湖南省浏阳市六校联考必修3物理 全册全单元精选试卷检测题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖南省浏阳市六校联考必修3物理 全册全单元精选试卷检测题
一、必修第3册 静电场及其应用解答题易错题培优(难)
1.如图所示,在竖直平面内有一固定的光滑绝缘轨道,圆心为O ,半径为r ,A 、B 、C 、D 分别是圆周上的点,其中A 、C 分别是最高点和最低点,BD 连线与水平方向夹角为37︒。
该区间存在与轨道平面平行的水平向左的匀强电场。
一质量为m 、带正电的小球在轨道内侧做完整的圆周运动(电荷量不变),经过D 点时速度最大,重力加速度为g (已知sin370.6︒=,cos370.8︒=),求:
(1)小球所受的电场力大小;
(2)小球经过A 点时对轨道的最小压力。
【答案】(1)4
3
mg ;(2)2mg ,方向竖直向上. 【解析】 【详解】
(1)由题意可知 :
tan 37mg
F
︒= 所以:
43
F mg =
(2)由题意分析可知,小球恰好能做完整的圆周运动时经过A 点对轨道的压力最小. 小球恰好做完整的圆周运动时,在B 点根据牛顿第二定律有:
2sin 37B v mg
m r
︒= 小球由B 运动到A 的过程根据动能定理有:
()
22
111sin 37cos3722
B A mgr Fr mv mv ︒︒--+=-
小球在A 点时根据牛顿第二定律有:
2A
N v F mg m r
+=
联立以上各式得:
2N F mg =
由牛顿第三定律可知,小球经过A 点时对轨道的最小压力大小为2mg ,方向竖直向上.
2.如图所示,真空中有两个点电荷A 、B ,它们固定在一条直线上相距L =0.3m 的两点,它们的电荷量分别为Q A =16×10-12C ,Q B =4.0×10-12C ,现引入第三个同种点电荷C ,
(1)若要使C 处于平衡状态,试求C 电荷的电量和放置的位置?
(2)若点电荷A 、B 不固定,而使三个点电荷在库仑力作用下都能处于平衡状态,试求C 电荷的电量和放置的位置? 【答案】(1)见解析(2)1216
109
C -⨯ ,为负电荷 【解析】 【分析】 【详解】
(1)由分析可知,由于A 和B 为同种电荷,要使C 处于平衡状态,C 必须放在A 、B 之间某位置,可为正电荷,也可为负电荷.设电荷C 放在距A 右侧x 处,电荷量为Q 3 ∵ AC BC F F = ∴ 1323
22
()Q Q Q Q k
k x L x =- ∴ 1222
()Q Q x L x =- ∴ 4(L -x)2=x 2 ∴ x =0.2m
即点电荷C 放在距A 右侧0.2m 处,可为正电荷,也可为负电荷.
(2)首先分析点电荷C 可能放置的位置,三个点电荷都处于平衡,彼此之间作用力必须在一条直线上,C 只能在AB 决定的直线上,不能在直线之外.而可能的区域有3个, ① AB 连线上,A 与B 带同种电荷互相排斥,C 电荷必须与A 、B 均产生吸引力,C 为负电荷时可满足;
② 在AB 连线的延长线A 的左侧,C 带正电时对A 产生排斥力与B 对A 作用力方向相反可能A 处于平衡;C 对B 的作用力为推斥力与A 对B 作用力方向相同,不可能使B 平衡;C 带负电时对A 产生吸引力与B 对A 作用力方向相同,不可能使A 处于平衡;C 对B 的作用力为吸引力与A 对B 作用力方向相反,可能使B 平衡,但离A 近,A 带电荷又多,不能同时使A 、B 处于平衡.
③ 放B 的右侧,C 对B 的作用力为推斥力与A 对B 作用力方向相同,不可能使B 平衡; 由分析可知,由于A 和B 为同种电荷,要使三个电荷都处于平衡状态,C 必须放在A 、B 之间某位置,且为负电荷.
