振兴区高中2018-2019学年上学期高二数学12月月考试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

振兴区高中2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA 1
=,M 为A 1B 1的中点,则AM 与平面AA 1C 1C 所成
角的正切值为( )
A

B

C

D

2. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若(acosB+bcosA )=2csinC ,a+b=8,且△ABC 的
面积的最大值为
4,则此时△ABC 的形状为( ) A .等腰三角形 B .正三角形 C .直角三角形
D .钝角三角形 3. 下列函数中,既是偶函数又在(0,)+∞单调递增的函数是( )
A .3y x =
B . 21y x =-+
C .||1y x =+
D .2x y -=
4. 已知数列{a n }满足log 3a n +1=log 3a n+1(n ∈N *),且a 2+a 4+a 6=9,则
log (a 5+a 7+a 9)的值是( )
A
.﹣ B .﹣5 C .5
D

5. 以下四个命题中,真命题的是( ) A .(0,)x π∃∈,sin tan x x =
B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,20010x x ++<
C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数
D .ABC ∆中,“sin sin cos cos A B A B +=+”是“2
C π
=
”的充要条件
【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.
6. 已知函数[)[)1(1)sin 2,2,212
()(1)sin 22,21,222
n
n x n x n n f x x n x n n ππ+⎧-+∈+⎪⎪=⎨⎪-++∈++⎪⎩(n N ∈),若数列{}m a 满足
*()()m a f m m N =∈,数列{}m a 的前m 项和为m S ,则10596S S -=( ) A.909 B.910 C.911 D.912
【命题意图】本题考查数列求和等基础知识,意在考查分类讨论的数学思想与运算求解能力. 7. 执行右面的程序框图,如果输入的[1,1]t ∈-,则输出的S 属于( ) A.[0,2]e - B. (,2]e -? C.[0,5] D.[3,5]e -
【命题意图】本题考查程序框图、分段函数等基础知识,意在考查运算能力和转化思想的运用.
8.设双曲线焦点在y轴上,两条渐近线为,则该双曲线离心率e=()
A.5 B.C.D.
9.若方程x2+ky2=2表示焦点在y轴上的椭圆,那么实数k的取值范围是()
A.(0,+∞)B.(0,2) C.(1,+∞)D.(0,1)
10.某几何体的三视图如图所示,则该几何体为()
A.四棱柱B.四棱锥C.三棱台D.三棱柱
11.若定义在R上的函数f(x)满足:对任意x1,x2∈R有f(x1+x2)=f(x1)+f(x2)+1,则下列说法一定正确的是()
A.f(x)为奇函数B.f(x)为偶函数C.f(x)+1为奇函数 D.f(x)+1为偶函数
12.设函数f (x )在x 0处可导,则等于( )
A .f ′(x 0)
B .f ′(﹣x 0)
C .﹣f ′(x 0)
D .﹣f (﹣x 0)
二、填空题
13.命题“(0,)2x π
∀∈,sin 1x <”的否定是 ▲ .
14.设函数f (x )=
,则f (f (﹣2))的值为 .
15.设实数x ,y 满足,向量=(2x ﹣y ,m ),=(﹣1,1).若∥,则实数m 的最大值
为 .
16.已知直线l 的参数方程是
(t 为参数),曲线C 的极坐标方程是ρ=8cos θ+6sin θ,则曲线C 上到
直线l 的距离为4的点个数有 个.
17.若“x <a ”是“x 2﹣2x ﹣3≥0”的充分不必要条件,则a 的取值范围为 .
18.已知双曲线的标准方程为,则该双曲线的焦点坐标为, 渐近线方程
为 .
三、解答题
19.已知函数f (x )=log 2(x ﹣3), (1)求f (51)﹣f (6)的值; (2)若f (x )≤0,求x 的取值范围.
20.已知椭圆C 的中心在坐标原点O ,长轴在x 轴上,离心率为,且椭圆C 上一点到两个焦点的距离之和为4.
(Ⅰ)椭圆C 的标准方程.
(Ⅱ)已知P 、Q 是椭圆C 上的两点,若OP ⊥OQ ,求证:为定值.
(Ⅲ)当为(Ⅱ)所求定值时,试探究OP ⊥OQ 是否成立?并说明理由.
21.【南师附中2017届高三模拟一】已知,a b 是正实数,设函数()()ln ,ln f x x x g x a x b ==-+. (1)设()()()h x f x g x =- ,求 ()h x 的单调区间; (2)若存在0x ,使03,4
5a b a b x ++⎡⎤
∈⎢⎥⎣⎦且()()00f x g x ≤成立,求b a 的取值范围.
22.已知和均为给定的大于1的自然数,设集合
,,,...,,集合
..。

