【典型题】高三数学下期中试题(含答案)(4)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【典型题】高三数学下期中试题(含答案)(4)
一、选择题
1.设,x y 满足约束条件 202300
x y x y x y --≤⎧⎪-+≥⎨⎪+≤⎩
,则4
6y x ++的取值范围是
A .3[3,]7
- B .[3,1]- C .[4,1]
-
D .(,3][1,)-∞-⋃+∞
2.等差数列{}n a 中,已知70a >,390a a +<,则{}n a 的前n 项和n S 的最小值为( ) A .4S
B .5S
C .6S
D .7S
3.已知正数x 、y 满足1x y +=,且
22
11
x y m y x +≥++,则m 的最大值为( ) A .
163
B .
13
C .2
D .4
4.若n S 是等差数列{}n a 的前n 项和,其首项10a >,991000a a +>,991000a a ⋅< ,则使0n S >成立的最大自然数n 是( ) A .198
B .199
C .200
D .201
5.在R 上定义运算
:A
()1B A B =-,若不等式()
x a -()1x a +<对任意的
实数x ∈R 恒成立,则实数a 的取值范围是( ) A .11a -<<
B .02a <<
C .1322
a -
<< D .31
22
a -
<< 6.已知实数x 、y 满足约束条件00134x y x y
a a

⎪≥⎪≥⎨⎪⎪+≤⎩,若目标函数231x y z x ++=+的最小值为
3
2
,则正实数a 的值为( ) A .4
B .3
C .2
D .1
7.若不等式组0220y x y x y x y a
⎧⎪+⎪
⎨-⎪⎪+⎩…
„…
„表示的平面区域是一个三角形,则实数a 的取值范围是( )
A .4
,3⎡⎫+∞⎪⎢⎣⎭
B .(]0,1
C .41,3
⎡⎤⎢⎥⎣⎦
D .(]40,1,3⎡⎫+∞⎪⎢⎣⎭
U
8.定义在()(),00,-∞⋃+∞上的函数()f x ,如果对于任意给定的等比数列{}n a ,若
(){}n
f a 仍是比数列,则称()f x 为“保等比数列函数”.现有定义在()()
,00,-∞⋃+∞上的如下函数: ①()3
f x x =;
②()x
f x e =;
③()f x x =

④()ln f x x =
则其中是“保等比数列函数”的()f x 的序号为( ) A .①②
B .③④
C .①③
D .②④
9.已知数列{}n a 满足11a =,12n
n n a a +=+,则10a =( )
A .1024
B .2048
C .1023
D .2047
10.若正数,x y 满足20x y xy +-=,则3
2x y
+的最大值为( ) A .
13
B .38
C .
37
D .1
11.已知数列{a n } 满足a 1=1,且111
()(233
n n n a a n -=+≥,且n ∈N*),则数列{a n }的通项公式为( )
A .32
n
n a n =+
B .2
3
n n n a +=
C .a n =n+2
D .a n =( n+2)·3n
12.当()1,2x ∈时,不等式220x mx ++≥恒成立,则m 的取值范围是( ) A .()3,-+∞
B .()
22,-+∞
C .[)3,-+∞
D .)
22,⎡-+∞⎣
二、填空题
13.已知数列{}n a 的前n 项和为2*
()2n S n n n N =+∈,则数列{}n a 的通项公式
n a =______.
14.已知函数()2x
f x =,等差数列{}n a 的公差为2,若()2468104f a a a a a ++++=,

