高考数学压轴专题最新备战高考《空间向量与立体几何》真题汇编及答案解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【高中数学】单元《空间向量与立体几何》知识点归纳
一、选择题
1.如图,在正方体1111ABCD A B C D -,点P 在线段1BC 上运动,则下列判断正确的是( )
①平面1PB D ⊥平面1ACD ②1//A P 平面1ACD
③异面直线1A P 与1AD 所成角的取值范围是0,3
π⎛⎤ ⎥⎝

④三棱锥1D APC -的体积不变 A .①② B .①②④
C .③④
D .①④
【答案】B 【解析】 【分析】
由面面垂直的判定定理判断①,由面面平行的性质定理判断②,求出P 在特殊位置处时异面直线所成的角,判断③,由换底求体积法判断④. 【详解】
正方体中易证直线AC ⊥平面11BDD B ,从而有1AC B D ⊥,同理有11B D AD ^,证得
1B D ⊥平面1ACD ,由面面垂直判定定理得平面1PB D ⊥平面1ACD ,①正确;
正方体中11//A B CD ,11//BC AD ,从而可得线面平行,然后可得面面平行,即平面
11A BC //平面1ACD ,而1A P ⊂平面11A BC ,从而得1//A P 平面1ACD ,②正确;
当P 是1BC 中点时,1A P 在平面11A B CD 内,正方体中仿照上面可证1AD ⊥平面
11A B CD ,从而11AD A P ⊥,1A P 与1AD 所成角为90︒.③错;
∵11D APC P AD C V V --=,由1//BC 平面1ACD ,知P 在线段1BC 上移动时,P 到平面1ACD 距离相等,因此1P AD C V -不变,④正确. 故选:B . 【点睛】
本题考查面面垂直的判定定理、面面平行的性质定理、异面直线所成的角、棱锥的体积等知识,考查学生的空间想象能力,属于中档题.
2.一个几何体的三视图如图所示,其中正视图和俯视图中的四边形是边长为2的正方形,则该几何体的表面积为( )
A .
132
π
B .7π
C .
152
π
D .8π
【答案】B 【解析】 【分析】
画出几何体的直观图,利用三视图的数据求解表面积即可. 【详解】
由题意可知:几何体是一个圆柱与一个1
4
的球的组合体,球的半径为:1,圆柱的高为2, 可得:该几何体的表面积为:
221
41212274
ππππ⨯⨯+⨯⨯+⨯=.
故选:B . 【点睛】
思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.
3.鲁班锁(也称孔明锁、难人木、六子联方)起源于古代中国建筑的榫卯结构.这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙.鲁班锁类玩具比较多,形状和内部的构造各不相同,一般都是易拆难装.如图1,这是一种常见的鲁班锁玩具,图2是该鲁班锁玩具的直观图,每条棱的长均为2,则该鲁班锁的表面积为( )
A .8(6623)++
B .6(8823)++
C .8(6632)++
D .6(8832)++ 【答案】A 【解析】 【分析】
该鲁班锁玩具可以看成是一个正方体截去了8个正三棱锥所余下来的几何体,然后按照表面积公式计算即可. 【详解】
由题图可知,该鲁班锁玩具可以看成是一个棱长为222+的正方体截去了8个正三棱锥所余下来的几何体,且被截去的正三棱锥的底面边长为2,侧棱长为2,则该几何体的表面积为
2116(222)42282322S ⎡⎤
=⨯+-⨯⨯⨯+⨯⨯⨯⎢⎥⎣⎦
8(6623)=++.
故选:A. 【点睛】
本题考查数学文化与简单几何体的表面积,考查空间想象能力和运算求解能力.
4.正方体1111ABCD A B C D -的棱长为1,动点M 在线段1CC 上,动点P 在平面..
1111D C B A 上,且AP ⊥平面1MBD .线段AP 长度的取值范围为( )
A .2⎡⎣
B .3⎡⎣
C .32⎣
D .62⎣
【解析】 【分析】
以1,,DA DC DD 分别为,,x y z 建立空间直角坐标系,设(),,1P x y ,()0,1,M t ,由AP ⊥
平面1MBD ,可得+1
1x t y t =⎧⎨
=-⎩
,然后用空间两点间的距离公式求解即可. 【详解】
以1,,DA DC DD 分别为,,x y z 建立空间直角坐标系,
则()()()()11,0,0,1,1,0,0,1,,0,0,1A B M t D ,(),,1P x y .