,,,,...,.
(1)当,时,用列举法表示集合

(2)设、,
..。


..。

,其中

,,,...,
.证明:若
,则
.
23.已知梯形ABCD中,AB∥CD,∠B=,DC=2AB=2BC=2,以直线AD为旋转轴旋转一周的都如图
所示的几何体
(Ⅰ)求几何体的表面积
(Ⅱ)判断在圆A上是否存在点M,使二面角M﹣BC﹣D的大小为45°,且∠CAM为锐角若存在,请求出CM的弦长,若不存在,请说明理由.
24.已知函数f(x)=(ax2+x﹣1)e x,其中e是自然对数的底数,a∈R.
(Ⅰ)若a=0,求曲线f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若,求f(x)的单调区间;
(Ⅲ)若a=﹣1,函数f(x)的图象与函数的图象仅有1个公共点,求实数m的取值范围.
振兴区高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)
一、选择题
1.【答案】D
【解析】解:双曲线(a>0,b>0)的渐近线方程为y=±x
联立方程组,解得A(,),B(,﹣),
设直线x=与x轴交于点D
∵F为双曲线的右焦点,∴F(C,0)
∵△ABF为钝角三角形,且AF=BF,∴∠AFB>90°,∴∠AFD>45°,即DF<DA
∴c﹣<,b<a,c2﹣a2<a2∴c2<2a2,e2<2,e<又∵e>1
∴离心率的取值范围是1<e<
故选D
【点评】本题主要考查双曲线的离心率的范围的求法,关键是找到含a,c的齐次式,再解不等式.
2.【答案】A
【解析】解:∵(acosB+bcosA)=2csinC,
∴(sinAcosB+sinBcosA)=2sin2
C,
∴sinC=2sin2
C,且sinC>0,
∴sinC=,
∵a+b=8,可得:8≥2,解得:ab≤16,(当且仅当a=b=4成立)
∵△ABC的面积的最大值S
△ABC=absinC≤=4,
∴a=b=4,
则此时△ABC的形状为等腰三角形.
故选:A.
3.【答案】C
【解析】
试题分析:函数3
0,+∞上单调递减,不
=-+是偶函数,但是在区间()
=为奇函数,不合题意;函数21
y x
y x
合题意;函数2x
=为非奇非偶函数。

