针旋转α到线段AE,连接BE.(1)求证:A,E,B,D四点共圆;(2)如图2,当AD=CD时,⊙O是四边形AEBD的外接圆,求证:AC是⊙O的切线;(3)已知α=120°,BC=6,点M是边BC的中点,此时⊙P是四边形AEBD的外接圆,直接写出圆心P与点M距离的最小值.【分析】(1)根据旋转的性质得到AE =AD ,∠DAE =α,证明∠BAE =∠CAD ,进而证明△ABE ≌△ACD ,可以得到∠AEB =∠ADC ,由∠ADC +∠ADB =180°,可得∠AEB +∠ADB =180°,即可证明A 、B 、D 、E 四点共圆;(2)连接OA ,OD ,根据等边对等角得到∠ABC =∠ACB =∠DAC ,由圆周角定理得到∠AOD =2∠ABC =2∠DAC ,再由OA =OD ,得到∠OAD =∠ODA ,利用三角形内角和定理证明∠DAC +∠OAD =90°,即∠OAC =90°,可证明AC 是⊙O 的切线;(3)作线段AB 的垂直平分线,分别交AB 、BC 于G 、F ,连接AM ,先求出∠B =∠C =30°,再由三线合一定理得到BM =CM =12BC =3,AM ⊥BC ,解直角三角形求出AB =23,则BG =12AB =3,再解Rt △BGF 得到BF =2,则FM =1;由⊙P 是四边形AEBD 的外接圆,可得点P 一定在AB 的垂直平分线上,故当MP ⊥GF 时,PM 有最小值,据此求解即可.【解答】(1)证明:由旋转的性质可得AE =AD ,∠DAE =α,∴∠BAC =∠DAE ,∴∠BAC -∠BAD =∠DAE -∠BAD ,即∠BAE =∠CAD ,又∵AB =AC ,∴△ABE ≌△ACD (SAS ),∴∠AEB =∠ADC ,∵∠ADC +∠ADB =180°,∴∠AEB +∠ADB =180°,∴A 、B 、D 、E 四点共圆;(2)证明:如图所示,连接OA ,OD ,∵AB =AC ,AD =CD ,∴∠ABC =∠ACB =∠DAC ,∵⊙O 是四边形AEBD 的外接圆,∴∠AOD =2∠ABC ,∴∠AOD =2∠ABC =2∠DAC ,∵OA =OD ,∴∠OAD =∠ODA ,∵∠OAD +∠ODA +∠AOD =180°,∴2∠DAC +2∠OAD =180°,∴∠DAC +∠OAD =90°,即∠OAC =90°,∴OA ⊥AC ,又∵OA 是⊙O 的半径,∴AC 是⊙O 的切线;(3)解:如图所示,作线段AB 的垂直平分线,分别交AB 、BC 于G 、F ,连接AM ,PM ,如图:∵AB =AC ,∠BAC =120°,。

中考数学压轴题-圆的压轴题 含解析

中考数学压轴题-圆的压轴题   含解析

圆的压轴题(1)1、如图,BF 为⊙O 的直径,直线AC 交⊙O 于A ,B 两点,点D 在⊙O 上,BD 平分∠OBC ,DE ⊥AC 于点E 。

(1)求证:直线DE 是⊙O 的切线;(2)若 BF=10,sin ∠BDE=,求DE 的长。

2、如图,AN 是M ⊙的直径,NB x ∥轴,AB 交M ⊙于点C .(1)若点()0,6A ,()0,2N ,30ABN =∠°,求点B 的坐标;(2)若D 为线段NB 的中点,求证:直线CD 是M ⊙的切线.x y C D M O B NA3、如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6,BC=8,求弦BD的长.4、已知△ABC的内切圆⊙O与AB、BC、AC分别相切于点D、E、F,若=,如图1,.(1)判断△ABC的形状,并证明你的结论;(2)设AE与DF相交于点M,如图2,AF=2FC=4,求AM的长.5、如图,AB是⊙O的直径,AC是上半圆的弦,过点C作⊙O的切线DE交AB的延长线于点E,过点A作切线DE的垂线,垂足为D,且与⊙O交于点F,设∠DAC,∠CEA的度数分别是α,β.(1)用含α的代数式表示β,并直接写出α的取值范围;(2)连接OF与AC交于点O′,当点O′是AC的中点时,求α,β的值.6、如图,在菱形ABCD中,点P在对角线AC上,且PA=PD,⊙O是△PAD的外接圆.(1)求证:AB是⊙O的切线;(2)若AC=8,tan∠BAC=,求⊙O的半径.7、如图,AB为⊙O的直径,CB,CD分别切⊙O于点B,D,CD交BA的延长线于点E,CO的延长线交⊙O于点G,EF⊥OG于点F.(1)求证:∠FEB=∠ECF;(2)若BC=6,DE=4,求EF的长.8、如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE.(1)求证:BE与⊙O相切;(2)设OE交⊙O于点F,若DF=1,BC=2 ,求阴影部分的面积.9、如图,已知⊙O的直径CD=6,A,B为圆周上两点,且四边形OABC是平行四边形,过A点作直线EF∥BD,分别交CD,CB的延长线于点E,F,AO与BD交于G点.(1)求证:EF是⊙O的切线;(2)求AE的长.10、如图,C、D是半圆O上的三等分点,直径AB=4,连接AD、AC,DE⊥AB,垂足为E,DE交AC于点F.(1)求∠AFE的度数;(2)求阴影部分的面积(结果保留π和根号).11、如图,MN是⊙O的直径,MN=4,点A在⊙O上,∠AMN=30°,B为的中点,P是直径MN上一动点.(1)利用尺规作图,确定当PA+PB最小时P点的位置(不写作法,但要保留作图痕迹).(2)求PA+PB的最小值.12、如图,已知直线PT与⊙O相切于点T,直线PO与⊙O相交于A,B两点.(1)求证:PT2=PA•PB;(2)若PT=TB=,求图中阴影部分的面积.13、如图,PA、PB是⊙O的切线,A、B为切点,∠APB=60°,连接PO并延长与⊙O交于C点,连接AC,BC.(1)求证:四边形ACBP是菱形;(2)若⊙O半径为1,求菱形ACBP的面积.14、如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC边于点D,过点C作CF ∥AB,与过点B的切线交于点F,连接BD.(1)求证:BD=BF;(2)若AB=10,CD=4,求BC的长.15、如图,梯形ABCD中,AD∥BC,AE⊥BC于E,∠ADC的平分线交AE于点O,以点O为圆心,OA为半径的圆经过点B,交BC于另一点F.(1)求证:CD与⊙O相切;(2)若BF=24,OE=5,求tan∠ABC的值.16、已知:如图,MN为⊙O的直径,ME是⊙O的弦,MD垂直于过点E的直线DE,垂足为点D,且ME平分∠DMN.求证:(1)DE是⊙O的切线;(2)ME2=MD•MN.参考答案1、【解答】解:(1)如图所示,连接OD,∵OD=OB,∴∠ODB=∠OBD,∵BD平分∠OBC,∴∠OBD=∠DBE,∴∠ODB=∠DBE,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∵OD是⊙O的半径,∴直线DE是⊙O的切线;(2)如图,连接DF,∵BF是⊙O的直径,∴∠FDB=90°,∴∠F+∠OBD=90°,∵∠OBD=∠DBE,∠BDE+∠DBE=90°,∴∠F=∠BDE,在Rt△BDF中,=sinF=sin∠BDE=,∴BD=10×=2,∴在Rt△BDE中,sin∠BDE==,∴BE=2×=2,∴在Rt△BDE中,DE===4。

圆的压轴题 六年级数学——《圆》常见题型

圆的压轴题   六年级数学——《圆》常见题型

圆的压轴题六年级数学——《圆》常见题型1.求阴影部分面积:(单位:米)2.求半圆的周长和面积3.求下面阴影部分的面积(单位:厘米)。

4.求下面阴影部分的面积(单位:厘米)。

5.求阴影部分的面积6.求阴影部分的面积,单位:厘米7.求阴影部分的面积,单位:厘米8.求阴影部分的面积,单位:厘米9.求阴影部分的面积,单位:厘米10.求阴影部分的面积,单位:厘米11.求阴影部分的面积12.求阴影部分的面积13.阴影部分面积(单位:厘米)14.求阴影部分面积:(单位:米)15.求各图的周长和面积:(单位:米)16.求各图的周长和面积:(单位:米)17.求各图的周长和面积:(单位:米)18.求下面阴影部分的周长和面积19.求阴影部分的周长和面积20.求右图阴影部分周长和面积:(单位:厘米)21.比较图中从A点到B点的两条路径的是否一样长,为什么?22.求图形的周长(单位:厘米)23.如图,两个小半圆的半径分别为8厘米和4厘米,阴颢部分的周长是多少厘米?24.(如图)求花坛的面积。25.图中是一个边长是3厘米的正方形,计算整个图形的面积是多少平方厘米?26.如下图,从一张正方形的纸上剪下一个最大的圆,这个圆的周长是多少?27.已知正方形的面积是16平方厘米,求阴影部分的面积28.(如图)正方形的面积是10平方米,求圆形面积是多少平方米?29.下图是一个花坛的平面图。阴影部分是花坛的边。计算花坛的边占地多少平方米。(得数保留一位小数) 提示:先求出圆环面积,再减去圆环的60。36030.已知阴影部分的面积是30平方厘米,求环形的面积.31.一个圆形花坛,直径是10米,在它的外墙铺一条1米宽的小路,这条小路的面积是多少平方米?32.如图,两个连在一起的皮带轮,其中一个小轮子的直径是1分米,当这个小轮子转5周时,另一个大轮子刚好转一周,求大轮子的直径33.半圆的直径是( ),半径是( )。半圆周长是( ),面积是( )。34.如图所示的图形是由两个不同的半圆组合而成的,AB的长与BC的长的比是3:2,如果的AB的长是6厘米,求它的面积和周长。

2021中考数学压轴题 – 圆的专题含答案解析

2021中考数学压轴题 – 圆的专题含答案解析

2021中考数学压轴题满分训练–圆的专题1.如图所示,AC与⊙O相切于点C,线段AO交⊙O于点B.过点B作BD∥AC交⊙O 于点D,连接CD、OC,且OC交DB于点E.若∠CDB=30°,DB=4cm.(1)求⊙O的半径长;(2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π)2.如图,△ABC内接于⊙O,且AB为⊙O的直径,OE⊥AB交AC于点E,在OE的延长线上取点D,使得DE=DC.(1)求证:CD是⊙O的切线;(2)若AC=2,BC=,求CD的长.3.如图,四边形ABCD内接于⊙O,BC为⊙O的直径,⊙O的切线AP与CB的延长线交于点P.(1)求证:∠PAB=∠ACB;(2)若AB=12,cos∠ADB=,求PB的长.4.如图,△ABC内接于⊙O,AH⊥BC于点H,若AC=24,AH=18,⊙O的半径OC =13,过点O作OD⊥AC于点D.(1)求证:∠B=∠COD;(2)求AB的长.5.如图,AB是⊙O的直径,AE是弦,C是弧AE的中点,过点C作⊙O的切线交BA 的延长线于点G,过点C作CD⊥AB于点D,交AE于点F.(1)求证:GC∥AE;(2)若sin∠EAB=,OD=3,求AE的长.6.如图,AD与⊙O相切于点D,点A在直径CB的延长线上.(1)求证:∠DCB=∠ADB;(2)若∠DCB=30°,AC=3,求AD的长.7.如图1,在⊙O中,弦AB⊥弦CD,垂足为点E,连接AD、BC、AO,AD=AB.(1)求证:∠CAO=2∠CDB;(2)如图2,过点O作OH⊥AD,垂足为点H,求证:2OH+CE=DE;(3)如图3,在(2)的条件下,延长DB、AC交于点F,过点D作DM⊥AC,垂足为M交AB于N,若BC=12,AF=3BF,求MN的长.8.如图,在△ABC中,∠ABC=90°,AB=8,BC=6.以BC为直径的⊙O交AC于D,E是AB的中点,连接ED并延长交BC的延长线于点F.(1)求证:DE是⊙O的切线;(2)求DB的长.9.如图,在Rt△ABC中,∠ACB=90°,AB=10,AC=6,点D为BC边上的一个动点,以CD为直径的⊙O交AD于点E,过点C作CF∥AB,交⊙O于点F,连接CE、CF、EF.(1)当∠CFE=45°时,求CD的长;(2)求证:∠BAC=∠CEF;(3)是否存在点D,使得△CFE是以EF为腰的等腰三角形,若存在,求出此时CD 的长;若不存在,试说明理由.10.直线l与⊙O相离,OB⊥l于点B,且OB=5,OB与⊙O交于点P,A为圆上一点,AP的延长线交直线l于点C,且AB=BC.(1)求证:AB是⊙O的切线;(2)若⊙O的半径为3,求线段AP的长.11.如图,已知直线l与⊙O无公共点,OA⊥l于点A,交⊙O于点P,点B是⊙O上一点,连接BP并延长交直线l于点C,使得AB=AC.(1)求证:AB是⊙O的切线;(2)若BP=2,sin∠ACB=,求AB的长.12.如图,在△ABC中,AB=AC.以AB为直径的⊙O分别与BC、AC相交于点D、E,连接AD.过点D作DF⊥AC,垂足为点F,(1)求证:DF是⊙O的切线;(2)若⊙O的半径为4,∠CDF=22.5°,求图中阴影部分的面积.13.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC,垂足为点H,连接DE,交AB于点F.(1)求证:DH是⊙O的切线;(2)若⊙O的半径为4,①当AE=FE时,求的长(结果保留π);②当时,求线段AF的长.14.如图,AB是⊙O的直径,点C和点D分别在AB和⊙O上,且AC=AD,DC的延长线交⊙O于点E,过E作AC的平行线交⊙O于点F,连接AF,DF.(1)求证:四边形ACEF是平行四边形;(2)当sin∠EDF=,BC=4时,求⊙O的半径.15.如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O于点D,过点D 作DE⊥AC,分别交AC、AB的延长线于点E,F.(1)求证:EF是⊙O的切线;(2)若AC=6,CE=2,求CB的长.参考答案1.解:(1)∵AC与⊙O相切于点C,∴∠ACO=90°.∵BD∥AC,∴∠BEO=∠ACO=90°,∴DE=EB=BD==2(cm)∵∠D=30°,∴∠O=2∠D=60°,在Rt△BEO中,sin60°=,=.∴OB=5,即⊙O的半径长为5cm.(2)由(1)可知,∠O=60°,∠BEO=90°,∴∠EBO=∠D=30°.在△CDE与△OBE中,.∴△CDE≌△OBE(AAS).∴S阴影=S扇OBC=π•42=(cm2),答:阴影部分的面积为cm2.2.(1)证明:连接OC,如图1,∵DC=DE,∴∠DCE=∠DEC,∵∠DEC=∠AEO,∴∠DCE=∠AEO,∵OA⊥OE,∴∠A+∠AEO=90°,∴∠DCE+∠A=90°,∵OA=OC,∴∠A=∠ACO,∴∠DCE+∠ACO=90°,∴OC⊥DC,∴CD是⊙O的切线;(2)如图2,过点D作DF⊥CE于点F,∵AC=2,BC=,∴AB===5,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ACB=∠AOE,又∵∠A=∠A,∴△AOE∽△ACB,∴,∴,∴AE=,∴CE=AC﹣AE=2﹣=,∵CD=DE,∴CF=CE=,∠DEC=∠DCE,∵∠DEC=∠AEO,∠AEO=∠B,∴∠DCE=∠B,又∵∠DFC=∠ACB,∴△DFC∽△ACB,∴,∴,∴DC=.3.解:(1)证明:如图,连接OA,∵AP为⊙O的切线,∴OA⊥AP,∴∠OAP=90°,∴∠OAB+∠PAB=90°,∵OA=OB,∴∠OAB=∠OBA,∴∠OBA+∠PAB=90°,∵BC为⊙O的直径,∴∠ACB+∠OBA=90°,∴∠PAB=∠ACB;(2)由(1)知∵∠PAB=∠ACB,且∠ADB=∠ACB,∴∠PAB=∠ACB=∠ADB,∴,∵AB=12,∴AC=16,∴,∴OB=10,过B作BF⊥AP于F,∵∠ADB=∠FAB,,∴,∴,∴在Rt△ABF中,,∵OA⊥AP,BF⊥AP,∴BF∥OA,∴△PBF∽△POA,∴,∴,∴.答:PB的长为.4.解:(1)作直径AE,连接CE,∴∠ACE=90°,∴∠CAE+∠E=90°,∵OA=OC,∴∠CAE=∠OCD,∴∠OCD+∠E=90°,∵OD⊥AC,∴∠OCD+∠COD=90°,∴∠COD=∠E,∵∠B=∠E,∴∠B=∠COD;(2)∵AH⊥BC,∴∠AHB=90°,∴∠ACE=∠AHB,∵∠B=∠E,∴△ABH∽△AEC,∴=,∴AB=,∵AC=24,AH=18,AE=2OC=26,∴AB==.5.(1)证明:连接OC,交AE于点H.∵C是弧AE的中点,∴OC⊥AE.∵GC是⊙O的切线,∴OC⊥GC,∴∠OHA=∠OCG=90°,∴GC∥AE;(2)解:∵OC⊥GC,GC∥AE,∴OC⊥AE,∵CD⊥AB,∴∠CHF=∠FDA=90°,∵∠CFH=∠AFD,∴∠OCD=∠EAB.∴.在Rt△CDO中,OD=3,∴OC=5,∴AB=10,连接BE,∵AB是⊙O的直径,∴∠AEB=90°.在Rt△AEB中,∵,∴BE=6,∴AE=8.6.(1)证明:如图,连接OD,∵AD与⊙O相切于点D,∴OD⊥AD,∴∠ODB+∠ADB=90°,∵CB是直径,∴∠CDB=90°,∴∠ODB+∠ODC=90°,∴∠ODC=∠ADB,∵OD=OC,∴∠ODC=∠OCD,∴∠C=∠ADB;(2)解:∵∠DCB=∠ADB,∠DAC=∠CAD,∴△ADB∽△ACD,∴=,∵CB是直径,∴∠CDB=90°,∠DCB=30°,∴tan∠DCB==,∴=,∵AC=3,∴AD=3.7.解:(1)如图,连接AO、DO,∵AB=AD,∴,∴∠AOB=∠AOD,∴AO=OB,AO=OD,∴△AOB≌△AOD,∴∠BAO=∠DAO,延长AO交BD于点H,∵AB=AD,∴AH⊥BD,∴∠AHB=∠AHD=90°,∵,∴∠ACD=∠ABD,∴∠CAB=∠BAO=∠OAD,∴∠CAO=2∠CDB.(2)过点O作OT⊥CD,则CT=DT,∵CD⊥AB,CD⊥OT,OQ⊥AB,∴∠OQB=∠OTE=∠AED=90°,∴四边形OTEQ为矩形,∴OQ=ET,∵TD=CT=ET+CE,∵AB=AD,∴OQ=OH,∴2OH+CE=DE.(3)如图,∵∠ACB+∠ADB=180°,∠FCB+∠ACB=180°,∴∠ADB=∠FCB,∵∠F=∠F,∴△FCB∽△FDA,∴,∵CB=12,∴AB=AD=36,∵∠BCD=∠BAD,∠AEB=∠AED,∴△CEB∽△AED,∴,设BE=x,则AE=36﹣x,ED=3x,∵AB⊥CD,∴∠AED=90°,则在Rt△AED中,AE2+ED2=AD2,(36﹣x)2+(3x)2=362,解得:,∴BD=∵CD⊥AB,∴∠BED=90°,∠NMA=90°,∠ANM=∠END,∴∠NED=∠MAN,∴∠BDE=∠EDN,∵ED=ED,∴△BED≌△NED,∴,∵∠CDB=∠CAB,∠NMA=∠BED,∴△AMN∽△DEB,∴,∴,∴MN=.8.(1)证明:连接BD,DO,∵BC是⊙O的直径,∴∠ADB=90°.∴∠CDB=90°,又∵E为AB的中点,∴DE=EB=EA,∴∠EDB=∠EBD.∵OD=OB,∴∠ODB=∠OBD.∵∠ABC=90°,∴∠EDB+∠OBD=90°.即OD⊥DE.∴DE是⊙O的切线.(2)解:在Rt△ABC中,AB=8,BC=6,∴AC===10,∵,∴.9.解:(1)∵∠CFE=90°,∠CFE=∠CDE,∴∠CDE=45°,∵∠ACB=90°,∴∠DAC=45°,∴∠DAC=∠ADC,∴AC=CD=6;(2)证明:∵∠ACB=90°,∴∠BAC+∠B=90°,∵CF∥AB,∴∠B=∠FCB,又∵∠FCB=∠DEF,∴∠BAC+∠DEF=90°,∵CD为⊙O的直径,∴∠CED=90°,∴∠DEF+∠CEF=90°,∴∠BAC=∠CEF;(3)①如图1,当EF=CE时,则∠EFC=∠ECF,∵四边形CEDF为圆内接四边形,∴∠ADG=∠ECF,又∵∠CDE=∠CFE,∴∠ADG=∠CDE,∵CD为⊙O的直径,∴∠DFC=90°,∵FC∥AB,∴∠FGA=90°,∴∠FGA=∠ACD,∵AD=AD,∴△AGD≌△ACD(AAS),∴DG=CD,在Rt△BDG中,设CD=x,∵BG2+DG2=BD2,∴42+x2=(8﹣x)2,∴x=3,即CD=3;②如图2,当EF=CF时,则∠CEF=∠ECF,∵四边形CEDF为圆内接四边形,∴∠ADG=∠ECF,又∵∠CEF=∠CDF=∠BDG,∴∠ADG=∠BDG,∵FC∥AB,∠DFC=90°,∴∠FGA=90°,∴∠FGA=∠ACD,∵GD=GD,∴△BGD≌△AGD(ASA),∴BD=AD,在Rt△ACD中,设CD=x,∵CD2+AC2=AD2,∴x2+62=(8﹣x)2,∴x=,即CD=;综合以上可得CD的长为3或.10.证明:(1)连接OA,∵OA=OP,∴∠OPA=∠OAP=∠BPC,∵AB=BC,∴∠BAC=∠ACB,∵OB⊥l,∴∠ACB+∠BPC=90°,∴∠BAC+∠OAP=90°,即OA⊥AB,∴AB与⊙O相切;(2)解:如图,连接AO并延长交⊙O于D,连接PD,则∠APD=90°,∵OB=5,OP=3,∴PB=2,∴BC=AB==4,在Rt△PBC中,PC==2,∵∠DAP=∠CPB,∠APD=∠PBC=90°,∴△DAP∽△CPB,∴,即,解得,AP=.11.(1)证明:连接OB,如图1,∵AB=AC,∴∠ABC=∠ACB,∵OA⊥l,∴∠ACB+∠APC=90°,∵OB=OP,∴∠OBP=∠OPB,∵∠OPB=∠APC,∴∠OBP+∠ACB=90°,∴∠OBP+∠ABC=90°,即∠OBA=90°,∴OB⊥AB,∴AB是⊙O的切线;(2)解:作直径BD,连接PD,则∠BPD=90°,如图2,∵AB是⊙O的切线,∴∠ABC=∠D,∵∠ABC=∠ACB,∴∠D=∠ABC=∠ACB,∵sin∠ACB=,∴sin∠D==,∵BP=2,∴BD=10,∴OB=OP=5,∵sin∠ACB=,∴=,∴=,设PA=x,则AB=AC=2x,在Rt△AOB中,AB=2x,OB=5,OA=5+x,∴(2x)2+52=(5+x)2,解得x=,∴AB=2x=.12.(1)证明:连接AD.∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BC.又AB=AC=13,BC=10,D是BC的中点,∴BD=5.连接OD;由中位线定理,知DO∥AC,又DF⊥AC,∴DF⊥OD.∴DF是⊙O的切线;(2)连接OE,∵DF⊥AC,∠CDF=22.5°,∴∠ABC=∠ACB=67.5°,∴∠BAC=45°,∵OA=OE,∴∠AOE=90°,∵⊙O的半径为4,∴S扇形AOE=4π,S△AOE=8∴S阴影=S扇形AOE﹣S△AOE=4π﹣8.13.证明:(1)连接OD,如图1,∵OB=OD,∴△ODB是等腰三角形,∠OBD=∠ODB①,在△ABC中,∵AB=AC,∴∠ABC=∠ACB②,由①②得:∠ODB=∠OBD=∠ACB,∴OD∥AC,∵DH⊥AC,∴DH⊥OD,∴DH是圆O的切线;(2)①∵AE=EF,∴∠EAF=∠EAF,设∠B=∠C=α,∴∠EAF=∠EFA=2α,∵∠E=∠B=α,∴α+2α+2α=180°,∴α=36°,∴∠B=36°,∴∠AOD=72°,∴的长==;②连接AD,∵AB为⊙O的直径,∴∠ADB=∠ADC=90°,∵⊙O的半径为4,∴AB=AC=8,∵,∴=,∴AD=2,∵AD⊥BC,DH⊥AC,∴△ADH∽△ACD,∴=,∴=,∴AH=3,∴CH=5,∵∠B=∠C,∠E=∠B,∴∠E=∠C,∴DE=DC,∵DH⊥AC,∴EH=CH=5,∴AE=2,∵OD∥AC,∴∠EAF=∠FOD,∠E=∠FDO,∴△AEF∽△ODF,∴=,∴=,∴AF=.14.(1)证明:∵AC=AD,∴∠ADC=∠ACD,∵AC∥EF,∴∠ACD=∠E,∴∠ADC=∠E,∴=,∴=,∴AD=EF,∵AD=AC,∴AC=EF,∵AC∥EF,∴四边形ACEF是平行四边形;(2)解:连接BD,∵四边形ACEF是平行四边形,∴AF∥CE,∴∠EDF=∠AFD,∵所对圆周角∠B和∠AFD,∴∠AFD=∠B,∴∠B=∠EDF,∵AB是⊙O的直径,∴∠ADB=90°,∵sin∠EDF=,∴sin B=sin∠EDF==,∴设AD=2x,AB=3x,∵AC=AD,BC=4,∴3x﹣2x=4,解得:x=4,即AB=3x=3×4=12,∵AB为⊙O的直径,∴⊙O的半径是6.15.(1)证明:连接OD交BC于H,如图所示:∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠OAD=∠DAC,∴∠ODA=∠DAC,∴OD∥AE,∵DE⊥AC,∴OD⊥EF,∵OD是⊙O的半径,∴EF是⊙O的切线;(2)解:∵AB为⊙O的直径,∴∠ACB=90°,∴∠HCE=90°,又∵DE⊥AC,∴∠E=90°,由(1)得:OD⊥EF,∴∠HDE=90°,∴四边形CEDH是矩形,∴HD=CE=2,∴∠CHD=90°,∴∠OHB=90°,∴OD⊥BC,∴OH平分BC,∴OH是△ABC的中位线,∴OH=AC=3,∴OB=OD=OH+HD=5,∴AB=2OB=10,∴CB===8.。

