2020年华师大版八年级数学上学期第13章全等三角形单元检测卷(含答案)

合集下载

2020年华师大版初二数学上册第13章全等三角形单元测试卷及答案

2020年华师大版初二数学上册第13章全等三角形单元测试卷及答案

第13章测试卷一、选择题(每题3分,共30分)1.下列命题是假命题的是()A.两点确定一条直线B.角平分线上的点到角两边的距离相等C.有一个角等于60°的等腰三角形是等边三角形D.角的边越长,角就越大2.如图,已知AC=DB,AB=DC,你认为证明△ABC≌△DCB应该用() A.“边边边” B.“边角边” C.“角边角” D.“角角边”3.如图,已知△ABC的六个元素,图(1)(2)(3)中的三个三角形中标出了某些元素,则与△ABC全等的三角形是()A.(2) B.(3) C.(1)和(2) D.(2)和(3)4.“已知等腰三角形的底边和底边上的高,用尺规作图求作等腰三角形”里用到的基本作图是()A.作一条线段等于已知线段,作已知线段的垂直平分线B.作已知角的平分线C.过直线外一点作已知直线的垂线D.作一个角等于已知角5.已知△ABC≌△A′B′C′,且△ABC的周长为20,AB=8,BC=5,则A′C′等于() A.5 B.6 C.7 D.86.如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB,垂足为E.若AB=10 cm,AC=6 cm,则BE的长度为()A.10 cm B.6 cm C.4 cm D.2 cm7.如图,将长方形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E.若∠1=35°,则∠2的度数为()A.20°B.30°C.35°D.55°8.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED 的面积分别为27和16,则△EDF的面积为()A.11 B.5.5 C.7 D.3.59.已知△ABC的三边长分别为4,4,6,在△ABC所在平面内画一条直线,将△ABC 分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()条.A.3 B.4 C.5 D.610.如图,将含有30°角的直角三角尺ABC绕直角顶点A逆时针旋转到△ADE 的位置,使B点的对应点D落在BC边上,连结EB,EC,则下列结论:①∠DAC=∠DCA;②ED为AC的垂直平分线;③EB平分∠AED;④△ABD 为等边三角形.其中正确的是()A.①②③B.①②④C.②③④D.①②③④二、填空题(每题3分,共30分)11.把命题“等边对等角”的逆命题写成“如果……,那么……”的形式为_________________________________________________________________ _______.12.如图,两个三角形全等,根据图中所给的条件可知∠α=________.13.如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是:________.(填上你认为适当的一个条件即可)14.如图,在△ABC中,边AB的垂直平分线DE交AC于E,△ABC和△BEC的周长分别是30 cm和20 cm,则AB=________ cm.15.如图,已知P A⊥ON于A,PB⊥OM于B,且P A=PB,∠MON=50°,∠OPC=30°,则∠PCA=________.16.已知等腰三角形ABC的周长为18 cm,BC=8 cm,若△ABC≌△A′B′C′,则△A′B′C′的腰长等于________.17.如图,在四边形ABCD中,∠ABC=∠DCB=70°,∠ABD=40°,AB=DC,则∠BAC=________.18.如图,在△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为________.19.如图,AB=12 m,CA⊥AB于点A,DB⊥AB于点B,且AC=4 m.点P从点B开始以1 m/min的速度向点A运动;点Q从点B开始以2 m/min的速度向点D运动.P,Q两点同时出发,运动________后,△CAP≌△PBQ.20.如图,在△ABC中,BC的垂直平分线与∠BAC的邻补角的平分线相交于点D,DE⊥AC于E,DF⊥AB交BA的延长线于F,则下列结论:①△CDE≌△BDF;②CA-AB=2AE;③∠BDC+∠F AE=180°;④∠BAC=90°.其中正确的有____________.(填序号)三、解答题(21,22题每题6分,23,24题每题8分,25,26题每题10分,27题12分,共60分)21.如图,电信部门要在公路m,n之间的S区域修建一座电视信号发射塔P.按照设计要求,发射塔P到区域S内的两个城镇A,B的距离必须相等,到两条公路m,n的距离也必须相等.发射塔P应建在什么位置?在图中用尺规作图的方法作出它的位置并标出(不写作法但保留作图痕迹).22.如图,在平行四边形ABCD中,延长AB至点E,延长CD至点F,使得BE =DF.连结EF,与对角线AC交于点O.求证:OE=OF.23.如图,在△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D 为垂足,连结EC.(1)求∠ECD的度数;(2)若CE=5,求BC的长.24.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,点F 在AC上,BD=DF.求证:(1)CF=EB;(2)AB=AF+2EB.25.如图,A,B两建筑物位于河的两岸,要测得它们之间的距离,可以从B点出发在河岸上画一条射线BF,在BF上截取BC=CD,过点D作DE∥AB,使E,C,A三点在同一直线上,则DE的长就是A,B之间的距离,请你说明道理.26.如图①,点A,E,F,C在同一条直线上,AE=CF,过点E,F分别作ED ⊥AC,FB⊥AC,AB=CD.(1)若BD与EF交于点G,求证:BD平分EF;(2)若将△DEC沿AC方向移动到图②的位置,其余条件不变,上述结论是否仍然成立?请说明理由.27.如图a,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连结AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图b,线段CF,BD所在直线的位置关系为________,线段CF,BD的数量关系为________;②当点D在线段BC的延长线上时,如图c,①中的结论是否仍然成立,并说明理由.(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C,F不重合)?并说明理由.答案一、1.D 2.A 3.D 4.A 5.C 6.C7.A点拨:在Rt△DBC中,∠DCB=90°,∠1=35°,∴∠DBC=55°.由折叠的性质可知△DBC≌△DBC′,∴∠DBC′=∠DBC=55°.又∵DC∥AB,∴∠DBA=∠1=35°.∴∠2=∠DBC′-∠DBA=20°.故选A.8.B9.B点拨:假设AB=AC=4,BC=6,如图,当CD=AC=4时,直线AD符合要求.当BE=AB=4时,直线AE符合要求.作线段AC的垂直平分线交BC于点F,则AF=FC,直线AF符合要求.作线段AB的垂直平分线交BC 于点G,则AG=BG,直线AG符合要求.∴这样的直线最多可以画4条.故选B.10.B二、11.如果一个三角形有两个角相等,那么这两个角所对的边相等12.51°13.∠B=∠C(答案不唯一)14.1015.55°16.8 cm或5 cm17.80°18.419.4 min20.①②③三、21.解:如图.22.证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵BE=DF,∴AB+BE=CD+DF,即AE=CF.∵AB∥CD,∴AE∥CF.∴∠E=∠F.又∵∠AOE=∠COF,∴△AOE≌△COF.∴OE=OF.23.解:(1)∵DE垂直平分AC,∴AE=CE,∴∠ECD=∠A=36°.(2)∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°.又∵∠ECD=36°,∴∠ECB=72°-36°=36°.∴∠BEC=180°-∠ABC-∠ECB=180°-72°-36°=72°.∴∠B=∠BEC,∴BC=CE=5.24.证明:(1)∵AD是∠BAC的平分线,DE⊥AB,∠C=90°,∴DE=DC,∠C=∠DEB=90°.又∵BD=DF,∴Rt△CDF≌Rt△EDB(H.L.),∴CF=EB.(2)由(1)可知DE=DC,又∵AD=AD,∠C=∠AED=90°,∴Rt △ADC ≌Rt △ADE (H.L.),∴AC =AE ,∴AB =AE +BE =AC +EB =AF +CF +EB =AF +2EB .点拨:(1)根据角平分线的性质“角平分线上的点到角的两边的距离相等”,可得CD =DE .进而证得Rt △CDF ≌Rt △EDB ,得CF =EB .(2)利用角平分线的性质证明Rt △ADC ≌Rt △ADE ,得AC =AE ,再将线段AB 进行转化.25.解:∵E ,C ,A 三点在同一直线上,B ,C ,D 三点在同一直线上,∴∠ACB =∠ECD .∵DE ∥AB ,∴∠A =∠E .在△ABC 与△EDC 中,⎩⎨⎧∠A =∠E ,∠ACB =∠ECD ,BC =CD ,∴△ABC ≌△EDC (A.A.S.).∴AB =DE .26.(1)证明:∵ED ⊥AC ,FB ⊥AC ,∴∠DEG =∠BFE =90°.∵AE =CF ,∴AE +EF =CF +EF ,即AF =CE .在Rt △ABF 和Rt △CDE 中,⎩⎨⎧AB =CD ,AF =CE , ∴Rt △ABF ≌Rt △CDE (H.L.).∴BF =DE .在△BFG 和△DEG 中,⎩⎨⎧∠BGF =∠DGE ,∠BFG =∠DEG =90°,BF =DE ,∴△BFG ≌△DEG (A.A.S.).∴FG =EG ,即BD 平分EF .(2)解:BD 平分EF 的结论仍然成立.理由:∵AE =CF ,∴AE -EF =CF -EF ,即AF =CE .∵ED ⊥AC ,FB ⊥AC ,∴∠AFB =∠CED =90°.在Rt △ABF 和Rt △CDE 中,⎩⎨⎧AB =CD ,AF =CE , ∴Rt △ABF ≌Rt △CDE (H.L.).∴BF =DE .在△BFG 和△DEG 中,⎩⎨⎧∠BGF =∠DGE ,∠BFG =∠DEG =90°,BF =DE ,∴△BFG ≌△DEG (A.A.S.).∴GF =GE ,即BD 平分EF ,结论仍然成立.点拨:本题综合考查了三角形全等的判定方法.(1)先利用H.L.判定Rt △ABF ≌Rt △CDE ,得出BF =DE ;再利用A.A.S.判定△BFG ≌△DEG ,从而得出FG =EG ,即BD 平分EF .(2)中结论仍然成立,证明过程同(1)类似.27.解:(1)①CF ⊥BD ;CF =BD②当点D 在线段BC 的延长线上时,①中的结论仍然成立.理由如下:由正方形ADEF 得AD =AF ,∠DAF =90°.∵∠BAC =90°,∴∠DAF =∠BAC ,∴∠DAB =∠F AC ,又∵AB =AC ,∴△DAB ≌△F AC ,∴CF =BD ,∠ACF =∠ABD .∵∠BAC =90°,AB =AC ,∴△ABC 是等腰直角三角形,∴∠ABC =∠ACB =45°,∴∠ACF =45°,∴∠BCF =∠ACB +∠ACF =90°,即CF ⊥BD .(2)当∠ACB =45°时,CF ⊥BC (如图).理由:过点A 作AG ⊥AC 交CB 的延长线于点G ,则∠GAC =90°,∵∠ACB =45°,∠AGC =90°-∠ACB ,∴∠AGC =90°-45°=45°,∴∠ACB =∠AGC =45°,∴△AGC 是等腰直角三角形,∴AC =AG .又∵∠DAG =∠F AC (同角的余角相等),AD =AF ,∴△GAD ≌△CAF , ∴∠ACF =∠AGC =45°,∴∠BCF =∠ACB +∠ACF =45°+45°=90°,即CF ⊥BC .1、老吾老以及人之老,幼吾幼以及人之幼。

第13章 全等三角形 华东师大版八年级数学上册单元测试(含答案)

第13章 全等三角形 华东师大版八年级数学上册单元测试(含答案)