故选C。

y-
考点:1.函数的单调性;2.函数的奇偶性。

4.【答案】B
【解析】解:∵数列{a n}满足log3a n+1=log3a n+1(n∈N*),
∴a n+1=3a n>0,
∴数列{a n}是等比数列,公比q=3.
又a2+a4+a6=9,
∴=a5+a7+a9=33×9=35,
则log(a5+a7+a9)==﹣5.
故选;B.
5.【答案】D
6.【答案】A.
【解析】
7.【答案】B
8.【答案】C
【解析】解:∵双曲线焦点在y轴上,故两条渐近线为y=±x,
又已知渐近线为,∴=,b=2a,
故双曲线离心率e====,
故选C.
【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,判断渐近线的斜率=,是解题的关键.9.【答案】D
【解析】解:∵方程x 2+ky 2
=2,即
表示焦点在y 轴上的椭圆
∴故0<k <1
故选D .
【点评】本题主要考查了椭圆的定义,属基础题.
10.【答案】A 【解析】
试题分析:由三视图可知,该几何体是底面为直角梯形的直四棱柱,直角梯形的上下底分别为3和4,直角腰为1,棱柱的侧棱长为1,故选A. 考点:三视图
【方法点睛】本题考查了三视图的问题,属于基础题型,三视图主要还是来自简单几何体,所以需掌握三棱锥,四棱锥的三视图,尤其是四棱锥的放置方法,比如正常放置,底面就是底面,或是以其中一个侧面当底面的放置方法,还有棱柱,包含三棱柱,四棱柱,比如各种角度,以及以底面当底面,或是以侧面当底面的放置方法,还包含旋转体的三视图,以及一些组合体的三视图,只有先掌握这些,再做题时才能做到胸有成竹. 11.【答案】C
【解析】解:∵对任意x 1,x 2∈R 有 f (x 1+x 2)=f (x 1)+f (x 2)+1, ∴令x 1=x 2=0,得f (0)=﹣1
∴令x 1=x ,x 2=﹣x ,得f (0)=f (x )+f (﹣x )+1, ∴f (x )+1=﹣f (﹣x )﹣1=﹣[f (﹣x )+1], ∴f (x )+1为奇函数. 故选C
【点评】本题考查函数的性质和应用,解题时要认真审题,仔细解答.
12.【答案】C
【解析】解: =﹣
=﹣f ′(x 0),
故选C .
二、填空题
13.【答案】()
0,
2x π
∃∈,sin 1≥
【解析】
试题分析:“(0,)2x π
∀∈,sin 1x <”的否定是()
0,2
x π
∃∈,sin 1≥
考点:命题否定
【方法点睛】(1)对全称(存在性)命题进行否定的两步操作:①找到命题所含的量词,没有量词的要结合命题的含义加上量词,再进行否定;②对原命题的结论进行否定.(2)判定全称命题“∀x ∈M ,p (x )”是真命题,需要对集合M 中的每个元素x ,证明p (x )成立;要判定一个全称命题是假命题,只要举出集合M 中的一个特殊值x 0,使p (x 0)不成立即可.要判断存在性命题是真命题,只要在限定集合内至少能找到一个x =x 0,使p (x 0)成立即可,否则就是假命题. 14.【答案】 ﹣4 .
【解析】解:∵函数f (x )=

