【US20190267913A1】用于控制逆变器的设备与方法【专利】
用于控制电压源逆变器的电压线性的方法和设备[发明专利]
![用于控制电压源逆变器的电压线性的方法和设备[发明专利]](https://img.taocdn.com/s3/m/332d2357c77da26924c5b0d6.png)
专利名称:用于控制电压源逆变器的电压线性的方法和设备专利类型:发明专利
发明人:S·希蒂,B·维尔奇科,S·舒尔茨
申请号:CN200680052806.9
申请日:20061213
公开号:CN101375488A
公开日:
20090225
专利内容由知识产权出版社提供
摘要:提供了用于更改控制电压源逆变器的脉宽调制信号的方法和设备。
该方法包括以下步骤:确定信号的占空比,当调制指数大于最小调制指数并且小于最大调制指数时固定(clip)占空比(130),当调制指数大于或等于最大调制指数时固定占空比(125),和将该占空比传送给电压源逆变器(135)。
最小调制指数表示失真范围。
申请人:通用汽车环球科技运作公司
地址:美国密执安州
国籍:US
代理机构:中国专利代理(香港)有限公司
更多信息请下载全文后查看。
用于控制逆变器的方法和装置[发明专利]
![用于控制逆变器的方法和装置[发明专利]](https://img.taocdn.com/s3/m/eee4f51dfab069dc51220174.png)
专利名称:用于控制逆变器的方法和装置专利类型:发明专利
发明人:宫崎圣,L·本一布拉兴,黑泽良一申请号:CN93102391.2
申请日:19930124
公开号:CN1076065A
公开日:
19930908
专利内容由知识产权出版社提供
摘要:一种逆变器控制装置包括:一个控制器,一个方 式决定电路和一个电压参考转换电路。
方式决定电 路决定用于控制逆变器的三种方式中的一种方式, 即,一种常规方式,一种矩形波方式和零校正方式,它 是根据多相电压参考信号的值和极性来选择方式 的。
电压参考转换电路根据在方式决定电路中决定 的方式来校正电压参考信号。
在常规的方式情况下, 方式决定电路输出和以前的电压参考信号。
申请人:株式会社东芝
地址:日本神奈川县
国籍:JP
代理机构:中国专利代理(香港)有限公司
更多信息请下载全文后查看。
用于控制逆变器的方法[发明专利]
![用于控制逆变器的方法[发明专利]](https://img.taocdn.com/s3/m/59c2890d0812a21614791711cc7931b765ce7b8b.png)
(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号 (43)申请公布日 (21)申请号 201810068675.8(22)申请日 2018.01.24(30)优先权数据10-2017-0037334 2017.03.24 KR(71)申请人 LS产电株式会社地址 韩国京畿道安养市(72)发明人 梁千锡 李在纹 金载盛 (74)专利代理机构 北京品源专利代理有限公司11332代理人 王小衡 王天鹏(51)Int.Cl.H02P 29/024(2016.01)H02P 27/06(2006.01)H02M 1/32(2007.01)(54)发明名称用于控制逆变器的方法(57)摘要公开了一种用于控制逆变器的方法。
该方法包括检测来自逆变器的输出电流,以根据输出电流的输出频率来确定软件过电流抑制(S/W OCS)电平。
权利要求书1页 说明书6页 附图6页CN 108631692 A 2018.10.09C N 108631692A1.一种控制用于控制电动机的逆变器的方法,包括:检测来自所述逆变器的输出电流;根据所述输出电流的输出频率来确定软件过电流抑制(S/W OCS)电平;并且如果所述逆变器的输出电流大于所述S/W OCS电平,则衰减所述输出频率。
2.根据权利要求1所述的方法,其中,确定所述S/W OCS电平包括:当所述输出电流的输出频率大于预定的第一频率时,以所述逆变器的额定电流的第一比率来确定所述S/W OCS 电平。
3.根据权利要求2所述的方法,其中,确定所述S/W OCS电平包括:当所述输出电流的输出频率小于比所述预定的第一频率小的第二频率时,以大于所述逆变器的额定电压的第一比率的第二比率来确定所述S/W OCS电平。
4.根据权利要求3所述的方法,其中,确定所述S/W OCS电平包括:当所述输出电流的输出频率小于所述预定的第一频率且大于所述第二频率时,使用将所述第一比率和所述第二比率线性地连接的连续函数来确定所述S/W OCS电平。
一种逆变器功率控制方法、装置、介质
![一种逆变器功率控制方法、装置、介质](https://img.taocdn.com/s3/m/b2871824a9114431b90d6c85ec3a87c240288a9b.png)
一种逆变器功率控制方法、装置、介质摘要本文介绍了一种基于神经网络的太阳能逆变器功率控制方法。
论文首先介绍了逆变器的基本原理和功率控制的作用,然后通过分析逆变器控制的实际需求,提出了使用神经网络对逆变器输出功率进行预测和控制的方法。
该方法通过学习逆变器输入电压、输出电压和输出功率之间的关系,能够实时准确地预测逆变器的输出功率,并根据预测结果进行功率控制,以保证逆变器输出稳定在设定值附近。
本研究通过实验验证了该方法的可行性和有效性,并比较了其与传统PID 控制方法的性能差异。
实验结果表明,基于神经网络的逆变器功率控制方法具有更好的控制效果和鲁棒性。
关键词:逆变器,功率控制,神经网络,预测,PID 控制,性能比较引言随着太阳能技术的不断发展和推广,太阳能逆变器作为太阳能光伏电站的核心设备和能量转换关键部件,其在太阳能发电系统中的作用日益重要。
太阳能逆变器主要是将太阳能电池板产生的直流电转换为交流电,以满足实际电网的需求。
逆变器在太阳能电站中处于核心的位置,其变换效率和输出电压稳定性直接影响着整个太阳能发电系统的发电效率和稳定性。
因此,对太阳能逆变器的功率控制,是太阳能电站实际操作中需要解决的重要问题之一。
1.逆变器功率控制逆变器功率控制是指在太阳能发电过程中,通过对逆变器的输出功率进行调节,以达到保证太阳能发电系统输出功率的稳定性和高效性的目的。
逆变器输出功率的稳定性直接影响着太阳能发电系统的发电效率,因为太阳能光伏电站的电源输出是不稳定的,太阳电池板的输出功率受到外界天气、时间、季节、光照角度等多种因素的影响而波动,而且这种波动是十分复杂和难以预测的。
逆变器的稳定控制能够消除这种波动并保证电能质量,需要控制输出电压和频率,从而调节输出功率,以优化太阳能电池板的工作状态。
2.传统逆变器功率控制方法目前,逆变器常用的控制方法包括PID 控制、PWM 控制和MPPT 控制等。
其中,PID 控制是最常见的一种控制方法,通过对逆变器的接口电压和输出功率进行反馈控制,调节逆变器参数,达到输出稳定的目的。
【EP3531543A1】用于控制一个逆变器的设备与方法【专利】
![【EP3531543A1】用于控制一个逆变器的设备与方法【专利】](https://img.taocdn.com/s3/m/5256e39b26fff705cc170abb.png)