第13章 全等三角形(90分钟 100分)一、选择题(每小题3分,共24分)1.△ABC中,AB=AC=2,∠B=60°,则BC=( )A.2B.3C.4D.52.(2024·泉州期末)下列命题的逆命题是真命题的是( )A.全等三角形的对应角相等B.对顶角相等C.若x>y,则x-y>0D.若C是线段AB的中点,则AC=BC3.(2024·南通质检)如图,已知△ABC≌△DEC,∠ACB=100°,∠D=35°,则∠E=( )A.35°B.45°C.55°D.无法计算4.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,要求用圆规和直尺作图,把它分成两个三角形,其中一个三角形是等腰三角形.其作法错误的是( )5.(2023·台州中考)如图,锐角三角形ABC中,AB=AC,点D,E分别在边AB,AC上,连结BE,CD.下列命题中,假命题是( )A.若CD=BE,则∠DCB=∠EBCB.若∠DCB=∠EBC,则CD=BEC.若BD=CE,则∠DCB=∠EBCD.若∠DCB=∠EBC,则BD=CE6.如图,在Rt△ABC中,∠C=90°,AC=12 cm,BC=6 cm,线段PQ=AB,P,Q两点分别在线段AC和AC的垂线AX上移动,若以A,B,C为顶点的三角形与以A,P,Q为顶点的三角形全等,则AP的值为( )A.8 cmB.12 cmC.12 cm或6 cmD.12 cm或8 cm7.如图,OE是∠AOB的平分线,BD⊥OA,AC⊥OB,垂足分别为D,C,BD,AC都经过点E,则图中全等的三角形共有对( )A.3B.4C.5D.68.(2024·天津期中)如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④连结OC,OC平分∠AOE;⑤∠AOB=60°.恒成立的结论有( )A.①⑤B.①②⑤C.①②③⑤D.①②③④⑤二、填空题(每小题4分,共24分)9.定理“直角三角形的两个锐角互余”的逆定理是.10.检测房梁是否水平,可以采用下面的方法:在等腰直角三角尺斜边中点拴一条线绳,线绳的另一端拴一个铅锤,把这块三角尺的斜边贴在房梁上,结果线绳经过三角尺的顶点,则可以判断房梁是水平的.这样做的根据是:.11.如图,D在BC边上,△ABC≌△ADE,∠EAC=44°,则∠B的度数为.12.如图,在△ABC中,∠B=30°,∠C=50°,通过观察尺规作图的痕迹,∠DEA的度数是.13.(2023·重庆中考A卷)如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D为BC上一点,连结AD.过点B作BE⊥AD于点E,过点C作CF⊥AD交AD的延长线于点F.若BE=4,CF=1,则EF的长度为.14.如图,∠BOC=60°,A是BO的延长线上一点,OA=10 cm,动点P从点A出发,沿AB 以3 cm/s的速度移动,动点Q从点O出发沿OC以2 cm/s的速度移动,若点P,Q 同时出发,当△OPQ是等腰三角形时,移动的时间是.三、解答题(共52分)15.(6分)(2023·云南中考)如图,C是BD的中点,AB=ED,AC=EC.求证:△ABC≌△EDC.16.(8分)(2024·北京期中)下面是“过直线上一点作已知直线的垂线”的尺规作图过程:已知:如图,点P在直线l上.求作:直线PQ,使PQ⊥l.作法:①以点P为圆心,任意长为半径画弧,交直线l于A,B两点,AB长为半径画弧,两弧在直线l上方交于点Q,②分别以A,B为圆心,大于12③作直线PQ.直线PQ即为所求的垂线.(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:连结AQ,BQ,∵根据作法,有AQ=BQ,AP=BP,∴PQ⊥AB,即PQ⊥l.()(填推理的依据)17.(8分)如图,在长方形纸片ABCD中,点P在BC边上,将△CDP沿DP折叠,点C 落在点E处,PE,DE分别交AB于点G,F,且GF=GP.(1)求证:△GEF≌△GBP;(2)若PC=2,求BF的长.18.(8分)(2023·苏州中考)如图,在△ABC中,AB=AC,AD为△ABC的角平分线.以点A 为圆心,AD长为半径画弧,与AB,AC分别交于点E,F,连结DE,DF.(1)求证:△ADE≌△ADF;(2)若∠BAC=80°,求∠BDE的度数.19.(10分)已知,如图,AD为△ABC的角平分线,且AD=AC,E为AD延长线上的一点,AE=AB.(1)求证:△ABD≌△AEC;(2)求证:BE=EC.20.(12分)如图,△ABC是等边三角形,点D在AC上,点E在BC的延长线上,且BD=DE.(1)若点D是AC的中点,如图1,则线段AD与CE的数量关系是;(2)若点D不是AC的中点,如图2,试判断AD与CE的数量关系,并证明你的结论;(提示:过点D作DF∥BC,交AB于点F)(3)若点D在线段AC的延长线上,(2)中的结论是否仍成立?如果成立,请给予证明;如果不成立,请说明理由.【附加题】(10分)(1)已知△ABC中,∠BAC=60°,以AB和BC为边向外作等边△ABD和△BCE.①连结AE,CD,如图1,求证:∠BCD=∠AEB;②若AB⊥BC,延长AB交DE于点M,求证:点M为DE的中点;(2)如图3,HE⊥CE于点E,∠BEH=30°,点G在EH上运动,以BG为边作等边△BGF,当BF的长最小时,求∠FBE的度数.第13章 全等三角形(90分钟 100分)一、选择题(每小题3分,共24分)1.△ABC中,AB=AC=2,∠B=60°,则BC=(A)A.2B.3C.4D.52.(2024·泉州期末)下列命题的逆命题是真命题的是(C)A.全等三角形的对应角相等B.对顶角相等C.若x>y,则x-y>0D.若C是线段AB的中点,则AC=BC3.(2024·南通质检)如图,已知△ABC≌△DEC,∠ACB=100°,∠D=35°,则∠E=(B)A.35°B.45°C.55°D.无法计算4.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,要求用圆规和直尺作图,把它分成两个三角形,其中一个三角形是等腰三角形.其作法错误的是(B)5.(2023·台州中考)如图,锐角三角形ABC中,AB=AC,点D,E分别在边AB,AC上,连结BE,CD.下列命题中,假命题是(A)A.若CD=BE,则∠DCB=∠EBCB.若∠DCB=∠EBC,则CD=BEC.若BD=CE,则∠DCB=∠EBCD.若∠DCB=∠EBC,则BD=CE6.如图,在Rt△ABC中,∠C=90°,AC=12 cm,BC=6 cm,线段PQ=AB,P,Q两点分别在线段AC和AC的垂线AX上移动,若以A,B,C为顶点的三角形与以A,P,Q为顶点的三角形全等,则AP的值为(C)A.8 cmB.12 cmC.12 cm或6 cmD.12 cm或8 cm7.如图,OE是∠AOB的平分线,BD⊥OA,AC⊥OB,垂足分别为D,C,BD,AC都经过点E,则图中全等的三角形共有 对(B)A.3B.4C.5D.68.(2024·天津期中)如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④连结OC,OC平分∠AOE;⑤∠AOB=60°.恒成立的结论有(D)A.①⑤B.①②⑤C.①②③⑤D.①②③④⑤二、填空题(每小题4分,共24分)9.定理“直角三角形的两个锐角互余”的逆定理是 有两个角互余的三角形是直角三角形 .10.检测房梁是否水平,可以采用下面的方法:在等腰直角三角尺斜边中点拴一条线绳,线绳的另一端拴一个铅锤,把这块三角尺的斜边贴在房梁上,结果线绳经过三角尺的顶点,则可以判断房梁是水平的.这样做的根据是: 等腰三角形的底边上的中线、底边上的高重合 .11.如图,D在BC边上,△ABC≌△ADE,∠EAC=44°,则∠B的度数为 68° .12.如图,在△ABC中,∠B=30°,∠C=50°,通过观察尺规作图的痕迹,∠DEA的度数是 85° .13.(2023·重庆中考A卷)如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D为BC上一点,连结AD.过点B作BE⊥AD于点E,过点C作CF⊥AD交AD的延长线于点F.若BE =4,CF =1,则EF 的长度为 3 .14.如图,∠BOC =60°,A 是BO 的延长线上一点,OA =10 cm,动点P 从点A 出发,沿AB 以3 cm/s 的速度移动,动点Q 从点O 出发沿OC 以2 cm/s 的速度移动,若点P ,Q 同时出发,当△OPQ 是等腰三角形时,移动的时间是 2 s 或10 s .三、解答题(共52分)15.(6分)(2023·云南中考)如图,C 是BD 的中点,AB =ED ,AC =EC.求证:△ABC ≌△EDC.【解析】∵C 是BD 的中点,∴BC =DC ,在△ABC 和△EDC 中,AB =ED AC =EC BC =DC,∴△ABC ≌△EDC (S.S.S.).16.(8分)(2024·北京期中)下面是“过直线上一点作已知直线的垂线”的尺规作图过程:已知:如图,点P 在直线l 上.求作:直线PQ ,使PQ ⊥l.作法:①以点P 为圆心,任意长为半径画弧,交直线l 于A ,B 两点,②分别以A ,B 为圆心,大于12AB 长为半径画弧,两弧在直线l 上方交于点Q ,③作直线PQ.直线PQ即为所求的垂线.(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:连结AQ,BQ,∵根据作法,有AQ=BQ,AP=BP,∴PQ⊥AB,即PQ⊥l.(等腰三角形底边上的中线与底边上的高重合)(填推理的依据)【解析】(1)补全的图形如图所示:【解析】(2)连结AQ,BQ,∵根据作法,有AQ=BQ,AP=BP,∴PQ⊥AB,即PQ⊥l.(等腰三角形底边上的中线与底边上的高重合)17.(8分)如图,在长方形纸片ABCD中,点P在BC边上,将△CDP沿DP折叠,点C 落在点E处,PE,DE分别交AB于点G,F,且GF=GP.(1)求证:△GEF≌△GBP;【解析】(1)∵纸片ABCD为长方形,∴∠B=∠C=90°,由折叠的性质得,∠E=∠C,∴∠E=∠B,在△GEF 和△GBP 中,∠E =∠B ∠EGF =∠BGP GF =GP,∴△GEF ≌△GBP (A.A.S.);(2)若PC =2,求BF 的长.【解析】(2)由△GEF ≌△GBP 得GE =GB ,∵GF =GP ,∴BF =GB +GF =GE +GP =PE ,由折叠的性质得,PE =PC =2,∴BF =2.18.(8分)(2023·苏州中考)如图,在△ABC 中,AB =AC ,AD 为△ABC 的角平分线.以点A 为圆心,AD 长为半径画弧,与AB ,AC 分别交于点E ,F ,连结DE ,DF.(1)求证:△ADE ≌△ADF ;【解析】(1)∵AD 是△ABC 的角平分线,∴∠BAD =∠CAD.由作图知:AE =AF.在△ADE 和△ADF 中,AE =AF ∠BAD =∠CAD AD =AD,∴△ADE ≌△ADF (S.A.S.);(2)若∠BAC =80°,求∠BDE 的度数.【解析】(2)∵∠BAC =80°,AD 为△ABC 的角平分线,∴∠EAD =12∠BAC =40°,由作图知:AE =AD ,∴∠AED =∠ADE ,∴∠ADE =12×(180°-40°)=70°,∵AB =AC ,AD 为△ABC 的角平分线,∴AD ⊥BC ,∴∠BDE =90°-∠ADE =20°.19.(10分)已知,如图,AD 为△ABC 的角平分线,且AD =AC ,E 为AD 延长线上的一点,AE =AB.(1)求证:△ABD≌△AEC;【证明】(1)∵AD平分∠BAC,∴∠BAD=∠DAC,在△ABD与△AEC中,AB=AE∠BAD=∠EAC AD=AC,∴△ABD≌△AEC(S.A.S.); (2)求证:BE=EC.【证明】(2)∵AD=AC,AE=AB,∴∠ACD=∠ADC=180°-∠DAC2,∠ABE=∠AEB=180°-∠BAD2,∴∠ACD=∠ADC=∠ABE=∠AEB,∵∠BDE=∠ADC,∴∠BDE=∠BED,∴BD=BE,∵△ABD≌△AEC,∴BD=EC,∴BE=EC.20.(12分)如图,△ABC是等边三角形,点D在AC上,点E在BC的延长线上,且BD=DE.(1)若点D是AC的中点,如图1,则线段AD与CE的数量关系是AD=CE;【解析】(1)AD=CE,理由如下:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,AB=AC=BC.∵点D为AC的中点,∴∠DBC=30°,AD=DC,∵BD=DE,∴∠E=∠DBC=30°,∵∠ACB=∠E+∠CDE,∴∠CDE=∠E=30°,∴CD=CE,又∵AD=DC,∴AD=CE.(2)若点D不是AC的中点,如图2,试判断AD与CE的数量关系,并证明你的结论;(提示:过点D作DF∥BC,交AB于点F)【解析】(2)AD=CE,理由如下:如图,过点D作DF∥BC,交AB于点F,则∠ADF=∠ACB=60°,∵∠A=60°,∴△AFD是等边三角形,∴AD=DF=AF,∠AFD=60°,∴∠BFD=∠DCE=180°-60°=120°,∵DF∥BC,∴∠FDB=∠DBE=∠E,在△BFD和△DCE中,∠FDB=∠E∠BFD=∠DCE BD=DE,∴△BFD≌△DCE(A.A.S.),∴DF=EC,又∵AD=DF,∴AD=CE;(3)若点D在线段AC的延长线上,(2)中的结论是否仍成立?如果成立,请给予证明;如果不成立,请说明理由.【解析】(3)结论仍成立,理由如下:如图,过点D作DP∥BC,交AB的延长线于点P,则∠ABC=∠APD=60°,∠ACB=∠ADP=60°,∵∠A=60°,∴△APD是等边三角形,∴AP=PD=AD,∴∠DCE=∠ACB=∠P,∵DP∥BC,∴∠PDB=∠CBD,∵DB=DE,∴∠DBC=∠DEC,∴∠PDB=∠DEC,在△BPD和△DCE中,∠PDB=∠CED ∠P=∠DCE BD=DE,∴△BPD≌△DCE(A.A.S.),∴PD=CE,又∵AD=PD,∴AD=CE.【附加题】(10分)(1)已知△ABC中,∠BAC=60°,以AB和BC为边向外作等边△ABD和△BCE.①连结AE,CD,如图1,求证:∠BCD=∠AEB;②若AB⊥BC,延长AB交DE于点M,求证:点M为DE的中点;【解析】(1)①∵△ABD和△BCE是等边三角形,∴BD=BA,BC=BE,∠DBA=∠EBC=60°,∴∠DBA+∠ABC=∠EBC+∠ABC,即∠DBC=∠ABE,在△DBC和△ABE中,BD=BA∠DBC=∠ABE BC=BE,∴△DBC≌△ABE(S.A.S.),∴∠BCD=∠AEB;②如图,过点E作AD的平行线,交AM的延长线于点F,∵AD∥EF,∴∠DAM=∠AFE=60°,∵AB⊥BC,∴∠EBF=180°-∠ABC-∠CBE=30°,∴∠BEF=90°,在△ABC与△FEB中,∠BAC=∠EFB ∠ABC=∠FEB BC=EB,∴△ABC≌△FEB(A.A.S.),∴AB=EF=AD,在△MAD与△MFE中,∠AMD=∠FME ∠DAM=∠EFM AD=FE,∴△MAD≌△MFE(A.A.S.),∴DM=EM,即点M为DE的中点;(2)如图3,HE⊥CE于点E,∠BEH=30°,点G在EH上运动,以BG为边作等边△BGF,当BF的长最小时,求∠FBE的度数.【解析】(2)当BF的长最小时,即BG最小,则BG⊥HE,当以BG为边在BG左侧作等边△BGF时,如图所示:可得∠GBE=180°-∠BEH-∠BGE=60°,∵△FBG为等边三角形,∴∠FBG=60°,∴∠FBE=∠FBG+∠GBE=120°;当以BG为边在BG右侧作等边△BGF时,如图所示:此时点F在BE上,∴∠FBE=0°,综上所述,∠FBE=0°或120°.。