∴f (﹣2)=4﹣2
=

f (f (﹣2))=f (
)=
=﹣4.
故答案为:﹣4.
15.【答案】 6 .
【解析】解:∵ =(2x ﹣y ,m ),=(﹣1,1).
若∥, ∴2x ﹣y+m=0, 即y=2x+m ,
作出不等式组对应的平面区域如图: 平移直线y=2x+m ,
由图象可知当直线y=2x+m 经过点C 时,y=2x+m 的截距最大,此时z 最大.
由,
解得
,代入2x ﹣y+m=0得m=6.
即m 的最大值为6. 故答案为:6
【点评】本题主要考查线性规划的应用,利用m的几何意义结合数形结合,即可求出m的最大值.根据向量平行的坐标公式是解决本题的关键.
16.【答案】2
【解析】解:由,消去t得:2x﹣y+5=0,
由ρ=8cosθ+6sinθ,得ρ2=8ρcosθ+6ρsinθ,即x2+y2=8x+6y,
化为标准式得(x﹣4)2+(y﹣3)2=25,即C是以(4,3)为圆心,5为半径的圆.
又圆心到直线l的距离是,
故曲线C上到直线l的距离为4的点有2个,
故答案为:2.
【点评】本题考查了参数方程化普通方程,考查了极坐标方程化直角坐标方程,考查了点到直线的距离公式的应用,是基础题.
17.【答案】a≤﹣1.
【解析】解:由x2﹣2x﹣3≥0得x≥3或x≤﹣1,
若“x<a”是“x2﹣2x﹣3≥0”的充分不必要条件,
则a≤﹣1,
故答案为:a≤﹣1.
【点评】本题主要考查充分条件和必要条件的应用,根据条件求出不等式的等价是解决本题的关键.
18.【答案】(±,0)y=±2x.
【解析】解:双曲线的a=2,b=4,
c==2,
可得焦点的坐标为(±,0),
渐近线方程为y=±x,即为y=±2x.
故答案为:(±,0),y=±2x.
【点评】本题考查双曲线的方程和性质,主要是焦点的求法和渐近线方程的求法,考查运算能力,属于基础题.
三、解答题
19.【答案】
【解析】解:(1)∵函数f(x)=log2(x﹣3),
∴f(51)﹣f(6)=log248﹣log23=log216=4;
(2)若f(x)≤0,则0<x﹣3≤1,
解得:x∈(3,4]
【点评】本题考查的知识点是对数函数的图象和性质,对数的运算性质,解答时要时时注意真数大于0,以免出错.
20.【答案】
【解析】(I)解:由题意可设椭圆的坐标方程为(a>b>0).
∵离心率为,且椭圆C上一点到两个焦点的距离之和为4.
∴,2a=4,解得a=2,c=1.
∴b2=a2﹣c2=3.
∴椭圆C的标准方程为.
(II)证明:当OP与OQ的斜率都存在时,设直线OP的方程为y=kx(k≠0),则直线OQ的方程为y=﹣x (k≠0),P(x,y).
联立,化为,
∴|OP|2=x 2+y 2
=,同理可得|OQ|2
=

∴=+
=
为定值.
当直线OP 或OQ 的斜率一个为0而另一个不存在时,上式也成立.
因此=
为定值.
(III )当
=
定值时,试探究OP ⊥OQ 是否成立?并说明理由.
OP ⊥OQ 不一定成立.下面给出证明.
证明:当直线OP 或OQ 的斜率一个为0而另一个不存在时,则=
=
=
,满足条件.
当直线OP 或OQ 的斜率都存在时,
设直线OP 的方程为y=kx (k ≠0),则直线OQ 的方程为y=k ′x (k ≠k ′,k ′≠0),P (x ,y ).
联立
,化为

∴|OP|2=x 2+y 2=

同理可得|OQ|2
=


=
+
=

化为(kk ′)2
=1,
∴kk ′=±1.
∴OP ⊥OQ 或kk ′=1. 因此OP ⊥OQ 不一定成立.
【点评】本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立可得交点坐标、相互垂直的直线斜率之间的关系,考查了分析问题与解决问题的能力,考查了推理能力与计算能力,属于难题.
21.【答案】(1)在0,b e ⎛⎫ ⎪⎝⎭
上单调递减,在,b e ⎛⎫

⎪⎝⎭
上单调递增.(2)7b e a ≤<
【解析】【试题分析】(1)先对函数()()ln ln ,0,h x x x x b a x =-+∈∞求导得()'ln 1ln h x x b =+-,再解不
等式()'0h x >得b x e >
求出单调增区间;解不等式()'0h x <得b
x e
<求出单调减区间;(2)先依据题设
345a b a b ++<得7b a <,由(1)知()m in 0h x ≤,然后分345a b b a b e ++≤≤、4b a b e +<、35
b a b
e +>三种情形,分别研究函数()()ln ln ,0,h x x x x b a x =-+∈∞的最小值,然后建立不等式进行分类讨论进行求解出其取值范围7b
e a

<: 解:(1)()()()ln ln ,0,,'ln 1ln h x x x x b a x h x x b =-+∈∞=+-,由()'0h x >得b x e >,()'h x ∴在0,b e ⎛⎫ ⎪⎝⎭
上单调递减,在,b e ⎛⎫