()()()()212310log f a f a f a f a ⋅⋅⋅⋅=⎡⎤⎣⎦L ___________.
15.已知
是数列
的前项和,若
,则
_____.
16.设正项数列{}n a 的前n 项和是n S ,若{}n a 和
{}n
S 都是等差数列,且公差相等,则
1a =_______.
17.已知实数,x y 满足102010x y x y x y ++≥⎧⎪
-≥⎨⎪--≤⎩
,则目标函数2z x y =+的最大值为____.
18.已知数列{}n a 的通项1n n a n
+=
+,则其前15项的和等于_______.
19.已知ABC ∆的内角,,A B C 的对边分别为,,a b c .若1c =,ABC ∆的面积为
221
4
a b +-,则ABC ∆面积的最大值为_____. 20.数列{}n a 满足1(1)21n
n n a a n ++-=-,则{}n a 的前60项和为_____.
三、解答题
21.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且
222sin sin sin 3sin sin A C B A C +-=.
(1)求角B ;
(2)点D 在线段BC 上,满足DA DC =,且11a =,5
cos()A C -=,求线段DC 的长.
22.已知a ,b ,c 分别为ABC ∆内角A ,B ,C 的对边,2
22sin 2cos 22
B A
a b b c +=+. (1)求B ;
(2)若6c =,[2,6]a ∈,求sin C 的取值范围. 23.已知函数()2sin(2)(||)2
f x x π
ϕϕ=+<部分图象如图所示.
(1)求ϕ值及图中0x 的值;
(2)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,已知
7,()2,c f C ==-sin B =2sin A ,求a 的值.
24.在ABC ∆中,角A 、B 、C 的对边分别是a 、b 、c ,如果A 、B 、C 成等差数列且3b =
(1)当4
A π
=
时,求ABC ∆的面积S ;
(2)若ABC ∆的面积为S ,求S 的最大值.
25.已知向量()
1
sin 2A =,m 与()
3sin 3cos A A =+,
n 共线,其中A 是△ABC 的内角. (1)求角A 的大小;
(2)若BC=2,求△ABC 面积S 的最大值,并判断S 取得最大值时△ABC 的形状. 26.
围建一个面积为360m 2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m 的进出口,如图所示,已知旧墙的维修费用为45元/m ,新墙的造价为180元/m ,设利用的旧墙的长度为x (单位:元).
(Ⅰ)将y 表示为x 的函数;
(Ⅱ)试确定x ,使修建此矩形场地围墙的总费用最小,并求出最小总费用.
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.B 解析:B 【解析】 【分析】 【详解】 先作可行域,而
46y x ++表示两点P (x,y )与A (-6,-4)连线的斜率,所以4
6
y x ++的取值范围是[,][3,1]AD AC k k =-,选B.
点睛:线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.
2.C
解析:C 【解析】 【分析】
先通过数列性质判断60a <,再通过数列的正负判断n S 的最小值. 【详解】
∵等差数列{}n a 中,390a a +<,∴39620a a a +=<,即60a <.又70a >,∴{}n a 的前n 项和n S 的最小值为6S . 故答案选C 【点睛】
本题考查了数列和的最小值,将n S 的最小值转化为{}n a 的正负关系是解题的关键.
3.B
解析:B 【解析】 【分析】
由已知条件得()()113x y +++=,对代数式22
11x y y x +++变形,然后利用基本不等式求出22
11
x y y x +++的最小值,即可得出实数m 的最大值. 【详解】
正数x 、y 满足1x y +=,则()()113x y +++=,
()()()()()()22
2
2
2
2
2
2
1212111111111111
y x y x y x x y y x y x y x y x +-+-⎡⎤⎡⎤----⎣⎦⎣⎦+=+=+=+
++++++++444444
141465
111111
y x x y y x x y x y =+-+++-+=+++-=+-++++++()()14441111525311311y x x y x y x y ⎛⎫⎛⎫
++=++++-=++-⎡⎤ ⎪ ⎪⎣⎦++++⎝⎭⎝⎭
412533⎛≥⨯+-= ⎝, 当且仅当12
x y ==时,等号成立,即2211x y y x +++的最小值为13,则1
3m ≤. 因此,实数m 的最大值为1
3
. 故选:B. 【点睛】
本题考查利用基本不等式恒成立求参数,对代数式合理变形是解答的关键,考查计算能力,属于中等题.
4.A
解析:A 【解析】 【分析】
先根据10a >,991000a a +>,991000a a ⋅<判断出991000,0a a ><;然后再根据等差数列前n 项和公式和等差中项的性质,即可求出结果. 【详解】
∵991000a a ⋅<, ∴99a 和100a 异号; ∵1991000,0a a a >+>,991000,0a a ∴><, 有等差数列的性质可知,等差数列{}n a 的公差0d <, 当99,*n n N ≤∈时,0n a >;当100,*n n N ≥∈时,0n a <; 又()()11989910019819819802
2
a a a a S +⨯+⨯=
=> ,
()1199199100
19919902
a a S a
+⨯=
=<,
由等差数列的前n 项和的性质可知,使前n 项和0n S >成立的最大自然数n 是198. 故选:A . 【点睛】
本题主要考查了等差数列的性质.考查了学生的推理能力和运算能力.
5.C
解析:C 【解析】 【分析】
根据新运算的定义, ()x a -()x a +22x x a a =-++-,即求221x x a a -++-<恒成
立,整理后利用判别式求出a 范围即可
【详解】
Q A
()1B A B =-
∴()x a -()x a +()()()()22
=11x a x a x a x a x x a a --+=--+-=-++-⎡⎤⎣⎦
Q ()
x a -()1x a +<对于任意的实数x ∈R 恒成立,
221x x a a ∴-++-<,即2210x x a a -++--<恒成立,
()()2214110a a ∴∆=-⨯-⨯--<,
13
22
a ∴-<<
故选:C 【点睛】
本题考查新定义运算,考查一元二次不等式中的恒成立问题, 当x ∈R 时,利用判别式是解题关键
6.D
解析:D 【解析】 【分析】
作出不等式组所表示的可行域,根据目标函数的几何意义,利用直线斜率的几何意义以及数形结合进行求解即可. 【详解】 目标函数()121231
12111
x y x y y z x x x ++++++===+⨯
+++, 设1
1
y k x +=
+,则k 的几何意义是区域内的点与定点(1,1)D --连线的斜率, 若目标函数231x y z x ++=+的最小值为32,即12z k =+的最小值是3
2
, 由3122
k +=
,得1
4k =,即k 的最小值是14,
作出不等式组对应的平面区域如图:
由斜率的意义知过D 的直线经过()3,0B a 时,直线的斜率k 最小,此时011
314
k a +==+, 得314a +=,得1a =. 故选:D. 【点睛】
本题考查利用线性规划中非线性目标函数的最值求参数,解题时要结合非线性目标函数的几何意义寻找最优解,考查数形结合思想的应用,属于中等题.
7.D
解析:D 【解析】 【分析】
要确定不等式组0220y x y x y x y a
⎧⎪+⎪
⎨-⎪⎪+⎩…
„…„表示的平面区域是否一个三角形,我们可以先画出
0220y x y x y ⎧⎪
+⎨⎪-⎩