第13章 全等三角形数学八年级上册-单元测试卷-华师大版(含答案)

第13章 全等三角形数学八年级上册-单元测试卷-华师大版(含答案)

第13章全等三角形数学八年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、如图,已知△ABC,∠ACB=90°,BC=3,AC=4,小红按如下步骤作图:①分别以A、C为圆心,以大于AC的长为半径在AC两边作弧,交于两点M、N;②连接MN,分别交AB、AC于点D、O;③过C作CE∥AB交MN于点E,连接AE、CD.则四边形ADCE的周长为()A.10B.20C.12D.242、如图,AB∥CD,AD=CD,∠1=65°,则∠2的度数是()A.50°B.60°C.65°D.70°3、如图,AC,BD是矩形ABCD的对角线,过点D作DE∥AC交BC的延长线于E,则图中与△ABC全等的三角形共有( )A.1个B.2个C.3个D.4个4、如图,下列条件能保证△ABC≌△ADC的是:①AB=AD,BC=DC;②∠1=∠3,∠4=∠2;③∠1=∠2,∠4=∠3;④∠1=∠2,AB=AD;⑤∠1=∠2,BC=DC.()A.①②③④⑤B.①②③④C.①③④D.①③④⑤5、等腰三角形两边长分别为3,7,则它的周长为().A.13B.17C.13或17D.不能确定6、已知,,为三边,且满足则是()A.直角三角形B.等边三角形C.等腰三角形D.不能确定7、下列四个命题中,①若a>0,b>0,则a+b>0;②同位角相等;③有两边和一个角分别对应相等的两个三角形全等;④三角形的最大角不小于60°;真命题有( )个A.1B.2C.3D.48、如图,已知AD是△ABC的BC边上的高,下列能使△ABD≌△ACD的条件是()A.AB=ACB.∠BAC=90°C.BD=ACD.∠B=45°9、如图,△ABC中,AB:AC,D是BC的中点,AC的垂直平分线分别交AC,AD,AB于点E,D,F,则图中全等三角形的对数是( )A.1对B.2对C.3对D.4对10、如图,四边形中,,,,如果则等于()A. B. C. D.11、用反证法证明:在一个三角形中,至少有一个内角小于或等于60°,可以假设()A.每个内角都小于60°B.每个内角都大于60°C.至少有一个内角小于或等于60°D.以上答案都不对12、如图,面积为1的等边三角形中,分别是,,的中点,则的面积是()A.1B.C.D.13、当的两个内角的度数满足下列条件时,不是等腰三角形的是()A. B. C.D.14、10月30日到11月1日,在诏安一中举办了全县中小学生运动会.运动前夕,七年级决定开展校园环境保护的实践活动,1班与3班均想报名参加.老师有个想法:1班有50名同学,3班有53名同学,让两班分别进行一个举手表决:想参加的同学举手,当举手的人数和没有举手的人数之差是一个奇数时,该班就不参加;如果是偶数,该班就参加活动.老师的想法是()A.1班参加B.3班参加C.两班都参加D.两班都不参加15、如图,在中,点在边上,垂直平分边,垂足为点,若,且,则的度数是()A.40°B.35°C.30°D.45°二、填空题(共10题,共计30分)16、等腰三角形的两边长分别为2和5,则这个三角形的周长为________.17、如图,ABCD中,AC=AD,BE⊥AC于E,若∠D=70°,则∠ABE=________.18、己知,在矩形中,点E为的中点,点F为上一点,连接、,若,,,则线段DF的长为________.19、如图,正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB、AC于点E、G,连结GF,给出下列结论:①∠ADG=22.5°;②tan∠AED=2;③S△AGD=S△OGD;④四边形AEFG是菱形;⑤BE=2OG;⑥若S=1,则正方形ABCD的面积是6+4△OGF其中正确有________.20、如图,∠ABC=50°,AD垂直平分线段BC于点D,∠ABC的平分线BE交AD于点E,连接EC,则∠AEC=________°.21、如图,△ABC中,∠ABC与∠ACB的平分线相交于点D,过点D作直线EF‖BC,交AB 于点E、交AC于点F若BE=4,EF=7,则FC=________。