设电荷C 放在距A 右侧x 处,电荷量为Q 3 对C :1323
22
(0.3)Q Q Q Q k
k x x =-
∴ x =0.2m 对B :3212
22
()Q Q Q Q k k L L x =- ∴ 12316
109
Q C -=
⨯,为负电荷. 【点睛】
此题是库仑定律与力学问题的结合题;要知道如果只是让电荷C 处于平衡,只需在这点的场强为零即可,电性不限;三个电荷的平衡问题,遵循:“两同加一异”、“两大加一小”的原则.
3.(1)科学家发现,除了类似太阳系的恒星-行星系统,还存在许多双星系统,通过对它们的研究,使我们对宇宙有了较深刻的认识.双星系统是由两个星体构成,其中每个星体的线度(直径)都远小于两星体间的距离,一般双星系统距离其他星体很远,可以当做孤立系统处理.已知某双星系统中每个星体的质量都是M 0,两者相距L ,它们正围绕两者连线的中点做匀速圆周运动,引力常量为G . 求: ①该双星系统中星体的加速度大小a ; ②该双星系统的运动周期T .
(2)微观世界与宏观世界往往存在奇妙的相似性.对于氢原子模型,因为原子核的质量远大于电子质量,可以忽略原子核的运动,形成类似天文学中的恒星-行星系统,记为模型Ⅰ.另一种模型认为氢原子的核外电子并非绕核旋转,而是类似天文学中的双星系统,核外电子和原子核依靠库仑力作用使它们同时绕彼此连线上某一点做匀速圆周运动,记为模型Ⅱ.已知核外电子的质量为m ,氢原子核的质量为M ,二者相距为r ,静电力常量为k ,电子和氢原子核的电荷量大小均为e .
①模型Ⅰ、Ⅱ中系统的总动能分别用E k Ⅰ、 E k Ⅱ表示,请推理分析,比较E k Ⅰ、 E k Ⅱ的大小关系;
②模型Ⅰ、Ⅱ中核外电子做匀速圆周运动的周期分别用T Ⅰ、T Ⅱ表示,通常情况下氢原子的研究采用模型Ⅰ的方案,请从周期的角度分析这样简化处理的合理性.
【答案】(1) ①02GM a L = ②2T = (2) ①2
k k II =2ke E E r =Ⅰ ②T T ⅠⅡ
为M >>m ,可得T Ⅰ≈T Ⅱ,所以采用模型Ⅰ更简单方便. 【解析】 【详解】
(1)①根据万有引力定律和牛顿第二定律有:2
002GM M a L
=
解得0
2
GM a L =
②由运动学公式可知,224π2
L
a T =⋅
解得2T =(2)①模型Ⅰ中,设电子绕原子核的速度为v ,对于电子绕核的运动,根据库仑定律和牛顿
第二定律有22
2ke mv r r
=
解得:2
2k 122ke E mv r
==Ⅰ
模型Ⅱ中,设电子和原子核的速度分别为v 1、v 2,电子的运动半径为r 1,原子核的运动半径为r 2.根据库仑定律和牛顿第二定律 对电子有:22121mv ke r r =,解得2
2k11121=22ke E mv r r
=
对于原子核有:2
2222=Mv ke r r ,解得22
k22221=22ke E Mv r r
=
系统的总动能:E k Ⅱ=E k1+ E k2=()22
12222ke ke r r r r
+=
即在这两种模型中,系统的总动能相等.
②模型Ⅰ中,根据库仑定律和牛顿第二定律有
22224πke m r r T =Ⅰ
,解得232
24πmr T ke =Ⅰ 模型Ⅱ中,电子和原子核的周期相同,均为T Ⅱ 根据库仑定律和牛顿第二定律
对电子有221224πke m r r T =⋅Ⅱ, 解得22
1224πke T r r m =Ⅱ
对原子核有222224πke M r r T =⋅Ⅱ, 解得222224πke T r r M
=Ⅱ
因r 1+r 2=r ,可解得:()
23
22
4πmMr T ke M m =+Ⅱ
所以有
T T =Ⅰ
Ⅱ 因为M >>m ,可得T Ⅰ≈T Ⅱ,所以采用模型Ⅰ更简单方便.