„…,再对a 值进行分类讨论,找出满足条件的实数a 的取值范围. 【详解】
不等式组0220y x y x y ⎧⎪
+⎨⎪-⎩

„…表示的平面区域如图中阴影部分所示.
由22x y x y =⎧⎨+=⎩得22,33A ⎛⎫ ⎪⎝⎭,
由0
22y x y =⎧⎨+=⎩
得()10
B ,. 若原不等式组0220y x y x y x y a
⎧⎪+⎪
⎨-⎪⎪+⎩…
„…
„表示的平面区域是一个三角形,则直线x y a +=中a 的取值范
围是(]40,1,3a ⎡⎫∈+∞⎪⎢⎣⎭
U 故选:D 【点睛】
平面区域的形状问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,然后结合分类讨论的思想,针对图象分析满足条件的参数的取值范围.
8.C
解析:C 【解析】 【分析】
设等比数列{}n a 的公比为q ,验证()
()
1n n f a f a +是否为非零常数,由此可得出正确选项. 【详解】
设等比数列{}n a 的公比为q ,则
1
n n
a q a +=. 对于①中的函数()3f x x =,
()()3
3
131
12n n n n n n f a a a q f a a a +++⎛⎫=== ⎪⎝⎭
,该函数为“保等比数列函数”;
对于②中的函数()x
f x e =,
()()1
11n n n n a a a n a n f a e e f a e
++-+==不是非零常数,该函数不是“保等比数列函数”;
对于③中的函数(
)f x =()
(
)
1n n f a f a +==
=,该函数为“保等比数
列函数”;
对于④中的函数()ln f x x =,()()1
1ln ln n n n n
a f a f a a ++=不是常数,该函数不是“保等比数列函
数”.故选:C. 【点睛】
本题考查等比数列的定义,着重考查对题中定义的理解,考查分析问题和解决问题的能力,属于中等题.
9.C
解析:C 【解析】 【分析】 根据叠加法求结果. 【详解】
因为12n n n a a +=+,所以12n
n n a a +-=,
因此10
9
8
1010921198122221102312
a a a a a a a a -=-+-++-+=++++==-L L ,选C.
【点睛】
本题考查叠加法求通项以及等比数列求和,考查基本分析求解能力,属基础题.
10.A
解析:A 【解析】 【分析】
根据条件可得出2x >,212
y x =+-,从而33
222(2)52
x y x x =+-++-,再根据基本不
等式可得出3123x y ≤+,则32x y +的最大值为1
3
.
【详解】
0x Q >,0y >,20x y xy +-=,
2
122
x y x x ∴=
=+--,0x >, 333
222212(2)522
x y x x x x ∴
==
+++-++--,
212(2)54(2)5922
x x x x -+
+≥-⋅+=--Q , 当且仅当1
22x x -=-,即3x =时取等号, 31
232(2)52
x x ∴≤
-++-,即3123
x y ≤+,
32x y ∴+的最大值为13
. 故选:A. 【点睛】
本题考查了利用基本不等式求最值的方法,注意说明等号成立的条件,考查了计算和推理能力,属于中档题.
11.B
解析:B 【解析】
试题分析:由题可知,将111
()(233
n n n a a n -=
+≥,两边同时除以,得出
,运用累加法,解得
,整理得2
3
n n n a +=
; 考点:累加法求数列通项公式
12.D
解析:D 【解析】
由()1,2x ∈时,220x mx ++≥恒成立得2m x x ⎛⎫
≥-+
⎪⎝⎭
对任意()1,2x ∈恒成立,即max 2,m x x ⎡⎤⎛⎫≥-+ ⎪⎢⎥⎝
⎭⎣⎦Q 当2x 时,2x x ⎛
⎫-+ ⎪⎝⎭取得最大值22,22m -∴≥-,m 的取
值范围是)
22,⎡-+∞⎣,故选D.
【易错点晴】本题主要考查利用基本不等式求最值以及不等式恒成立问题,属于中档题. 利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用≥或≤时等号能否同时成立).
二、填空题
13.【解析】【分析】由当n =1时a1=S1=3当n≥2时an =Sn ﹣Sn ﹣1即可得
出【详解】当且时又满足此通项公式则数列的通项公式故答案为:【点睛】本题考查求数列通项公式考查了推理能力与计算能力注意检验 解析:*2)1(n n N +∈