压轴题型07 阿波罗尼斯圆问题(原卷版)-2023年高考数学压轴题专项训练

压轴题型07 阿波罗尼斯圆问题(原卷版)-2023年高考数学压轴题专项训练

压轴题07阿波罗尼斯圆问题在近几年的高考中,以阿波罗尼斯圆为背景的考题不断出现,备受命题者的青睐,下面我们通过一例高考题,讲解如何运用阿波罗尼斯圆进一步加强对与此圆与关试题的认识。

背景展示阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是他的研究成果之一.求证:到两定点的距离的比值是不等于1的常数的点的轨迹是圆.如图,点B A ,为两定点,动点P 满足PB P A λ=,则1=λ时,动点P 的轨迹为直线;当1≠λ时,动点P 的轨迹为圆,后世称之为阿波罗尼斯圆.证明:设PB P A m m AB λ=>=,02)(.以AB 中点为原点,直线AB 为x 轴建立平面直角坐标系,则),,(0m A -),(0m B .又设),(y x C ,则由PB P A λ=得:2222)()(y m x ym x +-=++λ,两边平方并化简整理得:)()()()(222222211121λλλλ-=-++--m y x m x ,当1=λ时,0=x ,轨迹为线段AB 的垂直平分线;当1>λ时,22222222)1(4)11(-=+-+-λλλλm y m x ,轨迹为以点)0,11(22m -+λλ为圆心,以122-λλm 长为半径的圆.○热○点○题○型隐形的阿波罗尼斯圆典型例题例1、如图,圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点,A B (B 在A 的上方),且2AB =.(Ⅰ)圆C 的标准..方程为;(Ⅱ)过点A 任作一条直线与圆22:1O x y +=相交于,M N 两点,下列三个结论:①NAMA NB MB =;②2NBMANA MB -=;③NBMANA MB +=其中正确结论的序号是.(写出所有正确结论的序号)方法一可以改进为:这里的第(Ⅰ)问并不很难,只要考生有一定平面几何基础既能轻易解出.但第(Ⅱ)问有难度.这是因为当圆O 的弦MN 绕定点A 旋转时,各有关线段的长度都在变化,从而相应线段的比值也就难于确定,方法一运算量较大。

压轴题练习——圆为背景

压轴题练习——圆为背景

以圆为背景的压轴题1、如图,已知线段AB =10,点C 在线段AB 上,⊙A 、⊙B 的半径分别为AC 、BC ,D 是⊙B 上一点,AD 交⊙A 于E ,EC 的延长线交⊙B 于F 。

(1) 求证:BF //AD ; (2) 若BD ⊥AD ,AC =x ,DF =y ,求y 与x 的函数关系式,写出定义域。

(3)在(2)的条件下,点C 在线段AB 上运动的过程中,DF 是否有可能与AB 垂直,如果有可能请求出AC 的长,如果没有可能,请说明理由。

FE A B CD2、如图1,已知:在直角坐标系中,点E从坐标原点O出发,以1个单位/秒的速度沿x轴正方向运动,点F从坐标原点O出发,以2个单位/秒的速度沿y轴正方向运动。

B(4,2),以BE为直径做⊙M.(1)若点E、F同时出发,设线段EF与线段OB交于点G,试判断点 G 与⊙M的位置关系,并证明你的结论;(2)在(1)的条件下,联结FB,几秒时FB与⊙M相切;(3)如图2,若点E提前2秒出发,点F再出发,当点F出发后,E点在A点左侧时,设BA⊥x轴于点A,联结AF交⊙M于点P,请问AP·AF的值是否会发生变化?若不变,请说明理由,并求其值;若变化,请求其值的变化范围.3、已知:如图,在Rt △ABC 中,∠ACB =90°,tan ∠ABC =43,AB =5,D 是线段AB 上的一点(与点A 、B 不重合),直线DP ⊥AB ,与线段AC 相交于点Q ,与射线BC 相交于点P ,E 是AQ 的中点,线段ED 的延长线与线段CB 的延长线相交于点F 。

(1)求证:△FBD ∽△FDP ; (2)求BF ∶BP 的值;(3)若⊙A 与直线BC 相切,⊙B 的半径等于线段BF 的长,设BD =x ,当⊙A 与⊙B 相切时,请求出x 的值.AB C P DEF Q4、已知,如图1:在正方形ABCD 中,AB =2,点P 是DC 延长线上一点,以P 为圆心,PD 长为半径的圆的一段弧交AB 边于点E ,(1) 若以A 为圆心,AE 为半径的圆与以BC 为直径的圆外切时,求AE 的长;(2) 如图2:联结PE 交BC 边于点F ,联结DE ,设AE 长为x ,CF 长为y ,求y 与x 的函数关系式,并写出自变量x 的取值范围;(3) 将点B 沿直线EF 翻折,使点B 落在平面上的B '处,当EF =53时,△AB'B 与△BEF 是否相似?若相似,请加以证明;若不相似,简要说明理由。

圆中考压轴题

圆中考压轴题

圆中考压轴题一、题目背景圆是几何学中一个重要的基本概念,也是中学数学课程中的重点内容之一。

掌握圆的性质和相关定理,对于学生在中考中取得好成绩非常重要。

本文将给出一道圆中考压轴题,并详细解析解题思路和步骤。

二、题目描述在平面直角坐标系中,点A位于第二象限,点B位于第三象限,且点B在以原点O(0,0)为圆心的圆上。

当点B在该圆上移动时,线段OA的模长与线段OB的模长之和保持不变。

若圆的半径为r,求线段OA的模长的最大值。

三、解题思路首先,我们可以根据题目描述和给定的条件,建立数学模型,如下图所示:圆中考压轴题圆中考压轴题设圆的半径为r,点B的坐标为(x,y),则根据题目中给出的条件可得:(OA)2+(OB)2=(x−a)2+(y−b)2+x2+y2=k2——(1)其中,k为常数,表示线段OA的模长与线段OB的模长之和。

由于点A位于第二象限,所以坐标(a,b)为$(a, b)=(a, \\sqrt{r^2-a^2})$。

根据直角坐标系中两点之间的距离公式,我们可以得到:(OA)2=(x−a)2+(y−b)2代入(1)中,并整理可以得到:$(y+\\sqrt{r^2-a^2})^2 = k^2 - 2x^2 - 2ay = k^2 - 2a(x+y)$ ——(2)由于点B位于以原点O(0,0)为圆心的圆上,所以满足x2+y2=r2。

代入(2)中,并整理可以得到:$(y+\\sqrt{r^2-a^2})^2 = k^2 - 2ar^2 - 2ay$ ——(3)四、解题步骤步骤1:求解交点坐标由圆的方程和直线的方程,可以得到两者的交点。

圆的方程:x2+y2=r2直线的方程:$(y+\\sqrt{r^2-a^2})^2 = k^2 - 2ar^2 - 2ay$将直线的方程代入圆的方程中,整理可得:$x^2 + (y+\\sqrt{r^2-a^2})^2 = r^2$展开并整理可得:$y^2-2y\\sqrt{r^2-a^2}+k^2-2ar^2+r^2=0$根据二次曲线与直线的交点判别式,有:$\\Delta = (-2\\sqrt{r^2-a^2})^2 - 4(1)(k^2-2ar^2+r^2)$$\\Delta = 4(r^2-a^2) - 4[k^2-2ar^2+r^2]$$\\Delta = 4r^2 - 4a^2 - 4k^2 + 8ar^2 - 4r^2$$\\Delta = 4ar^2 - 4a^2 - 4k^2$由于点B位于第三象限,所以x坐标为负数,即x<0。

中考压轴题---------圆

中考压轴题---------圆

中考压轴题---------圆一、知识提要二、精讲精练1.(2011湖南湘潭)已知,AB 是⊙O 的直径,AB =8,点C 在⊙O 的半径OA上运动,PC ⊥AB ,垂足为C ,PC =5,PT 为⊙O 的切线,切点为T .(1)如图(1),当C 点运动到O 点时,求PT 的长;(2)如图(2),当C 点运动到A 点时,连结PO 、BT ,求证:PO ∥BT ;(3)如图(3),设y PT2,x AC ,求y 与x 的函数关系式及y 的最小值.图(3)图(2)图(1)COABPT OA (C)BP TTPBAO(C)2.(2010广东广州)如图,⊙O 的半径为1,点P 是⊙O 上一点,弦AB 垂直平分线段OP ,点D 是弧APB 上任一点(与端点A 、B 不重合),DE ⊥AB 于点E ,以点D 为圆心、DE 长为半径作⊙D ,分别过点A 、B 作⊙D 的切线,两条切线相交于点C .(1)求弦AB 的长;(2)判断∠ACB 是否为定值,若是,求出∠ACB 的大小;否则,请说明理由;(3)记△ABC 的面积为S ,若2S DE=43,求△ABC 的周长.CP DOBAE3.(2011福建莆田)已知菱形ABCD 的边长为1.∠ADC =60°,等边△AEF 两边分别交边DC 、CB 于点E 、F .(1)特殊发现:如图1,若点E 、F 分别是边DC 、CB 的中点.求证:菱形ABCD 对角线AC 、BD 交点O 即为等边△AEF 的外心;(2)若点E 、F 始终分别在边DC 、CB 上移动.记等边△AEF 的外心为点P .①猜想验证:如图2,猜想△AEF 的外心P 落在哪一直线上,并加以证明;②拓展运用:如图3,当△AEF 面积最小时,过点P 任作一直线分别交边DA于点M ,交边DC 的延长线于点N ,试判断11DMDN是否为定值.若是.请求出该定值;若不是.请说明理由.PABCDEFOFEDCBA图2MNABCDEFP图34.(2010四川成都)在平面直角坐标系xOy 中,抛物线2y axbx c 与x 轴交于A B 、两点(点A 在点B 的左侧),与y 轴交于点C ,点A 的坐标为(30),,若将经过A C 、两点的直线y kx b 沿y 轴向下平移3个单位后恰好经过原点,且抛物线的对称轴是直线2x.(1)求直线AC 及抛物线的函数表达式;(2)如果P 是线段AC 上一点,设△ABP 、△BPC 的面积分别为ABPS 、BPCS,且:2:3ABP BPCS S ,求点P 的坐标;(3)设⊙Q 的半径为1,圆心Q 在抛物线上运动,则在运动过程中是否存在⊙Q 与坐标轴相切的情况?若存在,求出圆心Q 的坐标;若不存在,请说明理由.并探究:若设⊙Q 的半径为r ,圆心Q 在抛物线上运动,则当r 取何值时,⊙Q 与两坐标轴同时相切?5.(2010福建福州)如图1,在平面直角坐标系中,点B 在直线2yx 上,过点B 作x 轴的垂线,垂足为A ,OA=5.若抛物线216yxbxc 过点O 、A两点.(1)求该抛物线的解析式;(2)若A 点关于直线2y x 的对称点为C ,判断点C 是否在该抛物线上,并说明理由;(3)如图2,在(2)的条件下,⊙O 1是以BC 为直径的圆.过原点O 作⊙O 1的切线OP ,P 为切点(P 与点C 不重合),抛物线上是否存在点Q ,使得以PQ 为直径的圆与⊙O 1相切?若存在,求出点Q 的横坐标;若不存在,请说明理由.三、测试提高1.(2011广西崇左)已知抛物线y=x2+4x+m(m为常数)经过点(0,4).(1)求m的值;(2)将该抛物线先向右、再向下平移得到另一条抛物线.已知平移后的抛物线满足下述两个条件:它的对称轴(设为直线l2)与平移前的抛物线的对称轴(设为直线l1)关于y轴对称;它所对应的函数的最小值为-8.①试求平移后的抛物线的解析式;②试问在平移后的抛物线上是否存在点P,使得以3为半径的圆P既与x轴相切,又与直线l2相交?若存在,请求出点P的坐标,并求出直线l2被圆P 所截得的弦AB的长度;若不存在,请说明理由.第十一讲中考压轴题综合训练一一、知识提要二、精讲精练1.(2011河南)如图,在平面直角坐标系中,直线3342y x与抛物线214y x bx c交于A、B两点,点A在x轴上,点B的横坐标为-8.(1)求该抛物线的解析式;(2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),过点P 作x轴的垂线,垂足为C,交直线AB于点D,作PE⊥AB于点E.①设△PDE的周长为l,点P的横坐标为x,求l关于x的函数关系式,并求出l的最大值;②连接PA,以PA为边作图示一侧的正方形APFG.随着点P的运动,正方形的大小、位置也随之改变.当顶点F或G恰好落在y轴上时,直接写出对应的点P的坐标.备用图2.(2009浙江台州)如图,已知直线112yx 交坐标轴于A 、B 两点,以线段AB 为边向上作正方形ABCD ,过点A ,D ,C 的抛物线与直线的另一个交点为E .(1)请直接写出点C ,D 的坐标;(2)求抛物线的解析式;(3)若正方形以每秒5个单位长度的速度沿射线AB 下滑,直至顶点D 落在x 轴上时停止.设正方形落在x 轴下方部分的面积为S ,求S 关于滑行时间t 的函数关系式,并写出相应自变量t 的取值范围;(4)在(3)的条件下,抛物线也随正方形一起平移,同时停止,求抛物线上C ,E 两点间的抛物线弧所扫过的面积.yx121x ya x c a(1)(0) 3.(2009四川成都)在平面直角坐标系xOy中,已知抛物线y=2与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,其顶点为M,若直线MC的函数表达式为3y kx,与x轴的交点为N,且cos∠BCO=310.10(1)求此抛物线的函数表达式;(2)在此抛物线上是否存在异于点C的点P,使以N、P、C为顶点的三角形是以NC为一条直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;(3)过点A作x轴的垂线,交直线MC于点Q.若将抛物线沿其对称轴上下平移,使抛物线与线段NQ总有公共点,则抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?4.(2011湖北孝感)如图(1),矩形ABCD的一边BC在直角坐标系中x轴上,折叠边AD,使点D落在x轴上点F处,折痕为AE,已知AB=8,AD=10,并设点B坐标为(,0m>.m),其中0(1)求点E、F的坐标(用含m的式子表示);(2)连接OA,若△OAF是等腰三角形,求m的值;(3)如图(2),设抛物线2y a x m h经过A、E两点,其顶点为M,(6)连接AM,若∠OAM=90°,求a、h、m的值.5.(2011浙江丽水)如图,在平面直角坐标系中,点A(10,0).以OA为直径在第一象限内作半圆C,点B是该半圆周上一动点,连接OB、AB,并延长AB至点D,使DB=AB,过点D作x轴垂线,分别交x轴、直线OB于点E、F,点E为垂足,连接CF.(1)当∠AOB=30°时,求弧AB的长;(2)当DE=8时,求线段EF的长;(3)在点B运动过程中,是否存在以点E、C、F为顶点的三角形与△AOB相似.若存在,请求出此时点E的坐标;若不存在,请说明理由.OBDECFxyA三、测试提高1.(2011浙江金华)如图,把含有30°角的三角板ABO置入平面直角坐标系中,A,B两点坐标分别为(3,0)和(0,33).动点P从A点开始沿折线AO-OB-BA 运动,点P在AO,OB,BA上运动的速度分别为1,3,2 (长度单位/秒). 一直尺的上边缘l从x轴的位置开始以33(长度单位/秒)的速度向上平行移动(即移动过程中保持l∥x轴),且分别与OB,AB交于E,F两点.设动点P 与动直线l同时出发,运动时间为t秒,当点P沿折线AO-OB-BA运动一周时,直线l和动点P同时停止运动.请解答下列问题:(1)过A,B两点的直线解析式是;(2)当t﹦4时,点P的坐标为;当t ﹦,点P与点E重合;(3)①作点P关于直线EF的对称点P′.在运动过程中,若形成的四边形PEP′F为菱形,则t的值是多少?②当t﹦2时,是否存在着点Q,使得△FEQ ∽△BEP?若存在,求出点Q的坐标;若不存在,请说明理由.第十二讲中考压轴题综合训练二一、知识提要基本方法:______________________________________________________; ______________________________________________________; ______________________________________________________二、精讲精练1.(2011湖北咸宁)如图,在平面直角坐标系中,直线434xy分别交x 轴,y 轴于A ,B 两点,点C 为OB 的中点,点D 在第二象限,且四边形AOCD 为矩形.(1)直接写出点A ,B 的坐标,并求直线AB 与CD 交点的坐标;(2)动点P 从点C 出发,沿线段CD 以每秒1个单位长度的速度向终点D运动;同时,动点M 从点A 出发,沿线段AB 以每秒35个单位长度的速度向终点B 运动,过点P 作OA PH ,垂足为H ,连接MP ,MH .设点P 的运动时间为t 秒.①若△MPH 与矩形AOCD 重合部分的面积为1,求t 的值;②点Q 是点B 关于点A 的对称点,问BP+PH+HQ 是否有最小值,如果有,求出相应的点P 的坐标;如果没有,请说明理由.备用图1 备用图22.(2011江苏苏州)已知二次函数2680y a x x a的图象与x轴分别交于点A、B,与y轴交于点C.点D是抛物线的顶点.(1)如图①,连接AC,将△OAC沿直线AC翻折,若点O的对应点O'恰好落在该抛物线的对称轴上,求实数a的值;(2)如图②,在正方形EFGH中,点E、F的坐标分别是(4,4)、(4,3),边HG位于边EF的右侧.小林同学经过探索后发现了一个正确的命题:“若点P是边EH或边HG上的任意一点,则四条线段PA、PB、PC、PD不能与任何一个平行四边形的四条边对应相等(即这四条线段不能构成平行四边形).”若点P是边EF或边FG上的任意一点,刚才的结论是否也成立?请你积极探索,并写出探索过程;(3)如图②,当点P在抛物线对称轴上时,设点P的纵坐标t是大于3的常数,试问:是否存在一个正数a,使得四条线段PA、PB、PC、PD与一个平行四边形的四条边对应相等(即这四条线段能构成平行四边形)?请说明理由.3.(2010浙江舟山)如图,在菱形ABCD 中,AB =2cm ,∠BAD =60°,E 为CD 边中点,点P 从点A 开始沿AC 方向以每秒23cm 的速度运动,同时,点Q 从点D 出发沿DB 方向以每秒1cm 的速度运动,当点P 到达点C 时,P ,Q 同时停止运动,设运动的时间为x 秒(1)当点P 在线段AO 上运动时.①请用含x 的代数式表示OP 的长度;②若记四边形PBEQ 的面积为y ,求y 关于x 的函数关系式(不要求写出自变量的取值范围);(2)显然,当x=0时,四边形PBEQ 即梯形ABED ,请问,当P 在线段AC的其他位置时,以P ,B ,E ,Q 为顶点的四边形能否成为梯形?若能,求出所有满足条件的x 的值;若不能,请说明理由.QEOACD BP4.(2011北京)如图,在平面直角坐标系xOy中,我们把由两条射线AE,BF和以AB为直径的半圆所组成的图形叫作图形C.已知A(1,0),B(1,0),AE∥BF,且半圆与y轴的交点D在射线AE 的反向延长线上.(1)求两条射线AE,BF所在直线的距离;(2)当一次函数y x b的图象与图形C恰好只有一个公共点时,写出b的取值范围;当一次函数y=x+b的图象与图形C恰好只有两个公共点时,写出b的取值范围;(3)已知□AMPQ(四个顶点A、M、P、Q按顺时针方向排列)的各顶点都在图形C上,且不都在两条射线上,求点M的横坐标x的取值范围.5.(2011广东珠海)如图,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =AB=1,BC =2.将点A 折叠到CD 边上,记折叠后A 点对应的点为P (P 与D 点不重合),折痕EF 只与边AD 、BC 相交,交点分别为E 、F .过点P 作PN ∥BC 交AB 于N 、交EF 于M ,连结PA 、PE 、AM ,EF 与PA 相交于O .(1)指出四边形PEAM 的形状(不需证明);(2)记∠EPM =a ,△AOM 、△AMN 的面积分别为S 1、S 2.①求证:S 1tan a 2=18PA 2.②设AN =x ,y =S 1-S 2tan a 2,试求出以x 为自变量的函数y 的解析式,并确定y 的取值范围.1. (2012宁夏区10分)在矩形ABCD 中,AB=2,AD=3,P 是BC 上的任意一点(P 与B 、C 不重合),过点P 作AP ⊥PE ,垂足为P ,PE 交CD 于点E.(1)连接AE ,当△APE 与△ADE 全等时,求BP 的长;(2)若设BP 为x ,CE 为y ,试确定y 与x 的函数关系式。