4.万有引力和库仑力有类似的规律,有很多可以类比的地方。
已知引力常量为G ,静电力常量为k 。
(1)用定义静电场强度的方法来定义与质量为M 的质点相距r 处的引力场强度E G 的表达式;
(2)质量为m 、电荷量为e 的电子在库仑力的作用下以速度v 绕位于圆心的原子核做匀速圆周运动,该模型与太阳系内行星绕太阳运转相似,被称为“行星模型”,如图甲。
已知在一段时间内,电子走过的弧长为s ,其速度方向改变的角度为θ(弧度)。
求出原子核的电
荷量Q ;
(3)如图乙,用一根蚕丝悬挂一个金属小球,质量为m ,电荷量为﹣q 。
悬点下方固定一个绝缘的电荷量为+Q 的金属大球,蚕丝长为L ,两金属球球心间距离为R 。
小球受到电荷间引力作用在竖直平面内做小幅振动。
不计两球间万有引力,求出小球在库仑力作用下的振动周期。
【答案】(1)质量为M 的质点相距r 处的引力场强度的表达式为
2GM
r
;(2)原子核的电荷量为2mv s
ke
θ;(3)小球在库仑力作用下的振动周期为2Lm R kQq π
【解析】 【详解】
(1)根据电场强度的定义式方法,那么质量为M 的质点相距r 处的引力场强度E G 的表达式:
2G F GM
E m r
=
= (2)根据牛顿第二定律,依据库仑引力提供向心力,则有:
2
2Qe v k m R R
= 由几何关系,得
s
R θ
=
解得:
2mv s
Q ke
θ=
(3)因库仑力:
2Qq F R
=
等效重力加速度:
2F kQq g m mR
'=
= 小球在库仑力作用下的振动周期:
22L Lm T R g kQq
π
π'==
5.如图所示,有一水平向左的匀强电场,场强为41.2510N/C E =⨯,一根长 1.5m L =、与水平方向的夹角为37θ=︒的光滑绝缘细直杆MN 固定在电场中,杆的下端M 固定一个带电小球A ,电荷量6
4.510C Q -=+⨯;另一带电小球B 穿在杆上可自由滑动,电荷量
61.010C q -=+⨯,质量21.010kg m -=⨯。
现将小球B 从杆的上端N 静止释放,小球B
开始运动。
(静电力常量9229.010N m /C k =⨯⋅,取210m/s g =,sin370.6︒=,
cos370.8︒=)求:
(1)小球B 开始运动时的加速度为多大?
(2)小球B 的速度最大时,与M 端的距离r 为多大?
【答案】(1)a =3.2 m/s 2;(2)r =0.9 m 【解析】 【分析】 【详解】
(1)开始运动时小球B 受重力、库仑力、杆的弹力和电场力,沿杆方向运动,由牛顿第二定律得
2
sin cos kQq
mg qE ma L -
-=θθ 解得
22
cos sin 3.2m/s kQq qE a g mL m =-
-=θ
θ (2)小球B 速度最大时合力为零,即
2sin cos 0kQq
mg qE r
-
-=θθ 解得
0.9m sin cos kQq
r mg qE =
=-θθ
6.如图所示,将带正电的中心穿孔小球A 套在倾角为θ的固定光滑绝缘杆上某处,在小球A 的正下方固定着另外一只带电小球B ,此时小球A 恰好静止,且与绝缘杆无挤压.若A 的电荷量为q ,质量为m ;A 与B 的距离为h ;重力加速度为g ,静电力常量为k ;A 与B
均可视为质点.
(1)试确定小球B 的带电性质; (2)求小球B 的电荷量;
(3)若出于某种原因,小球B 在某时刻突然不带电,求小球A 下滑到与小球B 在同一水平线的杆上某处时,重力对小球做功的功率.