华师大版初中数学八年级上册《第13章 全等三角形》单元测试卷(含答案解析

华师大版初中数学八年级上册《第13章 全等三角形》单元测试卷(含答案解析

华师大新版八年级上学期《第13章全等三角形》单元测试卷一.选择题(共10小题)1.如图,汽车在东西向的公路l上行驶,途中A,B,C,D四个十字路口都有红绿灯.AB之间的距离为800米,BC为1000米,CD为1400米,且l上各路口的红绿灯设置为:同时亮红灯或同时亮绿灯,每次红(绿)灯亮的时间相同,红灯亮的时间与绿灯亮的时间也相同.若绿灯刚亮时,甲汽车从A路口以每小时30千米的速度沿l向东行驶,同时乙汽车从D路口以相同的速度沿l向西行驶,这两辆汽车通过四个路口时都没有遇到红灯,则每次绿灯亮的时间可能设置为()A.50秒B.45秒C.40秒D.35秒2.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE3.如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′能绕着点O自由转动,就做成了一个测量工具,由三角形全等可知A′B′的长等于内槽宽AB,那么判定△OAB≌△OA′B′的理由是()A.SAS B.ASA C.SSS D.AAS4.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()A.带①去B.带②去C.带③去D.带①②去5.如果一个三角形一条边上的中点到其它两边距离相等,那么这个三角形一定是()A.等边三角形B.等腰三角形C.直角三角形D.斜三角形6.如图,E是等边△ABC中AC边上的点,∠1=∠2,BE=CD,则△ADE的形状是()A.等腰三角形B.等边三角形C.不等边三角形D.不能确定形状7.如图,已知△ABC中,AB=AC,∠C=30°,AB⊥AD,则下列关系式正确的为()A.BD=CD B.BD=2CD C.BD=3CD D.BD=4CD 8.如图,在△ABC中,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF长为半径画弧,两弧相交于点G;③作射线AG,交BC边于点D.则∠ADC的度数为()A.40°B.55°C.65°D.75°9.利用反证法证明“直角三角形至少有一个锐角不小于45°”,应先假设()A.直角三角形的每个锐角都小于45°B.直角三角形有一个锐角大于45°C.直角三角形的每个锐角都大于45°D.直角三角形有一个锐角小于45°10.用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应假设这个三角形中()A.每一个内角都大于60°B.每一个内角都小于60°C.有一个内角大于60°D.有一个内角小于60°二.填空题(共2小题)11.下列命题中,其逆命题成立的是.(只填写序号)①同旁内角互补,两直线平行;②如果两个角是直角,那么它们相等;③如果两个实数相等,那么它们的平方相等;④如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.12.所谓尺规作图中的尺规是指:.三.解答题(共11小题)13.如图,AB=AE,∠B=∠AED,∠1=∠2,求证:△ABC≌△AED.14.如图,△ABC中,D是AB上一点,DE⊥AC于点E,F是AD的中点,FG⊥BC于点G,与DE交于点H,若FG=AF,AG平分∠CAB,连接GE,GD.求证:△ECG≌△GHD;15.如图,在△AEC和△DFB中,∠E=∠F,点A、B、C、D在同一直线上,有如下三个关系式:①AE∥DF,②AB=CD,③CE=BF.(1)请用其中两个关系式作为条件,另一个作为结论,写出你认为正确的所有命题(用序号写出命题书写形式:“如果⊗、⊗,那么⊗”)(2)选择(1)中你写出的一个命题,说明它正确的理由.16.如图,AC∥BD,AB与CD相交于点O,且OC=OD,AE=BF,E、F分别在OA、OB上.(1)求证:OE=OF;(2)若E、F分别是OA、OB延长线上两点,其余条件不变,则(1)中结论还成立吗?请画出图形并证明你的结论.17.如图,AD平分∠BAC,点E在射线AD上,∠BED=∠CED,求证:AB=AC.18.如图,点G在CA的延长线上,AF=AG,∠ADC=∠GEC.求证:AD平分∠BAC.19.如图,在△ABC中,AB=AC,CD是∠ACB的平分线,DE∥BC,交AC于点E.(1)求证:DE=CE.(2)若∠CDE=35°,求∠A的度数.20.如图,BC⊥CD,∠1=∠2=∠3,∠4=60°,∠5=∠6.(1)CO是△BCD的高吗?为什么?(2)求∠5、∠7的度数.21.如图,等边三角形ABC中,D为AC上一点,E为AB延长线上一点,DE⊥AC交BC于点F,且DF=EF.(1)求证:CD=BE;(2)若AB=12,试求BF的长.22.在△ABC中,AB=AC,∠BAC=120°,AD⊥BC,垂足为G,且AD=AB.∠EDF=60°,其两边分别交边AB,AC于点E,F.(1)求证:△ABD是等边三角形;(2)求证:BE=AF.23.如图在△ABC中,∠ABC=90°.(1)用直尺和圆规作AC的垂直平分线交AB于D、交AC于E点(不要求写作法,保留作图痕迹);(2)若(1)中AB=4,BC=3,求AD的长.华师大新版八年级上学期《第13章全等三角形》单元测试卷参考答案与试题解析一.选择题(共10小题)1.如图,汽车在东西向的公路l上行驶,途中A,B,C,D四个十字路口都有红绿灯.AB之间的距离为800米,BC为1000米,CD为1400米,且l上各路口的红绿灯设置为:同时亮红灯或同时亮绿灯,每次红(绿)灯亮的时间相同,红灯亮的时间与绿灯亮的时间也相同.若绿灯刚亮时,甲汽车从A路口以每小时30千米的速度沿l向东行驶,同时乙汽车从D路口以相同的速度沿l向西行驶,这两辆汽车通过四个路口时都没有遇到红灯,则每次绿灯亮的时间可能设置为()A.50秒B.45秒C.40秒D.35秒【分析】首先求出汽车行驶各段所用的时间,进而根据红绿灯的设置,分析每次绿灯亮的时间,得出符合题意答案.【解答】解:∵甲汽车从A路口以每小时30千米的速度沿l向东行驶,同时乙汽车从D路口以相同的速度沿l向西行驶,∴两车的速度为:=(m/s),∵AB之间的距离为800米,BC为1000米,CD为1400米,∴分别通过AB,BC,CD所用的时间为:=96(s),=120(s),=168(s),∵这两辆汽车通过四个路口时都没有遇到红灯,∴当每次绿灯亮的时间为50s时,∵=1,∴甲车到达B路口时遇到红灯,故A错误;∴当每次绿灯亮的时间为45s时,∵=3,∴乙车到达C路口时遇到红灯,故B错误;∴当每次绿灯亮的时间为40s时,∵=5,∴甲车到达C路口时遇到红灯,故C错误;∴当每次绿灯亮的时间为35s时,∵=2,=6,=10,=4,=8,∴这两辆汽车通过四个路口时都没有遇到红灯,故D正确;则每次绿灯亮的时间可能设置为:35秒.故选:D.【点评】此题主要考查了推理与论证,根据题意得出汽车行驶每段所用的时间,进而由选项分析是解题关键.2.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE【分析】根据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断.【解答】解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选:D.【点评】本题主要考查了全等三角形的性质,根据已知的对应角正确确定对应边是解题的关键.3.如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′能绕着点O自由转动,就做成了一个测量工具,由三角形全等可知A′B′的长等于内槽宽AB,那么判定△OAB≌△OA′B′的理由是()A.SAS B.ASA C.SSS D.AAS【分析】由O是AA′、BB′的中点,可得AO=A′O,BO=B′O,再有∠AOA′=∠BOB′,可以根据全等三角形的判定方法SAS,判定△OAB≌△OA′B′.【解答】解:∵O是AA′、BB′的中点,∴AO=A′O,BO=B′O,在△OAB和△OA′B′中,∴△OAB≌△OA′B′(SAS),故选:A.【点评】此题主要全等三角形的应用,关键是掌握全等三角形的判定方法:SSS、SAS、ASA、AAS,HL,要证明两个三角形全等,必须有对应边相等这一条件.4.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()A.带①去B.带②去C.带③去D.带①②去【分析】根据三角形全等的判定方法ASA,即可求解.【解答】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.故选:C.【点评】此题主要考查了全等三角形的应用,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.5.如果一个三角形一条边上的中点到其它两边距离相等,那么这个三角形一定是()A.等边三角形B.等腰三角形C.直角三角形D.斜三角形【分析】本题根据已知条件可以通过证明三角形全等得出三角形的形状,注意:有效利用“等角对等边”.【解答】解:∵DE⊥AB,DF⊥AC,∴∠BED=∠DFC=90°,∵在△BDE和△CDF,BD=CD,DE=DF,∴△DBE≌△DFC(HL),∴∠B=∠C,∴AB=AC,∴这个三角形一定是等腰三角形.故选:B.【点评】本题考查等腰三角形的判定;解题中两次运用了全等三角形的判定与性质及等量加等量和相等是比较关健的.6.如图,E是等边△ABC中AC边上的点,∠1=∠2,BE=CD,则△ADE的形状是()A.等腰三角形B.等边三角形C.不等边三角形D.不能确定形状【分析】先证得△ABE≌△ACD,可得AE=AD,∠BAE=∠CAD=60°,即可证明△ADE是等边三角形.【解答】解:∵△ABC为等边三角形∴AB=AC∵∠1=∠2,BE=CD∴△ABE≌△ACD∴AE=AD,∠BAE=∠CAD=60°∴△ADE是等边三角形.故选:B.【点评】此题主要考查学生对等边三角形的判定及三角形的全等等知识点的掌握.7.如图,已知△ABC中,AB=AC,∠C=30°,AB⊥AD,则下列关系式正确的为()A.BD=CD B.BD=2CD C.BD=3CD D.BD=4CD【分析】根据AB=AC,判断出∠B=∠C=30°,从而求出∠BAC=120°,然后根据∠BAD=90°,求出∠1=30°,得到DC=AD,然后根据30°的角所对的直角边是斜边的一半解答.【解答】解:∵AB=AC,∠C=30°,∴∠B=∠C=30°,∴∠BAC=180﹣30°×2=120°,又∵BAD=90°,∴∠1=120°﹣90°=30°,∴∠1=∠C=30°,∴DC=AD,∵在Rt△ABD中,∠B=30°,∴AD=BD,则CD=BD.∴BD=2CD.故选:B.【点评】本题考查了含30°角的直角三角形和等腰三角形的性质,知道30度的角所对的直角边是斜边的一半是解题的关键.8.如图,在△ABC中,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF长为半径画弧,两弧相交于点G;③作射线AG,交BC边于点D.则∠ADC的度数为()A.40°B.55°C.65°D.75°【分析】根据角平分线的作法可得AG是∠CAB的角平分线,然后再根据角平分线的性质可得∠CAD=∠CAB=25°,然后再根据直角三角形的性质可得∠CDA=90°﹣25°=65°.【解答】解:根据作图方法可得AG是∠CAB的角平分线,∵∠CAB=50°,∴∠CAD=∠CAB=25°,∵∠C=90°,∴∠CDA=90°﹣25°=65°,故选:C.【点评】此题主要考查了基本作图,关键是掌握角平分线的作法,以及直角三角形的性质.关键是掌握直角三角形两锐角互余.9.利用反证法证明“直角三角形至少有一个锐角不小于45°”,应先假设()A.直角三角形的每个锐角都小于45°B.直角三角形有一个锐角大于45°C.直角三角形的每个锐角都大于45°D.直角三角形有一个锐角小于45°【分析】熟记反证法的步骤,从命题的反面出发假设出结论,直接得出答案即可.【解答】解:用反证法证明命题“在直角三角形中,至少有一个锐角不小于45°”时,应先假设直角三角形的每个锐角都小于45°.故选:A.【点评】此题主要考查了反证法的步骤,熟记反证法的步骤:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.10.用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应假设这个三角形中()A.