东宁市高级中学2018-2019学年高三上学期11月月考数学试卷含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

东宁市高级中学2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 已知全集I={1,2,3,4,5,6,7,8},集合M={3,4,5},集合N={1,3,6},则集合{2,7,8}是( ) A .M ∪N
B .M ∩N
C .∁I M ∪∁I N
D .∁I M ∩∁I N
2. sin45°sin105°+sin45°sin15°=( )
A .0
B

C

D .1
3. 如图,已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为4,点E ,F 分别是线段AB ,C 1D 1上的动点,点P 是上底面A 1B 1C 1D 1内一动点,且满足点P 到点F 的距离等于点P 到平面ABB 1A 1的距离,则当点P 运动时,PE 的最小值是( )
A .5
B .4
C .
4 D .
2
4. 如图,程序框图的运算结果为( )
A .6
B .24
C .20
D .120
5. 口袋内装有一些大小相同的红球、白球和黒球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黒球的概率是( ) A .0.42 B .0.28 C .0.3 D .0.7
6. 抛物线x=﹣4y 2的准线方程为( ) A .y=1 B .
y=
C .x=1
D .
x=
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
7. 已知向量=(2,﹣3,5)与向量=(3,λ,)平行,则λ=( )
A .
B .
C .﹣
D .﹣
8. 已知集合M={﹣1,0,1},N={x|x=2a ,a ∈M},则集合M ∩N=( ) A .{0} B .{0,﹣2} C .{﹣2,0,2} D .{0,2} 9. 设函数f (x )=,f (﹣2)+f (log 210)=( )
A .11
B .8
C .5
D .2 10.已知向量
与的夹角为60°,||=2,||=6,则2﹣在方向上的投影为( ) A .1
B .2
C .3
D .4
11.定义在R 上的偶函数()f x 满足(3)()f x f x -=-,对12,[0,3]x x ∀∈且12x x ≠,都有
1212
()()
0f x f x x x ->-,则有( )
A .(49)(64)(81)f f f <<
B .(49)(81)(64)f f f << C. (64)(49)(81)f f f << D .(64)(81)(49)f f f << 12.已知命题p 和命题,若p q ∧为真命题,则下面结论正确的是( )
A .p ⌝是真命题
B .q ⌝是真命题
C .p q ∨是真命题
D .()()p q ⌝∨⌝是真命题
二、填空题
13.已知点A (﹣1,1),B (1,2),C (﹣2,﹣1),D (3,4
),求向量

方向上的投影.
14.已知椭圆中心在原点,一个焦点为F (﹣
2,0),且长轴长是短轴长的2倍,则该椭圆的标准方程
是 .
15.已知i 是虚数单位,且满足i 2=﹣1,a ∈R ,复数z=(a ﹣2i )(1+i )在复平面内对应的点为M ,则“a=1”是“点M 在第四象限”的 条件(选填“充分而不必要”“必要而不充分”“充要”“既不充分又不必要”)
16.满足tan (
x+
)≥

的x 的集合是 .
17.在三角形ABC 中,已知AB=4,AC=3,BC=6,P 为BC 中点,则三角形ABP 的周长为 .
18.已知直线:043=++m y x (0>m )被圆C :06222
2=--++y x y x 所截的弦长是圆心C 到直线的距离的2倍,则=m .
三、解答题
19.(本题12分)
正项数列{}n a 满足2
(21)20n n a n a n ---=.
(1)求数列{}n a 的通项公式n a ; (2)令1
(1)n n
b n a =
+,求数列{}n b 的前项和为n T .
20.(本小题满分12分)
某校高二奥赛班N 名学生的物理测评成绩(满分120分)分布直方图如下,已知分数在100-110的学生 数有21人.
(1)求总人数N 和分数在110-115分的人数; (2)现准备从分数在110-115的名学生(女生占
1
3
)中任选3人,求其中恰好含有一名女生的概率; (3)为了分析某个学生的学习状态,对其下一阶段的学生提供指导性建议,对他前7次考试的数学成绩 (满分150分),物理成绩y 进行分析,下面是该生7次考试的成绩.
已知该生的物理成绩y 与数学成绩是线性相关的,若该生的数学成绩达到130分,请你估计他的物理 成绩大约是多少?
附:对于一组数据11(,)u v ,22(,)u v ……(,)n n u v ,其回归线v u αβ=+的斜率和截距的最小二乘估计分 别为:^
1
2
1
()()
()
n
i
i
i n
i
i u u v v u u β==--=
-∑∑,^^
a v u β=-.
21.在某大学自主招生考试中,所有选报Ⅱ类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为A,B,C,D,E五个等级.某考场考生的两科考试成绩的数据统计如图所示,其中“数学与逻辑”科目的成绩为B的考生有10人.
(Ⅰ)求该考场考生中“阅读与表达”科目中成绩为A的人数;
(Ⅱ)若等级A,B,C,D,E分别对应5分,4分,3分,2分,1分,求该考场考生“数学与逻辑”科目的平均分;
(Ⅲ)已知参加本考场测试的考生中,恰有两人的两科成绩均为A.在至少一科成绩为A的考生中,随机抽取两人进行访谈,求这两人的两科成绩均为A的概率.
22.请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上,是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x(cm).
(1)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?
(2)若广告商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.
23.已知函数f(x)=|x﹣m|,关于x的不等式f(x)≤3的解集为[﹣1,5].
(1)求实数m的值;
(2)已知a,b,c∈R,且a﹣2b+2c=m,求a2+b2+c2的最小值.
24.某实验室一天的温度(单位:)随时间(单位;h)的变化近似满足函数关系;
(1) 求实验室这一天的最大温差;
(2) 若要求实验室温度不高于,则在哪段时间实验室需要降温?
东宁市高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题
13.
14.

15. 充分不必要
16. [k π,
+k π),k ∈Z .
17. 7+ 18.9
三、解答题
19.(1)n a n 2=;(2)=
n T )
1(2+n n
.

点:1.一元二次方程;2.裂项相消法求和.
20.(1)60N =,6n =;(2)8
15
P =;(3)115. 21. 22. 23. 24.。

相关文档
最新文档