【答案】(1)带正电 (2)2
B mgh q kq
= (3)sin 2P mg gh =
【解析】 【分析】
(1)由题意A 静止且与杆无摩擦,说明A 只受重力和库仑力,故AB 之相互排斥,A 的受力才能平衡,可知B 的电性
(2)由库仑定律可得AB 间的库仑力,在对A 列平衡方程可得B 的电量
(3)B 不带电后A 只受重力,故由机械能守恒,可得A 的速度,进而得到重力功率 【详解】
(1)根据题意:小球A 受到B 的库仑力必与A 受到的重力平衡,即A 、B 之间相互排斥,所以B 带正电.
(2)由库仑定律,B 对A 的库仑力为F =2B
kqq h
, 由平衡条件有mg =
2B
kqq h
解得q B =
2
mgh kq
. (3)B 不带电后,小球A 受到重力、支持力作用沿杆向下做匀加速直线运动,设到达题中所述位置时速度为v ,由机械能守恒定律有mgh =12
mv 2, 解得v 2gh
所以重力的瞬时功率为P =mgv sin θ=mg sin 2gh
二、必修第3册 静电场中的能量解答题易错题培优(难)
7.如图所示,M 、N 为竖直放置的平行金属板,两板间所加电压为0U ,1S 、2S 为板上正对的小孔. 金属板P 和Q 水平放置在N 板右侧,关于小孔1S 、2S 所在直线对称,两板的长度和两板间的距离均为l ; 距金属板P 和Q 右边缘l 处有一荧光屏,荧光屏垂直于金属板P
和Q ;取屏上与S 1、2S 共线的O 点为原点,向上为正方向建立x 轴,M 板左侧电子枪发射出的电子经小孔1S 进入M 、N 两板间. 电子的质量为m ,电荷量为e ,初速度可以忽略. 不计电子重力和电子之间的相互作用. 为简单计,忽略电容器的边缘效应. (1)求电子到达小孔2S 时的速度大小v ;
(2)金属板P 和Q 间电压u 随时间t 的变化关系如图所示,单位时间内从小孔1S 进入的电子都相同. 电子打在荧光屏上形成一条亮线,忽略电场变化产生的磁场;可以认为每个电子在板P 和Q 间运动过程中,两板间的电压恒定.
a. 试分析、猜测题干中“可以认为每个电子在板P 和Q 间运动过程中,两板间的电压恒定”这句话的根据?
b. 当某个电子在金属板P 、Q 两板间电压0u U =时进入P 、Q 间,求其打到荧光屏上的位置.
c. 求打到荧光屏上的电子最大动能.
d. 试分析在一个周期(即02t 时间)内荧光屏单位长度亮线上的电子个数是否相同?
【答案】(1)0
2eU v m
= (2) a.见解析 b. 34l x = c.02km E eU = d.电子个数相同
【解析】 【详解】
(1)根据动能定理有:2
012
eU mv = 解得:0
2eU v m
=
(2)a. 由(1)中电子速度表达式猜测,由于电子比荷q/m 极大,电子很容易加速到很大的速度,电子在板P 和Q 间运动的时间远小于交变电压变化的周期,故“可以认为每个电子在板P 和Q 间运动过程中,两板间的电压恒定”。
b. 假设所有电子均能打在荧光屏上,下面以偏向P 板的电子为例推导,偏向Q 板的电子推导过程相同。
设电子在偏转电场中的运动时间为1t ,PQ 间的电压为u
垂直电场方向:1l vt = 平行电场方向:2
1112
x at =
此过程中电子的加速度大小eu a ml
= 联立得:10
4ul x U =
电子出偏转电场时,在x 方向的速度1x v at =
电子在偏转电场外做匀速直线运动,设经时间2t 到达荧光屏,则 水平方向:2l vt = 竖直方向:22x x v t = 联立解得:20
2ul
x U =
电子打在荧光屏上的位置坐标:120
34l
x x x u U =+= 当0u U =时,142
l l
x =<,电子能打在荧光屏上 故34
l x =。
c. 当12
l
x =±
时,02u U =±,即从极板边缘射出的电子动能最大,无论电子向哪个极板偏转,电场力均做正功。
由全过程动能定理可得:0
022
km U eU e E += 解得02km E eU =
d. 对于有电子穿过P 、Q 间的时间内进行讨论: 打在荧光屏上的电子形成的亮线长度0
34l
x u U ∆=
∆ 由电压图象可知,在任意△t 时间内,P 、Q 间电压变化u ∆相等。
所以在任意t ∆时间内亮线长度x ∆相等。
由题意可知,在任意t∆时间内,射出的电子个数是相同的,也就是说在任意t∆时间内,射出的电子都分布在相等的亮线长度x
∆范围内。
因此在一个周期内单位长度亮线上的电子个数相同。
8.在电场方向水平向右的匀强电场中,一带电小球从A点竖直向上抛出,其运动的轨迹如下图所示.小球运动的轨迹上A、B两点在同一水平线上,M为轨迹的最高点.小球抛出时的动能为8.0J,在M点的动能为6.0J,不计空气的阻力.求:
(1)小球水平位移x1与x2的比值;
(2)小球落到B点时的动能E kB;
(3)小球从A点运动到B点的过程中最小动能E kmin.