专题18 圆压轴题 -备战2023年中考数学一轮复习考点帮(上海专用)(解析版)

专题18 圆压轴题 -备战2023年中考数学一轮复习考点帮(上海专用)(解析版)

专题18 圆压轴题以圆为背景的综合问题是中考压轴题的命题趋势之一,按往年命题趋势猜测,很大概率会和平行线段分线段成比例(2020年),梯形,特殊平行四边形(最新热点)等知识点结合,主要考查学生挖掘信息的能力,难题分解能力,数学综合能力考点一定圆结合直角三角形,考察函数关系,圆心距,存在性问题;考点二定圆结合直角三角形;三角形相似,线段与周长的函数关系;考点三定圆结合直角三角形;考察函数关系,三角形面积比值问题;考点四定圆结合平行线,弧中点,考察函数关系,与圆相切问题;考点五动圆结合三角形,考察三角形相似,考察三角形相似,函数关系;考点六动圆结合内切直角三角形,三角形相似,线段比,圆位置关系;考点七动圆结合定圆,考察函数关系,与圆有关的位置关系;考点八动圆结合定圆,函数关系,四边形,正多边形结合的问题。

一、解答题1.(2022·上海嘉定·统考二模)在半圆O中,AB为直径,AC,AD为两条弦,且∠CAD+∠DAB=90°.(1)如图1,求证:»等于»CD;AD(2)如图2,点F在直径AB上,DF交AC于点E,若AE=DE,求证:AC=2DF;(3)如图3,在(2)的条件下,连接BC,若AF=2,BC=6,求弦AD的长.AB为直径Q\∠ADB=90°\∠DBA+∠DAB=90°DAC+∠DAB=90°Q∠\∠DAC=∠DBA又Q∠DCA=∠DBA\∠DAC=∠DCA\AD=CD\»AD=»CD(2)证明:如图:连接BD、CD,过点D作DG⊥AC于点G \аDGA=90由(1)知AD=CD\垂直平分ACDG\AC AG=2QAE DE=\ÐÐ=ADF DACDAC+∠DAB=90°Q∠\∠ADF+∠DAB=90°\ÐаDFA AGD==90又=QAD DA()\△≌△ADF DAG AASDF AG\=\AC DF=2(3)2.(2021春·上海徐汇·九年级统考阶段练习)已知:⊙O 的半径为3,OC ^弦AB ,垂足为D ,点E 在⊙O 上,ECO BOC Ð=Ð,射线CE 与射线OB 相交于点F .设,AB x =,CE y =,(1)求y与x之间的函数解析式,并写出函数定义域;(2)当OEFD为直角三角形时,求AB的长;(3)如果1BF=,求EF的长.∴AB =OB =3(3)①当CF =OF =OB –BF =2时,可得:△CFO ∽△COE ,CE =292OC CF =,∴EF =CE –CF =95222-=.②当CF =OF =OB +BF =4时,可得:△CFO ∽△COE ,CE =294OC CF =,∴EF =CF–CE =97444-=.【点睛】本题考查了有关圆的知识的综合题,分类讨论是解决问题的关键.3.(2023春·上海·九年级专题练习)如图,等边△ABC 内接于⊙O ,P 是»AB上任一点(点P 与点A 、B 重合),连接AP 、BP ,过点C 作CM ∥BP 交P A 的延长线于点M .(1)求∠APC 和∠BPC 的度数;(2)求证:△ACM ≌△BCP ;(3)若P A =1,PB =2,求四边形PBCM 的面积;(4)在(3)的条件下,求»AB的长度.【答案】(1)∠APC =60°,∠BPC =60°(2)见解析(3)15344.(2021秋·上海金山·九年级期末)定理:一条弧所对的圆周角等于这条弧所对的圆心角的一半.如图1,∠A =12∠O .已知:如图2,AC 是⊙O 的一条弦,点D 在⊙O 上(与A 、C 不重合),联结DE 交射线AO 于点E ,联结OD ,⊙O 的半径为5,tan ∠OAC =34.(1)求弦AC 的长.(2)当点E 在线段OA 上时,若△DOE 与△AEC 相似,求∠DCA 的正切值.(3)当OE=1时,求点A与点D之间的距离(直接写出答案).由垂径定理得:AH=在Rt△OAH中,tanÐ∴设OH=3x,AH=∵OH2+AH2=OA2,由(1)可得OH=3,∵OE=1,∴AE=4,ME=6,∵EG∥OH,∴△AEG∽△AOH,又∵∠M =∠C , 同理可求EG =185,∴EC =22GC EG +∵AM 是直径,∴∠ADM =90°=∠EGC又∵∠M =∠C ,∴△EGC ∽△ADM ,5.(2021·上海·统考二模)如图,已知扇形AOB 的半径4OA =,90AOB Ð=°,点C 、D 分别在半径OA 、OB 上(点C 不与点A 重合),联结CD .点P 是弧AB 上一点,PC PD =.(1)当3cot 4ODC Ð=,以CD 为半径的圆D 与圆O 相切时,求CD 的长;(2)当点D 与点B 重合,点P 为弧AB 的中点时,求OCD Ð的度数;(3)如果2OC =,且四边形ODPC 是梯形,求PCD OCDS S △△的值.6.(2021·上海青浦·统考二模)已知:在半径为2的扇形AOB 中,0180AOB m m Ð=°£(<),点C 是»AB上的一个动点,直线AC 与直线OB 相交于点D .(1)如图1,当090m BCD V <<,是等腰三角形时,求D Ð的大小(用含m 的代数式表示);(2)如图2,当90m =,点C 是»AB 的中点时,连接AB ,求ABD ABCS S V V 的值;(3)将»AC沿AC所在的直线折叠,当折叠后的圆弧与OB所在的直线相切于点E,且OE=时,求线段AD的长.1(3)图2如下:【点睛】本题考查圆的综合菱形的判定和性质、勾股定理等是解题关键.7.(2022春·上海·九年级专题练习)已知⊙O的直径AB=4,点P为弧AB上一点,联结P A、PO,点C为劣弧AP上一点(点C不与点A、P重合),联结BC交P A、PO于点D、E.(1)如图,当cos∠CBO=7时,求BC的长;8(2)当点C为劣弧AP的中点,且△EDP与△AOP相似时,求∠ABC的度数;(3)当AD=2DP,且△BEO为直角三角形时,求四边形AOED的面积.8.(2021·上海·九年级专题练习)如图,已知在四边形ABCD 中,//AD BC ,90ABC Ð=°,以AB 为直径的O e 交边DC 于E 、F 两点,1AD =,5BC =,设O e 的半径长为r .(1)联结OF ,当//OF BC 时,求O e 的半径长;(2)过点O 作OH EF ^,垂足为点H ,设OH y =,试用r 的代数式表示y ;(3)设点G为DC的中点,联结OG、OD,ODGV是否能成为等腰三角形?如果能,试求出r的值;如不能,试说明理由.Ð=Ð,GOD GDO∵//OG AD,∴ADO GODÐ=Ð,∴ADO GDOÐ=Ð,∴DO是ADGÐ的平分线,由题意知:OA AD^,,又OH CD^∴OA OH=,则此时圆O和CD相切,不合题意;综上所述,ODGV能成为等腰三角形,22r=.【点睛】本题考查了垂径定理、梯形中位线定理、勾股定理、角平分线的性质、等腰三角形的性质等知识;熟练掌握垂径定理和梯形中位线定理是解题的关键.9.(2022·上海·九年级专题练习)如图,已知AB是半圆O的直径,AB=6,点C在半圆⊥,垂足为点D,AD的延长线与弦BC交于点E,与半圆O交于点O上.过点A作AD OCF(点F不与点B重合).的中点时,求弦BC的长;(1)当点F为¶BC(2)设OD=x,DE=y,求y与x的函数关系式;AE(3)当△AOD与△CDE相似时,求线段OD的长.10.(2021·上海·九年级专题练习)如图,已知半圆⊙O的直径AB=10,弦CD∥AB,且CD=8,E为弧CD的中点,点P在弦CD上,联结PE,过点E作PE的垂线交弦CD于点G,交射线OB于点F.(1)当点F与点B重合时,求CP的长;(2)设CP=x,OF=y,求y与x的函数关系式及定义域;(3)如果GP=GF,求△EPF的面积.一、解答题1.(2022·上海嘉定·统考二模)在半圆O中,AB为直径,AC,AD为两条弦,且∠CAD+∠DAB=90°.(1)如图1,求证:»等于»CD;AD(2)如图2,点F在直径AB上,DF交AC于点E,若AE=DE,求证:AC=2DF;(3)如图3,在(2)的条件下,连接BC,若AF=2,BC=6,求弦AD的长.(3)取BC中点H,连接OH、OD,则BH=CH=1BC=3,OH⊥BC,证2Rt△OED≌Rt△BHO,推出OE=BH=3,OD=OA=5,则在Rt△OED中,求出DE的长,在Rt△AED中,可求出AD的长.(1)证明:如图:连接BD、CDAB为直径Q\∠ADB=90°\∠DBA+∠DAB=90°DAC+∠DAB=90°Q∠\∠DAC=∠DBA又Q∠DCA=∠DBA\∠DAC=∠DCA\AD=CD\»AD=»CD(2)证明:如图:连接BD、CD,过点D作DG⊥AC于点G\а=90DGA由(1)知AD=CD\垂直平分ACDG\AC AG=2Q=AE DE\ÐÐ=ADF DAC2.(2021春·上海徐汇·九年级统考阶段练习)已知:⊙O的半径为3,OC^弦AB,垂足为D ,点E 在⊙O 上,ECO BOC Ð=Ð,射线CE 与射线OB 相交于点F .设,AB x =,CE y =,(1)求y 与x 之间的函数解析式,并写出函数定义域;(2)当OEF D 为直角三角形时,求AB 的长;(3)如果1BF =,求EF 的长.3.(2023春·上海·九年级专题练习)如图,等边△ABC内接于⊙O,P是»上任一点AB(点P与点A、B重合),连接AP、BP,过点C作CM∥BP交P A的延长线于点M.(1)求∠APC和∠BPC的度数;(2)求证:△ACM≌△BCP;(3)若P A=1,PB=2,求四边形PBCM的面积;(4)在(3)的条件下,求»的长度.AB4.(2021秋·上海金山·九年级期末)定理:一条弧所对的圆周角等于这条弧所对的圆心角的一半.如图1,∠A=12∠O.已知:如图2,AC是⊙O的一条弦,点D在⊙O上(与A、C不重合),联结DE交射线AO于点E,联结OD,⊙O的半径为5,tan∠OAC=34.(1)求弦AC的长.(2)当点E在线段OA上时,若△DOE与△AEC相似,求∠DCA的正切值.(3)当OE=1时,求点A与点D之间的距离(直接写出答案).由垂径定理得:AH=∵∠DEO =∠AEC ,∴当△DOE 与△AEC »»AD AD=Q \12ACD DOE Ð=Ð,∴△AEG∽△AOH,∴AE EG AGAO OH AH==,∴4013345EG AG==,∴2413EG=,由(1)可得 OH =3,∵OE =1,∴AE =4,ME =6,∵EG ∥OH ,∴△AEG ∽△AOH ,∴45AE AG EG AO AH OH ===AG 16EG 12又∵∠M =∠C ,同理可求EG =185,∴EC =22GC EG +∵AM 是直径,∴∠ADM =90°=∠EGC 又∵∠M =∠C ,∴△EGC ∽△ADM ,5.(2021·上海·统考二模)如图,已知扇形AOB 的半径4OA =,90AOB Ð=°,点C 、D 分别在半径OA 、OB 上(点C 不与点A 重合),联结CD .点P 是弧AB 上一点,PC PD =.(1)当3cot 4ODC Ð=,以CD 为半径的圆D 与圆O 相切时,求CD 的长;(2)当点D 与点B 重合,点P 为弧AB 的中点时,求OCD Ð的度数;(3)如果2OC =,且四边形ODPC 是梯形,求PCD OCDS S △△的值.。

专题01 中考压轴题-圆(九大题型+解题方法)(学生版)

专题01 中考压轴题-圆(九大题型+解题方法)(学生版)

专题01中考压轴题-圆(九大题型+解题方法)1、圆中常见相似三角形2.在圆中解三角形或四边形的常用思路画出特殊图形:如圆中的特殊三角形、特殊四边形等,在已知条件下,以结果为导向,在这些特殊图形中求出一些中间量。

目录:题型1:圆与三角形综合题型2:圆与四边形综合题型3:圆有关的动态问题题型4:圆与坐标系或函数题型5:以实际问题为背景,求圆与三角形、四边形综合问题题型6:最值问题题型7:在解三角形、四边形中作辅助圆题型8:定值问题题型9:在圆综合中求解三角函数值题型1:圆与三角形综合1.(2024·黑龙江哈尔滨·一模)已知,AD 、BC 为O 两条弦,AD BC ⊥于点E ,连接OE ,AE CE =.(1)如图1,连接OE ,求AEO ∠的度数;(2)如图2,连接AC ,延长EO 交AC 于点N ,点F 为AC 上一点,连接EF ,在EF 上方作等腰直角三角形EFG ,且90EGF ∠=︒,连接NG ,求证:NG BC ∥;(3)在(2)的条件下,连接AB ,CD ,当点G 落在线段AB 上时,过点O 做OL OE ⊥,交CD 于点L ,交CE于点T ,若2OE EG CL ==,求O 半径的长.2.(2024·黑龙江哈尔滨·一模)已知:AB 为O 的直径,点C 为 AB 上一点,连接AC ,点D 为 BC上一点,连接AD ,过点D 作AB 的垂线,垂足为点F ,交O 于点E ,连接CE ,分别交AD 和AB 于点H 和点K ,且90AHE =︒∠.(1)如图1,求证:CAD BAD ∠=∠;(2)如图2,连接HF ,过点H 作HF 的垂线交AB 于点T ,求证:2AB FT =;(3)如图3,在(2)的条件下,连接BC 交AD 于点G ,延长CD 交AB 的延长线于点M ,若CM AG =,5FT =,求CG 的长.3.(2024·黑龙江哈尔滨·一模)如图1,在O 中,直径AB 垂直弦CD 于点G ,连接AD ,过点C 作CF AD ⊥于F ,交AB 于点H ,交O 于点E ,连接DE .(1)如图1,求证:2E C ∠=∠;(2)如图2,求证:DE CH =;(3)如图3,连接BE ,分别交AD CD 、于点M N 、,当2OH OG =,10HF EN 的长.4.(2024·浙江·模拟预测)如图1,ABC 内接于O ,作AD BC ⊥于点D .(1)连结AO ,BO .求证:2180AOB DAC ∠+∠=︒;(2)如图2,若点E 为弧AC 上一点,连结BE 交AD 于点F ,若2BAD CAD ∠∠=,490DBF CAD ∠+∠=︒,连结OF ,求证:OF 平分AFB ∠;(3)在(2)的条件下,如图3,点G 为BC 上一点,连结EG ,2BGE C ∠=∠.若6AD =,3BD EG +=,求DF 的长.题型2:圆与四边形综合5.(2024·浙江杭州·模拟预测)如图,四边形ABCD 内接于O ,AC 为O 的直径,DE AC ⊥于点F 交BC 于点E .(1)设DBC α∠=,试用含α的代数式表示ADE ∠;(2)如图2,若3BE CE =,求BDDE的值;(3)在(2)的条件下,若,AC BD 交于点G ,设FGx CF=,cos BDE y ∠=.①求y 关于x 的函数表达式.②若BC BD =,求y 的值.6.(2024·广东珠海·一模)如图1,F 为正方形ABCD 边BC 上一点,连接AF ,在AF 上取一点O ,以OA 为半径作圆,恰好使得O 经过点B 且与CD 相切于点E .(1)若正方形的边长为4时,求O 的半径;(2)如图2,将AF 绕点A 逆时针旋转45︒后,其所在直线与O 交于点G ,与边CD 交于点H ,连接DG BG ,.①求ADG ∠的度数;②求证:··²AB BF AG FG BG +=.题型3:圆有关的动态问题7.(2024·广东·一模)综合探究:如图,已知10AB =,以AB 为直径作半圆O ,半径OA 绕点O 顺时针旋转得到OC ,点A 的对应点为C ,当点C 与点B 重合时停止.连接BC 并延长到点D ,使得CD BC =,过点D 作DE AB ⊥于点E ,连接AD ,AC .(1)如图1,当点E 与点O 重合时,判断ABD △的形状,并说明理由;(2)如图2,当1OE =时,求BC 的长;(3)如图3,若点P 是线段AD 上一点,连接PC ,当PC 与半圆O 相切时,判断直线PC 与AD 的位置关系,并说明理由.8.(2024·浙江湖州·一模)如图,在ABCD Y 中,∠B 是锐角,AB =10BC =,在射线BA 上取一点P ,过P 作PE BC ⊥于点E ,过P ,E ,C 三点作O .(1)当3cos 5B =时,①如图1,若AB 与O 相切于点P ,连结CP ,求CP 的长;②如图2,若O 经过点D ,求O 的半径长.(2)如图3,已知O 与射线BA 交于另一点F ,将BEF △沿EF 所在的直线翻折,点B 的对应点记为B ',且B '恰好同时落在O 和边AD 上,求此时PA 的长.9.(2024·云南昭通·模拟预测)如图,在O 中,AB 是O 的直径,点M 是直径AB 上的一个动点,过点M 的弦CD AB ⊥,交O 于点C 、D ,连接BC ,点F 为BC 的中点,连接DF 并延长,交AB 于点E ,交O 于点G .图1图2备用图(1)如图1,连接CG ,过点G 的直线交DC 的延长线于点P .当点M 与圆心O 重合时,若PGC MDE ∠=∠,求证:PG 是O 的切线;(2)在点M 运动的过程中,DE kDF =(k 为常数),求k 的值;(3)如图2,连接BG OF MF 、、,当MOF △是等腰三角形时,求BGD ∠的正切值.题型4:圆与坐标系或函数10.(2024·福建龙岩·一模)如图,抛物线234y x x =-++与x 轴分别交于A 、B 两点(点A 在点B 的左侧)与y 轴交于点C .(1)直接写出A 、B 、C 三点的坐标;(2)如图(1),P 是抛物线上异于A ,B 的一点,将点B 绕点P 顺时针旋转45︒得到点Q ,若点Q 恰好在直线AP 上,求点P 的坐标;(3)如图(2),MN 是抛物线上异于B ,C 的两个动点,直线BN 与直线CM 交于点T ,若直线MN 经过定点()1,3,求证:点T 的运动轨迹是一条定直线.11.(2024·江苏常州·模拟预测)定义:在平面直角坐标系xOy 中,P 、Q 为平面内不重合的两个点,其中1122(,),(,)P x y Q x y .若:1122x y x y +=+,则称点Q 为点P 的“等和点”.(1)如图1,已知点()21P ,,求点P 在直线1y x =+上“等和点”的坐标;(2)如图2,A 的半径为1,圆心A 坐标为()20,.若点()0P m ,在A 上有且只有一个“等和点”,求m 的值;(3)若函数()22y x x m =-+≤的图像记为1W ,将其沿直线x m =翻折后的图像记为2W .当1W ,2W 两部分组成的图像上恰有点()0P m ,的两个“等和点”,请直接写出m 的取值范围.12.(2024·江苏宿迁·一模)如图1,在平面直角坐标系xOy 中,抛物线23y ax bx =++与x 轴分别相交于A 、B 两点,与y 轴相交于点C ,已知点A 的坐标为(10)-,,点B 的坐标为(30),.(1)求出这条抛物线的函数表达式;(2)如图2,点D 是第一象限内该抛物线上一动点,过点D 作直线l y 轴,直线l 与ABD △的外接圆相交于点E .①仅用无刻度直尺.......找出图2中ABD △外接圆的圆心P .②连接BC 、CE ,BC 与直线DE 的交点记为Q ,如图3,设CQE △的面积为S ,在点D 运动的过程中,S 是否存在最大值?如果存在,请求出S 的最大值;如果不存在,请说明理由.13.(2024·江苏宿迁·二模)中国象棋棋盘上双方的分界处称为“楚河汉界”,以“楚河汉界”比喻双方对垒的分界线.在平面直角坐标系中,为了对两个图形进行分界,对“楚河汉界线”给出如下定义:点()11,P x y 是图形1G 上的任意一点,点()22,Q x y 是图形2G 上的任意一点,若存在直线()0l y kx b k =+≠∶满足11y kx b ≤+且22y kx b ≥+,则直线(0)y k b k =+≠就是图形1G 与2G 的“楚河汉界线”.例如:如图1,直线4l y x =--∶是函数6(0)y x x=<的图像与正方形OABC 的一条“楚河汉界线”.(1)在直线①2y x =-,②41y x =-,③23y x =-+,④31y x =--中,是图1函数6(0)y x x=<的图像与正方形OABC 的“楚河汉界线”的有______;(填序号)(2)如图2,第一象限的等腰直角EDF 的两腰分别与坐标轴平行,直角顶点D 的坐标是()2,1,EDF 与O 的“楚河汉界线”有且只有一条,求出此“楚河汉界线”的表达式;(3)正方形1111D C B A 的一边在y 轴上,其他三边都在y 轴的右侧,点(2,)M t 是此正方形的中心,若存在直线2y x b =-+是函数2)304(2y x x x =-++≤≤的图像与正方形1111D C B A 的“楚河汉界线”,求t 的取值范围.题型5:以实际问题为背景,求圆与三角形、四边形综合问题14.(2024·陕西西安·一模)【问题提出】(1)如图1,已知在边长为5的等边ABC 中,点D 在边BC 上,3BD =,连接AD ,则ACD 的面积为;【问题探究】(2)如图2,已知在边长为6的正方形ABCD 中,点E 在边BC 上,点F 在边CD 上,且45EAF ∠=︒,若5EF =,求AEF △的面积;【问题解决】(3)如图3是某座城市廷康大道的一部分,因自来水抢修在4AB =米,AD =ABCD 区域内开挖一个AEF △的工作面,其中B 、F 分别在BC CD 、边上(不与B 、C 、D 重合),且60EAF ∠=︒,为了减少对该路段的拥堵影响,要求AEF △面积最小,那么是否存在一个面积最小的AEF △?若存在,请求出AEF △面积的最小值;若不存在,请说明理由.15.(2024·陕西西安·一模)【问题提出】(1)如图1,点D 为ABC 的边BC 上一点,连接2,,3BD AD BDA BAC AB ∠=∠=,若ABD △的面积为4,则ACD 的面积为______;【问题探究】(2)如图2,在矩形ABCD 中,6,5AB BC ==,在射线BC 和射线CD 上分别取点E F 、,使得65BE CF =,连接AE BF 、相交于点P ,连接CP ,求CP 的最小值;【问题解决】(3)如图3,菱形ABCD 是某社区的一块空地,经测量,120AB =米,60ABC ∠=︒.社区管委会计划对该空地进行重新规划利用,在射线AD 上取一点E ,沿BE CE 、修两条小路,并在小路BE 上取点H ,将CH 段铺设成某种具有较高观赏价值的休闲通道(通道宽度忽略不计),根据设计要求,BHC BCE ∠=∠,为了节省铺设成本,要求休闲通道CH 的长度尽可能小,问CH 的长度是否存在最小值?若存在,求出CH 长度的最小值;若不存在,请说明理由.题型6:最值问题16.(2024·湖南长沙·三模)如图1,,,A B C 为O 上不重合的三点,GC 为O 的切线,1902G A ∠+∠=︒.(1)求证:GB 为O 的切线;(2)若ABC 为等腰三角形,345,tan 4BAC BAC ∠<︒∠=,求BC AG的值;(3)如图2,若AB 为直径,M 为线段AC 上一点且GM GB ⊥,2223880AM OB GB GB +-+-=,02GB <<,求MGBA S 四边形的最大值.17.(2024·重庆·模拟预测)如图,在直角ABC 中,90BAC ∠=︒.点D 为ABC 内一点,且60ADB ∠=︒,E 为线段BD 的中点,连接AE .(1)如图1,若AB AC ==,2AD =,求BE 的长;(2)如图2,连接CD ,若AB AC =,BAE ACD ∠=∠,过点E 作EF AD ⊥交于F ,求证:AE =;(3)如图3,过点D 作DM AC ⊥于点M ,DN BC ⊥于点N ,连接MN ,若AB =4AC =,求MN 的最小值.题型7:在解三角形、四边形中作辅助圆18.(2024·福建泉州·一模)如图1,在ABCD Y 中,BE 平分ABC ∠交AD 于点E ,F 是CD 上一点,且DF DE =.(1)求证:BE EF ⊥;(2)如图2,若120A ∠=︒,FG BC ⊥于点G ,H 是BF 的中点,连接DG ,EH ,EG ,且EG 与BF 相交于点K .①求证:DG EH =;②若2CF DF =,求KFGK的值.题型8:定值问题19.(2024·浙江·模拟预测)如图1,E 点为x 轴正半轴上一点,E 交x 轴于A 、B 两点,P 点为劣弧 BC上一个动点,且(1,0)A -、(1,0)E .(1) BC的度数为°;(2)如图2,连结PC ,取PC 中点G ,则OG 的最大值为;(3)如图3,连接AC 、AP 、CP 、CB .若CQ 平分PCD ∠交PA 于Q 点,求AQ 的长;(4)如图4,连接PA 、PD ,当P 点运动时(不与B 、C 两点重合),求证:PC PDPA+为定值,并求出这个定值.题型9:在圆综合中求解三角函数值20.(2024·湖南长沙·一模)如图1,在Rt ABC △中,90ABC ∠=︒,30C ∠=︒,B C =D 是BC 的中点.经过A ,B ,D 三点的O 交AC 于点E ,连接BE .(1)求AE 和BE 的长;(2)如图2,两动点P 、Q 分别同时从点A 和点C 出发匀速运动,当点P 运动到点E 时,点Q 恰好运动到点B ,P 、Q 停止运动,连接PQ .①记AP x =,当PQC △的面积最大时,求x 的值;②如图3,连接BP 并延长交O 于点F ,连接AF 、FE .当BE 平分FBC ∠时,求sin ABF ∠的值.21.(2024·上海杨浦·一模)已知以AB 为直径的半圆O 上有一点C ,CD OA ⊥,垂足为点D ,点E 是半径OC 上一点(不与点O 、C 重合),作EF OC ⊥交弧BC 于点F ,连接OF .(1)如图1,当FE 的延长线经过点A 时,求CDAF的值;(2)如图2,作FG AB ⊥,垂足为点G ,连接EG .①试判断EG 与CD 的大小关系,并证明你的结论;②当EFG 是等腰三角形,且4sin 5COD ∠=,求OE OD的值.。