【解析】 【分析】
由2*
2n S n n n N =+∈,,当n =1时,a 1=S 1=3.当n ≥2时,a n =S n ﹣S n ﹣1,即可得出.
【详解】
当2n ≥,且*n N ∈时,
()
()()2
212121n n n a S S n n n n -⎡⎤=-=+--+-⎣⎦
()
2222122n n n n n =+--++-
21n =+,
又2
11123S a ==+=,满足此通项公式,
则数列{}n a 的通项公式(
)*
21n a n n N =+∈.
故答案为:(
)*
21n n N +∈
【点睛】
本题考查求数列通项公式,考查了推理能力与计算能力,注意检验n=1是否符合,属于中档题.
14.【解析】【分析】根据指数运算出再利用等差中项的性质得出并得出然后再利用等差数列的性质和指数对数的运算法则求出的值【详解】依题意有且则而因此故答案为【点睛】本题考查等差数列基本性质的计算同时也考查了等 解析:6-
【解析】 【分析】
根据指数运算出2468102a a a a a ++++=,再利用等差中项的性质得出62
5
a =
,并得出568
25
a a =-=-,然后再利用等差数列的性质和指数、对数的运算法则求出
()()()()212310log f a f a f a f a ⋅⋅⋅⋅⎡⎤⎣⎦L 的值.
【详解】
依题意有246810625a a a a a a ++++==,625a ∴=,且5628
2255
a a =-=-=-. 则()()()110123101105610825556255a a a a a a a a a a +⎛⎫
++++=
=+=+=⨯-+=- ⎪⎝⎭
L , 而()()()()1
2310
61231022a a a a f a f a f a f a ++++-⋅⋅⋅⋅==L L ,
因此,()()()()6
2123102log log 26f a f a f a f a -⋅⋅⋅⋅==-⎡⎤⎣⎦L .
故答案为6-. 【点睛】
本题考查等差数列基本性质的计算,同时也考查了等差数列的定义以及指数、对数的运算,解题时充分利用等差中项的性质,可简化计算,考查计算能力,属于中等题.
15.4950【解析】【分析】由an+Sn =2nan+1+Sn+1=2n+1两式相减可得2an+1﹣an =2n 即可计算【详解】解:∵an+Sn =2nan+1+Sn+1=2n+1两式相减可得2an +1﹣an 解析:
【解析】 【分析】
由a n +S n =2n ,a n +1+S n +1=2n +1,两式相减可得2a n +1﹣a n =2n .即可计算. 【详解】
解:∵a n +S n =2n ,a n +1+S n +1=2n +1, 两式相减可得2a n +1﹣a n =2n .
则(2a 2﹣a 1)(2a 3﹣a 2)…(2a 100﹣a 99)=21•22•23…299=
24950.
【点睛】
本题考查了数列的递推式,属于中档题.
16.【解析】分析:设公差为d 首项利用等差中项的性质通过两次平方运算即可求得答案详解:设公差为d 首项和都是等差数列且公差相等即两边同时平方得:两边再平方得:又两数列公差相等即解得:或为正项数列故答案为:点
解析:14
【解析】
分析:设公差为d ,首项1a ,利用等差中项的性质,通过两次平方运算即可求得答案. 详解:设公差为d ,首项1a ,
Q {}n a 和
{}n
S 都是等差数列,且公差相等,
2132S S S ∴=,
即1112233a d a a d +=+,
两边同时平方得:()()111114233233a d a a d a a d +=++++
()1114233a d a a d +=+
两边再平方得:()2
2
1111168433a a d d a a d ++=+,
∴2211440a a d d -+=,
12d a =,又两数列公差相等,
212112
S S a a d a ∴-=-==,
即1111222a a a a +-=, 解得:11
4
a =
或10a =, Q {}n a 为正项数列,
∴114
a =.
故答案为:
14
. 点睛:本题考查等差数列的性质,考查等差中项的性质,考查化归与方程思想.
17.5【解析】【分析】作出不等式组对应的平面区域利用数形结合即可得到z 的最大值【详解】作出实数xy 满足对应的平面区域如图:由z =2x+y 得y =﹣2x+z 平移直线y =﹣2x+z 由图象可知当直线y =﹣2x+
解析:5 【解析】 【分析】