【答案】(1)1:3(2)32J(3)
24
7
J
【解析】
【详解】
(1)如图所示,带电小球在水平方向上受电场力的作用做初速度为零的匀加速运动,竖直方向上只受重力作用做竖直上抛运动,故从A到M和M到B的时间相等,则x1:x2=1:3 (2)小球从A到M,水平方向上电场力做功W电=6J
则由能量守恒可知,小球运动到B点时的动能为
E kB=E k0十4W电=32J
(3)由于合运动与分运动具有等时性,设小球所受的电场力为F,重力为G,则有:
1
2
2
6J
1
6J
2
Fx
F
t
m
=
=
即
2
2
8J
1
8J
2
Gh
G
t
m
=
=
即
联立解得
3
F
G
=
由图可知
33tan sin 27
F G θθ==⇒= 则小球从A 运动到B 的过程中速度最小时速度一定与等效重力G /垂直,故:
20124()J 27
kmin E m v sin θ==
9.两平行金属板A 、B 间距离为d ,两板间的电压U AB 随时间变化规律如图所示,变化周期为T =6秒,在t =0时,一带正电的粒子仅受电场力作用,由A 板从静止起向B 板运动,并于t =2T 时刻恰好到达B 板,求:
(1)若该粒子在t =T /6时刻才从A 板开始运动,那么,再经过2T 时间,它将运动到离A 板多远的地方?
(2)若该粒子在t =T /6时刻才从A 板开始运动,那么需再经过多长时间才能到达B 板,
【答案】(1)
13
d (2)32.6s 【解析】
【分析】
【详解】
(1)粒子在t =0时开始运动,它先加速再减速,再加速、减速,向同一方向运动,其v -t 图如图中粗实线所示,
设每次加速(或减速)运动的位移为s ,则4s =d ,4
d s =, 若粒子在t =T /6时刻才从A 板开始运动,其运动图线如图中细实线所示,
设每次加速(或减速)运动的位移为s 1,设每次反向加速(或减速)运动的位移为s 2, 则1499
d s s == 21936
d s s ==
所以一个周期内的总位移为122()6d s s s =+=
' 所以2T 内粒子运动的总位移为3
d (2)粒子在t =T / 6时刻才从A 板开始运动,6个周期内的总位移刚好是d ,但由于粒子有一段反向运动,所以在6个周期末之前已到达B 板,即在5个周期末,粒子和B 板的距离为6
d s '=
粒子通过此距离所需时间为2
2()3T - 则粒子到达B 板所需时间为2
21725()()32.6s 33t T T T =+-
=-≈' 【点睛】
由于粒子不是在电场中一直处于加速或减速,所以导致分析运动较复杂;也可以假设b 板向下移动到最后一个周期末速度为零的位置,这算出整段时间,再去移动距离的时间.