以圆为背景的二模压轴题

以圆为背景的二模压轴题

以圆为背景的二模压轴题(2017)1.如图,⊙A 和⊙B 的半径分别为5和1,AB =3,点O 在直线AB 上,⊙O 与⊙A 、⊙B 都内切,那么⊙O 半径是 .2.如图,矩形ABCD 中,4AB =,7AD =,点E 、F 分别在边AD 、BC 上,且点B 、F关于过点E 的直线对称,如果以CD 为直径的圆与EF 相切,那么AE =3.如图,菱形ABCD 中,以A 为圆心,AC 长为半径的原分别交边BC 、DC 、AB 、AD 于点E 、F 、G 、H .(1)求证:CE CF =;(2)当E 为弧CG 中点时,求证:2BE CE CB =⋅.AB4.已知:以O 为圆心的扇形AOB 中,90AOB ∠=,点C 为AB 上一动点,射线AC 交射线OB 于点D ,过点D 作OD 的垂线交射线OC 于点E ,联结AE . (1)如图1,当四边形AODE 为矩形时,求ADO ∠的度数; (2)当扇形的半径长为5,且6AC =时,求线段DE 的长;(3)联结BC ,试问:在点C 运动的过程中,BCD ∠的大小是否确定?若是,请求出它的度数;若不是,请说明理由.5.已知:如图9,线段4AB=,以AB为直径作半圆O,点C为弧AB的中点,点P为直径AB上一点,联结PC,过点C作CD//AB,且CD PC=,过点D作DE//PC,交射线PB于点E,PD与CE交于点Q.(1)若点P与点A重合,求BE的长;(2)设P C x=,PDyCE=,当点P在线段AO上时,求y关于x的函数关系式及定义域;(3)当点Q在半圆O上时,求PC的长.6.如图11,已知△ABC 中,,6,5===BC AC AB 点O 是边BC 上的动点,以点O 为圆心,OB 为半径作圆O ,交AB 边于点D ,过点D 作∠ODP=∠B ,交边AC 于点P ,交圆O 与点E 。

设x OB =。

(1)当点P 与点C 重合时,求PD 的长;(2)设y EP AP =-,求y 关于x 的解析式及定义域;(3)联结OP ,当OD OP ⊥时,试判断以点P 为圆心,PC 为半径的圆P 与圆O 的位置关系。

中考压轴题--圆含答案

中考压轴题--圆含答案

中考压轴题--圆含答案(总49页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--中考压轴题(一)--------与圆有关压轴题1.如图,在M 中,AB 所对的圆心角为120,已知圆的半径为2cm ,并建立如图所示的直角坐标系. (1)求圆心M 的坐标;(2)求经过A B C ,,三点的抛物线的解析式;(3)点D 是弦AB 所对的优弧上一动点,求四边形ACBD 的最大面积; (4)在(2)中的抛物线上是否存在一点P ,相似若存在,求出点P 的坐标;若不存在,请说明[解] (1)如图(1),连结MA MB ,.则120AMB ∠=60CMB ∴∠=,30OBM ∠=.112OM MB ∴==,(01)M ∴,. (2)由A B C ,,三点的特殊性与对称性,知经过A B C ,,三点的抛物线的解析式为2y ax c =+.1OC MC MO =-=,223OB MB OM =-=,(01)(30)C B ∴-,,,.113c a ∴=-=,2113y x ∴=-.(3)ABC ABD ACBD S S S =+△△四边形,又ABC S △与AB 均为定值,∴当ABD △边AB 上的高最大时,ABD S △最大,此时点D 为M 与y 轴的交点,如图1.211143cm 222ABC ABD ACBD S S S AB OC AB OD AB CD ∴=+=+==△△四边形···. (4)方法1:如图2,ABC △为等腰三角形,303ABABC BC∠==,,yA MO BCyxBCAM POy xAM OBCDABC PAB ∴△∽△等价于302336PAB PB AB PA PB ∠=====,,.设()P x y ,且0x >,则cos3033323x PA AO =-=-=·,sin303y PA==·. 又(233)P ,的坐标满足2113y x =-,∴在抛物线2113y x =-上,存在点(233)P ,,使ABC PAB △∽△. 由抛物线的对称性,知点(233)-,也符合题意.∴存在点P ,它的坐标为(233),或(233)-,. 方法2:如图(3),当ABC PAB △∽△时,30PAB BAC ∠=∠=,又由(1)知30MAB ∠=,∴点P 在直线AM 上.设直线AM 的解析式为y kx b =+,将(30)(01)A M -,,,代入,解得31.k b ⎧=⎪⎨⎪=⎩,∴直线AM 的解析式为31y x =+. 解方程组231113y x y x ⎧=+⎪⎪⎨⎪=-⎪⎩,得(233)P ,. 又tan 3233PBx ∠==-,60PBx ∴∠=.30P ∴∠=,ABC PAB ∴△∽△.∴在抛物线2113y x =-上,存在点(233)P ,,使ABC PAB △∽△. 由抛物线的对称性,知点(233)-,也符合题意.∴存在点P ,它的坐标为(233),或(233)-,. 方法3:如图3,ABC △为等腰三角形,且3ABBC=,设()P x y ,则 图3 ABC PAB △∽△等价于23PB AB ==,36PA AB ==.当0x >时,得2222(3)23(3) 6.x y x y ⎧-+=⎪⎨⎪++=⎩,解得(233)P ,.又P 的坐标满足2113y x =-,∴在抛物线2113y x =-上,存在点P ,使ABC PAB △∽△.由抛物线的对称性,知点(-也符合题意.∴存在点P,它的坐标为或(-. [点评]本题是一道综合性很强也是传统型的压轴题,涉及了函数、方程、相似、圆等大量初中数学的重点知识,解这类问题要求学生必须稳固的掌握各个领域的数学知识,须注意的是在第4小问中涉及了相似三角形的问题,很有可能会有多解的情况出现,此时就要求学生拥有较强的数形结合思想去探索结论的存在性。

浙江新中考二轮专题——解答压轴题02圆的压轴题(解析版)

浙江新中考二轮专题——解答压轴题02圆的压轴题(解析版)