()1,,1AP x y =-u u u r ,()11,1,1BD =--u u u u r ,()[]1,0,0,1,BM t t =-∈u u u u r
由AP ⊥平面1MBD ,则0BM AP ⋅=u u u u r u u u r
且01BD AP ⋅=u u u u r u u u r
所以10x t -+=且110x y --+=得+1x t =,1y t =-.
所以(
)2
2
2
1311222
AP x y t ⎛⎫=
-++=-+ ⎪⎝⎭u u u r 当12t =时,min 6AP =u u u r ,当0t =或1t =时,max 2AP =u u u r , 所以622AP ≤≤u u u
r
故选:D
【点睛】
本题考查空间动线段的长度的求法,考查线面垂直的应用,对于动点问题的处理用向量方法要简单些,属于中档题.
5.已知正方体1111ABCD A B C D -中,M ,N 分别为AB ,1AA 的中点,则异面直线
1C M 与BN 所成角的大小为( )
A .30°
B .45︒
C .60︒
D .90︒
【答案】D
【分析】
根据题意画出图形,可将异面直线转化共面的相交直线,再进行求解 【详解】 如图:
作AN 的中点'N ,连接'N M ,1'C N 由题设可知'N M BN P ,则异面直线1C M 与BN 所成角为1'N MC ∠或其补角,设正方体的边长为4,由几何关系可得,'5N M = ,
16C M =,1'41C N =,得2
112
2
''N M M C N C =+,即1'90N MC ∠=︒
故选D 【点睛】
本题考查异面直线的求法,属于基础题
6.棱长为2的正方体被一个平面所截,得到几何体的三视图如图所示,则该截面的面积为( )
A .
92
B 92
C .32
D .3
【答案】A 【解析】 【分析】
由已知的三视图可得:该几何体是一个正方体切去一个三棱台,其截面是一个梯形,分别求出上下底边的长和高,代入梯形面积公式可得答案. 【详解】
由已知的三视图可得:该几何体是一个正方体切去一个三棱台ABC DEF -,所得的组合体,
其截面是一个梯形BCFE , 上底长为22112+=,下底边长为222222+=,
高为:22232
2(
)2+=
, 故截面的面积1329
(222)222
S =+⨯=, 故选:A . 【点睛】
本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.
7.三棱柱111ABC A B C -中,底面边长和侧棱长都相等,1160BAA CAA ︒
∠=∠=,则异
面直线1AB 与1BC 所成角的余弦值为( )
A .
33
B .
66
C .
34
D 3 【答案】B 【解析】 【分析】
设1AA c
=u u u v v ,AB a =u u u v v ,AC b =u u u v v
,根据向量线性运算法则可表示出1AB u u u v 和1BC u u u u v ;分别求解出11AB BC ⋅u u u v u u u u v 和1AB u u u v ,1BC u u u u v ,根据向量夹角的求解方法求得11cos ,AB BC
<>u u u v u u u u v
,即可得所
求角的余弦值. 【详解】
设棱长为1,1AA c =u u u v v ,AB a =u u u v v ,AC b =u u u v v
由题意得:12a b ⋅=v v ,12b c ⋅=v v ,12
a c ⋅=v v
1AB a c =+u u u v v v Q ,11BC BC BB b a c =+=-+u u u u v u u u v u u u v v v v
()()
221111
11122
AB BC a c b a c a b a a c b c a c c ∴⋅=+⋅-+=⋅-+⋅+⋅-⋅+=-++=u u u v u u u u v v v v v v v v v v v v v v v v
又()222123AB a c a a c c =+=+⋅+=u u u v v v v v v v
(
)
2
22212222BC b a c
b a
c a b b c a c =
-+=++-⋅+⋅-⋅=u u u u v
v v v v v v v v v v v v
111111
6
cos ,6AB BC AB BC AB BC ⋅∴<>===⋅u u u v u u u u v
u u u v u u u u v u u u v u u u u v
即异面直线1AB 与1BC 所成角的余弦值为:66
本题正确选项:B 【点睛】
本题考查异面直线所成角的求解,关键是能够通过向量的线性运算、数量积运算将问题转化为向量夹角的求解问题.
