大田庄乡初中2018-2019学年七年级下学期数学第一次月考试卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大田庄乡初中2018-2019学年七年级下学期数学第一次月考试卷
班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1.(2分)用加减法解方程组中,消x用法,消y用法()
A. 加,加
B. 加,减
C. 减,加
D. 减,减
【答案】C
【考点】解二元一次方程
【解析】【解答】解:用加减法解方程组中,消x用减法,消y用加法,
故答案为:C.
【分析】观察方程组中同一个未知数的系数特点:x的系数相等,因此可将两方程相减消去x;而y的系数互为相反数,因此将两方程相加,可以消去y。
2.(2分)若,则y用只含x的代数式表示为()
A.y=2x+7
B.y=7﹣2x
C.y=﹣2x﹣5
D.y=2x﹣5
【答案】B
【考点】解二元一次方程组
【解析】【解答】解:,
由①得:m=3﹣x,
代入②得:y=1+2(3﹣x),
整理得:y=7﹣2x.
故答案为:B.
【分析】由方程(1)变形可将m用含x、y的代数式表示,再将m代入方程(2)中整理可得关于x、y的方程,再将这个方程变形即可把y用含x的代数式表示出来。
3.(2分)在数:3.14159,1.010010001…,7.56,π,中,无理数的个数有()
A. 1个
B. 2个
C. 3个
D. 4个【答案】B
【考点】无理数的认识
【解析】【解答】解:上述各数中,属于无理数的有:两个.
故答案为:B.
【分析】根据无理数的定义“无限不循环小数叫做无理数”分析可得答案。
4.(2分)若k< <k+l(k是整数),则k的值为()
A.6
B.7
C.8
D.9
【答案】C
【考点】估算无理数的大小
【解析】【解答】解:∵64<80<81,
∴8<<9,
又∵k<<k+1,
∴k=8.
故答案为:C.
【分析】由64<80<81,开根号可得8<<9,结合题意即可求得k值.
5.(2分)下列各组数值是二元一次方程x﹣3y=4的解的是()
A.
B.
C.
D.
【答案】A
【考点】二元一次方程的解
【解析】【解答】解:A、将x=1,y=﹣1代入方程左边得:x﹣3y=1+3=4,右边为4,符合题意;
B、将x=2,y=1代入方程左边得:x﹣3y=2﹣3=﹣1,右边为4,不符合题意;
C、将x=﹣1,y=﹣2代入方程左边得:x﹣3y=﹣1+6=5,右边为4,不符合题意;
D、将x=4,y=﹣1代入方程左边得:x﹣3y=4+3=7,右边为4,不符合题意.
故答案为:A
【分析】由二元一次方程的解的意义,将选项中的x、y的值代入已知的方程检验即可判断求解。
6.(2分)下列方程中,是二元一次方程的是()
A.3x﹣2y=4z
B.6xy+9=0
C.
D.
【答案】D
【考点】二元一次方程的定义
【解析】【解答】解:根据二元一次方程的定义,方程有两个未知数,方程两边都是整式,故D符合题意,故答案为:D
【分析】根据二元一次方程的定义:方程有两个未知数,含未知数项的最高次数都是1次,方程两边都是整式,即可得出答案。
7.(2分)用代入法解方程组的最佳策略是()
A.消y,由②得y= (23-9x)
B.消x,由①得x= (5y+2)
C.消x,由②得x= (23-2y)
D.消y,由①得y= (3x-2)
【答案】B
【考点】解二元一次方程组
【解析】【解答】解:因为方程②中x的系数是方程①中x的系数的3倍,
所以用代入法解方程组的最佳策略是:
由①得
再把③代入②,消去x.
故答案为:B
【分析】因为方程②中x的系数是方程①中x的系数的3倍,故用代入法解该方程组的时候,将原方程组中的①方程变形为用含y的代数式表示x,得出③方程,再将③代入②消去x得到的方程也是整数系数,从而使解答过程简单。
8.(2分)方程组消去y后所得的方程是()
A.3x-4x+10=8
B.3x-4x+5=8
C.3x-4x-5=8
D.3x-4x-10=8
【答案】A
【考点】解二元一次方程组
【解析】【解答】解:,
①代入②得:3x-2(2x-5)=8,
3x-4x+10=8.