每一个内角都大于60°B.每一个内角都小于60°C.有一个内角大于60°D.有一个内角小于60°【分析】熟记反证法的步骤,然后进行判断即可.【解答】解:用反证法证明“三角形中必有一个内角小于或等于60°”时,应先假设三角形中每一个内角都不小于或等于60°,即都大于60°.故选:A.【点评】此题主要考查了反证法,反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.二.填空题(共2小题)11.下列命题中,其逆命题成立的是①④.(只填写序号)①同旁内角互补,两直线平行;②如果两个角是直角,那么它们相等;③如果两个实数相等,那么它们的平方相等;④如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.【分析】把一个命题的条件和结论互换就得到它的逆命题,再分析逆命题是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:①两直线平行,同旁内角互补,正确;②如果两个角相等,那么它们是直角,错误;③如果两个实数的平方相等,那么这两个实数相等,错误;④如果一个三角形是直角三角形,c为斜边,则a2+b2=c2,正确.故答案为①④.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题,难度适中.12.所谓尺规作图中的尺规是指:没有刻度的直尺和圆规.【分析】本题考的是尺规作图的基本概念.【解答】解:由尺规作图的概念可知:尺规作图中的尺规指的是没有刻度的直尺和圆规.【点评】本题考查的是尺规作图的基本概念,尺规作图指的是没有刻度的直尺和圆规.三.解答题(共11小题)13.如图,AB=AE,∠B=∠AED,∠1=∠2,求证:△ABC≌△AED.【分析】根据ASA只要证明∠BAC=∠EAD即可解决问题;【解答】证明∵∠1=∠2,∴∠BAC=∠EAD,在△ABC和△AED中,,∴△ABC≌△AED.【点评】本题考查全等三角形的判定,解题的关键是熟练掌握全等三角形的判定,属于中考常考题型.14.如图,△ABC中,D是AB上一点,DE⊥AC于点E,F是AD的中点,FG⊥BC于点G,与DE交于点H,若FG=AF,AG平分∠CAB,连接GE,GD.求证:△ECG≌△GHD;【分析】依据条件得出∠C=∠DHG=90°,∠CGE=∠GED,依据F是AD的中点,FG∥AE,即可得到FG是线段ED的垂直平分线,进而得到GE=GD,∠CGE=∠GDE,利用AAS即可判定△ECG≌△GHD.【解答】证明:∵AF=FG,∴∠FAG=∠FGA,∵AG 平分∠CAB,∴∠CAG=∠FAG,∴∠CAG=∠FGA,∴AC∥FG.∵DE⊥AC,∴FG⊥DE,∵FG⊥BC,∴DE∥BC,∴AC⊥BC,∵F 是AD 的中点,FG∥AE,∴H 是ED 的中点∴FG 是线段ED 的垂直平分线,∴GE=GD,∠GDE=∠GED,∴∠CGE=∠GDE,∴△ECG≌△GHD.(AAS).【点评】本题考查了全等三角形的判定,线段垂直平分线的判定与性质,熟练掌握全等三角形的判定定理是解决问题的关键.15.如图,在△AEC和△DFB中,∠E=∠F,点A、B、C、D在同一直线上,有如下三个关系式:①AE∥DF,②AB=CD,③CE=BF.(1)请用其中两个关系式作为条件,另一个作为结论,写出你认为正确的所有命题(用序号写出命题书写形式:“如果⊗、⊗,那么⊗”)(2)选择(1)中你写出的一个命题,说明它正确的理由.【分析】(1)如果①②作为条件,③作为结论,得到的命题为真命题;如果①③作为条件,②作为结论,得到的命题为真命题,写成题中要求的形式即可;(2)若选择(1)中的如果①②,那么③,由AE与DF平行,利用两直线平行内错角相等得到一对角相等,再由AB=DC,等式左右两边都加上BC,得到AC=DB,又∠E=∠F,利用AAS即可得到三角形ACE与三角形DBF全等,根据全等三角形的对应边相等得到CE=BF,得证;若选择如果①③,那么②,由AE与FD平行,利用两直线平行内错角相等得到一对角相等,再由∠E=∠F,CE=BF,利用AAS可得出三角形ACE与三角形DBF全等,根据全等三角形的对应边相等可得出AC=BD,等式左右两边都减去BC,得到AB=CD,得证.【解答】解:(1)如果①②,那么③;如果①③,那么②;(2)若选择如果①②,那么③,证明:∵AE∥DF,∴∠A=∠D,∵AB=CD,∴AB+BC=BC+CD,即AC=DB,在△ACE和△DBF中,,∴△ACE≌△DBF(AAS),∴CE=BF;若选择如果①③,那么②,证明:∵AE∥DF,∴∠A=∠D,在△ACE和△DBF中,,∴△ACE≌△DBF(AAS),∴AC=DB,∴AC﹣BC=DB﹣BC,即AB=CD.【点评】此题考查了全等三角形的判定与性质,平行线的性质,利用了转化的数学思想,熟练掌握全等三角形的判定与性质是解本题的关键.16.如图,AC∥BD,AB与CD相交于点O,且OC=OD,AE=BF,E、F分别在OA、OB上.(1)求证:OE=OF;(2)若E、F分别是OA、OB延长线上两点,其余条件不变,则(1)中结论还成立吗?请画出图形并证明你的结论.【分析】首先利用全等三角形的判定定理易求出△AOC≌△BOD,如图可得1中结论仍然成立,还是要证明△AOC≌△BOD.【解答】解:(1)∵OC=OD,AC∥BD,∴∠ODB=∠OCA.又∵∠COA=∠DOF,∴△COA≌△DOB.又∵AE=BF,BD=AC,∠CAE=∠FBD,∴△AOC≌△BOD.∴OE=OF.(2)同理可证得△AOC≌△BOD.∵OC=OD,AC∥BD,∴△COA≌△BOD.∴AC=DB.又∵AE=BF,∠EAC=∠FBD,∴△EAC≌△FBD∴OE=OF.【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.17.如图,AD平分∠BAC,点E在射线AD上,∠BED=∠CED,求证:AB=AC.【分析】根据角平分线定义得出∠BAE=∠CAE,根据三角形外角性质和已知求出∠C=∠B,根据AAS推出△AEB≌△AEC,根据全等三角形的性质得出即可.【解答】证明:∵AD平分∠BAC,∴∠BAE=∠CAE,∵∠BED=∠CED,∠BED=∠BAE+∠B,∠CED=∠CAE+∠C,∴∠C=∠B,在△AEB和△AEC中,∴△AEB≌△AEC,∴AB=AC.【点评】本题考查了三角形外角性质和全等三角形的性质和判定的应用,能求出△AEB≌△AEC是解此题的关键,注意:全等三角形的对应边相等.18.如图,点G在CA的延长线上,AF=AG,∠ADC=∠GEC.求证:AD平分∠BAC.【分析】根据等腰三角形性质可得∠G=∠GFA;根据平行线的判定方法可得AD ∥GF,运用平行线的性质得角的关系求证.【解答】证明:∵AF=AG,∴∠G=∠GFA.∵∠ADC=∠GEC,∴AD∥GE.∴∠BAD=∠GFA,∠DAC=∠G.∴∠BAD=∠DAC,即AD平分∠BAC.【点评】此题考查等腰三角形的性质及平行线的判定与性质,难度中等.19.如图,在△ABC中,AB=AC,CD是∠ACB的平分线,DE∥BC,交AC于点E.(1)求证:DE=CE.(2)若∠CDE=35°,求∠A的度数.【分析】(1)根据角平分线的性质可得出∠BCD=∠ECD,由DE∥BC可得出∠EDC=∠BCD,进而可得出∠EDC=∠ECD,再利用等角对等边即可证出DE=CE;(2)由(1)可得出∠ECD=∠EDC=35°,进而可得出∠ACB=2∠ECD=70°,再根据等腰三角形的性质结合三角形内角和定理即可求出∠A的度数.【解答】(1)证明:∵CD是∠ACB的平分线,∴∠BCD=∠ECD.∵DE∥BC,∴∠EDC=∠BCD,∴∠EDC=∠ECD,∴DE=CE.(2)解:∵∠ECD=∠EDC=35°,∴∠ACB=2∠ECD=70°.∵AB=AC,∴∠ABC=∠ACB=70°,∴∠A=180°﹣70°﹣70°=40°.【点评】本题考查了等腰三角形的判定与性质、平行线的性质以及角平分线,解题的关键是:(1)根据平行线的性质结合角平分线的性质找出∠EDC=∠ECD;(2)利用角平分线的性质结合等腰三角形的性质求出∠ACB=∠ABC=70°.20.如图,BC⊥CD,∠1=∠2=∠3,∠4=60°,∠5=∠6.(1)CO是△BCD的高吗?为什么?(2)求∠5、∠7的度数.【分析】(1)由BC⊥CD,则∠DCB=90°,可得∠1=∠2=∠3=45°,即CD=CB,所以,CO是等腰直角△DCB的角平分线,则可得CO⊥BD;(2)在△ACD中,由∠1=∠3=45°,∠4=60°,根据三角形的内角和定理,可求得∠5=30°,又∠5=∠6,所以,在直角△AOB中,即可得出∠7的度数;【解答】解:(1)CO是△BCD的高.理由如下:∵BC⊥CD,∴∠DCB=90°,∴∠1=∠2=∠3=45°,∴△DCB是等腰直角三角形,∴CO是∠DCB的角平分线,∴CO⊥BD(等腰三角形三线合一);(2)∵在△ACD中,∠1=∠3=45°,∠4=60°,∴∠5=30°,又∵∠5=∠6,∴∠6=30°,∴在直角△AOB中,∠7=180°﹣90°﹣30°=60°.【点评】本题主要看考查了等腰三角形的判定与性质,熟记等腰三角形的三线合一,是正确解答本题的关键.21.如图,等边三角形ABC中,D为AC上一点,E为AB延长线上一点,DE⊥AC交BC于点F,且DF=EF.(1)求证:CD=BE;(2)若AB=12,试求BF的长.【分析】(1)先作DM∥AB,交CF于M,可得△CDM为等边三角形,再判定△DMF≌△EBF,最后根据全等三角形的性质以及等边三角形的性质,得出结论;(2)根据ED⊥AC,∠A=60°=∠ABC,可得∠E=∠BFE=∠DFM=∠FDM=30°,由此得出CM=MF=BF=BC,最后根据AB=12即可求得BF的长.【解答】解:(1)如图,作DM∥AB,交CF于M,则∠DMF=∠E,∵△ABC是等边三角形,∴∠C=60°=∠CDM=∠CMD,∴△CDM是等边三角形,∴CD=DM,在△DMF和△EBF中,,∴△DMF≌△EBF(ASA),∴DM=BE,∴CD=BE;(2)∵ED⊥AC,∠A=60°=∠ABC,∴∠E=∠BFE=∠DFM=∠FDM=30°,∴BE=BF,DM=FM,又∵△DMF≌△EBF,∴MF=BF,∴CM=MF=BF,又∵AB=BC=12,∴CM=MF=BF=4.【点评】本题主要考查了等边三角形的性质、全等三角形的判定与性质的综合应用,解决问题的关键是作平行线,构造等边三角形和全等三角形,根据全等三角形的性质以及等边三角形的性质进行求解.22.在△ABC中,AB=AC,∠BAC=120°,AD⊥BC,垂足为G,且AD=AB.∠EDF=60°,其两边分别交边AB,AC于点E,F.(1)求证:△ABD是等边三角形;(2)求证:BE=AF.【分析】(1)连接BD由等腰三角形的性质和已知条件得出∠BAD=∠DAC=×120°=60°,再由AD=AB,即可得出结论;(2)由△ABD是等边三角形,得出BD=AD,∠ABD=∠ADB=60°,证出∠BDE=∠ADF,由ASA证明△BDE≌△ADF,得出BE=AF.【解答】(1)证明:连接BD,∵AB=AC,AD⊥BC,∴∠BAD=∠DAC=∠BAC,∵∠BAC=120°,∴∠BAD=∠DAC=×120°=60°,∵AD=AB,∴△ABD是等边三角形;(2)证明:∵△ABD是等边三角形,∴∠ABD=∠ADB=60°,BD=AD∵∠EDF=60°,∴∠BDE=∠ADF,在△BDE与△ADF中,,∴△BDE≌△ADF(ASA),∴BE=AF.【点评】本题考查了等腰三角形的性质、全等三角形的判定与性质、等边三角形的判定与性质;熟练掌握等腰三角形的性质,并能进行推理论证是解决问题的关键.23.如图在△ABC中,∠ABC=90°.(1)用直尺和圆规作AC的垂直平分线交AB于D、交AC于E点(不要求写作法,保留作图痕迹);(2)若(1)中AB=4,BC=3,求AD的长.【分析】(1)经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(中垂线)垂直平分线,据此进行作图;(2)连接CD,设AD=x,则CD=x,BD=4﹣x,在Rt△BCD中利用勾股定理列方程求解,即可得到AD的长.【解答】解:(1)如图所示,直线DE即为所求;(2)如图,连接CD,∵△ABC中,∠ABC=90°,AB=4,BC=3,∴利用勾股定理可得AC=5,设AD=x,则CD=x,BD=4﹣x,Rt△BCD中,x2=32+(4﹣x)2,解得x=,即AD的长为.【点评】本题主要考查了线段垂直平分线的性质的运用,解决问题的关键是在直角三角形中利用勾股定理列方程求解.。