作出不等式组对应的平面区域,利用数形结合即可得到z 的最大值. 【详解】
作出实数x ,y 满足102010x y x y x y ++≥⎧⎪
-≥⎨⎪--≤⎩
对应的平面区域,如图:
由z =2x +y 得y =﹣2x +z ,
平移直线y =﹣2x +z 由图象可知当直线y =﹣2x +z 经过点A 时,直线y =﹣2x +z 的截距最大.又x 10y --=与20x y -=联立得A (2,1) 此时z 最大,此时z 的最大值为z =2×2+1=5, 故答案为5.
【点睛】
本题主要考查线性规划的应用,考查了z 的几何意义,利用数形结合是解决本题的关键.
18.【解析】【分析】将通过分母有理化化简得出再利用裂项相消法求出前15项的和【详解】利用分母有理化得设数列的前项的和为所以前15项的和为:即:故答案为:3【点睛】本题考查利用裂项相消法求数列的前项的和还 解析:3
【解析】 【分析】
将n a =
15项的和. 【详解】
利用分母有理化得
n a =
==
设数列{}n a 的前n
项的和为n S ,所以前15
项的和为:
151215
S a a a =
+++L
1=
L
1= 413=-= 即:153
S =. 故答案为:3. 【点睛】
本题考查利用裂项相消法求数列的前n 项的和,还运用分母有理化化简通项公式,属于基础题.
19.【解析】【分析】结合已知条件结合余弦定理求得然后利用基本不等式求得的最大值进而求得三角形面积的最大值【详解】由于三角形面积①由余弦定理得②由①②得由于所以故化简得故化简得所以三角形面积故答案为【点睛 解析:
1
4
【解析】 【分析】
结合已知条件,结合余弦定理求得π
4
C =,然后利用基本不等式求得ab 的最大值,进而求得三角形ABC 面积的最大值. 【详解】
由于三角形面积2211sin 24a b S ab C +-==①,由余弦定理得221
cos 2a b C ab +-=②,由
①②得sin cos C C =,由于()0,πC ∈,所以π4C =.故221cos 2a b C ab +-==
,化简
221a b =+-22121a b ab =+-≥-,化简得22
ab +≤所以三角形
面积1121
sin 22224
S ab C =≤⨯=.
故答案为1
4
. 【点睛】
本小题主要考查余弦定理解三角形,考查三角形的面积公式,考查基本不等式求最值的方法,属于中档题.
20.1830【解析】【分析】由题意可得…变形可得…利用数列的结构特征求出的前60项和【详解】解:∴…∴…从第一项开始依次取2个相邻奇数项的和都等于2从第二项开始依次取2个相邻偶数项的和构成以8为首项以1
解析:1830 【解析】 【分析】
由题意可得211a a -=,323a a +=,435a a -=,547a a +=,659a a -=,7611a a +=,…,504997a a -=,变形可得312a a +=,428a a +=,752a a +=,8624a a +=,972a a +=,121040a a +=,13152a a +=,161456a a +=,…,利用数列的结
构特征,求出{}n a 的前60项和. 【详解】
解:1(1)n n a ++-Q 21n a n =-,
∴211a a -=,323a a +=,435a a -=,547a a +=,659a a -=,7611a a +=,…,
504997a a -=,
∴312a a +=,428a a +=,752a a +=,8624a a +=,9112a a +=,121040a a +=,13112a a +=,161456a a +=,…,
从第一项开始,依次取2个相邻奇数项的和都等于2,从第二项开始,依次取2个相邻偶数项的和构成以8为首项,以16为公差的等差数列,
{}n a 的前60项和为1514
152(15816)18302
⨯⨯+⨯+
⨯=, 故答案为:1830. 【点睛】
本题主要考查递推公式的应用,考查利用构造等差数列求数列的前n 项和,属于中档题.
三、解答题
21.(Ⅰ)6
B π
=;
(Ⅱ)5AD =.
【解析】
【试题分析】(1
)运用正弦定理将已知中的222sin sin sin sin A C B A C +-=等式转化为边的关系,再借助运用余弦定理求解;(2)借助题设条件DA DC =,且11a =,
(
)cos 5
A C -=
,再运用正弦定理建立方程求解:
(Ⅰ)由正弦定理和已知条件,222a c b +-=
所以cos B =. 因为()0,B π∈,所以6
B π
=