10.如图,在真空室内的P 点,能沿纸面向各个方向不断发射电荷量为+q ,质量为m 的粒子(不计重力),粒子的速率都相同.ab 为P 点附近的一条水平直线,P 到直线ab 的距离PC=L ,Q 为直线ab 上一点,它与P 点相距PQ=5L .当直线ab 以上区域只存在垂直纸面向里、磁感应强度为B 的匀强磁场时,水平向左射出的粒子恰到达Q 点;当ab 以上区域只存在平行该平面的匀强电场时,所有粒子都能到达ab 直线,且它们到达ab 直线时动能都相等,其中水平向左射出的粒子也恰好到达Q 点.已知sin37°=0.6,cos37°=0.8,求:
(1)a 粒子的发射速率
(2)匀强电场的场强大小和方向
(3)仅有磁场时,能到达直线ab 的粒子所用最长时间和最短时间的比值
【答案】(1
)粒子发射速度为58BqL v m = (2)电场强度的大小为2258qLB E m
= (3)粒子到达直线ab 所用最长时间和最短时间的比值
12233 2.20106
t t =≈ 【解析】
(1)设粒子做匀速圆周运动的半径R ,过O 作PQ 的垂线交PQ 于A 点,如图三所示: 由几何知识可得 PC QA PQ QO = 代入数据可得粒子轨迹半径58
L R QO == 洛仑磁力提供向心力2
v Bqv m R
= 解得粒子发射速度为58BqL v m
= (2)真空室只加匀强电场时,由粒子到达ab 直线的动能相等,可知ab 为等势面,电场方向垂直ab 向下.
水平向左射出的粒子经时间t 到达Q 点,在这段时间内
2
L CQ vt == 212
PC L at == 式中qE a m
= 解得电场强度的大小为2
258qLB E m
= (3)只有磁场时,粒子以O 1为圆心沿圆弧PD 运动,当圆弧和直线ab 相切于D 点时,粒子速度的偏转角最大,对应的运动时间最长,如图四所示.据图有
3sin 5
L R R α-== 解得37α=︒
故最大偏转角max 233γ=︒
粒子在磁场中运动最大时长max
10360t T γ=
式中T 为粒子在磁场中运动的周期.
粒子以O 2为圆心沿圆弧PC 运动的速度偏转角最小,对应的运动时间最短.据图四有 /24sin 5
L R β== 解得53β=︒
速度偏转角最小为min 106γ=︒
故最短时长min
20360t T γ=
因此,粒子到达直线ab 所用最长时间和最短时间的比值
max 12min 233 2.20106
t t γγ==≈ 点睛:此题是关于带电粒子在电场及磁场中的运动问题;掌握类平抛运动的处理方向,在两个方向列出速度及位移方程;掌握匀速圆周运动的处理方法,确定好临界状态,画出轨迹图,结合几何关系求解.
11.一匀强电场足够大,场强方向是水平的.一个质量为m 的带正电的小球,从O 点出发,初速度的大小为v 0,在电场力与重力的作用下,恰能沿与场强的反方向成θ角的直线运动.求:
(1)小球运动的加速度的大小是多少?
(2)小球从O 点出发到其运动到最高点时发生的位移大小?
(3)小球运动到最高点时其电势能与在O 点的电势能之差?
【答案】(1)sin g θ
(2)20sin 2v g θ(3) 2201cos 2mv θ 【解析】
【详解】
(1)小球做直线运动,所受的合力与速度方向在同一条直线上,
根据平行四边形定则得:sinθ=mg ma 解得小球的加速度:sin g a θ
=. (2)小球从开始到最高点的位移为:220022v v sin x a g
θ==. (3)因为Eq=mg/tan θ,则小球运动到最高点时其电势能与在O 点的电势能之差等于电场
力做功,即222001cos .cos cos tan 22
P v sin mg E W Eqx mv g θθθθθ∆===⋅= 【点睛】
本题有两点需要注意,一是由运动情景应能找出受力关系;二是知道小球做匀减速直线运动,结合牛顿第二定律和运动学公式求解位移.知道电势能的变化量的等于电场力的功.