⎪⎝⎭上单调递增. (2)由345a b a b ++<得7b
a <,由条件得()min 0h x ≤. ①当345a
b b a b e ++≤≤,即345e b e e a e ≤≤--时,()min b b h x h a e e ⎛⎫
==-+ ⎪⎝⎭,由0b a e -+≤得 3,5b b e e e a a e
≥∴≤≤-. ②当4b a b e +<时,()4,e a b h x a ->∴在3,45a b a b ++⎡⎤
⎢⎥⎣⎦
上单调递增, ()min ln ln ln ln 4444a b a b a b a b b h x h b a b a
e ++++⎛⎫⎛⎫⎛⎫
==-+≥-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
43?3044e b b
a b e e b e --+-=>=>,矛盾,∴不成立. 由0b
a e
-+≤得.
③当35b a b e +>,即35b e a e >-时,53e a b e ->,()h x ∴在3,4
5a b a b ++⎡⎤
⎢⎥⎣⎦上单调递减, ()min 3333ln ln ln ln 5555a b a b a b a b b h x h b a b a
e ++++⎛⎫⎛⎫⎛⎫
==-+≥-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
52?2230553e b b
a b e
e b e
----=>=>,∴当35b e a e >
-时恒成立,综上所述,7b e a ≤<. 22.【答案】
【解析】
23.【答案】
【解析】解:(1)根据题意,得;
该旋转体的下半部分是一个圆锥,
上半部分是一个圆台中间挖空一个圆锥而剩下的几何体,
其表面积为S=×4π×2×2=8π,
或S=×4π×2+×(4π×2﹣2π×)+×2π×=8π;
(2)作ME⊥AC,EF⊥BC,连结FM,易证FM⊥BC,
∴∠MFE为二面角M﹣BC﹣D的平面角,
设∠CAM=θ,∴
EM=2sinθ,EF=,
∵tan∠MFE=1,∴,∴tan=,∴,
∴CM=2.
【点评】本题考查了空间几何体的表面积与体积的计算问题,也考查了空间想象能力的应用问题,是综合性题目.
24.【答案】
【解析】解:(Ⅰ)∵a=0,∴f(x)=(x﹣1)e x,f′(x)=e x+(x﹣1)e x=xe x,
∴曲线f(x)在点(1,f(1))处的切线斜率为k=f(1)=e.
又∵f(1)=0,∴所求切线方程为y=e(x﹣1),
即.ex﹣y﹣4=0
(Ⅱ)f′(x)=(2ax+1)e x+(ax2+x﹣1)e x=[ax2+(2a+1)x]e x=[x(ax+2a+1)]e x,
①若a=﹣,f′(x)=﹣x2e x≤0,∴f(x)的单调递减区间为(﹣∞,+∞),
②若a<﹣,当x<﹣或x>0时,f′(x)<0;
当﹣<x<0时,f′(x)>0.
∴f(x)的单调递减区间为(﹣∞,﹣],[0,+∞);单调递增区间为[﹣,0].
(Ⅲ)当a=﹣1时,由(Ⅱ)③知,f(x)=(﹣x2+x﹣1)e x在(﹣∞,﹣1)上单调递减,
在[﹣1,0]单调递增,在[0,+∞)上单调递减,
∴f(x)在x=﹣1处取得极小值f(﹣1)=﹣,在x=0处取得极大值f(0)=﹣1,
由,得g′(x)=2x2+2x.
当x<﹣1或x>0时,g′(x)>0;当﹣1<x<0时,g′(x)<0.
∴g(x)在(﹣∞,﹣1]上单调递增,在[﹣1,0]单调递减,在[0,+∞)上单调递增.
故g(x)在x=﹣1处取得极大值,
在x=0处取得极小值g(0)=m,
∵数f(x)与函数g(x)的图象仅有1个公共点,
∴g(﹣1)<f(﹣1)或g(0)>f(0),即..
【点评】本题考查了曲线的切线方程问题,考查函数的单调性、极值问题,考查导数的应用,是一道中档题.。

相关文档
最新文档