华东师大版数学八年级上册第13章《全等三角形》单元测试(含答案解析)

华东师大版数学八年级上册第13章《全等三角形》单元测试(含答案解析)

2020年~2021年最新第13章全等三角形一、选择题1.如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH其中,正确的结论有()A.1个B.2个C.3个D.4个2.如图,正方形ABCD中,点E是AD边中点,BD、CE交于点H,BE、AH交于点G,则下列结论:①AG⊥BE;②BG=4GE;③S△BHE =S△CHD;④∠AHB=∠EHD.其中正确的个数是()A.1 B.2 C.3 D.4二、填空题3.如图,在△ABC中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE= .4.如图,AC是矩形ABCD的对角线,AB=2,BC=2,点E,F分别是线段AB,AD上的点,连接CE,CF.当∠BCE=∠ACF,且CE=CF时,AE+AF= .5.如图,在正方形ABCD中,如果AF=BE,那么∠AOD的度数是.6.如图,△ABC中,∠C=90°,CA=CB,点M在线段AB上,∠GMB=∠A,BG⊥MG,垂足为G,MG 与BC相交于点H.若MH=8cm,则BG= cm.7.如图,以△ABC的三边为边分别作等边△ACD、△ABE、△BCF,则下列结论:①△EBF≌△DFC;②四边形AEFD为平行四边形;③当AB=AC,∠BAC=120°时,四边形AEFD是正方形.其中正确的结论是.(请写出正确结论的序号).三、解答题8.如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DE⊥AF,垂足为点E.(1)求证:DE=AB.(2)以D为圆心,DE为半径作圆弧交AD于点G.若BF=FC=1,试求的长.9.如图,∠1=∠2,∠3=∠4,求证:AC=AD.10.如图,AC=DC,BC=EC,∠ACD=∠BCE.求证:∠A=∠D.11.如图,△ABC和△EFD分别在线段AE的两侧,点C,D在线段AE上,AC=DE,AB∥EF,AB=EF.求证:BC=FD.12.如图,在正方形ABCD中,G是BC上任意一点,连接AG,DE⊥AG于E,BF∥DE交AG于F,探究线段AF、BF、EF三者之间的数量关系,并说明理由.13.已知:如图,在△ABC中,DE、DF是△ABC的中位线,连接EF、AD,其交点为O.求证:(1)△CDE≌△DBF;(2)OA=OD.14.如图,已知∠ABC=90°,D是直线AB上的点,AD=BC.(1)如图1,过点A作AF⊥AB,并截取AF=BD,连接DC、DF、CF,判断△CDF的形状并证明;(2)如图2,E是直线BC上一点,且CE=BD,直线AE、CD相交于点P,∠APD的度数是一个固定的值吗?若是,请求出它的度数;若不是,请说明理由.15.如图,正方形ABCD中,点E,F分别在AD,CD上,且AE=DF,连接BE,AF.求证:BE=AF.16.如图,在△ABC中,已知AB=AC,AD平分∠BAC,点M,N分别在AB,AC边上,AM=2MB,AN=2NC.求证:DM=DN.17.在平行四边形ABCD中,将△BCD沿BD翻折,使点C落在点E处,BE和AD相交于点O,求证:OA=OE.18.我们把两组邻边相等的四边形叫做“筝形”.如图,四边形ABCD是一个筝形,其中AB=CB,AD=CD.对角线AC,BD相交于点O,OE⊥AB,OF⊥CB,垂足分别是E,F.求证OE=OF.第13章全等三角形参考答案与试题解析一、选择题1.如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH其中,正确的结论有()A.1个B.2个C.3个D.4个【考点】全等三角形的判定与性质;正方形的性质;相似三角形的判定与性质.【专题】压轴题.【分析】根据正方形的性质得出∠B=∠DCB=90°,AB=BC,求出BG=BE,根据勾股定理得出BE=GE,即可判断①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根据SAS推出△GAE≌△CEF,即可判断②;求出∠AGE=∠ECF=135°,即可判断③;求出∠FEC<45°,根据相似三角形的判定得出△GBE和△ECH不相似,即可判断④.【解答】解:∵四边形ABCD是正方形,∴∠B=∠DCB=90°,AB=BC,∵AG=CE,∴BG=BE,由勾股定理得:BE=GE,∴①错误;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中∴△GAE≌△CEF,∴②正确;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正确;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④错误;即正确的有2个.故选B.【点评】本题考查了正方形的性质,等腰三角形的性质,全等三角形的性质和判定,相似三角形的判定,勾股定理等知识点的综合运用,综合比较强,难度较大.2.如图,正方形ABCD中,点E是AD边中点,BD、CE交于点H,BE、AH交于点G,则下列结论:①AG⊥BE;②BG=4GE;③S△BHE =S△CHD;④∠AHB=∠EHD.其中正确的个数是()A.1 B.2 C.3 D.4【考点】全等三角形的判定与性质;正方形的性质.【专题】压轴题.【分析】首先根据正方形的性质证得△BAE ≌△CDE ,推出∠ABE=∠DCE ,再证△ADH ≌△CDH ,求得∠HAD=∠HCD ,推出∠ABE=∠HAD ;求出∠ABE+∠BAG=90°;最后在△AGE 中根据三角形的内角和是180°求得∠AGE=90°即可得到①正确.根据tan ∠ABE=tan ∠EAG=,得到AG=BG ,GE=AG ,于是得到BG=4EG ,故②正确;根据AD ∥BC ,求出S △BDE =S △CDE ,推出S △BDE ﹣S △DEH =S △CDE ﹣S △DEH ,即;S △BHE =S △CHD ,故③正确;由∠AHD=∠CHD ,得到邻补角和对顶角相等得到∠AHB=∠EHD ,故④正确; 【解答】证明:∵四边形ABCD 是正方形,E 是AD 边上的中点, ∴AE=DE ,AB=CD ,∠BAD=∠CDA=90°, 在△BAE 和△CDE 中 ∵,∴△BAE ≌△CDE (SAS ), ∴∠ABE=∠DCE , ∵四边形ABCD 是正方形, ∴AD=DC ,∠ADB=∠CDB=45°, ∵在△ADH 和△CDH 中,,∴△ADH ≌△CDH (SAS ), ∴∠HAD=∠HCD , ∵∠ABE=∠DCE ∴∠ABE=∠HAD ,∵∠BAD=∠BAH+∠DAH=90°, ∴∠ABE+∠BAH=90°, ∴∠AGB=180°﹣90°=90°, ∴AG ⊥BE ,故①正确; ∵tan ∠ABE=tan ∠EAG=, ∴AG=BG ,GE=AG , ∴BG=4EG ,故②正确; ∵AD ∥BC ,∴S △BDE =S △CDE ,∴S △BDE ﹣S △DEH =S △CDE ﹣S △DEH , 即;S △BHE =S △CHD ,故③正确; ∵△ADH ≌△CDH , ∴∠AHD=∠CHD , ∴∠AHB=∠CHB , ∵∠BHC=∠DHE ,∴∠AHB=∠EHD ,故④正确; 故选:D .【点评】本题主要考查了正方形的性质及全等三角形的判定与性质,三角形的面积公式,解答本题要充分利用正方形的特殊性质:①四边相等,两两垂直; ②四个内角相等,都是90度; ③对角线相等,相互垂直,且平分一组对角. 二、填空题3.如图,在△ABC 中,已知∠1=∠2,BE=CD ,AB=5,AE=2,则CE= 3 .【考点】全等三角形的判定与性质.【分析】由已知条件易证△ABE ≌△ACD ,再根据全等三角形的性质得出结论. 【解答】解:△ABE 和△ACD 中,,∴△ABE ≌△ACD (AAS ),∴AD=AE=2,AC=AB=5,∴CE=BD=AB﹣AD=3,故答案为3.【点评】本题主要考查了全等三角形的性质和判定,熟记定理是解题的关键.4.如图,AC是矩形ABCD的对角线,AB=2,BC=2,点E,F分别是线段AB,AD上的点,连接CE,CF.当∠BCE=∠ACF,且CE=CF时,AE+AF= .【考点】全等三角形的判定与性质;矩形的性质;解直角三角形.【专题】压轴题.【分析】过点F作FG⊥AC于点G,证明△BCE≌△GCF,得到CG=CB=2,根据勾股定理得AC=4,所以AG=4﹣2,易证△AGF∽△CBA,求出AF、FG,再求出AE,得出AE+AF的值.【解答】解:过点F作FG⊥AC于点G,如图所示,在△BCE和△GCF中,,∴△BCE≌△GCF(AAS),∴CG=BC=2,∵AC==4,∴AG=4﹣2,∵△AGF∽△CBA∴,∴AF==,FG==,∴AE=2﹣=,∴AE+AF=+=.故答案为:.【点评】本题主要考查了三角形全等的判定和性质以及三角形相似的判定与性质,有一定的综合性,难易适中.5.如图,在正方形ABCD中,如果AF=BE,那么∠AOD的度数是90°.【考点】全等三角形的判定与性质;正方形的性质.【专题】压轴题.【分析】根据全等三角形的判定与性质,可得∠ODA与∠BAE的关系,根据余角的性质,可得∠ODA 与∠OAD的关系,根据直角三角形的判定,可得答案.【解答】解:由ABCD是正方形,得AD=AB,∠DAB=∠B=90°.在△ABE和△DAF中,∴△ABE≌△DAF,∴∠BAE=∠ADF.∵∠BAE+∠EAD=90°,∴∠OAD+∠ADO=90°,∴∠AOD=90°,故答案为:90°.【点评】本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,余角的性质,直角三角形的判定.6.如图,△ABC中,∠C=90°,CA=CB,点M在线段AB上,∠GMB=∠A,BG⊥MG,垂足为G,MG 与BC相交于点H.若MH=8cm,则BG= 4 cm.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】如图,作MD⊥BC于D,延长DE交BG的延长线于E,构建等腰△BDM、全等三角形△BED和△MHD,利用等腰三角形的性质和全等三角形的对应边相等得到:BE=MH,所以BG=MH=4.【解答】解:如图,作MD⊥BC于D,延长MD交BG的延长线于E,∵△ABC中,∠C=90°,CA=CB,∴∠ABC=∠A=45°,∵∠GMB=∠A,∴∠GMB=∠A=22.5°,∵BG⊥MG,∴∠BGM=90°,∴∠GBM=90°﹣22.5°=67.5°,∴∠GBH=∠EBM﹣∠ABC=22.5°.∵MD∥AC,∴∠BMD=∠A=45°,∴△BDM为等腰直角三角形∴BD=DM,而∠GBH=22.5°,∴GM平分∠BMD,而BG⊥MG,∴BG=EG,即BG=BE,∵∠MHD+∠HMD=∠E+∠HMD=90°,∴∠MHD=∠E,∵∠GBD=90°﹣∠E,∠HMD=90°﹣∠E,∴∠GBD=∠HMD,∴在△BED和△MHD中,,∴△BED≌△MHD(AAS),∴BE=MH,∴BG=MH=4.故答案是:4.【点评】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了等腰直角三角形的性质.7.如图,以△ABC的三边为边分别作等边△ACD、△ABE、△BCF,则下列结论:①△EBF≌△DFC;②四边形AEFD为平行四边形;③当AB=AC,∠BAC=120°时,四边形AEFD是正方形.其中正确的结论是①②.(请写出正确结论的序号).【考点】全等三角形的判定与性质;等边三角形的性质;平行四边形的判定;正方形的判定.【专题】压轴题.【分析】由三角形ABE与三角形BCF都为等边三角形,利用等边三角形的性质得到两对边相等,∠ABE=∠CBF=60°,利用等式的性质得到夹角相等,利用SAS得到三角形EBF与三角形DFC全等,利用全等三角形对应边相等得到EF=AC,再由三角形ADC为等边三角形得到三边相等,等量代换得到EF=AD,AE=DF,利用对边相等的四边形为平行四边形得到AEFD为平行四边形,若AB=AC,∠BAC=120°,只能得到AEFD为菱形,不能为正方形,即可得到正确的选项.【解答】解:∵△ABE、△BCF为等边三角形,∴AB=BE=AE,BC=CF=FB,∠ABE=∠CBF=60°,∴∠ABE﹣∠ABF=∠FBC﹣∠ABF,即∠CBA=∠FBE,在△ABC和△EBF中,,∴△ABC≌△EBF(SAS),∴EF=AC,又∵△ADC为等边三角形,∴CD=AD=AC,∴EF=AD=DC,同理可得△ABC≌△DFC,∴DF=AB=AE=DF,∴四边形AEFD是平行四边形,选项②正确;∴∠FEA=∠ADF,∴∠FEA+∠AEB=∠ADF+∠ADC,即∠FEB=∠CDF,在△FEB和△CDF中,.∴△FEB≌△CDF(SAS),选项①正确;若AB=AC,∠BAC=120°,则有AE=AD,∠EAD=120°,此时AEFD为菱形,选项③错误,故答案为:①②.【点评】此题考查了全等三角形的判定与性质,等边三角形的性质,平行四边形的判定,以及正方形的判定,熟练掌握全等三角形的判定与性质是解本题的关键.三、解答题8.如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DE⊥AF,垂足为点E.(1)求证:DE=AB.(2)以D为圆心,DE为半径作圆弧交AD于点G.若BF=FC=1,试求的长.【考点】全等三角形的判定与性质;含30度角的直角三角形;矩形的性质;弧长的计算.【分析】(1)由矩形的性质得出∠B=∠C=90°,AB=BC=AD=DC,AD∥BC,得出∠EAD=∠AFB,由AAS 证明△ADE≌△FAB,得出对应边相等即可;(2)连接DF,先证明△DCF≌△ABF,得出DF=AF,再证明△ADF是等边三角形,得出∠DAE=60°,∠ADE=30°,由AE=BF=1,根据三角函数得出DE,由弧长公式即可求出的长.【解答】(1)证明:∵四边形ABCD是矩形,∴∠B=∠C=90°,AB=BC=AD=DC,AD∥BC,∴∠EAD=∠AFB,∵DE⊥AF,∴∠AED=90°,在△ADE和△FAB中,,∴△ADE≌△FAB(AAS),∴DE=AB;(2)解:连接DF,如图所示:在△DCF和△ABF中,,∴△DCF≌△ABF(SAS),∴DF=AF,∵AF=AD,∴DF=AF=AD,∴△ADF是等边三角形,∴∠DAE=60°,∵DE⊥AF,∴∠AED=90°,∴∠ADE=30°,∵△ADE≌△FAB,∴AE=BF=1,∴DE=AE=,∴的长==.【点评】本题考查了矩形的性质、全等三角形的判定与性质、等边三角形的判定与性质、三角函数以及弧长公式;熟练掌握矩形的性质,并能进行推理论证与计算是解决问题的关键.9.如图,∠1=∠2,∠3=∠4,求证:AC=AD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】先证出∠ABC=∠ABD,再由ASA证明△ABC≌△ABD,得出对应边相等即可.【解答】证明:∵∠3=∠4,∴∠ABC=∠ABD,在△ABC和△ABD中,,∴△ABC≌△ABD(ASA),∴AC=AD.【点评】本题考查了全等三角形的判定与性质;熟练掌握全等三角形的判定方法,证明三角形全等是解决问题的关键.10.如图,AC=DC,BC=EC,∠ACD=∠BCE.求证:∠A=∠D.【考点】全等三角形的判定与性质.【专题】证明题.【分析】先证出∠ACB=∠DCE,再由SAS证明△ABC≌△DEC,得出对应角相等即可.【解答】证明:∵∠ACD=∠BCE,∴∠ACB=∠DCE,在△ABC和△DEC中,,∴△ABC≌△DEC(SAS),∴∠A=∠D.【点评】本题考查了全等三角形的判定与性质;熟练掌握全等三角形的判定方法,证明三角形全等是解决问题的关键.11.如图,△ABC和△EFD分别在线段AE的两侧,点C,D在线段AE上,AC=DE,AB∥EF,AB=EF.求证:BC=FD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】根据已知条件得出△ACB≌△DEF,即可得出BC=DF.【解答】证明:∵AB∥EF,∴∠A=∠E,在△ABC和△EFD中∴△ABC≌△EFD(SAS)∴BC=FD.【点评】本题考查了平行线的性质和三角形全等的判定方法,难度适中.12.如图,在正方形ABCD中,G是BC上任意一点,连接AG,DE⊥AG于E,BF∥DE交AG于F,探究线段AF、BF、EF三者之间的数量关系,并说明理由.【考点】全等三角形的判定与性质;正方形的性质.【分析】根据正方形的性质,可得AB=AD,∠DAB=∠ABC=90°,根据余角的性质,可得∠ADE=∠BAF,根据全等三角形的判定与性质,可得BF与AE的关系,再根据等量代换,可得答案.【解答】解:线段AF、BF、EF三者之间的数量关系AF=BF+EF,理由如下:∵四边形ABCD是正方形,∴AB=AD,∠DAB=∠ABC=90°.∵DE⊥AG于E,BF∥DE交AG于F,∴∠AED=∠DEF=∠AFB=90°,∴∠ADE+∠DAE=90°,∠DAE+∠BAF=90°,∴∠ADE=∠BAF.在△ABF和△DAE中,∴△ABF≌△DAE (AAS),∴BF=AE.∵AF=AE+EF,AF=BF+EF.【点评】本题考查了全等三角形的判定与性质,利用了正方形的性质,余角的性质,全等三角形的判定与性质,等量代换.13.已知:如图,在△ABC中,DE、DF是△ABC的中位线,连接EF、AD,其交点为O.求证:(1)△CDE≌△DBF;(2)OA=OD.【考点】全等三角形的判定与性质;三角形中位线定理.【专题】证明题.【分析】(1)根据三角形中位线,可得DF与CE的关系,DB与DC的关系,根据SAS,可得答案;(2)根据三角形的中位线,可得DF与AE的关系,根据平行四边形的判定与性质,可得答案.【解答】证明:(1)∵DE、DF是△ABC的中位线,∴DF=CE,DF∥CE,DB=DC.∵DF∥CE,∴∠C=∠BDF.在△CDE和△DBF中,∴△CDE≌△DBF (SAS);(2)∵DE、DF是△ABC的中位线,∴DF=AE,DF∥AE,∴四边形DEAF是平行四边形,∵EF与AD交于O点,∴AO=OD【点评】本题考查了全等三角形的判定与性质,(1)利用了三角形中位线的性质,全等三角形的判定;(2)利用了三角形中位线的性质,平行四边的性的判定与性质.14.如图,已知∠ABC=90°,D是直线AB上的点,AD=BC.(1)如图1,过点A作AF⊥AB,并截取AF=BD,连接DC、DF、CF,判断△CDF的形状并证明;(2)如图2,E是直线BC上一点,且CE=BD,直线AE、CD相交于点P,∠APD的度数是一个固定的值吗?若是,请求出它的度数;若不是,请说明理由.【考点】全等三角形的判定与性质.【专题】压轴题.【分析】(1)利用SAS证明△AFD和△BDC全等,再利用全等三角形的性质得出FD=DC,即可判断三角形的形状;(2)作AF⊥AB于A,使AF=BD,连结DF,CF,利用SAS证明△AFD和△BDC全等,再利用全等三角形的性质得出FD=DC,∠FDC=90°,即可得出∠FCD=∠APD=45°.【解答】解:(1)△CDF是等腰直角三角形,理由如下:∵AF⊥AD,∠ABC=90°,∴∠FAD=∠DBC,在△FAD与△DBC中,,∴△FAD≌△DBC(SAS),∴FD=DC,∴△CDF是等腰三角形,∵△FAD≌△DBC,∴∠FDA=∠DCB,∵∠BDC+∠DCB=90°,∴∠BDC+∠FDA=90°,∴△CDF是等腰直角三角形;(2)作AF⊥AB于A,使AF=BD,连结DF,CF,如图,∵AF⊥AD,∠ABC=90°,∴∠FAD=∠DBC,在△FAD与△DBC中,,∴△FAD≌△DBC(SAS),∴FD=DC,∴△CDF是等腰三角形,∵△FAD≌△DBC,∴∠FDA=∠DCB,∵∠BDC+∠DCB=90°,∴∠BDC+∠FDA=90°,∴△CDF是等腰直角三角形,∴∠FCD=45°,∵AF∥CE,且AF=CE,∴四边形AFCE是平行四边形,∴AE∥CF,∴∠APD=∠FCD=45°.【点评】此题考查了全等三角形的判定与性质的运用,平行四边形的判定及性质的运用,等腰直角三角形的判定及性质的运用.解答时证明三角形全等是关键.15.如图,正方形ABCD中,点E,F分别在AD,CD上,且AE=DF,连接BE,AF.求证:BE=AF.【考点】全等三角形的判定与性质;正方形的性质.【专题】证明题.【分析】根据正方形的四条边都相等可得AB=AD,每一个角都是直角可得∠BAE=∠D=90°,然后利用“边角边”证明△ABE和△ADF全等,根据全等三角形对应边相等证明即可.【解答】证明:在正方形ABCD中,AB=AD,∠BAE=∠D=90°,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS),∴BE=AF.【点评】本题考查了正方形的性质,全等三角形的判定与性质,以及垂直的定义,求出两三角形全等,从而得到BE=AF是解题的关键.16.如图,在△ABC中,已知AB=AC,AD平分∠BAC,点M,N分别在AB,AC边上,AM=2MB,AN=2NC.求证:DM=DN.【考点】全等三角形的判定与性质.【专题】证明题.【分析】首先根据等腰三角形的性质得到AD是顶角的平分线,再利用全等三角形进行证明即可.【解答】证明:∵AM=2MB,AN=2NC,AB=AC,∴AM=AN,∵AB=AC,AD平分∠BAC,∴∠MAD=∠NAD,在△AMD与△AND中,,∴△AMD≌△AND(SAS),∴DM=DN.【点评】本题考查了全等三角形的判定和性质,关键是根据等腰三角形的性质进行证明.17.在平行四边形ABCD中,将△BCD沿BD翻折,使点C落在点E处,BE和AD相交于点O,求证:OA=OE.【考点】全等三角形的判定与性质;平行四边形的性质;翻折变换(折叠问题).【专题】证明题.【分析】由在平行四边形ABCD中,将△BCD沿BD对折,使点C落在E处,即可求得∠DBE=∠ADB,得出OB=OD,再由∠A=∠C,证明三角形全等,利用全等三角形的性质证明即可.【解答】证明:平行四边形ABCD中,将△BCD沿BD对折,使点C落在E处,可得∠DBE=∠ADB,∠A=∠C,∴OB=OD,在△AOB和△EOD中,,∴△AOB≌△EOD(AAS),∴OA=OE.【点评】此题考查了平行四边形的性质、等腰三角形的判定与性质以及折叠的性质.此题难度不大,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想的应用.18.们把两组邻边相等的四边形叫做“筝形”.如图,四边形ABCD是一个筝形,其中AB=CB,AD=CD.对角线AC,BD相交于点O,OE⊥AB,OF⊥CB,垂足分别是E,F.求证OE=OF.【考点】全等三角形的判定与性质.【专题】证明题;新定义.【分析】欲证明OE=OF,只需推知BD平分∠ABC,所以通过全等三角形△ABD≌△CBD(SSS)的对应角相等得到∠ABD=∠CBD,问题就迎刃而解了.【解答】证明:∵在△ABD和△CBD中,,∴△ABD≌△CBD(SSS),∴∠ABD=∠CBD,∴BD平分∠ABC.又∵OE⊥AB,OF⊥CB,∴OE=OF.【点评】本题考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.。

