仪陇县高级中学2018-2019学年高三上学期11月月考数学试卷含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
仪陇县高级中学2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 已知正方体被过一面对角线和它对面两棱中点的平面截去一个三棱台后的几何体的主(正)视图和俯视图如下,则它的左(侧)视图是( )
A
. B
. C
. D
.
2. 若集合A ={-1,1},B ={0,2},则集合{z|z =x +y ,x ∈A ,y ∈B}中的元素的个数为( )
A5 B4 C3 D2
3. 函数 y=x 2﹣4x+1,x ∈[2,5]的值域是( )
A .[1,6]
B .[﹣3,1]
C .[﹣3,6]
D .[﹣3,+∞)
4. 在△ABC 中,已知A=30°,C=45°,a=2,则△ABC 的面积等于( )
A
.
B
.
C
.
D
.
5. 已知,,a b c 为ABC ∆的三个角,,A B C 所对的边,若3cos (13cos )b C c B =-,则sin :sin C A =( )
A .2︰3
B .4︰3
C .3︰1
D .3︰2 【命题意图】本题考查正弦定理、余弦定理,意在考查转化能力、运算求解能力.
6. 2016年3月“两会”期间,有代表提出适当下调“五险一金”的缴存比例,现拟从某工厂职工中抽取
20名代表调查对这一提案的态度,已知该厂青年,中年,老年职工人数分别为350,500,150,按分
层抽样的方法,应从青年职工中抽取的人数为( ) A. 5 B.6 C.7
D.10
【命题意图】本题主要考查分层抽样的方法的运用,属容易题.
7. 已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点M (2,y 0).若点M 到该抛物线焦点的距离为3,则|OM|=( ) A
.
B
.
C .4
D
.
8. 已知f (x )是R 上的偶函数,且在(﹣∞,0
)上是增函数,设,b=f (log 43),c=f (0.4﹣1.2
)
则a ,b ,c 的大小关系为( )
A .a <c <b
B .b <a <c
C .c <a <b
D .c <b <a
9. 设全集U={1,2,3,4,5},集合A={2,3,4},B={2,5},则B ∪(∁U A )=( ) A .{5} B .{1,2,5}
C .{1,2,3,4,5}
D .∅
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
10.已知集合A={y|y=x 2+2x ﹣3},,则有( )
A .A ⊆B
B .B ⊆A
C .A=B
D .A ∩B=φ
11.过抛物线2
2(0)y px p =>焦点F 的直线与双曲线2
2
18
-=y x 的一条渐近线平行,并交其抛物线于A 、 B 两点,若>AF BF ,且||3AF =,则抛物线方程为( )
A .2
y x = B .2
2y x = C .24y x = D .2
3y x =
【命题意图】本题考查抛物线方程、抛物线定义、双曲线标准方程和简单几何性质等基础知识,意在考查方程思想和运算能力.
12.已知a 为常数,则使得成立的一个充分而不必要条件是( )
A .a >0
B .a <0
C .a >e
D .a <e
二、填空题
13.等比数列{a n }的前n 项和为S n ,已知S 3=a 1+3a 2,则公比q= .
14.如图是正方体的平面展开图,则在这个正方体中①BM 与ED 平行;②CN 与BE 是异面直线; ③CN 与BM 成60︒角;④DM 与BN 是异面直线.
以上四个命题中,正确命题的序号是 (写出所有你认为正确的命题).
15.已知数列{}n a 中,11a =,函数32
12()3432
n n a f x x x a x -=-
+-+在1x =处取得极值,则 n a =_________.
16.有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色的涂料,且三个房间的颜色各不相同.三个
房间的粉刷面积和三种颜色的涂料费用如下表:
那么在所有不同的粉刷方案中,最低的涂料总费用是 _______元.
17.直线l :
(t 为参数)与圆C :
(θ为参数)相交所得的弦长的取值范围
是 .
18.抛物线y 2=4x 上一点M 与该抛物线的焦点F 的距离|MF|=4,则点M 的横坐标x= .
三、解答题
19.(本题满分14分)已知函数x a x x f ln )(2-=.
(1)若)(x f 在]5,3[上是单调递减函数,求实数a 的取值范围;
(2)记x b x a x f x g )1(2ln )2()()(--++=,并设)(,2121x x x x <是函数)(x g 的两个极值点,若2
7≥b , 求)()(21x g x g -的最小值.
20.(本题满分12分)已知数列}{n a 的前n 项和为n S ,且332-=n n a S ,(+∈N n ). (1)求数列}{n a 的通项公式; (2)记n
n a n b 1
4+=
,n T 是数列}{n b 的前n 项和,求n T . 【命题意图】本题考查利用递推关系求通项公式、用错位相减法求数列的前n 项和.重点突出对运算及化归能力的考查,属于中档难度.
21.在平面直角坐标系xOy 中.己知直线l 的参数方程为(t 为参数),以坐标原点为极点,
x 轴正半轴为极轴,建立极坐标系,曲线C 的极坐标方程是ρ=4. (1)写出直线l 的普通方程与曲线C 的直角坐标系方程; (2)直线l 与曲线C 相交于A 、B 两点,求∠AOB 的值.
22.已知函数f (x )=ax 2+blnx 在x=1处有极值.
(1)求a,b的值;
(2)判断函数y=f(x)的单调性并求出单调区间.
23.已知数列{a n}满足a1=,a n+1=a n+,数列{b n}满足b n=
(Ⅰ)证明:b n∈(0,1)
(Ⅱ)证明:=
(Ⅲ)证明:对任意正整数n有a n.
24.已知函数f(x)=lg(x2﹣5x+6)和的定义域分别是集合A、B,
(1)求集合A,B;
(2)求集合A∪B,A∩B.
仪陇县高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题
13. 2 .
14.③④ 15.1
23
1n --
16.1464
17. [4,16] .
18. 3 .
三、解答题
19. 20. 21. 22.
23. 24.。