8.如图,在正三棱柱111ABC A B C -中,2AB =,123
AA =,D ,F 分别是棱AB ,1AA 的中点,E 为棱AC 上的动点,则DEF ∆的周长的最小值为()
A .222
B .232
C 62+
D 72
【答案】D 【解析】 【分析】
根据正三棱柱的特征可知ABC ∆为等边三角形且1AA ⊥平面ABC ,根据1AA AD ⊥可利用勾股定理求得2DF =;把底面ABC 与侧面11ACC A 在同一平面展开,可知当,,D E F 三点共线时,DE EF +取得最小值;在ADF ∆中利用余弦定理可求得最小值,加和得到结果. 【详解】
Q 三棱柱111ABC A B C -为正三棱柱 ABC ∆∴为等边三角形且1AA ⊥平面ABC
AD ⊂Q 平面ABC 1AA AD ∴⊥ 132DF ∴=+=
把底面ABC 与侧面11ACC A 在同一平面展开,如下图所示:
当,,D E F 三点共线时,DE EF +取得最小值 又150FAD ∠=o ,3AF =
1AD =
()2
2
min
32cos 42372DE EF AF AD AF AD FAD ⎛⎫
∴+=+-⋅∠=-⨯-= ⎪ ⎪⎝⎭
DEF ∴∆72+
本题正确选项:D 【点睛】
本题考查立体几何中三角形周长最值的求解问题,关键是能够将问题转化为侧面上两点间最短距离的求解问题,利用侧面展开图可知三点共线时距离最短.
9.在正方体1111ABCD A B C D -中,E 为棱1CC 上一点且12CE EC =,则异面直线AE 与
1A B 所成角的余弦值为( )
A .
11
44
B 11
C .
11
44
D .
1111
【答案】B 【解析】 【分析】
以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,利用向量法能求出异面直线AE 与1A B 所成角的余弦值. 【详解】
解:以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系, 设3AB =,则()3,0,0A ,()0,3,2E ,()13,0,3A ,()3,3,0B

()3,3,2AE =-u u u r ,()10,3,3A B =-u u u r

设异面直线AE 与1A B 所成角为θ, 则异面直线AE 与1A B 所成角的余弦值为:
11311
cos 222218AE A B AE A B
θ⋅===⋅⋅u u u r u u u r u u u r u u u r .
故选:B .
【点睛】
本题考查利用向量法求解异面直线所成角的余弦值,难度一般.已知1l 的方向向量为a r
,2
l 的方向向量为b r
,则异面直线12,l l 所成角的余弦值为a b a b
⋅⋅r r r r .
10.如图,正方形网格纸中的实线图形是一个多面体的三视图,则该多面体各表面所在平面互相垂直的有( )
A.2对B.3对
C.4对D.5对
【答案】C
【解析】
【分析】
-,易证平面PAD⊥平面ABCD,平面PCD⊥平面画出该几何体的直观图P ABCD
PAD,平面PAB⊥平面PAD,平面PAB⊥平面PCD,从而可选出答案.
【详解】
该几何体是一个四棱锥,直观图如下图所示,易知平面PAD⊥平面ABCD,
作PO⊥AD于O,则有PO⊥平面ABCD,PO⊥CD,
又AD⊥CD,所以,CD⊥平面PAD,
所以平面PCD⊥平面PAD,
同理可证:平面PAB⊥平面PAD,
由三视图可知:PO=AO=OD,所以,AP⊥PD,又AP⊥CD,
所以,AP⊥平面PCD,所以,平面PAB⊥平面PCD,
所以该多面体各表面所在平面互相垂直的有4对.
【点睛】
本题考查了空间几何体的三视图,考查了四棱锥的结构特征,考查了面面垂直的证明,属于中档题.
11.如图是正方体的平面展开图,则在这个正方体中:
①BM与ED平行②CN与BE是异面直线
③CN与BM成60︒角④DM与BN是异面直线
以上四个命题中,正确命题的个数是()
A .1
B .2
C .3
D .4
【答案】B
【解析】
【分析】 把平面展开图还原原几何体,再由棱柱的结构特征及异面直线定义、异面直线所成角逐一核对四个命题得答案.
【详解】
把平面展开图还原原几何体如图:
由正方体的性质可知,BM 与ED 异面且垂直,故①错误;
CN 与BE 平行,故②错误;
连接BE ,则BE CN P ,EBM ∠为CN 与BM 所成角,连接EM ,可知BEM ∆为正三角形,则60EBM ∠=︒,故③正确;
由异面直线的定义可知,DM 与BN 是异面直线,故④正确.
∴正确命题的个数是2个.
故选:B .