第13章 全等三角形数学八年级上册-单元测试卷-华师大版(含答案)

第13章 全等三角形数学八年级上册-单元测试卷-华师大版(含答案)

第13章全等三角形数学八年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、已知等腰三角形两边a,b,满足|2a﹣3b+5|+(2a+3b﹣13)2=0,则此等腰三角形的周长为()A.7或8B.6或10C.6或7D.7或102、如下图所示,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D.DE=6cm,AD=9cm,则BE的长是()A.6cmB.1.5cmC.3cmD.4.5cm3、已知等腰三角形的两边长是4和9,则等腰三角形的周长为()A.17B.17或22C.22D.164、已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为()秒时,△ABP和△DCE全等.A.1B.1或3C.1或7D.3或75、如图,中,,的中垂线交于,交于,若,,则的周长为()A.16B.14C.20D.186、如图,,若和分别垂直平分和,则的度数是()A.30°B.40°C.60°D.50°7、如图,中,的垂直平分线交边于点,的垂直平分线交于点,若,则的度数为()A. B. C. D.8、如图,反比例函数第一象限内的图象经过的顶点A,C,,且轴,点A,C,的横坐标分别为1,3,若,则k 的值为()A.1B.C.D.29、如图,四边形是正方形,直线,,分别通过、、三点,且.若与之间的距离是,与之间的距离是,则正方形的面积是().A. B. C. D.10、如图,△ABC中,AB=AC=5,BC=6,AD是BC边上的中线且AD=4,是AD上的动点,是AC边上的动点,则的最小值是()A.6B.4C.D.不存在最小值11、如图,在△ABC中,AB=AC,D、E是△ABC内的两点,AD平分∠BAC,∠EBC=∠E=60°.若BE=6cm,DE=2cm,则BC的长为()A.4cmB.6cmC.8cmD.12cm12、下列命题①方程x2=x的解是x=1②4的平方根是2③有两边和一角相等的两个三角形全等④连接任意四边形各边中点的四边形是平行四边形其中真命题有:()A.4个B.3个C.2个D.1个13、如图所示,已知△ABC中,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则下列三个结论①AS=AR;②QP∥AR;③△BRP≌△CQP中()A.全部正确B.仅①和②正确C.仅①正确D.仅①和③正确14、如图,△ABC≌△CDA,AB=5,BC=6,AC=7,则AD的边长是()A.5B.6C.7D.不能确定15、如图,在中,,,,与的平分线交于点,过点作交于点,则()A. B.2 C. D.3二、填空题(共10题,共计30分)16、如图,△ABC是等边三角形,点D为AC边上一点,以BD为边作等边△BDE,连接CE.若CD=1,CE=3,则BC=________.17、如图,已知点P为∠AOB的角平分线上的一定点,D是射线OA上的一定点,E是OB上的某一点,满足PE=PD,则∠OEP与∠ODP的数量关系是________.18、如图,在△ABC中,∠A=35°,∠B=90°,线段AC的垂直平分线MN与AB交于点D,与AC交于点E,则∠BCD=________度.19、在等腰直角三角形ABC中,∠C=90°,则sinA=________.20、如图,在△ABC中,D、E为边AB上的两个点,且AE=AC,BD=BC,∠BCF=70°,则∠DCE=________度.21、如图,矩形ABCD周长为30,经过矩形对称中心O的直线分别交AD,BC于点E,F.将矩形沿直线EF翻折,A′B′分别交AD,CD于点M,N,B'F交CD于点G.若MN:EM=1:2,则△DMN的周长为________.22、如图,△ABC与△BED全等,点A,C分别与点B,D对应,点C在BD上,AC与BE交于点F.若∠ABC=90°,∠D=60°,则AF:BD的值为________.23、如图,在矩形ABCD中,AB=4,BC=5,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE.延长AF交边BC于点G,则CG为________.24、如图,中,,,,点是上一动点,以为边在的右侧作等边,是的中点,连结,则的最小值是________.25、用一条长为20cm的细绳围成一个等腰三角形,如果腰长是底边长的2倍,则底边长为________cm三、解答题(共5题,共计25分)26、已知:如图,在△ABC中,AB=AC,点D,E在边BC上,且BD=CE.求证:AD=AE.27、某次体育比赛共有n(n≥3)名选手参加,每两名选手都比赛一局.现知无平局出现,而且每名选手都未能击败历有对手.求证:其中必存在3名选手甲、乙和丙,使得甲胜乙、乙胜丙、丙胜甲.28、如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.①求证:△ABE≌△CBD;②若∠CAE=30°,求∠BDC的度数.29、如图,在▱ABCD中,E,F分别为边AD,BC的中点,对角线AC分别交BE,DF于点G,H.求证:AG=CH.30、如图在△ABC中,AB=AC=8,∠BAC=120º,AD是△ABC的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于点F,求DF的长.参考答案一、单选题(共15题,共计45分)1、A2、C3、C4、C5、A6、B7、B8、C9、B10、C11、C12、D13、B14、B15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。

华东师大版八年级数学上册 第13章 全等三角形 单元检测试题(有答案)

华东师大版八年级数学上册  第13章  全等三角形  单元检测试题(有答案)

第13章全等三角形单元检测试题(满分120分;时间:120分钟)一、选择题(本题共计8 小题,每题3 分,共计24分,)1. 下列命题是真命题的是()A.在同一平面内,两条直线的位置只有平行和垂直两种B.两直线平行,同旁内角相等C.过一点有且只有一条直线与已知直线平行D.平行于同一条直线的两直线平行2. 如图,D为△ABC内一点,CD平分∠ACB,BE⊥CD,垂足为D,交AC于点E,∠A=∠ABE.若AC=5,BC=3,则BD的长为()A.1B.1.5C.2D.2.53. 甲、乙、丙3人从图书馆各借了一本书,他们相约在每个星期天相互交换读完的书.经过数次交换后,他们都读完了这3本书.若乙读的第三本书是丙读的第二本书,则乙读的第一本书是甲读的()A.第一本书B.第二本书C.第三本书D.不能确定4. 一个角是60∘的等腰三角形是()A.等腰直角三角形B.等边三角形C.直角三角形D.上述都正确5. 已知,如图,△ABC中,AB=AC,AD是角平分线,BE=CF,则下列说法正确的有()个(1)DA平分∠EDF;(2)△EBD≅△FCD;(3)△AED≅△AFD;(4)AD垂直BC.A.1个B.2个C.3个D.4个6. 角平分线的尺规作图,其根据是构造两个全等三角形,由作图可知:判断所构造的两个三角形全等的依据是()A.SSSB.ASAC.SASD.AAS7. 已知,如图,在△ABC中,∠CAD=∠EAD,∠ADC=∠ADE,CB=5cm,BD=3cm,则ED的长为()A.2cmB.3cmC.5cmD.8cmBC的长为半径8. 如图,在Rt△ABC中,∠ACB=90∘,分别以点B和点C为圆心,大于12作弧,两弧相交于D,E两点,作直线DE交AB于点F,交BC于点G,连接CF.若AC= 2,∠FCG=30∘,则△BCF的面积为( ).A.√3B.√3C.2D.2√32二、填空题(本题共计10 小题,每题3 分,共计30分,)9. 如图,在△ABC中,∠C=90∘,DE垂直平分AB,∠CBE:∠A=1:2,则∠AED=________∘.10. 如图是标准跷跷板的示意图.横板AB的中点过支撑点O,且绕点O只能上下转动.如果∠OCA=90∘,∠CAO=25∘,则小孩玩耍时,跷跷板可以转动的最大角度为________.11. 如图所示的是一个尺规作图,已知∠AOB=35∘,根据作图痕迹可知∠A′O′B′的度数为________.12. 如果两个直角三角形,满足斜边和一条直角边相等,那么这两个直角三角形________(填“是”或“不是”)全等三角形.13. 定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80∘,则它的特征值k=________.14. 如图,在△ABC中,AB=AC,∠BAC=90∘,AE是过A点的一条直线,CE⊥AE于E,BD⊥AE于D,DE=4cm,CE=2cm,则BD=________.15. 如图,为等边三角形,,,,且。

2020-2021学年华东师大 版八年级上册数学《第13章 全等三角形》单元测试卷(有答案)

2020-2021学年华东师大 版八年级上册数学《第13章 全等三角形》单元测试卷(有答案)