解答压轴题02圆的压轴题目录题型01 圆与其它知识的综合问题类型一圆与三角形的综合问题类型二圆与四边形的综合问题类型三圆与函数的综合问题题型02 圆的综合问题中的常见问题类型四圆背景下的图形变换问题类型五圆背景下的最值(隐圆)问题类型六圆背景下的定值问题题型01 圆与其它知识的综合问题类型一 圆与三角形的综合问题1.(2024·浙江宁波·模拟预测)在一个三角形中,如果三个内角的度数之比为连续的正整数,那么我们把这个三角形叫做和谐三角形.(1)概念理解:若△ABC 为和谐三角形,且∠A <∠B <∠C ,则∠A = °,∠B = °,∠C = °.(任意写一种即可)(2)问题探究:如果在和谐三角形ABC 中,∠A <∠B <∠C ,那么∠B 的度数是否会随着三个内角比值的改变而改变?若∠B 的度数改变,写出∠B 的变化范围;若∠B 的度数不变,写出∠B 的度数,并说明理由.(3)拓展延伸:如图,△ABC 内接于⊙O ,∠BAC 为锐角,BD 为圆的直径,∠OBC =30°.过点A 作AE ⊥BD ,交直径BD 于点E ,交BC 于点F ,若AF 将△ABC 分成的两部分的面积之比为1:2,则△ABC 一定为和谐三角形吗?请说明理由.【答案】(1)30; 60; 90(答案不唯一)(2)∠B 的度数不变,等于60°,见详解(3)△ABC 一定为和谐三角形,见详解【分析】(1)设∠A:∠B:∠C =(n −1):n:(n +1),其中n ≥2,n 为正整数,则∠B =180°×n (n−1)+n+(n+1)=180°×13=60°,n 可取不同的值,再计算即可; (2)设∠A:∠B:∠C =(n −1):n:(n +1),其中n ≥2,n 为正整数,则∠B =180°×n (n−1)+n+(n+1)=180°×13=60°;(3)①当S △ACF =2S △ABF 时,连结OA ,OC ,过点O 作OG ⊥BC 于点G ,解△BOC 得OG =12r ,BG =CG =√32r ,由BC ⌢=BC ⌢得∠BAC =12∠BOC =60°,再证明∠AFB =60°=∠BAC ,则△ABF ∽△CBA ,得AB =r ,可证△AOB 为等边三角形,后面即可求证;②当S △ABF =2S △ACF 时,解法产生迁移,仿照类比即可.【详解】(1)解:由题意得:设∠A:∠B:∠C=(n−1):n:(n+1),其中n≥2,n为正整数,∴∠B=180°×n(n−1)+n+(n+1)=180°×13=60°,可设n=2,由∠A:∠B:∠C=1:2:3,∴∠A=16×180°=30°,∠C=36×180°=90°,故答案为:30;60;90;(2)解:∠B的度数不变,由题意得:设∠A:∠B:∠C=(n−1):n:(n+1),其中n≥2,n为正整数,∴∠B=180°×n(n−1)+n+(n+1)=180°×13=60°;所以,∠B的度数不变,且∠B=60°;(3)解:△ABC一定为和谐三角形.理由如下:分两种情况讨论:①当S△ACF=2S△ABF时,如答图1,连结OA,OC,过点O作OG⊥BC于点G.由OA=OB=OC=r,∠OBC=30°,可得∠OCB=30°,∠BOC=180°−30°−30°=120°,∴OG=12r,BG=CG=OB⋅cos30°=√32r,∴BC=2BG=√3r,∵BC⌢=BC⌢∴∠BAC=12∠BOC=60°,又∵S△ACF=2S△ABF,∴CF=2BF,∴BF=13BC=√33r.∵AF⊥BD,∠OBC=30°,∴∠AFB=60°=∠BAC,又∵∠ABF=∠CBA,∴△ABF∽△CBA,∴AB2=BF⋅BC,即∴AB2=√33r⋅√3r解得:AB=r,∴△AOB为等边三角形,∵AB⌢=AB⌢∴∠ACB=12∠AOB=30°,∴∠ABC=90°,∵30°:60°:90°=1:2:3,∴△ABC为和谐三角形;②当S△ABF=2S△ACF时,如答图2,连结OA,OC,过点O作OG⊥BC于点G.同理可得OA=OB=OC=r,BC=√3r,∠BAC=60°,BF=23BC=2√33r,△ABF∽△CBA,∴AB2=BF⋅BC,∴AB=√2r,∴△AOB为等腰直角三角形,∴∠ACB=12∠AOB=45°,∴∠ABC=75°,∵45°:60°:75°=3:4:5,∴△ABC为和谐三角形.综上所述,△ABC一定为和谐三角形.【点睛】本题考查了三角形内角和定理,圆周角定理,30°角的直角三角形,相似三角形的判定与性质,熟练掌握知识点是解决本题的关键.2.(2024·浙江宁波·一模)已知:⊙O是△ABC的外接圆,连接BO并延长交AC于点D,∠CDB=3∠ABD.(1)如图1,求证:AC=AB;(2)如图2,点E是弧AB上一点,连接CE,AF⊥CE于点F,且∠BAF=∠ACE,求tan∠BCE的值;(3)在(2)的条件下,若EF=2,BC=8√2,求线段AB的长.【答案】(1)证明见解析(2)1(3)4√10【分析】(1)连接OC,根据三角形外角定理得∠CAB=2∠ABD,由圆心角是圆周角的一半得∠COB=4∠ABD,再用外角定理得∠ACO=∠ABD,两边加上等腰△OCB的两个相等底角得∠ACB=∠ABC,即得AC=AB;(2)根据△AGF和△CGB的内角和,根据对顶角相等及第(1)问结论,转化成与∠BAF,∠ACE,∠BCE相关的角,最后得到∠BCE=45°,即得tan∠BCE=1;(3)过A作AN⊥BC于N,连接AE,如图所示,根据(1)(2)中结论,由垂径定理及等腰直角三角形的判定与性质确定NM=NC=NB,设FA=FM=x,则AM=√2x,由三角形相似的判定与性质,根据相似比列方程求解得到AN、BN的值,在Rt△ABN中,由勾股定理求解即可得到答案.【详解】(1)证明:连接OC,如图所示:∵∠CDB=∠DAB+∠ABD,∠CDB=3∠ABD,∴∠DAB=2∠ABD,即∠CAB=2∠ABD,∵BC⌢=BC⌢,∴∠COB=2∠CAB,∴∠COB=4∠ABD,而∠COB=∠CDO+∠DCO,∴4∠ABD=∠CDB+∠ACO=3∠ABD+∠ACO,∴∠ACO=∠ABD,∵OC=OB,∴∠OCB=∠OBC,∴∠ACB=∠ACO+∠OCB=∠ABD+∠OBC=∠ABC,∴AC=AB;(2)解:设AB与CE交于G点,如图所示:∵∠AGF+∠AFG+∠GAF=180°=∠CGB+∠GBC+∠BCG,且∠AGF=∠CGB,∴∠AFG+∠GAF=∠GBC+∠BCG,∵AF⊥CE,∴∠AFG=90°,∴90°+∠GAF=∠GBC+∠BCG,由(1)知∠ACB=∠ABC=∠GBC,∴∠GBC=∠ACE+∠BCE,∴90°+∠GAF=∠ACE+∠BCE+∠BCG,∵∠BAF=∠ACE,即∠GAF=∠ACE,∴90°=∠BCE+∠BCG,即2∠BCE=90°,∴∠BCE=45°,∴tan∠BCE=tan45°=1;(3)解:过A作AN⊥BC于N,连接AE,如图所示:由(1)知AC=AB,由(2)知∠BCE=45°,∴NM=NC=NB=1BC=4√2,2∵∠AMF=∠CMN=45°,AF⊥CE∴△AFM是等腰直角三角形,即FA=FM,设FA =FM =x ,则AM =√2x ,∵∠ABC =∠ACB =∠E ,∠ANC =∠AFE =90°,∴△ANC ∽△AFE ,∴AN AF =NC FE ,即√2x+4√2x =4√22,解得x =4,∵在等腰Rt △AFM 中,FA =FM =4,MA =4√2,∴AN =AM +MN =8√2,在Rt △ABN 中,由勾股定理可得AB =√AN 2+NB 2=4√10.【点睛】本题综合考查圆综合,涉及外角性质、圆周角与圆心角的关系、圆周角定理及其推理、等腰三角形的性质、对顶角相等、解直角三角形、垂径定理、等腰直角三角形的判定与性质、相似三角形的判定与性质、勾股定理等知识点;其中45°角与辅助线的配合与等角的正切值相等得到边的比值关系起重要作用.3.(2023·浙江温州·模拟预测)如图,在△ABC 中,AB =AC =5,BC =6,AF 为∠BAC 的外角平分线,过点A ,C 及线段AB 上一点E 作圆O ,交射线AF 于点D .(1)求证:DE =DC .(2)试判断AD BE 是否为定值?若是,求出该值;若不是,请说明理由.(3)作点A 关于CD 的对称点A ′,当点A ′落在△ADE 任一边所在直线上时,求所有满足条件的BE 长.【答案】(1)见解析(2)AD BE 是定值,AD BE =56(3)BE 的长为185或115【分析】(1)由四边形的外接圆可得∠ECD +∠EAD =180°,从而∠ECD =∠GAF ,又∠DEC =∠DAC ,再结合角平分线的定义可得∠ECD =∠DEC ,得证DE =DC ;(2)证明△BEC ∽△ADC ,根据相似三角形的性质即可解答;(3)分情况讨论:①当点A ′在边AD 所在直线上;②点A ′在边DE 所在直线上,分别求解即可.【详解】(1)证明:如图,∵⊙O是四边形AECD的外接圆,∴∠ECD+∠EAD=180°,∵∠GAF+∠EAD=180°,∴∠ECD=∠GAF.⌢=CD⌢,∵CD∴∠DEC=∠DAC.∵AF平分△ABC的外角∠GAC,∴∠GAF=∠CAF,∴∠ECD=∠DEC,∴DE=DC;(2)∵AB=AC,∴∠B=∠ACB,∴∠GAC=∠B+∠ACB=2∠B,∵AF平分∠GAC,∠GAC=∠B,∴∠GAF=∠CAF=12∵∠BEC+∠AEC=180°,∠ADC+∠AEC=180°,∴∠BEC=∠ADC,∴△BEC∽△ADC,∴ADBE =ACBC=56,即ADBE 是定值,为ADBE=56.(3)①如图,当点A′在边AD所在直线上时,∵点A′与点A关于CD对称,∴CD⊥AA′,∴∠ADC=90°,∴AC是⊙O的直径,设⊙O与BC交于点H,连接AH,∴∠AHC=90°,即AH⊥BC,∵AB=AC,∴CH=12BC=12×6=3,∠HAC=12∠BAC,∵∠DAC=12∠GAC,∴∠DAH=∠DAC+∠HAC=12(∠GAC+∠BAC)=12×180°=90°,∵∠ADC=∠AHC=90°,∴四边形ADCH是矩形,∴AD=CH=3,∵ADBE =56,∴BE=65AD=65×3=185;②如图,当点A′在边DE所在直线上时,∵点A ′与点A 关于CD 对称,∴CD 是AA ′的垂直平分线,∴AC =A ′C =5,AD =A ′D ,∵CD =CD ,∴△ACD ≌△A ′CD (SSS ),∴∠DAC =∠DA ′C ,∵∠DEC =∠DAC ,∴∠DEC =∠DA ′C ,∴CE =CA ′=5.过点A 作AN ⊥BC 于点N ,过点C 作CM ⊥AB 于点M ,∵AB =AC ,AN ⊥BC ,∴CN =12BC =12×6=3,AN =√AC 2−CN 2=√52−32=4,∵S △ABC =12BC ⋅AN =12AB ⋅CM ,∴CM =BC⋅AN AB =6×45=245,∴在Rt △BCM 中,BM =√BC 2−CM 2=√62−(245)2=185, 在Rt △ECM 中,EM =√CE 2−CM 2=√52−(245)2=75, ∴BE =BM −EM =185−75=115. ③当点A ′在边AE 所在直线上时,点A ′与点A 重合,点E 与点B 重合,不合题意.综上所述,符合条件的BE 的长为185或115.【点睛】本题考查圆的有关知识,相似三角形的判定及性质,等腰三角形的判定及性质,勾股定理,轴对称的性质.正确作出辅助线,综合运用相关知识,采用分类讨论思想是解题的关键.4.(2023·浙江宁波·模拟预测)如图①,OA 是⊙O 的半径,点P 是OA 上一动点,过P 作弦BD ⊥弦AC ,垂足为E ,连结AB ,BC ,CD ,DA .(1)求证:∠BAO =∠CAD . (2)当OA ∥CD 时,求证:AC =BC . (3)如图②,在(2)的条件下,连结OC .①若△ABC 的面积为12,cos∠ADB =45,求△APD 的面积. ②当P 是OA 的中点时,求BDAC 的值. 【答案】(1)见详解 (2)见详解 (3)①43,②5√714【分析】(1)延长AO 交圆⊙O 与F ,连接BF ,利用同弧所对的圆周角相等得出∠AOE =∠AFB ,进而可证△ABF ∽△AED ,进而可得∠BAO =∠CAD .(2)连接CF ,由直径所对的圆周角为直角可得∠ACF =90°,∠AFC +∠FAC =90°,由平行的性质可得∠FAC =∠ACD ,根据等角得余角相等可得∠AFC =∠CDE ,由同弧所对的圆周角相等可得∠AFC =∠CBA ,∠CDE =∠CAB ,进而可得∠CBA =∠CAB ,即可证AC =BC .(3)①由余弦的定义可得:DEAD=45,由勾股定理可得AE =35AD ,由同角的余弦相等可得CE BC=45,设CE =4a ,则BC =AC ,由勾股定理可得BE =3a ,进而AE =a ,由平行的性质可得OEDE =AECE =14,进而可求出PE =13a ,PD =53a ,由S △ABC =12×5a ×3a =12,求出a 2,进而根据三角形面积公式可求出△APD 的面积. ②过点O 作OH ⊥AC 于H ,根据垂径定理得AC =2AH =2CH ,结合中位线得E 是AH 的中点,设AE =k ,可求得BC =AC ,由勾股定理得BE =√7k ,进一步证得△AED ∽△BEC ,有AEBE =DECE解得DE ,则有BD ,即可求得BDAC .【详解】(1)解:延长AO 交圆⊙O 与F ,连接BF .∴∠ABF=90°,∵BD⊥AC与E,∴∠AED=∠ABF=90°,又∠AOE=∠AFB,∴△ABF∽△AED,∴∠BAF=∠EAD,即∠BAO=∠CAD.(2)连接CF,∵AF是⊙O的直径,∴∠ACF=90°,∴∠AFC+∠FAC=90°,∵OA∥CD,∴∠FAC=∠ACD,∵BD⊥AC与E,∴∠AED=90°∵∠CDE+∠ACD=90°∴∠AFC=∠CDE,又∵∠AFC=∠CBA,∠CDE=∠CAB ∴∠CBA=∠CAB(3)①∵cos∠ADB=45,∴DEAD =45,∴DE=45AD,∴AE=√AD2−DE2=35AD,∵∠ACB=∠ADB,∴CEBC =45,设CE=4a,则BC=5a=AC,∴BE=√BC2−CE2=3a,∵BC=AC=5a,∴AE=AC−EC=a,∴AD=53a,DE=43a,∵OP∥CD,∴OEDE =AECE=14,∴PE=13a,PD=53a,∴S△APD=12PD⋅AE=12×53a×a=56a2,∵S△ABC=12AC⋅BE=12×5a×3a=12解得:a2=2415,∴S△APD=56a2=56×2415=43.②过点O作OH⊥AC于H,∴AC=2AH=2CH,∴PE∥OH,∵P是OA的中点,∴E是AH的中点,设AE=k,则AH=2k,AC=4k,CE=3k,BC=AC=4k,∴BE=√BC2−CE2=√7k,∵∠ADB=∠ACB,∠AED=∠BEC,∴△AED∽△BEC,∴AEBE =DECE,∴DE=AE⋅CEBE =√7k=3√77k,∴BD=107√7k,∴BDAC =107√7k4k=5√714,故BDAC 的值为5√714.【点睛】本题主要考查同弧所对的圆周角相等、直径所对的圆周角为直角、解直角三角形、勾股定理、垂径定理、三角形的中位线定理以及相似三角形的判定和性质,解题的关键是熟悉圆的相关知识和相似三角形的性质.5.(2024·浙江·一模)如果过三角形一个顶点的线段将三角形分成两个三角形,其中的一个三角形与原三角形相似,且该三角形与原三角形的相似比为1:√2,则原三角形叫和谐三角形.(1)如图1,已知BD是△ABC中AC边上的中线,BC=2√2,AC=4,求证:△ABC是和谐三角形;(2)如图2,在5×5的方格纸中,A、B在格点上,请画出一个符合条件的和谐△ABC;(3)如图3,在(1)的条件下,作△ABD的外接圆⊙O,E是⊙O上一点,且满足AE⌢=AB⌢,连接DE,①设BD=x,BE=y,求y关于x的函数表达式;②当AE∥BC时,求⊙O的半径.【答案】(1)见解析 (2)见解析 (3)①y =√2x 2−4√22;②√6+√303【分析】(1)由已知数据证明CD BC=BC AC,由∠BCD =∠ACB 证明△CBD ∽△CAB ,则问题可证;(2)根据和谐三角形和勾股定理在网格图中构造图形即可;(3)①由△CBD ∽△CAB ,得到∠CBD =∠CAB =∠BED ,AB =√2x ,利用圆内接四边形性质推导∠BDC =∠AEB =∠ABE 证明△DBC ∽△DAF ,用x 表示AF 则有AB =BF +AF =2y x+4√2x=√2x ,解得y =√2x 2−4√22; ②连接OA 、OB ,证明△ABE 是等边三角形,则有y =√2x ,所以√2x =√2x 2−4√22,解得x =1+√5,y =√2+√10,再求出⊙O 的半径为√33AB =√6+√303; 【详解】(1)∵BD 是AC 边上的中线,AC =4, ∴CD =2 ∴CDBC =2√2=√2,BCAC =2√24=√2,∴CD BC =BC AC=√2∵∠BCD =∠ACB , ∴△CBD ∽△CAB ∴△ABC 是和谐三角形(2)答案如下图(画出一个△ABC 即可)理由:如图画线段BD,由勾股定理可知,AB=√10,AD=√5,AC=2√5,故可知ADAB =ABAC=√2,∠A=∠A,∴△ABD∽△ACB,故符合题意,同理如图取点D,连BD,可证明△ABD∽△ACB(3)①∵△CBD∽△CAB,∴BDAB =BCAC=√2∴∠CBD=∠CAB=∠BED,∴AB=√2BD,即AB=√2x∵AE⌢=AB⌢,∴∠AEB=∠ABE∵四边形ADBE内接于⊙O,∴∠ADB+∠AEB=∠ADB+∠BDC=180°,∴∠BDC=∠AEB=∠ABE,∴△DBC∽△BEF∴xy =2BF,∴BF=2yx∵∠BDC=ABE=∠ADE,∠CBD=∠CAB,∴△DBC∽△DAF∴2x =2√2,∴AF=4√2x,∴AB=BF+AF=2yx +4√2x=√2x,∴y=√2x 2−4√2 2②连接OA、OB、过O作OH⊥AB于点H∵AE∥BC,∴∠AEB=∠ABE=∠ADC=∠ABC=∠BAE,∴△ABE是等边三角形,∴y=√2x,∴√2x=√2x 2−4√22,解得x=1+√5,y=√2+√10∴AB=√2(1+√5)=√2+√10,∵AB=AE=BE,∴AE⌢=AB⌢=BE⌢,∴∠AOB=120°∵OA=OB,∴∠BOH=60°,∴OB=BHsin60°=2√3BH3=√33AB,∴⊙O的半径为√33AB=√6+√303【点睛】本题考查了圆的有关性质和相似三角形的性质和判定,解答时注意根据和谐三角形的定义进行判定.6.(2024·浙江宁波·模拟预测)如图1,⊙O为锐角三角形ABC的外接圆,点D在劣弧BC上,点F在AE上,AD交BC于点E,且∠AFB−∠BFD=∠ACB,FG∥AC交BC于点G,BE=FG,连结BD,DG.设∠ACB=α.(1)用含α的代数式表示∠BFD.(2)求证:△BDE≌△FDG.(3)如图2,AD为⊙O的直径.①当AB⌢的长为2时,求AC⌢的长.②当OF:OE=4:11时,求cosα的值.【答案】(1)90−α2(2)见解析(3)①3;②58【分析】(1)联立∠AFB−∠BFD=∠ACB=α,∠AFB+∠BFD=180°,即可得出∠BFD的度数;(2)根据角的关系得出DB=DF,推出∠DFG=∠DBE,又BE=FG,即可根据SAS证明△BDE≌△FDG;(3)①用α表示出∠ABC的度数,根据度数比等于弧长比计算弧长即可;②连接OB,作BM⊥AD于M,设OE=11,OF=4,设DE=m,则OB=m+11,OM=3.5,BD=m+15,DM=m+7.5,求出m=5,则可得出答案.【详解】(1)解:∵∠AFB−∠BFD=∠ACB=α①,又∵∠AFB+∠BFD=180°②,②−①,得2∠BFD=180°−α,∴∠BFD=90°−α2;(2)证明:由(1)得∠BFD=90°−α2,∵∠ADB=∠ACB=α,∴∠FBD=180°−∠ADB−∠BFD=90°−α2,∴DB=DF,∵FG∥AC,∴∠CAD=∠DFG,∵∠CAD=∠DBE,∴∠DFG=∠DBE,在△BDE和△FDG中,{DB=DF∠DFG=∠DBEBE=FG,∴△BDE≌△FDG(SAS);(3)解:①∵△BDE≌△FDG,∴∠FDG=∠BDE=α,∴∠BDG=∠BDF+∠EDG=2α,∵DE=DG,∴∠DGE=12(180°−∠FDG)=90°−α2,∴∠DBG=180°−∠BDG−∠DGE=90°−3α2,∵AD是⊙O的直径,∴∠ABD=90°,∴∠ABC=∠ABD−∠DBG=3α2,∴AC⌢与AB⌢所对的圆心角度数之比为3:2,∴AC⌢与AB⌢的长度之比为3:2,∵AB⌢的长为2,∴AC⌢的长为3;②连接OB,作BM⊥AD于M,由题意知,△BDF和△BEF都是等腰三角形,∴EM=MF,设OE=11,OF=4,设DE=m,则OB=m+11,OM=3.5,BD=m+15,DM=m+7.5,∴OB2−OM2=BD2−DM2,即(m+11)2−3.52=(m+15)2−(m+7.5)2,解得m=5或m=−12(舍去),∴cos∠BDM=MDBD =BDAD=58.【点睛】本题主要考查圆的综合题,熟练掌握圆周角定理,勾股定理,全等三角形的判定和性质,等腰三角形的判定和性质等知识是解题的关键.7.(2023·浙江宁波·三模)如图1,△ABC内接于⊙O,点D为劣弧AC⌢上一点,满足∠BCA=12∠D,过点B作AD的垂线,垂足为点F,交⊙O于点E.(1)求证:BA=BC;(2)若ABAC =56,求BFDF的值;(3)求证:DF=AF+CD;(4)如图3,若∠EBA=13∠EBC,AF=kCD,用含有k的代数式表示tan∠BAD.【答案】(1)见解析(2)BFDF =43(3)见解析(4)tan∠BAD=√1−k21−k【分析】(1)设∠ADC=x,则∠BCA=12x,而∠ABC=180°−x,得出∠BAC=∠BCA,根据等角对等边,即可得证;(2)连结BD,连结BO并延长交AC于点G,根据已知得出BGGC =43,进而根据正切的定义,即可求解.(3)在FD上截取FM=FA,则BM=BA=BC.设∠ABC=2θ,则∠AMC=180°−θ,且∠ADC=180°−2θ,得出∠CMD=∠DCM=θ,则DC=DM,即可得证;(4)在FD上截取FM=FA,则BM=BA=BC,连接BD,AE,根据条件证明△BDM≌△BDC(SAS),可得∠ABE=∠EBM=∠DBM=∠DBC,再证明△BFD∽△AFE即可求解.【详解】(1)证明:设∠ADC=x,则∠BCA=12x,而∠ABC=180°−x,∴∠BAC=12x,即∠BAC=∠BCA,∴BA=BC.(2)如图1,连结BD,连结BO并延长交AC于点G,则BG⊥AC,即CG=AG.∵ABAC =56,∴BCGC =53,设BC=5k,GC=3k,则BG=4k,∴BGGC =43.∵AD⊥BE,∴BFDF =tan∠BDF=tan∠BCA=BGGC=43.(3)如图2,在FD上截取FM=FA,则BM=BA=BC.∴∠BAM=∠BMA=∠BMC=∠BCM设∠ABC=2θ,则∠BCM=∠BAM=360°−∠BAC4=90°−12θ,∠AMC=360°−2θ4×2=180°−θ,∠ADC=180°−2θ,∴∠CMD=180°−∠AMC=θ,∠BCD=180°−∠BAD=90°+12θ∴∠MCD=∠BCD−∠BCM=θ∴DC=DM,∴FD=FM+MD=AF+CD.(4)如图3,在FD上截取FM=FA,则BM=BA=BC,连接BD,AE.∴BM=BA=BC∴∠EBA=∠EBM,∵BA⌢=BC⌢,∴∠BDA=∠BDC,∵DC=DM,BD=BD∴△BDM≌△BDC(SAS)∵∠EBA=13∠EBC,∴∠ABE=∠EBM=∠DBM=∠DBC.∴AE⌢=CD⌢,即AE=CD设CD=a,则AF=ka,AE=CD=a,∴EF =√AE 2−AF 2=√1−k 2x ,DF =AF +CD =(k +1)x ∵BA⌢=BA ⌢ ∴∠AFE =∠DFB∴△BFD ∽△AFE , ∴BFAF =DFEF 即BFkx =√1−k 2x. ∴BF =√1−k 2∴tan∠BAD =BF AF=√1−k 21−k.【点睛】本题考查了解直角三角形,等腰三角形的性质与判定,弧与圆周角的关系,熟练掌握三角函数关系是解题的关键.8.(2024·浙江·一模)如图1,AB 是半圆O 的直径,点C ,D 是半圆O 上的点,且AC ∥OD ,连结BC 交OD 于点E .(1)求证:OD ⊥BC .(2)如图2,连结CD ,AD ,BD ,若sin∠ABC =13,求△ACD 与△OBD 的面积之比.(3)如图3,连结BD ,作CP ∥BD 交AB 于点P ,连结PD .求证:BD 2=BO ⋅BP . 【答案】(1)证明见解析; (2)23;(3)证明见解析.【分析】(1)由AB 是半圆O 的直径得∠ACB =90°,再根据平行线的性质可得∠OEB =90°,即可求证; (2)由OA =OB 可得S △AOD =S △BOD ,由sin∠ABC =13可得ACOD =23,由AC ∥OD 根据平行线之间距离相等可得S △ACD S △AOD=AC OD =23,即可得到S △ACD S △OBD=23;(3)连接CD ,先证明点P 、O 、D 、C 四点共圆,得到∠CPD =∠COD ,进而可得∠BOD =∠BDP ,又由∠OBD =∠DBP ,可得△OBD ∽△DBP ,即得到BO BD =BDBP ,即可求证. 【详解】(1)证明:∵AB 是半圆O 的直径, ∴∠ACB =90°, ∵AC ∥OD ,∴∠OEB =∠ACB =90°, ∴OD ⊥BC ;(2)解:∵OA =OB , ∴S △AOD =S △BOD , ∵AB 是半圆O 的直径, ∴∠ACB =90°, ∵sin∠ABC =13,∴AC AB=13,∵AB =2OD , ∴AC OD=23,∵AC ∥OD , ∴S △ACD S △AOD =AC OD =23,∴S△ACD S △OBD=23;(3)解:连接CD ,∵OD ⊥BC , ∴CD =BD , ∴CD ⏜=BD ⏜, ∴∠1=∠2, ∵CP ∥BD ,∴∠1=∠3,∠CPD =∠BDP ,∴∠1=∠2=∠3,∴∠DCP=2∠2,∵∠BOD=2∠2,∴∠DCP=∠BOD,∵∠BOD+∠POD=180°,∴∠DCP+∠POD=180°,∴∠CPO+∠CDO=180°,∴点P、O、D、C四点共圆,∴∠CPD=∠COD,∴∠COD=∠BDP,∵∠COD=2∠1=2∠2,∴∠COD=∠BOD,∴∠BOD=∠BDP,又∵∠OBD=∠DBP,∴△OBD∽△DBP,∴BOBD =BDBP,即BD2=BO⋅BP.【点睛】本题考查了圆周角定理,垂径定理,平行线的性质,相似三角形的判定和性质,圆内接四边形的判定,掌握圆的有关性质是解题的关键.9.(2023·浙江杭州·模拟预测)如图,△ABC内接于⊙O(∠ACB>90°),连接OA,OC.记∠BAC=α,∠BCO=β,∠BAO=γ.(1)证明:α+β=90°.(2)设OC与AB交于点D,⊙O半径为2,①若β=γ+45°,AD=2OD,求由线段BD,CD,弧BC围成的图形面积S.②若α+2γ=90°,设sinα=k,用含k的代数式表示线段OD的长.【答案】(1)见解析(2)①π−√33;②2k+1【分析】(1)连接OB ,利用圆周角定理可得∠BOC =2α,利用等腰三角形的性质和三角形内角和定理即可得出结论;(2)①利用(1)的结论与已知条件可得γ+α=45°,则△OAC 为等腰直角三角形,利用直角三角形的边角关系可得∠BAO =30°,作DE ⊥OB 于E ,则OE =EB =12OB =1,利用等腰直角三角形的性质和直角三角形的边角关系可得DE 的长,利用S =S 扇形OCB −S △DBO 计算即可得解;②延长AO 交⊙O 于G ,连接BG ,由圆周角定理可得∠BOG =2∠BAO =2γ,利用等腰三角形的性质可得∠BOG =∠OBC ,作OF ⊥BC 于F ,则CF =BF =12BC ,∠COF =12∠BOC =α,则CF =OC ⋅sinα=k ,从而得出BC =2k ,设OD =x ,则CD =OC −OD =2−x ,证明△DAO ∽△DBC ,由相似三角形的性质可得OA BC=OD CD,代入计算即可得出答案.【详解】(1)证明:如图,连接OB ,,∵∠BOC =2∠BAC ,∠BAC =α,∴∠BOC =2α, ∵OC =OB ,∴∠OCB =∠OBC =β,∵∠BOC +∠OCB +∠OBC =180°, ∴2α+2β=180°, ∴α+β=90°;(2)解:①∵β=γ+45°,α+β=90°, ∴90°−α=γ+45°, ∴γ+α=45°,∵ ∠BAC =α,∠BAO =γ, ∴∠OAC =∠BAC +∠BAO =45°, ∵OA =OC ,∴∠OAC =∠OCA =45°, ∴∠AOC =90°,∵AD=2OD,∴sin∠OAD=ODAD =12,∴∠OAD=30°,∴∠BAC=15°,∴∠BOC=2∠BAC=30°,∵OA=OB,∴∠OBA=∠BAO=30°,∴∠DOB=∠DBO=30°,∴DO=DB,如图,作DE⊥OB于E,则OE=EB=12OB=1,,∵tan∠DOB=DEOE,∴√33=DE1,∴DE=√33,∴S△DOB=12OB⋅DE=√33,∵S扇形OCB =30π×22360=π3,∴S=S扇形OCB −S△DBO=π−√33;②∵α+2γ=90°,α+β=90°,∴β=2γ,如图,延长AO交⊙O于G,连接BG,,∵∠BOG=2∠BAO=2γ,∴∠BOG=∠OCB,∵∠OBC=∠OCB,∴∠BOG=∠OBC,∴BC∥AG,作OF⊥BC于F,则CF=BF=12BC,∠COF=12∠BOC=α,∵sinα=k,sinα=CFOC,∴CF=OC⋅sinα=k,∴CF=2k,设OD=x,则CD=OC−OD=2−x,∵BC∥AG,∴△DAO∽△DBC,∴OABC =ODCD,∴22k =x2−x,解得:x=2k+1,∴OD=2k+1.【点睛】本题主要考查了三角形的外接圆与外心,圆周角定理,等腰三角形的判定与性质,相似三角形的判定与性质,解直角三角形,通过添加恰当的辅助线以充分利用圆周角定理是解题的关键.10.如图所示,在⊙O的内接△AMN中,∠MAN=90°,AM=2AN,作AB⊥MN于点P,交⊙O于另一点B,C是AM⌢上的一个动点(不与A,M重合),射线MC交线段BA的延长线于点D,分别连接AC和BC,BC交MN于点E.(1)求证:△CMA∽△CBD.(2)若MN=10,MC⌢=NC⌢,求BC的长.(3)在点C运动过程中,当tan∠MDB=34时,求MENE的值.【答案】(1)证明见解析(2)3√10(3)32【分析】(1)利用圆周角定理得到∠CMA=∠ABC,再利用两角分别相等即可证明相似;(2)连接OC,先证明MN是直径,再求出AP和NP的长,接着证明△COE∽△BPE,利用相似三角形的性质求出OE和PE,再利用勾股定理求解即可;(3)先过C点作CG⊥MN,垂足为G,连接CN,设出GM=3x,CG=4x,再利用三角函数和勾股定理分别表示出PB和PG,最后利用相似三角形的性质表示出EG,然后表示出ME和NE,算出比值即可.【详解】(1)解:∵AB⊥MN,∴∠APM=90°,∴∠D+∠DMP=90°,又∵∠DMP+∠NAC=180°,∠MAN=90°,∴∠DMP+∠CAM=90°,∴∠CAM=∠D,∵∠CMA=∠ABC,∴△CMA∽△CBD.(2)连接OC,∵∠MAN=90°,∴MN是直径,∵MN=10,∴OM=ON=OC=5,∵AM=2AN,且AM2+AN2=MN2,∴AN=2√5,AM=4√5,∵S△AMN=12AM⋅AN=12MN⋅AP,∴AP=4,∴BP=AP=4,∴NP=√AN2−AP2=2,∴OP=5−2=3,∵MC ⌢=NC ⌢, ∴OC ⊥MN , ∴∠COE =90°, ∵AB ⊥MN , ∴∠BPE =90°, ∴∠BPE =∠COE , 又∵∠BEP =∠CEO , ∴△COE ∽△BPE ∴CO BP =OE PE=CE BE,即54=OE PE=CE BE由OE +PE =OP =3, ∴OE =53,PE =43,∴CE =√OC 2+OE 2=√52+(53)2=53√10,BE =√BP 2+PE 2=√42+(43)2=43√10,∴BC =53√10+43√10=3√10.(3)过C 点作CG ⊥MN ,垂足为G ,连接CN ,则∠CGM =90°, ∴∠CMG +∠GCM =90°, ∵MN 是直径, ∴∠MCN =90°, ∴∠CNM +∠DMP =90°, ∵∠D +∠DMP =90°,∴∠D=∠CNM=∠GCM,∵tan∠MDB=34,∴tan∠CNM=tan∠GCM=34,∵tan∠GCM=GMCG∴设GM=3x,CG=4x,∴CM=5x,∴CN=20x3,NG=16x3,∴NM=25x3,∴OM=ON=25x6,∵AM=2AN,且AM2+AN2=MN2,∴AN=5√53x,AM=10√53x,∵S△AMN=12AM⋅AN=12MN⋅AP,∴AP=103x=PB,∴NP=53x,∴PG=163x−53x=113x,∵∠CGE=∠BPE=90°,∠CEG =∠BEP,∴△CGE∽△BPE,∴CGBP =GEPE=CEBE,即4x103x=GEPE=CEBE∴GE=2x,PE=53x∴ME=5x,NE=10x3,∴ME:NE=3:2,∴MENE 的值为32.【点睛】本题考查了圆的相关知识、相似三角形的判定与性质、三角函数、勾股定理等知识,涉及到了动点问题,解题关键是构造相似三角形,正确表示出各线段并找出它们的关系,本题综合性较强,属于压轴题.11.(2024·浙江温州·一模)如图1,锐角△ABC内接于⊙O,点E是AB的中点,连结EO并延长交BC于D,点F在AC上,连结AD,DF,∠BAD=∠CDF.(1)求证:DF∥AB.(2)当AB=9,AF=FD=4时,①求tan∠CDF的值;②求BC的长.(3)如图2,延长AD交⊙O于点G,若GC⌢:CA⌢:AB⌢=1:4:3,求S△BEDS△DFC的值.【答案】(1)证明见详解(2)①tan∠CDF=√173;②BC=545(3)S△BEDS△DFC =3√3+52【分析】(1)由垂径定理可得∠B=∠BAD,结合已经条件,即可得∠B=∠CDF,即可证DF∥AB(2)先证明△CDF∽△CBA,得出CF,再证明△CDF∽△CAD,得出CD的值,再由相似的性质即可求出BC 的值,进一步求出BD的值,再利用勾股定理即可求出DE,再根据正切的定义即可求出tan∠CDF的值.(3)根据圆周角定理可得:∠1:∠B:∠C=1:4:3设∠1=α,则∠B=4α,∠C=3α,则∠ADB=∠1+∠C=4α,即可证△ADB为等边三角形,即可求出α.过点E作EM⊥BC交BC于M,过点A作AP⊥BC交BC于P,过点F作FN⊥BC交BC于N,设BD=2m,利用三角函数求出EM和BD的值,即可得出S△BED,设FN=CN=n,利用线段的和差关系得出m关于n的代数式,进一步求出S△DFC,然后比较即可求出答案.【详解】(1)证明:∵点E是AB的中点,且DE过圆心,∴AB⊥DE,∴AD=BD,∴∠B=∠BAD,有∵∠BAD=∠CDF,∴∠B=∠CDF,∴DF∥AB.(2)∵DF∥AB,∴△CDF∽△CBA,∴DFBA =CFCA,即:49=CF4+CF,解得:CF=165,又∵AF=FD,∴∠CAD=∠FDA,∵DF∥AB,∴∠FDA=∠BAD=∠CDF,∴∠CAD=∠CDF,又∠C=∠C∴△CDF∽△CAD,∴CDCA =CFCD,∴CD2=CF⋅AC=165×(165+4)=57625,∴CD=245,∵△CDF∽△CBA,∴DCBC =DFBA,即245BC =49,∴BC =545,∴BD =BC −DC =545−245=6,∵AE =12AB =92,在△ADE 中, DE =√AD 2−AE 2=√62−(92)2=3√72, ∴tan∠CDF =tan∠EAD =DE AE =3√7292=√73, 综上,tan∠CDF =√173;BC =545.(3)∵GC⌢:CA ⌢:AB ⌢=1:4:3, ∴它们所对圆心角度数比为1:4:3.根据同弧所对圆周角为原心角的一半,可知它们所对的圆周角度数比为1:4:3即∠1:∠B:∠C =1:4:3设∠1=α,则∠B =4α,∠C =3α,则∠ADB =∠1+∠C =4α,∵AD =BD ,∴∠BAD =∠B =4α,∴∠ADB =∠BAD =∠B =4α,∴△ADB 为等边三角形,∴4α=60°,∴α=15°,∴∠C =3α=45°,过点E 作EM ⊥BC 交BC 于M , 过点A 作AP ⊥BC 交BC 于P , 过点F 作FN ⊥BC 交BC 于N ,设BD =2m ,∵∠B =60°,∠BED =90°,∴BE =BD ⋅cos 60°=2m ×12=m ,EM =BE ⋅sinB =m ⋅sin60°=m ×√32=√32m , ∴S △BED =12EM ⋅BD =12×√32m ⋅2m =√32m 2, 同理AP =AB ⋅sinB =2m ×sin60°=2m ×√32=√3m ,∵∠C =∠PAC =45°,∴PC=AP=√3m,∵PD=12BD=m,∴CD=PC−PD=(√3−1)m,∵∠C=∠NFC=45°,设FN=CN=n,∴DF∥AB,∠FDN=∠B=60°,∴DN=FNtan60°=√33n,又∵CD=DN+NC,即(√3−1)m=√33n+n,解得:n=(2√3−3)m,∴S△DFC=12DC⋅FN=12×(√3−1)m×(2√3−3)m=9−5√32m2,∴S△BEDS△DFC =√32m29−5√32=5+3√32.【点睛】本题主要考查了圆与三角形的综合题,垂径定理,平行线的判定以及性质,相似的判定以及性质,正切的定义,圆周角定理,等边三角形的判定以及性质,解直角三角形,勾股定理等知识,综合性较强,正确的作出辅助线是解题的关键.12.(2023·浙江杭州·二模)如图,在△ABC中,AB=AC,以AB为直径作⊙O,交BC、AC上的点为D、E,连接AD、BE,线段BE与线段AD交于点Q.(1)①求证:DB2=DQ⋅DA;②如果AQQD=3,求∠C的正切值:(2)如果BQ=3,EQ=2,求△ABC的面积.【答案】(1)①见解析;②2(2)152√5【分析】(1)①证明BDQ∽△ADB即可证明;②设DQ=k,根据等腰三角形“三线合一”表示出CD,即可利用ADCD求出答案;(2)连接CQ,根据勾股定理求出CE,AE=x,再根据勾股定理求出AC,即可利用面积公式求出面积.【详解】(1)①证明:∵AB为直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴∠BAD=∠CAD,∵DE⌢=DE⌢,∴∠CAD=∠CBE,∴∠CBE=∠BAD,∵∠BDQ=∠ADB,∴△BDQ∽△ADB,∴DQBD =BDAD,∴DB2=DQ⋅DA.②解:设DQ=k,∵AQQD=3,∴AQ=3k,∴AD=4k,∵DB2=DQ⋅DA=4k2,∴BD=2k,∵AB=AC,∴CD=BD=2k,∴tanC=ADCD =4k2k=2.(2)解:如图,连接CQ,∵AD⊥BC,BD=CD,∴CQ=BQ=3,∵QE=2,∴CE=√CQ2−QE2=√5,设AE=x,∴AC=x+√5=AB,在Rt△ABE中,AE2+BE2=AB2,即x2+52=(x+√5)2,解得:x=2√5,∴AC=3√5∴S△ABC=12AC⋅BE=12×3√5×5=152√5.【点睛】本题考查了圆的性质的应用,等腰三角形性质、勾股定理的性质的应用,三角形面积的计算,相似三角形的判定和性质,求三角函数值,解题的关键是作出辅助线,数形结合,熟练掌握相关的判定和性质.13.(2023·浙江宁波·一模)【教材呈现】以下是浙教版八年级下册数学教材第85页的部分内容.先观察下图,直线l1∥l2,点A,B在直线l2上,点C1,C2,C3,C4在直线l1上.△ABC1,△ABC2,△ABC3,△ABC4这些三角形的面积有怎样的关系?请说明理由。