【点睛】
本题考查棱柱的结构特征,考查异面直线定义及异面直线所成角,是中档题.
12.已知m ,l 是两条不同的直线,α,β是两个不同的平面,则下列可以推出αβ⊥的是( )
A .m l ⊥,m β⊂,l α⊥
B .m l ⊥,l αβ=I ,m α⊂
C .//m l ,m α⊥,l β⊥
D .l α⊥,//m l ,//m β
【答案】D
【解析】
【分析】
A ,有可能出现α,β平行这种情况.
B ,会出现平面α,β相交但不垂直的情况.
C ,根据面面平行的性质定理判断.
D ,根据面面垂直的判定定理判断.
【详解】
对于A ,m l ⊥,m β⊂,l α⊥,则//αβ或α,β相交,故A 错误;
对于B ,会出现平面α,β相交但不垂直的情况,故B 错误;
对于C ,因为//m l ,m α⊥,则l α⊥,由因为l βαβ⊥⇒∥,故C 错误; 对于D ,l α⊥,m l m α⇒⊥∥,又由m βαβ⇒⊥∥,故D 正确.
故选:D
【点睛】
本题考查空间中的平行、垂直关系的判定,还考查学生的空间想象能力和逻辑推理能力,属于中档题.
13.古代数学名著《张丘建算经》中有如下问题:“今有仓,东西袤一丈二尺,南北广七尺,南壁高九尺,北壁高八尺,问受粟几何?”.题目的意思是:“有一粮仓的三视图如图所示(单位:尺),问能储存多少粟米?”已知1斛米的体积约为1.62立方尺,估算粮仓可以储存的粟米约有(取整数)( )
A .441斛
B .431斛
C .426斛
D .412斛
【答案】A
【解析】
【分析】 由三视图可知:上面是一个横放的三棱柱,下面是一个长方体.由体积计算公式即可得出.
【详解】
解:由三视图可知:上面是一个横放的三棱柱,下面是一个长方体.
∴体积1
171278127142V =⨯⨯⨯+⨯⨯=,
∴粮仓可以储存的粟米7144411.62
=≈斛.
故选:A .
14.四棱锥P ABCD -所有棱长都相等,M 、N 分别为PA 、CD 的中点,下列说法错误的是( )
A .MN 与PD 是异面直线
B .//MN 平面PB
C C .//MN AC
D .MN PB ⊥
【答案】C
【解析】
【分析】
画出图形,利用异面直线以及直线与平面平行的判定定理,判断选项A 、B 、C 的正误,由线线垂直可判断选项D .
【详解】
由题意可知四棱锥P ABCD -所有棱长都相等, M 、N 分别为PA 、CD 的中点,MN 与PD 是异面直线,A 选项正确;
取PB 的中点为H ,连接MH 、HC ,
四边形ABCD 为平行四边形,//AB CD ∴且AB CD =,
M Q 、H 分别为PA 、PB 的中点,则//MH AB 且12
MH AB =, N Q 为CD 的中点,//CN MH ∴且CN MH =,则四边形CHMN 为平行四边形, //MN CH ∴,且MN ⊄平面PBC ,CH ⊂平面PBC ,//MN ∴平面PBC ,B 选项正确;
若//MN AC ,由于//CH MN ,则//CH AC ,事实上AC CH C ⋂=,C 选项错误; PC BC =Q ,H 为PB 的中点,CH PB ∴⊥,//MN CH Q ,MN PB ∴⊥,D 选项正确.
故选:C .
【点睛】
本题考查命题的真假的判断与应用,涉及直线与平面的平行与垂直的位置关系的判断,是中档题.
15.如图,在正方体1111ABCD A B C D - 中,,E F 分别为111,B C C D 的中点,点P 是底面1111D C B A 内一点,且//AP 平面EFDB ,则1tan APA ∠ 的最大值是( )
A .2
B .2
C .22
D .32
【答案】C
【解析】 分析:连结AC 、BD ,交于点O ,连结A 1C 1,交EF 于M ,连结OM ,则AO =
P
PM ,从而A 1P=C 1M ,由此能求出tan ∠APA 1的最大值.
详解:连结AC 、BD ,交于点O ,连结A 1C 1,交EF 于M ,连结OM ,
设正方形ABCD ﹣A 1B 1C 1D 1中棱长为1,
∵在正方形ABCD ﹣A 1B 1C 1D 1中,E ,F 分别为B 1C 1,C 1D 1的中点,
点P 是底面A 1B 1C 1D 1内一点,且AP ∥平面EFDB ,
∴AO =P
PM ,∴A 1P=C 1
M=44
AC =, ∴tan ∠APA 1=11AA A P
4

∴tan ∠APA 1的最大值是

故选D .