Printed by Jouve, 75001 PARIS (FR)(19)E P 3 531 543A 1TEPZZ¥5¥_54¥A_T(11)EP 3 531 543A1(12)EUROPEAN PATENT APPLICATION(43)Date of publication:28.08.2019Bulletin 2019/35(21)Application number: 19159277.3(22)Date of filing: 26.02.2019(51)Int Cl.:H02M 1/36(2007.01)H02M 5/458(2006.01)H02M 7/5395(2006.01)H02M 1/32(2007.01)H02P 1/08(2006.01)H02M 7/06(2006.01)(84)Designated Contracting States:AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR Designated Extension States: BA MEDesignated Validation States: KH MA MD TN(30)Priority:26.02.2018KR 20180023029(71)Applicant: LSIS Co., Ltd.Gyeonggi-do 14119 (KR)(72)Inventors:•LIM, Deok-Young14118 Gyeonggi-do (KR)•LEE, Hu-Jin14118 Gyeonggi-do (KR)•YANG, Chun-Suk14118 Gyeonggi-do (KR)(74)Representative: K&L Gates LLPKarolinen Karree Karlstraße 1280333 München (DE)(54)DEVICE AND METHOD FOR CONTROLLING AN INVERTER(57)A device and method for controlling an inverteris disclosed. The inverter-controlling device in accord-ance with the present disclosure determines an operation state of a switching element of an initial charging modulebased on predetermined time durations and a magnitude of a DC link voltage measured at each of time points corresponding to the predetermined time durations.EP 3 531 543A12510152025303540455055Description TECHNICAL FIELD[0001]The present disclosure relates to a device and method for controlling an inverter.BACKGROUND[0002]An inverter is an inverting device that electrically converts DC to AC. An inverter used in the industry receives power supplied from a commercial power supply and varies a voltage and frequency of the power and supplies the varied power to a motor. Accordingly, the inverter may control a operation speed of the motor.[0003]An AC input power input to the inverter is rectified through a rectifying module composed of an element such as a diode, and then is smoothened by a DC link capacitor. When a power is supplied to the inverter without limiting a current while the capacitor is discharged, a large inrush current flows into the inverter. This inrush current causes the element of the rectifying module or the capacitor to be destroyed. Thus, the inverter is typically equipped with an initial charging circuit to limit the inrush current flowing into the DC link capacitor upon powering up of the inverter.[0004]In a low-capacity inverter of smaller than or equal to 7.5 kW, the initial charging circuit is generally composed of a resistor and a switching element connected in parallel with the resistor. A main current that flows from the inverter to a load flows in this initial charging circuit. Thus, when the switching element is opened due to a failure of the initial charging circuit, there is a risk of fire due to a heat from the resistor in the initial charging circuit. Further, in an event of a short circuit occurrence, there is a possibility of a secondary failure of the initial charging circuit due to the inrush current.