以圆的新定义为背景阅读材料压轴题—2023年中考数学压轴题专项训练(全国通用)(解析版)

以圆的新定义为背景阅读材料压轴题—2023年中考数学压轴题专项训练(全国通用)(解析版)

2023年中考数学压轴题专项训练以圆的新定义为背景阅读材料压轴题例1.(2023春•兴化市月考)如图,已知⊙O的半径为1,P是平面内一点.(1)如图①,若OP=2,过点P作⊙O的两条切线PE、PF,切点分别为E、F,连接EF.则∠EPO=30°,EF=√3.(2)若点M、N是⊙O上两点,且存在∠MPN=90°,则规定点P为⊙O的“直角点”.①如图②,已知平面内有一点D,OD=√2,试说明点D是⊙O的“直角点”.②如图③,直线y=23x﹣2分别与x轴、y轴相交于点A、B,若线段AB上所有点都是半径为r的圆的“直角点”,求r的最小值与该圆心的坐标.【分析】(1PEO=90°,由勾股定理求出OE=√3,证明△PEF为等边三角形,得出EF=PE=√3;(2)①过点D作⊙O的两条切线DE,DF,切点分别为E,F,证出∠FDE=90°,则可得出结论;②证出AB是圆的直径,由勾股定理可得出答案.【解答】解:(1)∵PE为⊙O的切线,∴PE⊥EO,∴∠PEO=90°,∵OE=1,OP=2,∴OE=12OP,PE=√OP2−OE2=√3,∴∠EPO=30°,∵PE和PF为⊙O的两条切线,∴PE=PF,∠EPO=∠FPO,∴∠EPF=2∠EPO=60°,∴△PEF为等边三角形,∴EF =PE =√3. 故答案为:30,√3;(2)①过点D 作⊙O 的两条切线DE ,DF ,切点分别为E ,F ,在Rt △DEO 中,OD =√2,OE =1, ∴∠EDO =45°, 同理可得∠FDO =45°, ∴∠FDE =90°,∴点D 是⊙O 的“直角点”;②由①可知“直角点”在以O 为圆心√2r 为半径的圆上及圆内的所有点. ∵线段AB 上的所有点都是圆的“直角点”, ∴AB 是在该圆及圆的内部, 又∵半径最小,∴AB 是圆及圆的内部最长线段, ∴AB 是圆的直径,∵直线y =23x ﹣2分别与x 轴、y 轴相交于点A 、B ,∴x =0时,y =﹣2,y =0时,x =3, ∴OB =2,OA =3,由勾股定理得AB =√22+32=√13, ∴最小半径为√132×√2=√264, ∴圆心为AB 的中点,其点的坐标为(32,﹣1).【点评】本题是圆的综合题,主要考查了与圆有关的概念、新定义圆的“直角点”,直角三角形的性质、勾股定理、图形与点的坐标等知识,熟练掌握新定义直角点及直角三角形的性质是解题的关键. 例2.(2022秋•姜堰区期中)如图1,在平面内,过⊙T 外一点P 画它的两条切线,切点分别为M 、N ,若∠MPN ≥90°,则称点P 为⊙T 的“限角点”.(1)在平面直角坐标系xOy 中,当⊙O 半径为1时,在①P 1(1,0),②P 2(−1,12),③P 3(﹣1,﹣1),④P 4(2,﹣1)中,⊙O 的“限角点”是 ;(填写序号)(2)如图2,⊙A 的半径为√2,圆心为(0,2),直线l :y =−34x +b 交坐标轴于点B 、C ,若直线l 上有且只有一个⊙A 的“限角点”,求b 的值.(3)如图3,E (2,3)、F (1,2)、G (3,2),⊙D 的半径为√2,圆心D 从原点O 出发,以√2个单位/s 的速度沿直线l :y =x 向上运动,若△EFG 三边上存在⊙D 的“限角点”,请直接写出运动的时间t (s )的取值范围.【分析】(1)根据定义可知当P 为圆O 的“限角点”时,1<OP ≤√2,再由两点间距离公式进行判断即可;(2)由题意可知,当P 为圆A 的“限角点”时,√2<AP ≤2,设直线l 上有且只有一个⊙O 的“限角点”P (m ,−34m +b ),当P A =2,此时AP ⊥BC ,利用tan ∠OCB =OB OC =43=AP CP ,先求出CP =32,再求AC =52,最后根据|b ﹣2|=52,求出b 的值即可;(3)由题意可知移动后D 点坐标为(t ,t ),设△EFG 边上的点P 是圆D 的“限角点”,则√2<PD ≤2,在圆D 移动的过程中,DF =2时,△EFG 边上开始出现⊙D 的“限角点”,当圆D 移动到E 点在圆上时,△EFG 边上最后一个⊙D 的“限角点”消失,当圆D 再次移动到点E 在圆上时,DF =√2,△EFG 三边上又开始要出现⊙D 的“限角点”;求出直线y =x 与直线EG 的交点设为H (52,52),当DH =2时,△EFG边上存在最后一个⊙D 的“限角点”. 【解答】解:(1)∵⊙O 半径为1,∴当P 为圆O 的“限角点”时,1<OP ≤√2,∵OP 1=1,OP 2=√52,OP 3=√2,OP 4=√5,∴⊙O 的“限角点”是 P 2,P 3, 故答案为:②③; (2)∵⊙A 的半径为√2,∴当P 为圆A 的“限角点”时,√2<AP ≤2,设直线l 上有且只有一个⊙O 的“限角点”P (m ,−34m +b ),∴P A =2,此时AP ⊥BC , 令x =0,则y =b ,∴C (0,b ), 令y =0,则x =43b , ∴B (43b ,0),∴tan ∠OCB =OB OC =43=APCP, ∴CP =32,∴AC =52,∴|b ﹣2|=52,∴b =92或b =−12;(3)∵圆心D 从原点O 出发,以√2个单位/s 的速度沿直线l 移动, ∴圆沿x 轴正方向移动t 个单位,沿y 轴正方向移动t 个单位, ∴移动后D 点坐标为(t ,t ),设△EFG 边上的点P 是圆D 的“限角点”, 则√2<PD ≤2,在圆D 移动的过程中,当DF =2时,(t ﹣1)2+(t ﹣2)2=4, 解得t =3−√72或t =3+√72, 当t =3−√72时,△EFG 边上开始出现⊙D 的“限角点”, 当圆D 移动到E 点在圆上时,DE =√2,(t ﹣2)2+(t ﹣3)2=2, 解得t =5+√32或t =5−√32, ∴3−√72≤t <5−√32时,△EFG 边上存在⊙D 的“限角点”, 当圆D 再次移动到点F 在圆上时,DF =√2,(t ﹣2)2+(t ﹣1)2=2, 解得t =3+√32或t 3−√32, 当t =3+√32时,△EFG 三边上开始又要出现⊙D 的“限角点”; 设直线EG 的解析式为y =kx +b ,直线y =x 与直线EG 的交点设为点H , ∴{2k +b =33k +b =2,解得{k =−1b =5, 解得y =﹣x +5,联立方程组{y =−x +5y =x,解得{x =52y =52,∴H(52,52),当DH=2时,2(t−52)2=4,解得t=√2+52或t=−√2+52,∴当t=√2+52,△EFG边上存在⊙D的“限角点”,∴3+√32<t≤√2+52时,△EFG边上存在⊙D的“限角点”;综上所述:3−√72≤t<5−√32或3+√32<t≤√2+52时,△EFG边上存在⊙D的“限角点”.【点评】本题考查圆的综合应用,理解定义,找到圆心与“限角点”的距离的取值范围,数形结合,分类讨论是解题的关键.例3.(2023•海淀区校级开学)在平面直角坐标系xOy中,对于点P和图形M,若图形M上存在点Q,使得直线PQ经过第四象限,则称点P是图形M的“四象点”.已知点A(﹣2,4),B(2,1).(1)在点P1(﹣4,﹣2),P2(﹣1,﹣2),P3(1,﹣2)中,是线段AB的四象点;(2)已知点C(t,0),D(t+4,0),若等边△CDE(C,D,E顺时针排列)上的点均不是线段AB的四象点,求t的取值范围;(3)已知以T(−52,0)为圆心且半径为2的⊙T,若线段AB上的点P是⊙T的四象点,请直接写出点P的横坐标x P的取值范围.【分析】(1)利用“四象点”的定义逐一判断即可;(2)依题意画出图形,当直线BO经过等边三角形的顶点E时,等边△CDE(C,D,E顺时针排列)上的点恰好均不是线段AB的四象点,求得直线BO的解析式,令y=﹣2√3,解关于x的方程求得此时点E的坐标,依据题意结合图形即可求得结论;(3)利用分类讨论的方法分两种情形解答:①设⊙T交x轴于点C,分别过点A,C作y轴的平行线,依据题意结合图形解答即可得出结论;②过点B作出⊙T的切线BG,作出⊙T的平行于x轴的一条切线FH,交线段AB于点F,依据题意结合图形解答即可得出结论.【解答】解:(1)∵点P1(﹣4,﹣2)与点B(2,1)在直线y=12x上,又直线y=12x经过原点,不经过第四象限,∴点P1(﹣4,﹣2)不是线段AB的四象点;∵点P2(﹣1,﹣2),B(2,1)在直线y=x﹣1上,而直线y=x﹣1经过第四象限,∴P2(﹣1,﹣2)是线段AB的四象点;∵P3(1,﹣2)在第四象限,与线段AB上的任意一点连接所得直线都经过第四象限,∴P3(1,﹣2)是线段AB的四象点.∴P2(﹣1,﹣2),P3(1,﹣2)是线段AB的四象点.故答案为:P2,P3;(2)过点E作EF⊥x轴于点F,如图,∵C(t,0),D(t+4,0),∴CD=4,∵△CDE 是等边三角形, ∴EC =ED =CD =4. ∵EF ⊥x 轴, ∴CF =FD =2,∴EF =√EC 2−CF 2=2√3. 设直线BO 的解析式为y =kx , ∴2k =1, ∴k =12.∴直线BO 的解析式为y =12x .当直线BO 经过等边三角形的顶点E 时,等边△CDE (C ,D ,E 顺时针排列)上的点恰好均不是线段AB 的四象点,令y =﹣2√3,则12x =﹣2√3,∴x =﹣4√3,∴点E (﹣4√3,﹣2√3), ∴C (﹣4√3−2,0).∴等边△CDE (C ,D ,E 顺时针排列)上的点均不是线段AB 的四象点,t 的取值范围为t ≤﹣4√3−2; (3)①设⊙T 交x 轴于点C ,分别过点A ,C 作y 轴的平行线,分别交x 轴于点D ,C ,过点C 直线与AB 交于点E ,如图,∵T (−52,0)为圆心且半径为2 ∴C (−12,0),D (﹣2,0).由图形可以看出当点P 在线段AE 上(不含点E )时,点P 是⊙T 的四象点, ∴点P 的横坐标x P 的取值范围为:﹣2≤<x P <−12;②点B 作出⊙T 的切线BG ,由图形可知,直线BG 经过第四象限, 作出⊙T 的平行于x 轴的一条切线FH ,切点为H ,交线段AB 于点F , 连接TH ,则TH =2,TH 垂直于x 轴, 设直线AB 的解析式为y =ax +b , ∴{−2a +b =42a +b =1,解得:{a =−34b =52, ∴直线AB 的解析式为y =−34x +52.令y =2,则−34x +52=2.∴x =23.∴F (23,2).由图形可以看出当点P 在线段FB 上(不含点F )时,点P 是⊙T 的四象点, ∴点P 的横坐标x P 的取值范围为:23<x P ≤2.综上,点P 的横坐标x P 的取值范围为:﹣2≤<x P <−12或23<x P ≤2.【点评】本题主要考查了点的坐标的特征,等边三角形的性质,圆的有关性质,圆的切线的性质,本题是新定义型题目,理解新定义并熟练应用是解题的关键.1.(2022秋•泗阳县期末)概念生成:定义:我们把经过三角形的一个顶点并与其对边所在直线相切的圆叫做三角形的“切接圆”,如图1,△ABC ,⊙O 经过点A ,并与点A 的对边BC 相切于点D ,则该⊙O 就叫做△ABC 的切接圆.根据上述定义解决下列问题: 理解应用(1)已知,Rt △ABC 中,∠BAC =90°,AB =6,BC =10.①如图2,若点D 在边BC 上,CD =254,以D 为圆心,BD 长为半径作圆,则⊙D 是△ABC 的“切接圆”吗?请说明理由.②在图3中,若点D 在△ABC 的边上,以D 为圆心,CD 长为半径作圆,当⊙D 是Rt △ABC 的“切接圆”时,求⊙D 的半径(直接写出答案). 思维拓展(2)如图4,△ABC 中,AB =12.AC =BC =10,把△ABC 放在平面直角坐标系中,使点C 落在y 轴上,边AB 落在x 轴上.试说明:以抛物线y =116x 2+4图象上任意一点为圆心都可以作过点C 的△ABC 的“切接圆”.【分析】(1)①过点D 作DE ⊥AC 于点E ,则△CDE ∽△CBA ,由此可得DE 的长,根据“切接圆”的定义可得出结论;②根据题意作出图形,过点D 作DF ⊥AB 于点F ,可证明△BDF ∽△BCA ,根据“切接圆”的性质可知,DE =DC =r ,根据比例得出方程,求解即可得出结论;(2)根据题意作出图形,设点D 的横坐标为m ,可表达点D 的坐标,进而可表达CD 及点D 到x 轴的距离,根据“切接圆”的定义可得出结论. 【解答】(1)解:①是,理由如下: ∵BC =10,CD =254,∴BD =154,即圆D 的半径为154,如图2,过点D 作DE ⊥AC 于点E , ∴∠DEC =∠A =90°, ∴△CDE ∽△CBA ,∴CD :BC =DE :AB ,即254:10=DE :6,∴DE =154,∴BD =DE ,即圆D 是△ABC 的“切接圆”; ②在Rt △ABC 中,∠BAC =90°,AB =6,BC =10, ∴AC =8;当点D 在AC 上时, ∵AC ⊥AB ,∴点A 为切点,则r =CD =4; 当点D 在BC 上时,如图3,过点D 作DF ⊥AB 于点F , ∴∠BDF =∠C , ∴△BDF ∽△BCA , ∴BD :BC =DF :AC ,根据“切接圆”的性质可设,DF =DC =r , ∴BD =10﹣r ,∴(10﹣r ):10=r :8, 解得r =409; ∴圆D 的半径为409;综上,圆D 的半径为409或4;(2)证明:根据题意作出图形,如图4所示, ∵AC =BC =10,AB =12,∠AOB =90°, ∴AO =OB =6,∴OC =8,即C (0,8); 设点D 的横坐标为m , ∴D (m ,116m 2+4),∴CD 2=m 2+(116m 2+4﹣8)2=(116m 2+4)2,即CD =116m 2+4, 过点D 作DE ⊥x 轴于点E , ∴DE =116m 2+4,∴CD =DE ,根据“切接圆”的定义可知,以抛物线y =116x 2+4图象上任意一点为圆心都可以作过点C 的△ABC 的“切接圆”.【点评】本题是在圆背景下的新定义问题,主要考查相似三角形的性质与判定,二次函数图象上点的坐标特征,切线的性质,两点间的距离公式等相关知识,理解“切接圆”的定义是解题关键.2.(2022秋•平谷区期末)如图,平面直角坐标系中,矩形ABCD,其中A(1,0)、B(4,0)、C(4,2)、D(1,2),定义如下:若点P关于直线l的对称点P'在矩形ABCD的边上,则称点P为矩形ABCD关于直线l的“关联点”,(1)已知点P1(﹣1,2)、点P2(﹣2,1)、点P3(﹣4,1),点P2(﹣3,﹣1)中是矩形ABCD关于y轴的关联点的是;(2)⊙O的圆心O(−72,1)半径为32,若⊙O上至少存在一个点是矩形ABCD关于直线x=t的关联点,求t的取值范围;(3)⊙O的圆心O(m,1)(m<0)半径为r,若存在t值使⊙O上恰好存在四个点是矩形ABCD关于直线x=t的关联点,写出r的取值范围,并写出当r取最小值时t的取值范围(用含m的式子表示).【分析】(1)分别求出所给的点关于y轴的对称点,再结合矩形进行判断即可;(2)当圆上的点(﹣5,1)关于直线x=t的对称点(2t+5,1)在AD上时,t=﹣2,当圆上的点(﹣2,1)关于直线x=t的对称点(2t+2,1)在BC上时,t=1,则﹣2≤t≤1时,⊙O上至少存在一个点是矩形ABCD关于直线x=t的关联点;(3)当圆O关于直线x=t的对称圆O'与BC相切,同时圆O'经过A、D两点时,此时不存在4个交点;当圆心O '在AD 边上时,O '(1,1),此时t =12m +12,圆O '与矩形有两个交点,当圆心O '(2,1),此时t =12m +1,圆O '与矩形有三个交点,则12m +12<t <12m +1时,存在t 值使⊙O 上恰好存在四个点是矩形ABCD 关于直线x =t 的关联点;当圆心O '(3,1),此时t =12m +32,圆O '与矩形有三个交点,当圆心O '(4,1),此时t =12m +2,圆O '与矩形有两个交点,则12m +32<t <12m +2时,存在t 值使⊙O 上恰好存在四个点是矩形ABCD 关于直线x =t 的关联点.【解答】解:(1)点P 1(﹣1,2)、点P 2(﹣2,1)、点P 3(﹣4,1),点P 2(﹣3,﹣1)关于y 轴的对称点分别为点(1,2)、(2,1)、(4,1),(3,﹣1),∴P 1(﹣1,2)的对称点与D 点重合,P 3(﹣4,1)的对称点在BC 边上,∴关联点是P 1,P 3,故答案为:P 1,P 3;(2)当圆上的点(﹣5,1)关于直线x =t 的对称点(2t +5,1)在AD 上时,∴2t +5=1,解得t =﹣2,当圆上的点(﹣2,1)关于直线x =t 的对称点(2t +2,1)在BC 上时,∴2t +2=4,解得t =1,∴﹣2≤t ≤1时,⊙O 上至少存在一个点是矩形ABCD 关于直线x =t 的关联点;(3)∵AD =2,∴r 最小值为1,∴r ≥1,当圆O 关于直线x =t 的对称圆O '与BC 相切,同时圆O '经过A 、D 两点时,过点O '作MN ⊥AD ,交于M ,交BC 于点N ,连接O 'D ,在Rt △MDO '中,MO '=3﹣r ,DO '=r ,DM =1,∴(3﹣r )2+1=r 2,解得r =53,∴r ≥1且r ≠53, 当r =1时,当圆心O '在AD 边上时,O '(1,1),此时t =12m +12,圆O '与矩形有两个交点, 当圆心O '(2,1),此时t =12m +1,圆O '与矩形有三个交点,∴12m +12<t <12m +1时,存在t 值使⊙O 上恰好存在四个点是矩形ABCD 关于直线x =t 的关联点; 当圆心O '(3,1),此时t =12m +32,圆O '与矩形有三个交点,当圆心O '(4,1),此时t =12m +2,圆O '与矩形有两个交点,∴12m+32<t<12m+2时,存在t值使⊙O上恰好存在四个点是矩形ABCD关于直线x=t的关联点;综上所述:12m+12<t<12m+1或12m+32<t<12m+2时,存在t值使⊙O上恰好存在四个点是矩形ABCD关于直线x=t的关联点.【点评】本题考查圆的综合应用,熟练掌握圆与直线的位置关系,弄清定义,将所求问题转化为已知圆关于直线x=t对称的圆与矩形的交点问题是解题的关键.3.(2022秋•西城区期末)给定图形W和点P,Q,若图形W上存在两个不重合的点M,N,使得点P关于点M的对称点与点Q关于点N的对称点重合,则称点P与点Q关于图形W双对合.在平面直角坐标系xOy中,已知点A(﹣1,﹣2),B(5,﹣2),C(﹣1,4).(1)在点D(﹣4,0),E(2,2),F(6,0)中,与点O关于线段AB双对合的点是D,F;(2)点K是x轴上一动点,⊙K的直径为1,①若点A与点T(0,t)关于⊙K双对合,求t的取值范围;②当点K运动时,若△ABC上存在一点与⊙K上任意一点关于⊙K双对合,直接写出点K的横坐标k的取值范围.【分析】(1)分别求出A、B点关于D点、E点、F点的对称点,在求出A点、B点关于O点的对称点,存在重合点的即为所求;(2)①设K(k,0),分别求出A点关于K点对称点G为(2k+1,2),T点关于K点对称点H为(2k,﹣t),由题意可知点A关于点K的对称点在以G点为圆心,1为半径的圆上,点T关于点K的对称点在以H为圆心,1为半径的圆上,当圆G与圆H有交点时,点A与点T(0,t)关于⊙K双对合再由GH=√1+(t+2)2,可得√1+(t+2)2≤2,求出t的值即可;②分别求出A点关于K点的对称点F(2k+1,2),B点关于K点的对称点E(2k﹣5,2),C点关于K点的对称点G(2k+1,﹣4),△ABC上的点的对称点在△EGF边上任意一点为圆心,1为半径的圆构成的区域,当此区域与圆K有公共交点时,△ABC上存在一点与⊙K上任意一点关于⊙K双对合,画出图形,分别求解即可.