点睛:本题考查角的正切值的最大值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力,考查运算求解能力,是中档题.
16.已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为
A

B .12π C
. D .10π
【答案】B
【解析】
分析:首先根据正方形的面积求得正方形的边长,从而进一步确定圆柱的底面圆半径与圆柱的高,从而利用相关公式求得圆柱的表面积.
详解:根据题意,可得截面是边长为
的圆,且高为,
所以其表面积为22212S πππ=+=,故选B.
点睛:该题考查的是有关圆柱的表面积的求解问题,在解题的过程中,需要利用题的条件确定圆柱的相关量,即圆柱的底面圆的半径以及圆柱的高,在求圆柱的表面积的时候,一定要注意是两个底面圆与侧面积的和.
17.已知直三棱柱111ABC A B C -的底面为直角三角形,且两直角边长分别为1
三棱柱的高为
A .323π
B .163π
C .83π
D .643
π 【答案】A
【解析】
【分析】
求得该直三棱柱的底面外接圆直径为22r ==,再根据球的性质,求得外接球的直径2R =,利用球的体积公式,即可求解.
【详解】
由题意可得该直三棱柱的底面外接圆直径为221r r ==⇒=,
根据球的性质,可得外接球的直径为24R ===,解得
2R =, 所以该三棱柱的外接球的体积为343233V R ππ=
=,故选A. 【点睛】
本题主要考查了球的体积的计算,以及组合体的性质的应用,其中解答中找出合适的模型,合理利用球的性质求得外接球的半径是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.
18.已知某几何体的三视图如图所示,其中正视图与侧视图是全等的直角三角形,则该几何体的各个面中,最大面的面积为( )
A .2
B .5
C .13
D .22
【答案】D
【解析】
【分析】 根据三视图还原出几何体,找到最大面,再求面积.
【详解】
由三视图可知,该几何体是一个三棱锥,如图所示,将其放在一个长方体中,并记为三棱锥P ABC -.13PAC PAB S S ∆∆==,22PAC S ∆=,2ABC S ∆=,故最大面的面积为22.选D.
【点睛】
本题主要考查三视图的识别,复杂的三视图还原为几何体时,一般借助长方体来实现.
19.某多面体的三视图如图所示,则该多面体的各棱中,最长棱的长度为( )
A .6
B .5
C .2
D .1
【答案】A
【解析】 由三视图可知该多面体的直观图为如图所示的四棱锥P ABCD -:
其中,四边形ABCD 为边长为1的正方形,PE ⊥面ABCD ,且1AE =,1PE =. ∴222AP AE PE =
+=,2BE AB AE =+=,222DE AD AE =+= ∴225CE BE BC =+=,225PB BE PE =+=,223PD PE DE =+= ∴226PC CE PE =+=
∴最长棱为PC
故选A.
点睛: 思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:①首先看俯视图,根据俯视图画出几何体地面的直观图;②观察正视图和侧视图找到几何体前、后、左、右的高度;③画出整体,然后再根据三视图进行调整.
20.如图,将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起,做成一个无盖的正六棱柱容器.当这个正六棱柱容器的底面边长为( )时,其容积最大.
A .34
B .23
C .13
D .12
【答案】B
【解析】
【分析】
设正六棱柱容器的底面边长为x ,)1x -,则可得正六棱柱容器的
容积为()())()32921224V x x x x x x x =+⋅
⋅-=-+,再利用导函数求得最值,即可求解.
【详解】
设正六棱柱容器的底面边长为x ,则正六棱柱容器的高为)12x -,
所以正六棱柱容器的容积为()())()329214V x x x x x x x =+-=-+, 所以()227942V x x x '=-+,则在20,3⎛⎫ ⎪⎝⎭上,()0V x '>;在2,13⎛⎫ ⎪⎝⎭
上,()0V x '<, 所以()V x 在20,3⎛⎫
⎪⎝⎭上单调递增,在2,13⎛⎫
⎪⎝⎭上单调递减, 所以当23
x =
时,()V x 取得最大值, 故选:B
【点睛】 本题考查利用导函数求最值,考查棱柱的体积,考查运算能力.。

相关文档
最新文档