故答案为:A.
【分析】利用整体替换的思想,由于y=2x-5,用2x-5替换②中的y,再去括号即可得出答案。
9.(2分)下列说法中,不正确的是().
A. 3是(﹣3)2的算术平方根
B. ±3是(﹣3)2的平方根
C. ﹣3是(﹣3)2的算术平方根
D. ﹣3是(﹣3)3的立方根
【答案】C
【考点】平方根,算术平方根,立方根及开立方
【解析】【解答】解:A. (﹣3)2=9的算术平方根是3,故说法正确,故A不符合题意;
B. (﹣3)2=9的平方根是±3,故说法正确,故B不符合题意;
C. (﹣3)2=9的算术平方根是3,故说法错误,故C符合题意;
D. (﹣3)3的立方根是-3,故说法正确,故D不符合题意;
故答案为:C.
【分析】一个正数的平方根有两个,且这两个数互为相反数.先计算(﹣3)2的得数,再得出平方根,且算术平方根是正的那个数;一个数的立方根,即表示这个立方根的立方得原数.
10.(2分)如图,已知AB∥CD∥EF,FC平分∠AFE,∠C=25°,则∠A的度数是()
A.25°
B.35°
C.45°
D.50°
【答案】D
【考点】平行线的性质
【解析】【解答】解:∵CD∥EF,AB∥EF
∴∠C=∠CFE,∠A=∠AFE
∵FC平分∠AFE
∴∠AFE=50°,
即∠A=50°
故答案为:D。
【分析】根据平行线的性质,两直线平行,内错角相等以及角平分线的性质,进行求解即可。
11.(2分)若是方程组的解,则a、b值为()
A.
B.
C.
D.
【答案】A
【考点】二元一次方程组的解
【解析】【解答】解:把代入得,
,
.
故答案为:A.
【分析】方程组的解,能使组成方程组中的每一个方程的右边和左边都相等,根据定义,将代入方程
组即可得出一个关于a,b的二元一次方程组,求解即可得出a,b的值。
12.(2分)下列说法正确的是()
A. 3与的和是有理数
B. 的相反数是
C. 与最接近的整数是4
D. 81的算术平方根是±9
【答案】B
【考点】相反数及有理数的相反数,平方根,算术平方根,估算无理数的大小
【解析】【解答】解:A.∵是无理数,∴3与2的和不可能是有理数,故错误,A不符合题意;
B.∵2-的相反数是:-(2-)=-2,故正确,B符合题意;
C.∵≈2.2,∴1+最接近的整数是3,故错误,C不符合题意;
D.∵81的算术平方根是9,故错误,D不符合题意;
故答案为:B.
【分析】A.由于是无理数,故有理数和无理数的和不可能是有理数;
B.相反数:数值相同,符号相反的数,由此可判断正确;
C.根据的大小,可知其最接近的整数是3,故错误;
D.根据算术平方根和平方根的定义即可判断对错.
二、填空题
13.(1分)如图,∠1=15°,∠AOC=90°.若点B,O,D在同一条直线上,则∠2=________.
【答案】105°
【考点】对顶角、邻补角,垂线
【解析】【解答】解:∵∠AOC=90°,∠1=15°,
∴∠BOC=∠AOC-∠1=90°-15°=75°,
又∵∠BOC+∠2=180°,
∴∠2=180°-∠BOC=180°-75°=105°.
故答案为:105°.
【分析】根据角的运算结合已知条件得∠BOC=75°,由补角定义得∠2=180°-∠BOC即可得出答案.
14.(1分)若则x+y+z=________.
【答案】3
【考点】三元一次方程组解法及应用
【解析】【解答】解:在中,由①+②+③得:,
∴.
【分析】方程组中的三个方的x、y、z的系数都是1,因此由(①+②+③)÷2,就可求出结果。
15.(1分)如图,某煤气公司安装煤气管道,他们从点A处铺设到点B处时,由于有一个人工湖挡住了去路,需要改变方向经过点C,再拐到点D,然后沿与AB平行的DE方向继续铺设.已知∠ABC=135°,∠BCD =65°,则∠CDE=________.