12.如图,ABD 为竖直平面内的光滑绝缘轨道,其中AB 段是水平的,BD 段为半径R =0.2m 的半圆,两段轨道相切于B 点,整个轨道处在竖直向下的匀强电场中,场强大小
E =5.0×103V/m 。
一不带电的绝缘小球甲,以速度0v 沿水平轨道向右运动,与静止在B 点带正电的小球乙发生弹性碰撞,甲乙两球碰撞后,乙恰能通过轨道的最高点D 。
已知甲、乙两球的质量均为m =1.0×10-2kg ,乙所带电荷量q =2.0×10-5C ,g 取10m/s 2。
(水平轨道足够长,甲、乙两球可视为质点,整个运动过程中甲不带电,乙电荷无转移)求:
(1)乙在轨道上的首次落点到B 点的距离;
(2)碰撞前甲球的速度0v 。
【答案】(1)0.4m x =;(2)025m/s v =
【解析】
【分析】
(1)根据乙球恰能通过轨道的最高点,根据牛顿第二定律求出乙球在D 点的速度,离开D 点后做类平抛运动,根据牛顿第二定律求出竖直方向上的加速度,从而求出竖直方向上运动的时间,根据水平方向做匀速直线运动求出水平位移。
(2)因为甲乙发生弹性碰撞,根据动量守恒、机械能守恒求出碰后乙的速度,结合动能定理求出甲的初速度。
【详解】
(1)在乙恰能通过轨道最高点的情况下,设乙到达最高点速度为D v ,乙离开D 点到达水平轨道的时间为t ,乙的落点到B 点的距离为x ,则
2D v m mg qE R
=+ 乙球离开D 点后做类平抛运动,竖直方向
212()2mg qE R t m
+=
水平方向 D x v t =
联立解得
0.4m x =
(2)设碰撞后甲、乙的速度分别为v 甲、v 乙,根据动量守恒定律和机械能守恒定律有
0mv mv mv =+甲乙,2220111222
mv mv mv =+甲乙 联立得
0=v v 乙 由动能定理得
22112222
D mg R q
E R mv mv -⋅-⋅=-乙 联立解得
05()25m/s mg Eq R v m
+==
三、必修第3册 电路及其应用实验题易错题培优(难)
13.某同学设计了如图所示的实验电路测量电压表的内阻和电阻丝的电阻,实验室提供的器材有:两节干电池、电阻箱R 0、粗细均匀的电阻丝、与电阻丝接触良好的滑动触头P 、开关、灵敏电流计(灵敏电流计的零刻度在表盘正中央)、待测电压表、导线.他进行了下列实验操作:
(1)按原理如图将如图所示的实物图连接成完整电路,请你帮他完成实物连线_______; (2)先将电阻箱的阻值调至最大,将滑动触头P 移至电阻丝的正中间位置;
(3)闭合开关K ,将电阻箱的阻值逐渐减小,当电阻箱的阻值为R 0时,灵敏电流计示数为0,可知电压表内阻R V =_____;
(IV )将电阻箱的阻值调至0,将cd 导线断开,然后将滑动触头P 移至最左端.此时电压表的示数为U ,灵敏电流计的示数为I ,则电阻丝的电阻为_____,测得的电阻值_____(填“偏大”“偏小”或“准确”).
【答案】电路连线如图:
R 0 U I
偏大 【解析】
【详解】
(1)电路连线如图:
(3)灵敏电流计的示数为0时,说明电压表和电阻箱分压之比与电阻丝右边和左边电阻分压相等,故0V R R =;
(4)将电阻箱的阻值调至0,将cd 导线断开,将滑动触头P 移至最左端后,电阻丝的全部电阻与灵敏电流计串联,电压表测量的是灵敏电流计和电阻丝的总电压,电阻丝电阻的测量值U R I =,因为采用了内接法,A U R R I
=+ ,故电阻的测量值偏大.
14.某实验小组要测量电阻R x 的阻值.
(1)首先,选用欧姆表“×10”挡进行粗测,正确操作后,表盘指针如图甲所示.
(2)接着,用伏安法测量该电阻的阻值,可选用的实验器材有:电压表V (3V ,内阻约3kΩ);电流表A (50mA ,内阻约5Ω);待测电阻R x ;滑动变阻器R (0﹣200Ω);干电池2节;开关、导线若干.
在图乙、图丙电路中,应选用图____(选填“乙”或“丙”)作为测量电路,测量结果________真实值(填“大于”“等于”或“小于”),产生误差的原因是________ .