[0005]Although it is possible to directly monitor a contact state of the switching element in order to detect the failure of the initial charge circuit, there is a problem that a cost of the inverter increases and a size of the inverter increases.SUMMARY[0006]In order to solve the problem, a purpose of the present disclosure is to provide a device and method for controlling an inverter, where the device and method may simply determine a state of a switching element without requiring an additional component and without increasing a size of the inverter.[0007]In one aspect of the present disclosure, there is provided a device for controlling an inverter, wherein the inverter includes: a rectifying module for rectifying an alternate current (AC) power input from a power supply; a direct current (DC) link capacitor for smoothing and storing a voltage rectified by rectifying module; an inverting module for outputting an AC power of a predetermined voltage and frequency based on a pulse width modulation (PWM) control signal received from an inverter driver; an initial charging module disposed upstream of the DC link capacitor, wherein the initial charging module include an initial charging resistor and a switching element connected in parallel to the initial charging resistor;and a voltage detection module for detecting a DC link voltage charged in the DC link capacitor, the device being characterized in that the device includes: an inverter driver for applying a PWM signal to each of gates of a plurality of switching elements of the inverting module; and a controller configured for determining an operation state of the switching element based on predetermined time durations and a magnitude of the DC link voltage measured at each of time points corresponding to the predetermined time durations.[0008]In one implementation, the controller is further configured: for determining, as a first voltage, the DC link voltage at a first time point at which the DC link voltage reaches a predetermined level; for determining, as a second voltage,the DC link voltage at a second time point at which a first time duration has elapsed since the first time point; for determining, as a third voltage, the DC link voltage at a third time point at which a second time duration has elapsed since the second time point; and for determining an operation state of the switching element based on the first to third voltages and the first and second time durations.[0009]In one implementation, when the DC link voltage reaches the predetermined level, a contact of the switching element is engaged via a voltage across the switching element such that the switching element is switched to an on state in a duration between the second time point and the third time point.[0010]In one implementation, the controller is further configured: when the DC link voltage reaches the predetermined level, for applying an on-signal to the switching element in a duration between the second time point and the third time point.[0011]In one implementation, the controller is further configured for determining that the switching element is in anormal operation state when a following relationship is satisfied:。