【答案】110°
【考点】平行公理及推论,平行线的性质
【解析】【解答】解:过点C作CF∥AB,如图:
∵AB∥DE,CF∥AB,
∴DE∥CF,
∴∠CDE=∠FCD,
∵AB∥CF,∠ABC=135°,
∴∠BCF=180°-∠ABC=45°,
又∵∠FCD=∠BCD+∠BCF,∠BCD=65°,
∴∠FCD=110°,
∴∠CDE=110°.
故答案为:110°.
【分析】过点C作CF∥AB,由平行的传递性得DE∥CF,由平行线性质得∠CDE=∠FCD,由AB∥CF得∠BCF=45°,由∠FCD=∠BCD+∠BCF即可求得答案.
16.(1分)写出一个比-1小的无理数________.
【答案】
【考点】实数大小的比较
【解析】【解答】解:比-1小的无理数为:
【分析】根据无理数的大小比较,写出一个比-1小的无理数即可。
此题答案不唯一。
17.(1分)是二元一次方程ax+by=11的一组解,则2017﹣2a+b=________.
【答案】2028
【考点】代数式求值,二元一次方程的解
【解析】【解答】解:∵是二元一次方程ax+by=11的一组解,
∴代入得:﹣2a+b=11,
∴2017﹣2a+b=2017+11=2028,
故答案为:2028.
【分析】将二元一次方程的解代入方程,求出﹣2a+b的值,再整体代入求值。
18.(1分)如图,直线L1∥L2,且分别与△ABC的两边AB、AC相交,若∠A=40°,∠1=45°,则∠2的度数为________.
【答案】95°
【考点】对顶角、邻补角,平行线的性质,三角形内角和定理
【解析】【解答】解:如图,
∵直线l1∥l2,且∠1=45°,
∴∠3=∠1=45°,
∵在△AEF中,∠A=40°,
∴∠4=180°﹣∠3﹣∠A=95°,
∴∠2=∠4=95°,
故答案为:95°.
【分析】根据平行线的性质得出∠3=∠1=45°,利用三角形内角和定理求出∠4=180°﹣∠3﹣∠A=95°,根据对顶角相等求出∠2=∠4=95°。
三、解答题
19.(5分)如图,已知直线AB、CD交于O点,OA平分∠COE,∠COE:∠EOD=4:5,求∠BOD的度数.
【答案】解:∵∠COE:∠EOD=4:5,∠COE+∠EOD=180°
∴∠COE=80°,
∵OA平分∠COE
∴∠AOC=∠COE=40°
∴∠BOD=∠AOC=40°
【考点】角的平分线,对顶角、邻补角
【解析】【分析】根据平角的定义得出∠COE+∠EOD=180°,又∠COE:∠EOD=4:5,故∠COE=80°,根据角平分线的定义得出∠AOC=∠COE=40°,根据对顶角相等即可得出∠BOD的度数。
20.(5分)把下列各数填入相应的集合中:
﹣22,﹣|﹣2.5|,3,0,,,﹣0.121221222……(每两个1之间多一个2),,
无理数集合:{ ……};
负有理数集合:{ ……};
整数集合:{ ……};
【答案】解:无理数集合:{ ,﹣0.121221222……(每两个1之间多一个2),……};
负有理数集合:{﹣22,﹣|﹣2.5|,……};
整数集合:{﹣22,﹣|﹣2.5|,3,0,……};
【考点】实数及其分类,有理数及其分类
【解析】【分析】无理数:无限不循环小数是无理数,常见的无理数有:开不尽的平方根或立方根,无限不循环小数,π;负有理数:负整数,负分数;整数:正整数,负整数.
21.(9分)某中学对本校500名毕业生中考体育加试测试情况进行调查,根据男生1 000m及女生800m 测试成绩整理、绘制成如下不完整的统计图(图①、图②),请根据统计图提供的信息,回答下列问题:
(1)该校毕业生中男生有________人,女生有________人;
(2)扇形统计图中a=________,b=________;
(3)补全条形统计图(不必写出计算过程).
【答案】(1)300;200
(2)12;62
(3)解:由图象,得8分以下的人数有:500×10%=50人,
∴女生有:50﹣20=30人.
得10分的女生有:62%×500﹣180=130人.