【解答】解:(1)当A点是D点的中点时,对应点为(2,﹣4);当B点是D点的中点时,对应点为(14,﹣4);当A点是E点的中点时,对应点为(﹣4,﹣6);当B点是E点的中点时,对应点为(8,﹣6);当A点是F点的中点时,对应点为(﹣8,﹣4);当B点是F点的中点时,对应点为(4,﹣4);当A点是O点的中点时,对应点为(﹣2,﹣4);当B点是O点的中点时,对应点为(10,﹣4);∴D、F与点O关于线段AB双对合,故答案为:D、F;(2)①设K(k,0),∵A(﹣1,﹣2),T(0,t),∴A点关于K点对称点G为(2k+1,2),T点关于K点对称点H为(2k,﹣t),∵点A与点T(0,t)关于⊙K∴A点关于点K的对称点在以G为圆心,∵⊙K的直径为1,∴点A关于点K的对称点在以G点为圆心,1为半径的圆上,点T关于点K的对称点在以H为圆心,1为半径的圆上,如图所示,∵点A与点T(0,t)关于⊙K双对合,∴当圆G与圆H有交点,∵GH=√1+(t+2)2,∴√1+(t+2)2≤2,解得−2−√3≤t≤−2+√3;②∵A(﹣1,﹣2),B(5,﹣2),C(﹣1,4),K(k,0),∴A点关于K点的对称点F(2k+1,2),B点关于K点的对称点E(2k﹣5,2),C点关于K点的对称点G(2k+1,﹣4),∴△ABC上任意一点关于K点对称点在阴影区域,∵△ABC 上存在一点与⊙K 上任意一点关于⊙K 双对合,∴阴影区域与圆K 有公共交点,∵阴影部分是由△EGF 边上任意一点为圆心,1为半径的圆构成的区域,如图1时,k ﹣(2k +1)=12+1,解得k =−52;如图2时,2k +1﹣k =12+1,解得k =12;∴−52≤k ≤12时,△ABC 上存在一点与⊙K 上任意一点关于⊙K 双对合;过点K 作KN ⊥EG 交于N ,直线EG 交x 轴于点M ,设直线EG 的解析式为y =k 'x +b ,∴{(2k −5)k′+b =2(2k +1)k′+b =−4,解得{k′=−1b =2k −3, ∴y =﹣x +2k ﹣3,∴M(2k﹣3,0),∵直线y=﹣x与y=﹣x+2k﹣3平行,∴∠KMN=45°,∴KM=√2KN=32√2,如图3时,k﹣(2k﹣3)=32√2,解得k=3−32√2,如图4时,2k﹣3﹣k=32√2,解得k=3+32√2,∴3−32√2≤k≤3+32√2时,△ABC上存在一点与⊙K上任意一点关于⊙K双对合;综上所述:−52≤k≤12或3−32√2≤k≤3+32√2时,△ABC上存在一点与⊙K上任意一点关于⊙K双对合.【点评】本题考查圆的综合应用,弄懂定义,根据定义能去确定对称点的轨迹,再结合两圆的位置关系数形结合解题是关键.4.(2022秋•丰台区期末)对于平面直角坐标系xOy内的点P和图形M,给出如下定义:如果点P绕原点O顺时针旋转90°得到点P',点P'落在图形M上或图形M围成的区域内,那么称点P是图形M关于原点O的“伴随点”.(1)已知点A(1,1),B(3,1),C(3,2).①在点P1(﹣1,0),P2(﹣1,1),P3(﹣1,2)中,点P2,P3是线段AB关于原点O的“伴随点”;②如果点D(m,2)是△ABC关于原点O的“伴随点”,求m的取值范围;(2)⊙E的圆心坐标为(1,n1,如果直线y=﹣x+2n上存在⊙E关于原点O的“伴随点”,直接写出n的取值范围.【分析】(1)①分别求出个点绕O点旋转后的对应点,旋转后的对应点在线段AB上的即为所求;②由三角形全等可知D'(2,m),当D'在AC上时,m=32,当D'在AB上时,m=1,则1≤m≤32时,点D(m,2)是△ABC关于原点O的“伴随点”;(2)圆E上的点顺时针旋转90°后的对应点在以E'(﹣n,1),半径为1的圆上,由直线y=﹣x+2n上存在⊙E关于原点O的“伴随点”,可知当圆E'与直线y=﹣x+2n有交点,过E'作E'G垂直直线y=﹣x+2n交于点G,由E'G≤1,可知E'R≤√2,求出R(2n﹣1,1),则E'R=|2n﹣1+n|≤√2,解得1−√23≤n≤1+√23.【解答】解:(1)①∵A(1,1),B(3,1),∴AB∥x轴,∵OP1顺时针旋转90°后,得到点(0,1),∴P1不是线段AB关于原点O的“伴随点”;∵OP2顺时针旋转90°后,得到点(1,1),∴P 2是线段AB 关于原点O 的“伴随点”;∵OP 3顺时针旋转90°后,得到点(2,1),∴P 3是线段AB 关于原点O 的“伴随点”;∴P 2,P 3是线段AB 关于原点O 的“伴随点”;故答案为:P 2,P 3;②过点D 作DP ⊥x 轴交于点P ,过点D '作D 'Q ⊥x 轴交于点Q ,∵∠DOD '=90°,∴∠DOP +∠D 'OQ =90°,∵∠DOP +∠DOP =90°,∴∠D 'OQ =∠DOP ,∵DO =D 'O ,∴△DOP ≌△OD 'P (AAS ),∴DP =OQ ,OP =D 'Q ,∵D (m ,2),∴OQ =DP =2,D 'Q =OP =|m |,∵△ABC 在第一象限,∴D '(2,﹣m ),设直线AC 的解析式为y =kx +b ,∴{k +b =13k +b =2,解得{k =12b =12, ∴y =12x +12,当D '在AC 上时,m =−32,当D '在AB 上时,m =﹣1,∴−32≤m ≤﹣1时,点D (m ,2)是△ABC 关于原点O 的“伴随点”;(2)∵E (1,n )在直线x =1上,圆E 的半径为1,将圆E 绕点O 逆时针旋转90°得到圆E ',∴圆E 关于原点的“伴随点”在圆E '的内部及其边界上,∴E '(﹣n ,1),∴E '在直线y =1上,∵直线y =﹣x +2n 上存在⊙E 关于原点O 的“伴随点”,∴当圆E '与直线y =﹣x +2n 有交点,过E '作E 'G 垂直直线y =﹣x +2n 交于点G ,∵y =﹣x +2n 与直线y =﹣x 平行,∴∠GE'R=45°,∵E'G≤1,∴E'R≤√2,令y=﹣x+2n=1,解得x=2n﹣1,∴R(2n﹣1,1),∴E'R=|2n﹣1+n|≤√2,解得1−√23≤n≤1+√23,∴1−√23≤n≤1+√23时,直线y=﹣x+2n上存在⊙E关于原点O的“伴随点”.【点评】本题考查圆的综合应用,弄清定义,熟练掌握切线的性质,勾股定理,能够确定⊙E关于原点O的“伴随点”的轨迹是解题的关键.5.(2022秋•石景山区期末)在平面直角坐标系xOy中,图形W上任意两点间的距离若有最大值,将这个最大值记为d.对于点P和图形W给出如下定义:点Q是图形W上任意一点,若P,Q两点间的距离有最小值,且最小值恰好为d,则称点P为图形W的“关联点”.(1)如图1,图形W是矩形AOBC,其中点A的坐标为(0,3),点C的坐标为(4,3),则d=5.在点P1(﹣1,0),P2(2,8),P3(3,1),P4(−√21,−2)中,矩形AOBC的“关联点”是P2,P4;(2)如图2,图形W是中心在原点的正方形DEFG,其中D点的坐标为(1,1).若直线y=x+b上存在点P,使点P为正方形DEFG的“关联点”,求b的取值范围;(3)已知点M(1,0),N(0,√3).图形W是以T(t,0)为圆心,1为半径的⊙T,若线段MN上存在点P,使点P为⊙T的“关联点”,直接写出t的取值范围.【分析】(1)根据所给的定义,对每一个点进行判断即可;(2)由题意可得d=DF=2√2,过O点作OM垂直直线y=x+b,交于点M,当ME=2√2时,ON=6,则﹣6≤b≤6时,直线y=x+b上存在点P,使点P为正方形DEFG的“关联点”;(3)由题意可得d=2,当T点在x轴负半轴上时,过点T作TL⊥MN交于点L,交圆于点K,当KL=2时,TM=2√3,此时T(1﹣2√3,0);当TM=3时,T(﹣2,0),则1﹣2√3≤t≤﹣2时,线段MN上存在点P,使点P为⊙T的“关联点”;当T点在x轴正半轴上时,当TM=3时,此时T(4,0),当NT =3时,3=√t2+3,解得t=√6或t=−√6(舍),则√6≤t≤4时,线段MN上存在点P,使点P为⊙T 的“关联点”.【解答】解:(1)∵四边形AOBC是矩形,点A的坐标为(0,3),点C的坐标为(4,3),∴OC=5,∴d=5,∵P1(﹣1,0),∴P1O=1,∴P1不是矩形AOBC的“关联点”;∵P2(2,8),∴P2到AC的距离为5,∴P2是矩形AOBC的“关联点”;∵P3(3,1),∴P3到OB的距离为1,∴P3不是矩形AOBC的“关联点”;∵P4(−√21,−2),∴P4O=5,∴P4是矩形AOBC的“关联点”;故答案为:P2,P4;(2)∵D(1,1),四边形DEFG是正方形,∴d=DF=2√2,过O点作OM垂直直线y=x+b,交于点M,当ME=2√2时,OM=3√2,∵∠MNO=45°,∴ON=6,∴﹣6≤b≤6时,直线y=x+b上存在点P,使点P为正方形DEFG的“关联点”;(3)∵⊙T是T(t,0)为圆心,1为半径的圆,∴d=2,当T点在x轴负半轴上时,过点T作TL⊥MN交于点L,交圆于点K,当KL=2时,TL=3,∵M(1,0),N(0,√3),∴ON=√3,OM=1,∴tan∠OMN=√3,∴∠OMN=60°,∴TM=332=2√3,此时T(1﹣2√3,0),当TM=3时,OT=2,∴T(﹣2,0),∴1﹣2√3≤t≤﹣2时,线段MN上存在点P,使点P为⊙T的“关联点”;当T点在x轴正半轴上时,当TM=3时,此时T(4,0),当NT=3时,3=√t2+3,解得t=√6或t=−√6(舍),∴√6≤t≤4时,线段MN上存在点P,使点P为⊙T的“关联点”;∴1﹣2√3≤t≤﹣2或√6≤t≤4时,线段MN上存在点P,使点P为⊙T的“关联点”.【点评】本题考查圆的综合应用,弄清定义,能够根据定义,结合矩形的性质,圆的性质,属性结合解题是关键.6.(2022秋•东城区校级月考)如图,在平面直角坐标系xOy 中,过⊙T 外一点P 引它的两条切线,切点分别为M ,N ,若60°<∠MPN <180°,则称P 为⊙T 的环绕点.(1)当⊙O 半径为1时,①在P 1(√2,√2),P 2(2,0),P 3(2,1)中,⊙O 的环绕点是 ;②直线y =3x +b 与x 轴交于点A ,y 轴交于点B ,若线段AB 上存在⊙O 的环绕点,求b 的取值范围;(2)⊙T 的半径为2,圆心为(0,t ),以(﹣m ,√33m )(m >0)为圆心,√33m 为半径的所有圆构成图形H ,若在图形H 上存在⊙T 的环绕点,直接写出t 的取值范围.【分析】(1)①如图,PM ,PN 是⊙T 的两条切线,M ,N 为切点,连接TM ,TN ,当∠MPN =60°时,可证TP =2TM 、以T 为圆心,TP 为半径作⊙T .首先说明当60°≤∠MPN <180°时,⊙T 的环绕点在图中的圆环内部(包括大圆上的点不包括小圆上的点),利用这个结论解决问题.②如图2中,设小圆交y 轴的正半轴于F ,求出两种特殊位置的b 的值,结合图形根据对称性解决问题.(2)如图3中,不妨设E (﹣m ,√33m )(m >0),则点E 直线y =−√33x 上,以E (﹣m ,√33m )(m >0)为圆心,√33m 为半径的⊙E 与x 轴相切,作⊙E 的切线ON , 观察图象可知:以E (﹣m ,√33m )(m >0)为圆心,√33m 为半径的所有圆构成图形H ,图形H 即为∠MON 的内部,包括射线OM ,ON 上,利用(1)中结论,画出圆环,当圆环与∠MON 的内部有交点时,满足条件,求出两种特殊位置的t 的值可解决问题.【解答】解:(1)①如图,PM ,PN 是⊙T 的两条切线,M ,N 为切点,连接TM ,TN ,当∠MPN =60°时,∵PT 平分∠MPN ,∴∠TPN =∠MPT =30°,∵TM ⊥PM ,TN ⊥PN ,∴∠TNP =∠PMT =90°,∴TP =2TM =2,以T 为圆心,TP 为半径作⊙T .观察图象可知:当60°<∠MPN <180°时,⊙T 的环绕点在图中的圆环内部(包括大圆上的点不包括小圆上的点),故答案为:P 1;②如图中,设小圆交y 轴的正半轴于F ,当直线y =3x +b 经过点F 时,b =1,当直线y =3x +b 与大圆相切于K (在第二象限)时,连接OK ,由题意B (0,b ),A (−b 3,0),所以OB =b ,OA =b 3,AB =√103b , ∵OK =2,12×AB ×OK =12×OA ×OB ,∴b =2√10,观察图象可知,当1<b <2√10时,线段AB 上存在⊙的环绕点,根据对称怀可知:当﹣2√10<b <﹣1时,线段AB 上存在⊙的环绕点,综上所述,满足条件的b 的值为1<b <2√10或﹣2√10<b <﹣1;(2)如图中,不妨设E (﹣m ,√33m )(m >0),则点E 直线y =−√33x 上, ∵m >0,∴点E 在射线OE 上运动,作EM ⊥x 轴;∵E (﹣m ,√33m )(m >0), ∴OM =m ,EM =√33m ,以E (﹣m ,√33m )(m >0)为圆心,√33m 为半径的⊙E 与x 轴相切,作⊙E 的切线ON , 观察图象可知:以E (﹣m ,√33m )(m >0)为圆心,√33m 为半径的所有圆构成图形H ,图形H 即为∠MON 的内部,包括射线OM ,ON 上,当⊙T 的圆心在y 轴的正半轴上时,假设以T 为圆心,4为半径的圆与射线ON 相切于D ,连接TD ,∵tan ∠EOM =EM OM =√33,∴∠EOM =30°,∵OM ,ON 是⊙E 的切线,∴∠EON =∠EOM =30°.∴∠TOD =30°,∴OT =2DT =8,∴T (0,8),当⊙T 的圆心在y 轴的负半轴上时,且经过点O (0.0)时,T (0,﹣4),观察图象可知,当﹣4<t <8时,在图象上存在⊙T 的环绕点.【点评】本题属于圆的综合题,考查了切线长定理,直线与圆的位置关系,一次函数的性质等知识.解题的关键是理解题意,学会用转化思想,学会用特殊位置考虑问题.7.(2022秋•海淀区期末)在平面直角坐标系xOy 中,对于点P 和线段AB ,若线段P A 或PB 的垂直平分线与线段AB 有公共点,则称点P 为线段AB 的融合点.(1)已知A (3,0),B (5,0),①在点P 1(6,0),P 2(1,﹣2),P 3(3,2)中,线段AB 的融合点是 P 1,P 3 ;②若直线y =t 上存在线段AB 的融合点,求t 的取值范围;(2)已知⊙O 的半径为4,A (a ,0),B (a +1,0),直线l 过点T (0,﹣1),记线段AB 关于l 的对称线段为A 'B '.若对于实数a ,存在直线l ,使得⊙O 上有A 'B '的融合点,直接写出a 的取值范围.【分析】(1)①分别求出P 1A 的线段垂直平分线与x 轴的交点为(92,0),直线P 2B 的垂直平分线与x 轴的交点为(52,0),直线P 3B 的垂直平分线与x 轴的交点为(3,0),再根据定义判断即可; ②线段AB 的融合点在以A 、B 为圆心,AB 为半径的圆及内部,当y =t 与圆有交点时,直线y =t 上存在线段AB 的融合点;(2)由(1)可知,A 'B '的融合点在以A '、B '为圆心,A 'B '为圆心的圆及内部,圆O 与圆A '、圆B '的公共区域为以O 为圆心2为半径,以O 为圆心6为半径的圆环及内部区域满足题意,当a >0时,a 的最大值为√62−12=√35,最小值为√22−12−1=√3−1,当a <0时,a 的最大值为−√22−12=−√3,最小值为−√62−12−1=−√35−1,由此可求a 的取值范围为√3−1≤a ≤√35或−√35−1≤a ≤−√3.【解答】解:(1)①∵P 1(6,0),A (3,0),∴P 1A 的线段垂直平分线与x 轴的交点为(92,0), ∴P 1是线段AB 的融合点;∵P 2(1,﹣2),B (5,0),设直线P 2B 的垂直平分线与x 轴的交点为(a ,0),∴(a ﹣1)2+4=(5﹣a )2,解得a =52,∴直线P 2B 的垂直平分线与x 轴的交点为(52,0), ∴P 2不是线段AB 的融合点;∵P 3(3,2),B (5,0),设直线P 3B 的垂直平分线与x 轴的交点为(b ,0),∴(b ﹣3)2+4=(5﹣b )2,解得b=3,∴直线P3B的垂直平分线与x轴的交点为(3,0),∴P3是线段AB的融合点;故答案为:P1,P3;②线段AB的融合点在以A、B为圆心,AB为半径的圆及内部,∵A(3,0),B(5,0),∴AB=2,当y=t与圆相切时,t=2或t=﹣2,∴﹣2≤t≤2时,直线y=t上存在线段AB的融合点;(2)由(1)可知,A'B'的融合点在以A'、B'为圆心,A'B'为圆心的圆及内部,∵A(a,0),B(a+1,0),∴AB=A'B'=1,∵⊙O上有A'B'的融合点,∴圆O与圆A'、B'有交点,∴圆O与圆A'、圆B'的公共区域为以O为圆心2为半径,以O为圆心6为半径的圆环及内部区域,当a>0时,a的最大值为√62−12=√35,最小值为√22−12−1=√3−1,∴√3−1≤a≤√35;当a<0时,a的最大值为−√22−12=−√3,最小值为−√62−12−1=−√35−1,∴−√35−1≤a≤−√3;综上所述:a的取值范围为√3−1≤a≤√35或−√35−1≤a≤−√3.【点评】本题考查圆的综合应用,熟练掌握线段垂直平分线的性质,弄清定义,根据题意能够确定线段的融合点的轨迹是解题的关键.8.(2022秋•北京期末)对于平面直角坐标系xOy中的点M,N和图形W,给出如下定义:若图形W上存在一点P,使得∠PMN=90°,且MP=MN,则称点M为点N关于图形W的一个“旋垂点”.(1)已知点A(0,4),B(4,4),①在点M1(﹣2,2),M2(0,2),M3(2,2)中,是点O关于点A的“旋垂点”的是;②若点M(m,n)是点O关于线段AB的“旋垂点”,求m的取值范围;(2)直线y=﹣x+2与x轴,y轴分别交于C,D两点,⊙T的半径为√10,圆心为T(t,0).若在⊙T 上存在点P,线段CD上存在点Q,使得点Q是点P关于⊙T的一个“旋垂点”,且PQ=√2,直接写出t的取值范围.【分析】(1)①根据“旋垂点”的定义判断即可;②当∠AM1O=90°,AM1=M1O时,m=﹣2,当∠BM2O=90°,BM2=M2O时,m=4,即可求出m的取值范围;(2)由题可知,Q点在以T为圆心半径为2或4的圆上,当D点与Q点重合时,TD=4,t=﹣2√3;当Q点与C点重合时,OT=2,t=﹣2,则﹣2√3≤t≤﹣2;当Q点与C点重合时,OT=6,t=6;当TQ⊥CD时,TQ=2,t=2﹣2√2,则2﹣2√2≤t≤6.【解答】解:(1)①∵A(0,4),∴OA=4,设点O关于点A的“旋垂点”是M,∴AM=OM=2√2,∵M1(﹣2,2),M2(0,2),M3(2,2),∴AM1=OM1=2√2,AM2=OM1=2,AM3=OM1=2√2,∴M1,M3是点O关于点A的“旋垂点”,故答案为:M1,M3;②∵点A(0,4),B(4,4),∴AB∥x轴,当∠AM1O=90°,AM1=M1O时,m=﹣2,当P点从A到B移动时,﹣2≤m≤0;当∠BM2O=90°,BM2=M2O时,m=4,当P点从A到B移动时,2≤m≤4;∴﹣2≤m≤0或2≤m≤4时,点M(m,n)是点O关于线段AB的“旋垂点”;(2)当x=0时,y=2,∴D(0,2),当y=0时,x=2,∴C(2,0),∵PQ=√2,∠PQN=90°,PQ=QN,∴PN=2,∵圆T的半径是√10,∴TQ=2或TQ=4,∴Q点在以T为圆心半径为2或4的圆上,当D点与Q点重合时,TD=4,∴TO=2√3,∴t=﹣2√3;当Q点与C点重合时,OT=2,∴t=﹣2,∴﹣2√3≤t≤﹣2;当Q点与C点重合时,OT=6,∴t=6;当TQ⊥CD时,TQ=2,∴OT=2√2−2,∴t=2﹣2√2;∴2﹣2√2≤t≤6;∴t的取值范围为:﹣2√3≤t≤﹣2或2﹣2√2≤t≤6.【点评】本题考查圆的综合应用,熟练等腰直角三角形的性质,圆的垂径定理,弄清定义,数形结合是解题的关键.9.(2022秋•朝阳区校级期中)在平面直角坐标系xOy中的⊙W上,有弦MN,取MN的中点P,将点P绕原点O顺时针旋转90°得到点Q,称点Q为弦MN的“中点对应点”.设⊙W是以W(﹣3,0)为圆心,半径为2的圆.(1)已知弦MN长度为2,点Q为弦MN的“中点对应点”.①如图1:当MN∥x轴时,在图1中画出点Q,并且直接写出线段OQ的长度;②当MN在圆上运动时,直接写出线段WQ的取值范围.(2)已知点M(﹣5,0),点N为⊙W上的一动点,设直线y=x+b与x轴、y轴分别交于点A、点B,若线段AB上存在弦MN的“中点对应点”点Q,求出b的取值范围.【分析】(1)①连接WP,由垂径定理可得WP⊥MN,再由勾股定理求出OP的长即可求OQ;②根据题意可得Q点在以E(0,3)为圆心,√3为半径的圆上,再求WQ的取值范围即可;(2)由题意可得Q点在以G(0,4)为圆心,1为半径的圆上,再由线段AB上存在弦MN的“中点对应点”点Q,可知直线y=x+b与圆G相切或相交,再由(4﹣b)2=2,求出b=4−√2或b=4+√2,即可求出b的取值范围.【解答】解:(1)①连接WP,∵P是弦MN的中点,∴WP⊥MN,∵MN=2,WN=2,∴PW=√3,∵MN∥x轴,W(﹣3,0),∴OP=2√3,∵OP=OQ,∴OQ=2√3;②∵NM⊥WP,WP=√3,∴P点在以W为圆心,√3为半径的圆上,∵OP顺时针旋转90°得到OQ,∴Q点在以E(0,3)为圆心,√3为半径的圆上,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