(Ⅱ)由条件.由(
)(
)cos sin A C A C -=
⇒-=
.设AD x =,则CD x =,11BD x =-,在ABD ∆中,由正弦定理得
sin sin BD AD
BAD B
=∠
.故
512x
x =⇒=
.所以5AD DC ==. 22.(1)3B π
=;(2
),12⎤
⎥⎣⎦
. 【解析】 【分析】
(1)利用二倍角公式和正弦定理以及两角和与差的正弦公式进行化简,求解出cos B 的值后即可求出B 的值;
(2)根据余弦定理先求解出b 的取值范围,然后根据sin sin c B
C b
=求解sin C 的取值范围. 【详解】
(1)已知得2
(1cos )12cos
2A a B c b ⎛⎫-=+- ⎪⎝

, 由正弦定理得sin sin cos sin sin cos A A B C B A -=-,
即sin sin sin()sin()A C A B A B =+-=++sin()2sin cos A B A B -=, ∴1
cos 2
B =
,解得3B π=.
(2)由余弦定理得22222
2cos 636(3)27b a c ac B a a a =+-=-+=-+,
∵[2,6]a ∈
,∴b ∈
,sin sin 2c B C b ⎤
=∈⎥⎣⎦

本题考查解三角形的综合应用,难度一般.
(1)解三角形的边角化简过程中要注意隐含条件A B C π++=的使用;
(2)求解正弦值的范围时,如果余弦值的范围容易确定也可以从余弦值方面入手,若余弦值不容易考虑则可以通过正弦定理将问题转化为求解边与角的正弦的比值范围. 23.(1)6π
=ϕ,076
x π=(2)1a = 【解析】
试题分析:(1)根据图象可得()01f =,从而求得ϕ得值,再根据()02f x =,可得
022,6
2
x k k Z π
π
π+
=+
∈,结合图象可得0x 的值;(2)根据(1)的结论及
()2f C =-,可得C 的值,将sin B = 2sin A 根据正弦定理角化边得2b a =,再根据余弦
定理即可解得a 的值.
试题解析:(1)由图象可以知道:()01f =. ∴1sin 2
ϕ= 又∵2
π
ϕ<
∴6
π
ϕ=
∵()02f x =
∴0sin 216x π⎛
⎫+= ⎪⎝
⎭,022,62x k k Z πππ+=+∈, 从而0,6x k k Z ππ=+∈. 由图象可以知道1k =, 所以076
x π
=
(2)由()2f C =-,得sin 216C π⎛⎫
+=- ⎪⎝