补全图象为:
【考点】扇形统计图,条形统计图
【解析】【解答】解:⑴由统计图,得男生人数有:20+40+60+180=300人,
女生人数有:500﹣300=200人.
故答案为:300,200;
⑵由条形统计图,得
60÷500×100%=12%,
∴a%=12%,
∴a=12.
∴b%=1﹣10%﹣12%﹣16%,
∴b=62.
故答案为:12,62;
【分析】(1)根据条形统计图对应的数据相加可得男生人数,根据调查的总数减去男生人数可得女生人数;(2)根据条形统计图计算8分和10分所占的百分比即可确定字母a、b的值;
(3)根据两个统计图计算8分以下的女生人数和得分是10分的女生人数即可补全统计图.
22.(5分)如图,∠ABE+ ∠DEB=180°,∠1= ∠2.求证:∠F= ∠G.
【答案】证明:∵∠ABE+ ∠DEB=180°,
∴AC∥DE,
∴∠CBO=∠DEO,
又∵∠1= ∠2,
∴∠FBO=∠GEO,
在△BFO中,∠FBO+∠BOF+∠F=180°,
在△GEO中,∠GEO+∠GOE+∠G=180°,
∴∠F=∠G.
【考点】平行线的判定与性质
【解析】【分析】根据平行线的判定得AC∥DE,再由平行线的性质内错角∠CBO=∠DEO,结合已知条件得∠FBO=∠GEO,在△BFO和△GEO中,由三角形内角和定理即可得证.
23.(5分)在数轴上表示下列各数,并用“<”连接。
3, 0,,,.
【答案】解:数轴略,
【考点】实数在数轴上的表示,实数大小的比较
【解析】【解答】解:∵=-2,(-1)2=1,
数轴如下:
由数轴可知:<-<0<(-1)2<3.
【分析】先画出数轴,再在数轴上表示各数,根据数轴左边的数永远比右边小,用“<”连接各数即可. 24.(5分)如图,直线AB、CD相交于O点,∠AOC=80°,OE⊥AB,OF平分∠DOB,求∠EOF的度
数.
【答案】解:∵∠AOC=80°,∴∠BOD=∠AOC=80°,∵OF平分∠DOB,∴∠DOF= ∠DOB=40°,∵OE⊥AB,∴∠AOE=90°,∵∠AOC=80°,∴∠EOD=180°-90°-80°=10°,∴∠EOF=∠EOD+∠DOF=10°+40°=50°.
【考点】角的平分线,角的运算,对顶角、邻补角
【解析】【分析】根据图形和已知求出∠EOD的度数,再由角平分线性质、对顶角相等和角的和差,求出∠EOF=∠EOD+∠DOF的度数.
25.(5分)阅读下面情境:甲、乙两人共同解方程组由于甲看错了方程①中的a,得到方程组的解为乙看错了方程②中的b,得到方程组的解为试求出a、b的正确值,并计算a2 017+(-b)2 018的值.
【答案】解:根据题意把代入4x﹣by=﹣2得:﹣12+b=﹣2,解得:b=10,把代入ax+5y=15
得:5a+20=15,解得:a=﹣1,所以a2017+(﹣b)2018=(﹣1)2017+(﹣×10)2018=0.
【考点】代数式求值,二元一次方程组的解
【解析】【分析】根据甲看错了方程①中的a,因此将甲得到的方程组的记为代入方程②求出b的值,而乙看错了方程②中的b,因此将乙得到的方程组的解代入方程①求出a的值,然后将a、b的值代入代数式计算求值。
26.(5分)如图,直线AB、CD相交于O,射线OE把∠BOD分成两个角,若已知∠BOE= ∠AOC,∠EOD=36°,
求∠AOC的度数.
【答案】解:∵∠AOC=∠BOD是对顶角,
∴∠BOD=∠AOC,
∵∠BOE=∠AOC,∠EOD=36º,
∴∠EOD=2∠BOE=36º,
∴∠EOD=18º,
∴∠AOC=∠BOE=18º+36º=54º.
【考点】角的运算,对顶角、邻补角
【解析】【分析】根据对顶角相等可知∠BOD=∠AOC,再由∠BOE= ∠AOC知∠EOD=∠BOD,代入数据求得∠BOD,再求得∠AOC。