以圆为背景的压轴题1、如图,已知线段AB =10,点C 在线段AB 上,⊙A 、⊙B 的半径分别为AC 、BC ,D 是⊙B 上一点,AD 交⊙A 于E ,EC 的延长线交⊙B 于F 。

(1) 求证:BF //AD ; (2) 若BD ⊥AD ,AC =x ,DF =y ,求y 与x 的函数关系式,写出定义域。

(3)在(2)的条件下,点C 在线段AB 上运动的过程中,DF 是否有可能与AB 垂直,如果有可能请求出AC 的长,如果没有可能,请说明理由。

FE A B CD2、如图1,已知:在直角坐标系中,点E从坐标原点O出发,以1个单位/秒的速度沿x轴正方向运动,点F从坐标原点O出发,以2个单位/秒的速度沿y轴正方向运动。

B(4,2),以BE为直径做⊙M.(1)若点E、F同时出发,设线段EF与线段OB交于点G,试判断点 G 与⊙M的位置关系,并证明你的结论;(2)在(1)的条件下,联结FB,几秒时FB与⊙M相切;(3)如图2,若点E提前2秒出发,点F再出发,当点F出发后,E点在A点左侧时,设BA⊥x轴于点A,联结AF交⊙M于点P,请问AP·AF的值是否会发生变化?若不变,请说明理由,并求其值;若变化,请求其值的变化范围.3、已知:如图,在Rt △ABC 中,∠ACB =90°,tan ∠ABC =43,AB =5,D 是线段AB 上的一点(与点A 、B 不重合),直线DP ⊥AB ,与线段AC 相交于点Q ,与射线BC 相交于点P ,E 是AQ 的中点,线段ED 的延长线与线段CB 的延长线相交于点F 。

(1)求证:△FBD ∽△FDP ; (2)求BF ∶BP 的值;(3)若⊙A 与直线BC 相切,⊙B 的半径等于线段BF 的长,设BD =x ,当⊙A 与⊙B 相切时,请求出x 的值.AB C P DEF Q4、已知,如图1:在正方形ABCD 中,AB =2,点P 是DC 延长线上一点,以P 为圆心,PD 长为半径的圆的一段弧交AB 边于点E ,(1) 若以A 为圆心,AE 为半径的圆与以BC 为直径的圆外切时,求AE 的长;(2) 如图2:联结PE 交BC 边于点F ,联结DE ,设AE 长为x ,CF 长为y ,求y 与x 的函数关系式,并写出自变量x 的取值范围;(3) 将点B 沿直线EF 翻折,使点B 落在平面上的B '处,当EF =53时,△AB'B 与△BEF 是否相似?若相似,请加以证明;若不相似,简要说明理由。

ADB图1EP CAD B图2EF P CADB备用图EF PC5、在半径为4的⊙O 中,点C 是以AB 为直径的半圆的中点,OD ⊥AC ,垂足为D ,点E 是射线AB 上的任意一点,DF //AB ,DF 与CE 相交于点F ,设EF =x ,DF =y .(1)如图1,当点E 在射线OB 上时,求y 关于x 的函数解析式,并写出函数定义域; (2)如图2,当点F 在⊙O 上时,求线段DF 的长;(3)如果以点E 为圆心、EF 为半径的圆与⊙O 相切,求线段DF 的长.A BEFCDO(图1) A B EFCDO(图2)6、在梯形ABCD 中,∠ABC=90,AD ∥BC ,AB=8cm ,BC=18cm ,54sin =∠BCD ,点P 从点B 开始沿BC 边向终点C 以每秒3cm 的速度移动,点Q 从点D 开始沿DA 边向终点A 以每秒2cm 的速度移动,设运动时间为t 秒. (1)如图(1):若四边形ABPQ 是矩形,求t 的值; (2)若题设中的“BC=18cm ”改变为“BC=k cm ”,其它条件都不变,要使四边形PCDQ 是等腰梯形,求t 与k 的函数关系式,并写出k 的取值范围; (3)如图(2):如果⊙P 的半径为6cm ,⊙Q 的半径为4cm ,在移动的过程中,试探索:t 为何值时⊙P 与⊙Q 外离、外切、相交?B D AC (P ) (Q ) 图(1)B D AC (P ) (Q ) 图(2)7、如图,在四边形ABCD 中,∠B =90°,AD //BC ,AB =4,BC =12,点E 在边BA 的延长线上,AE =2,点F 在BC 边上,EF 与边AD 相交于点G ,DF ⊥EF ,设AG =x , DF =y . (1)求y 关于x 的函数解析式,并写出定义域; (2)当AD =11时,求AG 的长;(3)如果半径为EG 的⊙E 与半径为FD 的⊙F 相切,求这两个圆的半径.DGBCAE F8、如图,⊙O 的半径1=OA ,点M 是线段OA 延长线上的任意一点,⊙M 与⊙O 内切于点B ,过点A 作OA CD ⊥交⊙M 于D C 、,联结CM 、OC ,OC 交⊙O 于E .(1) 若设y S x OM OMC ==∆,,求y 关于x 的函数解析式,并写出函数的定义域;(3分)(2) 将⊙O 沿弦CD 翻折得到⊙N ,当4=x 时,试判断⊙N 与直线CM 的位置关系;(4分) (3) 将⊙O 绕着点E 旋转︒180得到⊙P ,如果⊙P 与⊙M 内切,求x 的值. (7分)O DC B A M EO9、在等腰ABC ∆中,已知5==AC AB cm ,6=BC cm ,动点P 、Q 分别从A 、B 两点同时出发,沿AB 、BC 方向匀速移动,它们的速度都是1 cm/秒. 当点P 到达点B 时,P 、Q 两点停止运动,设点P 的运动时间为t (秒).(1)当t 为何值时,PQ ⊥AB ?(2)设四边形APQC 的面积为y cm 2,写出y 关于t 的函数关系式及定义域; (3)分别以P 、Q 为圆心,P A 、BQ 长为半径画圆,若⊙P 与⊙Q 相切,求t 的值;(4)在P 、Q 运动中,BPQ ∆与ABC ∆能否相似?若能,请求出AP 的长;若不能,请说明理由.A B ABC(备用图)10、已知:在△ABC 中,AB =AC ,∠B =30º,BC =6,点D 在边BC 上,点E 在线段DC 上,DE =3,△DEF 是等边三角形,边DF 、EF 与边BA 、CA 分别相交于点M 、N . (1)求证:△BDM ∽△CEN ;(2)当点M 、N 分别在边BA 、CA 上时,设BD =x ,△ABC 与△DEF 重叠部分的面积为y ,求y 关于x的函数解析式,并写出定义域.(3)是否存在点D ,使以M 为圆心, BM 为半径的圆与直线EF 相切, 如果存在,请求出x 的值;如不存在,请说明理由.ABFDEMN C11、如图,在ABC ∆中,90C ∠=︒,6AC =,3tan 4B =,D 是BC 边的中点,E 为AB 边上的一个动点,作90DEF ∠=︒,EF 交射线BC 于点F .设BE x =,BED ∆的面积为y . (1)求y 关于x 的函数关系式,并写出自变量x 的取值范围;(2)如果以线段BC 为直径的圆与以线段AE 为直径的圆相切,求线段BE 的长; (3)如果以B 、E 、F 为顶点的三角形与BED ∆相似,求BED ∆的面积.12、在矩形ABCD 中,AB =3,点O 在对角线AC 上,直线l 过点O ,且与AC 垂直交AD 于点E.ACDEFBACD B备用图·AB CDEOlA ′ABCDEO lF (1)若直线l 过点B ,把△ABE 沿直线l 翻折,点A 与矩形ABCD 的对称中心A '重合,求BC 的长; (2)若直线l 与AB 相交于点F ,且AO =41AC ,设AD 的长为x ,五边形BCDEF 的面积为S. ①求S 关于x 的函数关系式,并指出x 的取值范围; ②探索:是否存在这样的x ,以A 为圆心,以 x 43长为半径的圆与直线l 相切,若存在,请求出x 的值;若不存在,请说明理由;13、已知:⊙O 的直径AB =8,⊙B 与⊙O 相交于点C 、D ,⊙O 的直径CF 与⊙B 相交于点E ,设⊙B 的半径为x ,OE 的长为y ,(1) 如图,当点E 在线段OC 上时,求y 关于x 的函数解析式,并写出定义域; (2) 当点E 在直径CF 上时,如果OE 的长为3,求公共弦CD 的长;(3) 设⊙B 与AB 相交于G ,试问△OEG 能否为等腰三角形?如果能够,请直接写出BC 的长度(不必写过程);如果不能,请简要说明理由.14、如图,已知AB ⊥MN ,垂足为点B ,P 是射线BN 上的一个动点,AC ⊥AP ,∠ACP =∠BAP ,AB =4,AOB CDEFBP =x ,CP =y ,点C 到MN 的距离为线段CD 的长. (1)求y 关于x 的函数解析式,并写出它的定义域.(2)在点P 的运动过程中,点C 到MN 的距离是否会发生变化?如果发生变化,请用x 的代数式表示这段距离;如果不发生变化,请求出这段距离.(3)如果圆C 与直线MN 相切,且与以BP 为半径的圆P 也相切,求BP ∶PD 的值.AB P D CNM15、如图,梯形ABCD 中,AD //BC ,CD ⊥BC ,已知AB =5,BC =6,cos B =35.点O 为BC 边上的动点,联结OD ,以O 为圆心,BO 为半径的⊙O 分别交边AB 于点P ,交线段OD 于点M ,交射线BC 于点N ,联结MN .(1)当BO =AD 时,求BP 的长;(2)点O 运动的过程中,是否存在BP =MN 的情况?若存在,请求出当BO 为多长时BP =MN ;若不存在,请说明理由;(3)在点O 运动的过程中,以点C 为圆心,CN 为半径作⊙C ,请直接写出当⊙C 存在时,⊙O 与⊙C 的位置关系,以及相应的⊙C 半径CN 的取值范围。

A BCDOPM N A BCD (备用图)16、如图,ABC ∆中,10==AC AB ,12=BC ,点D 在边BC 上,且4=BD ,以点D 为顶点作B EDF ∠=∠,分别交边AB 于点E ,交射线CA 于点F .(1)当6=AE 时,求AF 的长;(2)当以点C 为圆心CF 长为半径的⊙C 和以点A 为圆心AE 长为半径的⊙A 相切时,求BE 的长; (3)当以边AC 为直径的⊙O 与线段DE 相切时,求BE 的长.A B C DE F A B C D (备用图)17、如图,正方形ABCD 的边长为4,E 是BC 边的中点,点P 在射线AD 上,过P 作PF AE ⊥于F ,设PA x =.(1)求证:PFA ABE △∽△;(2)若以P F E ,,为顶点的三角形也与ABE △相似,试求x 的值;(3)试求当x 取何值时,以D 为圆心,DP 为半径的⊙D 与线段AE 只有一个公共点。

相关文档
最新文档