(3)为更准确测量该电阻的阻值,可采用图丁所示的电路,G为灵敏电流计(量程很小),R0为定值电阻,R、R1、R2为滑动变阻器.操作过程如下:
①闭合开关S,调节R2,减小R1的阻值,多次操作使得G表的示数为零,读出此时电压表V和电流表A的示数U1、I1;
②改变滑动变阻器R滑片的位置,重复①过程,分别记下U2、I2,…,U n、I n;
③描点作出U﹣I图象,根据图线斜率求出R x的值.下列说法中正确的有_________.A.图丁中的实验方法避免了电压表的分流对测量结果的影响
B.闭合S前,为保护G表,R1的滑片应移至最右端
C.G表示数为零时,电压表测量的是R x两端电压
D.调节G表的示数为零时,R1的滑片应位于最左端
【答案】乙小于电压表分流 AC
【解析】
【详解】
(2)[1][2][3]由于待测电阻的电阻值比较小比电压表的内阻小得多 , 所以电流表使用外接法 ; 所以选择图乙作为测量电路,测量结果小于真实值,产生误差的原因是电压表的分流导致测量的电流偏大,所以电阻偏小.
(3)[4]A.该电路能够准确的计算出流过待测电阻的电流值,所以该实验方法避免了电压表的分流对测量结果的影响,A正确;
B.闭合S前,为保护G表,开始时R1的电阻值要最大,所以滑片应移至最左端,B错误;C.G表示数为零时,电压表直接和待测电阻并联所以电压表测量的是R x两端电压,C正确;
D.调节G表的示数为零时, 与R1的滑片的位置无关,D错误;
故选AC。
15.某小组同学改装电压表时,在实验室找到如下实验器材:
A.电压表V1:量程为2.5V,内阻几千欧;
B.电流表A1:量程为5mA,内阻约为10Ω;
C.电流表A2:量程为1A,内阻0.5Ω左右;
D.电阻箱R1:阻值范围0~999.9Ω;
E.滑动变阻器R2:阻值范围0~10Ω;
F.滑动变阻器R3:阻值范图0~5000Ω;
G.电源:电动势E=5V,内阻r=0.5Ω;
H .开关、导线若干。
由于没有合适的电压表,计划用电流表A 1改装。
(1)先用半偏法测电流表A 1的内阻,电路如图甲所示。
操作过程如下:将R 3调至阻值最大,断开S 2、闭合S 1,调节R 3使电流表A 1的示数为4.00mA ;保持R 3的阻值不变,闭合S 2,调节R 1使电流表A 1的示数为2.00mA ,此时R 1的阻值为10.5Ω。
则电流表A 1的内阻为________Ω;
(2)将电流表A 1改装成量程为5V 的电压表。
把电阻箱的阻值调至________Ω,与电流表A 1串联后即为量程为5V 的电压表;
(3)对改装后的电压表校对,该小组同学从别的地方找到一标准电压表V ,将改装好的电压表(如图乙中虚线框所示)与标准电压表V 并联,接入如图乙所示的电路中,调节R 2,使电流表A 1的示数如图丙所示,则电流表的示数为________ mA ;若改装后的电压表非常准确,则此时电压表的示数为________ V (结果保留两位有效数字)。
【答案】10.5 989.5 2.60 2.6
【解析】
【分析】
【详解】
(1)[1]由题意可知,干电路电流不变为
1 4.00mA I =
流过电阻箱的电流
112 4.00mA 2.00mA 2.00mA R I I I =-=-=
根据并联电路特点和欧姆定律得电流表内阻为
131
3
2 2.001010.5== 2.0010R g I R R I --⨯⨯⨯Ω=10.5Ω [2]将电流表A 1改装成量程为5V 的电压表,根据串联分压有 33-551010.5510g g
x g
U I R R I ---⨯⨯==⨯Ω=989.5Ω (3)[3]由图丙可知电流表的示数为2.60mA
[4]根据串联电路电压分配关系有
2.60mA 5mA 5V
U =。