,且()0,C π∈. ∴23
C π
=
∵sin 2sin B A = ∴由正弦定理得2b a =
又∵由余弦定理2222cos c a b ab C =+-得:2
2
27422cos ,3
a a a a π=+-⨯ ∴解得1a =
24.(12 【解析】
(1)由A 、B 、C 成等差数列可求得60B =︒,再由正弦定理和余弦定理分别求出a 和c 的值,最后利用三角形面积公式计算即可;
(2)由余弦定理可得2222cos b a c ac B =+-,即:2232a c ac ac ac ac =+-≥-=,可求得3ac ≤,进而求得S 的最大值. 【详解】
(1)因为A 、B 、C 成等差数列,
则:2A+C =B ,又A B C π++=,所以60B =︒,
因为:
sin sin b a
a B A
=⇒=
2222212cos 32102b a c ac B c c c ∴=+-⇒=+-⨯⇒-=⇒,(负值舍);
ABC ∆∴的面积1
1sin 22S ac B ==; (2)2222cos b a c ac B =+-Q ;
即:2232a c ac ac ac ac =+-≥-=,当且仅当a c =时等号成立;
1sin 2ABC S ac B ∆∴=≤

即S 的最大值为:4
. 【点睛】
本题考查正余弦定理的应用,考查三角形面积公式的应用,考查不等式的应用,考查逻辑思维能力和运算能力,属于常考题. 25.(1)π
3A =(2)△ABC 为等边三角形 【解析】
分析:(1)由//m n u r
r
,得3
sin (sin )02
A A A ⋅-=,利用三角恒等变换的公式,求解πsin 216A ⎛⎫
-
= ⎪⎝

,进而求解角A 的大小; (2)由余弦定理,得22
4b c bc =+-和三角形的面积公式,利用基本不等式求得
4bc ≤,即可判定当b c =时面积最大,得到三角形形状.
详解:(1)因为m//n,所以()
3
sin sin 02
A A A ⋅-=.
所以
1cos230222A A -+-=,即1
sin2cos2122
A A -=,
即 πsin 216A ⎛⎫
-
= ⎪⎝

. 因为()0,πA ∈ , 所以ππ11π2666A ⎛⎫
-∈- ⎪⎝⎭
,. 故ππ262A -
=,π
3
A =. (2)由余弦定理,得 22
4b c bc =+-
又13sin 2ABC S bc A bc ∆=
=, 而222424b c bc bc bc bc +≥⇒+≥⇒≤,(当且仅当b c =时等号成立) 所以133sin 432ABC S bc A bc ∆=
=≤⨯=. 当△ABC 的面积取最大值时,b c =.又π
3
A =
,故此时△ABC 为等边三角形 点睛:本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值. 利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.
26.(Ⅰ)y =225x +2
360360(0)x x
-〉n
(Ⅱ)当x =24m 时,修建围墙的总费用最小,最小总费用是10440元. 【解析】
试题分析:(1)设矩形的另一边长为am ,则根据围建的矩形场地的面积为360m 2,易得
360
a x
=
,此时再根据旧墙的维修费用为45元/m ,新墙的造价为180元/m ,我们即可得到修建围墙的总费用y 表示成x 的函数的解析式;(2)根据(1)中所得函数的解析式,利用基本不等式,我们易求出修建此矩形场地围墙的总费用最小值,及相应的x 值 试题解析:(1)如图,设矩形的另一边长为a m 则
45x+180(x-2)+180·2a=225x+360a-360
由已知xa=360,得a=,
所以y=225x+
(2)
.当且仅当225x=
时,等号成立.
即当x=24m时,修建围墙的总费用最小,最小总费用是10440元.考点:函数模型的选择与应用。

相关文档
最新文档