2020-2021学年华东师大新版八年级上册数学《第13章全等三角形》单元测试卷一.选择题1.△ABC中,∠B=50°,∠A=80°,若AB=6,则AC=()A.6B.8C.5D.132.下列命题中真命题的个数是()①关于某直线对称的两个三角形是全等三角形;②圆的直径是圆的对称轴;③有两个角是60°的三角形是等边三角形;④顶角和底角相等的等腰三角形是等边三角形.A.1B.2C.3D.43.如图,△AEC≌△ADB,若∠A=50°,∠ABD=38°,则图中∠AEC的度数是()A.88°B.92°C.95°D.102°4.在△ABC和△A′B′C′中,已知∠A=∠A′,AB=A′B′,添加下列条件后能用“SAS”判定△ABC≌△A′B′C′的是()A.AC=A′C′B.BC=B′C′C.∠B=∠B′D.∠C=∠C′5.如图,D,E分别是△ABC的边BC,AC上的点,若AB=AC,AD=AE,则()A.当β为定值时,∠CDE为定值B.当α为定值时,∠CDE为定值C.当γ为定值时,∠CDE为定值D.无法确定6.如图,直线a∥b,△ABC的顶点C在直线b上,边AB与直线b相交于点D.若△BCD 是等边三角形,∠A=20°,则∠1度数为()A.∠1=20°B.∠1=60°C.∠1=40°D.无法判断7.如图,△ABC,点D在AC上,连接BD,∠ABD=2∠DBC,∠ADB=2∠C,∠DBC=∠A,则图中共有等腰三角形()个.A.0B.1C.2D.38.图书馆将某一本书和某一个关键词建立联系,规定:当关键词A i出现在书B j中时,元素a ij=1,否则a ij=0(i,j为正整数).例如:当关键词A1出现在书B4中时,a14=1,否则a14=0.根据上述规定,某读者去图书馆寻找书中同时有关键词“A2,A5,A6”的书,则下列相关表述错误的是()A.当a21+a51+a61=3时,选择B1这本书B.当a22+a52+a62<3时,不选择B2这本书C.当a2j,a5j,a6j全是1时,选择B j这本书D.只有当a2j+a5j+a6j=0时,才不能选择B j这本书9.如图,在△ABC中,∠ACB=90°,D是AB上的点,过点D作DE⊥AB交BC于点F,交AC的延长线于点E,连接CD,∠DCA=∠DAC,则下列结论正确的有()①∠DCB=∠B;②CD=AB;③△ADC是等边三角形;④若∠E=30°,则DE=EF+CF.A.①②③B.①②④C.②③④D.①②③④10.在以如图形中,根据尺规作图痕迹,能判断射线AD平分∠BAC的是()A.图1和图2B.图1和图3C.图3D.图2和图3二.填空题11.如图,在△ABC中,直线l垂直平分BC,射线m平分∠ABC,且l与m相交于点P,若∠A=60°,∠ACP=24°,则∠ABP=°.12.已知∠AOB=40°,OC是∠AOB的平分线,则∠AOC等于.13.若实数m、n满足|m﹣3|+=0,且m,n恰好是等腰△ABC的两条边的边长,则△ABC的周长是.14.如图,△ABC≌△DBC,∠A=45°,∠DCB=43°,则∠ABC=.15.如图,AC⊥BC,AD⊥BD,垂足分别是C,D,(若要用“HL”得到Rt△ABC≌Rt△BAD,则应添加的条件是.(写一种即可)16.如图,在△ABC和△DEF中,点B,F,C,E在同一直线上,BF=CE,∠B=∠E,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是(只需写一个,不添加辅助线).17.若等边三角形的一边上的高为6,则它的边长为.18.在△ABC和△A′B′C′中,若∠A=∠A′,AB=A′B′,请你补充一个条件,使得△ABC≌△A′B′C′.19.甲乙丙三个人在一起聊天,每周从星期一到星期日每人连续两天说谎(包括星期日和星期一),其余五天必说真话,且任意两人不会在同一天说谎.已知周一时,乙说:“我昨天说谎了.”周二时,丙说:“太巧了,我昨天也说谎了.”则三个人都没说谎的是星期.20.高兴同学在学习了全等三角形的相关知识后发现:只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图,一把直尺压住射线OB且与射线OA交于点M,另一把直尺压住射线OA且与第一把直尺交于点P,则OP平分∠AOB.若∠BOP=32°,则∠AMP =°.三.解答题21.如图,在△ABE中,AD⊥BE于点D,C是BE上一点,BD=DC,且点C在AE的垂直平分线上,若△ABC的周长为18cm,求DE的长.22.如图,△ACF≌△DBE,其中点A、B、C、D在同一条直线上.(1)若BE⊥AD,∠F=63°,求∠A的大小.(2)若AD=11cm,BC=5cm,求AB的长.23.如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC,BD=BA,求∠B的度数.24.如图所示,已知BC是从直线AB上出发的一条射线,BE平分∠ABC,∠EBF=90°.求证:BF平分∠CBD.25.世界预选赛中,中国、澳大利亚、卡塔尔和伊拉克被分在A组,进行主客场比赛.规定每场比赛胜者得三分,平局各得一分,败者不得分.比赛结束后前两名可以晋级.由于4支队伍均为强队,每支队伍至少得3分.于是甲专家预测:中国队只要得11分就能确保出线.问:(1)这四支队的总得分之和最多有几分?(2)甲专家的预测正确吗?为什么?26.如图,∠ADB=∠ADC,∠B=∠C.(1)求证:AB=AC;(2)连接BC,求证:AD⊥BC.27.尺规作图:如图,已知线段AB,求作线段A'B',使A'B'=AB.参考答案与试题解析一.选择题1.解:∵△ABC中,∠B=50°,∠A=80°,∴∠C=180°﹣∠A﹣∠B=180°﹣80°﹣50°=50°,∴∠C=∠B,∴AC=AB=6,故选:A.2.解:①关于某直线对称的两个三角形是全等三角形,是真命题;②圆的直径所在的直线是圆的对称轴,本小题说法是假命题;③有两个角是60°的三角形是等边三角形,是真命题;④顶角和底角相等的等腰三角形是等边三角形,是真命题;故选:C.3.解:在△ABD中,∠A=50°,∠ABD=38°,∴∠ADB=180°﹣∠A﹣∠ABD=92°,∵△AEC≌△ADB,∴∠AEC=∠ADB=92°,故选:B.4.解:添加AC=A'C'后能用“SAS”判定△ABC≌△A′B′C′.在△ABC和△A′B′C′中,,∴△ABC≌△A′B′C′(SAS).故选:A.5.解:∵AB=AC,∴∠B=∠C,∵AD=AE,∴∠ADE=∠AED,又∵∠ADC=∠B+∠BAD=∠B+∠α,∠AED=∠C+∠CDE,∴∠ADE+∠CDE=∠B+∠BAD=∠B+∠α,即∠C+∠CDE+∠CDE=∠B+∠α,∴2∠CDE=∠α,∴∠CDE=∠α.即当∠α为定值时,∠CDE为定值,故选:B.6.解:∵△BCD是等边三角形,∴∠BDC=60°,∵a∥b,∴∠2=∠BDC=60°,由三角形的外角性质和对顶角相等可知,∠1=∠2﹣∠A=40°,故选:C.7.解:图中共有等腰三角形3个,理由如下:∵∠ADB=∠C+∠DBC,∠ADB=2∠C,∴∠DBC=∠C,∴△BCD是等腰三角形,DB=DC,∵∠ABD=2∠DBC,∴∠ABD=∠ADB,∴△ABD是等腰三角形,AB=AD,∵∠DBC=∠A,∴∠A=∠C,∴△ABC是等腰三角形,AB=CB,故选:D.8.解:根据题意a ij的值要么为1,要么为0,A、a21+a51+a61=3,说明a21=1,a51=1,a61=1,故关键词“A2,A5,A6”同时出现在书B1中,而读者去图书馆寻找书中同时有关键词“A2,A5,A6”的书,故A表述正确;B、当a22+a52+a62<3时,则a22、a52、a62时必有值为0的,即关键词“A2,A5,A6”不同时具有,从而不选择B2这本书,故B表述正确;C、当a2j,a5j,a6j全是1时,则a2j=1,a5j=1,a6j=1,故关键词“A2,A5,A6”同时出现在书B j中,则选择B j这本书,故C表述正确;D、根据前述分析可知,只有当a2j+a5j+a6j=3时,才能选择B j这本书,而a2j+a5j+a6j的值可能为0、1、2、3,故D表述错误,符合题意.故选:D.9.解:∵在△ABC中,∠ACB=90°,DE⊥AB,∴∠ADE=∠ACB=90°,∴∠A+∠B=90°,∠ACD+∠DCB=90°,∵∠DCA=∠DAC,∴AD=CD,∠DCB=∠B;故①正确;∴CD=BD,∵AD=CD,∴CD=AB;故②正确;∠DCA=∠DAC,∴AD=CD,但不能判定△ADC是等边三角形;故③错误;∵若∠E=30°,∴∠A=60°,∴△ACD是等边三角形,∴∠ADC=60°,∵∠ADE=∠ACB=90°,∴∠EDC=∠BCD=∠B=30°,∴CF=DF,∴DE=EF+DF=EF+CF.故④正确.故选:B.10.解:在图1中,利用基本作图可判断AD平分∠BAC;在图2中,根据作法可知:AE=AF,AM=AN,在△AMF和△ANE中,,∴△AMF≌△ANE(SAS),∴∠AMD=∠AND,∵∠MDE=∠NDF,∵AE=AF,AM=AN,∴ME=NF,在△MDE和△NDF中,,∴△MDE≌△NDF(AAS),所以D点到AM和AN的距离相等,∴AD平分∠BAC.在图3中,利用基本作图得到D点为BC的中点,则AD为BC边上的中线;故选:A.二.填空题11.解:∵BP平分∠ABC,∴∠ABP=∠CBP,∵直线l是线段BC的垂直平分线,∴BP=CP,∴∠CBP=∠BCP,∴∠ABP=∠CBP=∠BCP,∵∠A+∠ACB+∠ABC=180°,∠A=60°,∠ACP=24°,∴3∠ABP+24°+60°=180°,解得:∠ABP=32°,故答案为:32.12.解:∵OC是∠AOB的平分线,∠AOB=40°,∴∠AOC=∠AOB=×40°=20°,故答案为:20°.13.解:∵|m﹣3|+=0,∴m﹣3=0,n﹣4=0,解得m=3,n=4,当m=3作腰时,三边为3,3,4,符合三边关系定理,周长为:3+3+4=10,当n=4作腰时,三边为,3,4,4,符合三边关系定理,周长为:3+4+4=11.故答案为:10或11.14.解:∵△ABC≌△DBC,∴∠ACB=∠DCB=43°,∵∠A=45°,∴∠ABC=180°﹣∠A﹣∠ACB=92°,故答案为:92°.15.解:若添加AC=BD,在Rt△ABC和Rt△BAD中,,∴Rt△ABC≌Rt△BAD(HL);若添加BC=AD,在Rt△ABC和Rt△BAD中,,∴Rt△ABC≌Rt△BAD(HL).故答案为:AC=BD或BC=AD.16.解:添加AB=ED,∵BF=CE,∴BF+FC=CE+FC,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),故答案为:AB=ED(答案不唯一).17.解:如图,∵△ABC是等边三角形,且高AD=6,∴∠ADC=90°,BD=CD=AC,设它的边长为x,可得x2=()2+62,解得:x=4,x=﹣4(舍去),故答案为:4.18.解:在△ABC和△A′B′C′中,AB=A′B′,∠A=∠A′,当添加∠B=∠B′可利用“ASA”判断△ABC≌△A′B′C′;当添加∠C=∠C′可利用“AAS”判断△ABC≌△A′B′C′;当添加AC=∠A′C′可利用“SAS”判断△ABC≌△A′B′C′.故答案为:∠B=∠B′或∠C=∠C′或AC=A′C′.19.解:若乙说的是假话,则乙周日说的是真话,则甲和丙都在周日说真话,即周二丙说话是谎话,则丙在周一说的是真话,前后矛盾,则乙说的是假话不成立;若乙说的是真话,则乙周一说的是真话,则甲和丙都在周一说真话,即周二丙说话是谎话,则丙在周一说的是真话,前后不矛盾,所以乙说的是真话;故答案为:一.20.解:∵OP平分∠AOB,∴∠MOB=2∠BOP=64°,由长方形直尺可知:MP∥OB,∴∠AMP=∠MOB=64°,故答案为:64.三.解答题21.解:∵点C在AE的垂直平分线上,∴CA=CE,∵AD⊥BE,BD=DC,∴AB=AC,∵△ABC的周长为18,∴AB+BC+AC=18,∴2AC+2DC=18,∴AC+DC=9,∴DE=DC+CE=AC+CD=9(cm).22.解:(1)∵BE⊥AD,∴∠EBD=90°,∵△ACF≌△DBE,∴∠FCA=∠EBD=90°,∴∠A=90°﹣∠F=27°;(2)∵△ACF≌△DBE,∴CA=BD,∴CA﹣CB=BD﹣BC,即AB=CD,∵AD=11cm,BC=5cm,∴AB+CD=11﹣5=6cm,∴AB=3cm.23.解:∵AB=AC,∴∠B=∠C,∵CD=DA∴∠C=∠DAC,∵BA=BD,∴∠BDA=∠BAD=2∠C=2∠B,设∠B=α,则∠BDA=∠BAD=2α,又∵∠B+∠BAD+∠BDA=180°,∴α+2α+2α=180°,∴α=36°,∴∠B=36°.24.证明:∵BE平分∠ABC,∴∠CBE=∠ABE,∵∠EBF=90°,∴∠CBF=90°﹣∠CBE,∴∠DBF=180°﹣90°﹣∠ABE=90°﹣∠CBE=∠CBF.即BF平分∠CBD.25.解:(1)∵每场比赛胜者得三分,平局各得一分,败者不得分∴每场比赛最多得3分,又四个队之间需要打比赛12场,∴这四支队的总得分之和最多有3×12=36分;(2)甲专家的预测正确.若得11分不出线,则必为第三名,故前两名至少也得11分,而最后一名至少得3分,故各队之和至少有36分,由(1)可知比赛中没有平局,而中国队已经得了11分,所以必有平局,故不可能,所以必出线.26.证明:(1)∵在△ADB和△ADC中,,∴△ADB≌△ADC(AAS),∴AB=AC;(2)∵△ADB≌△ADC,∴AB=AC,BD=CD,∴A和D都在线段BC的垂直平分线上,∴AD是线段BC的垂直平分线,即AD⊥BC.27.解:如图,线段A′B′即为所求.。

第13章 全等三角形数学八年级上册-单元测试卷-华师大版(含答案)

第13章 全等三角形数学八年级上册-单元测试卷-华师大版(含答案)

第13章全等三角形数学八年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、如图,在ABC中,AC的垂直平分线分别交AC、BC于E,D两点,EC=4,ABC的周长为23,则ABD的周长为()A.14B.15C.16D.172、如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为()A.30°B.36°C.54°D.72°3、如图,已知△ABC和△DCE均是等边三角形,点B、C、E在同一条直线上,AE与BD交于点O,AE与CD交于点G,AC与BD交于点F,连接OC、FG,则下列结论要:①AE= BD;②AG= BF ;③FG∥BE;④OC平分∠BOE,其中结论正确的个数有( )A.1个B.2个C.3个D.4个4、如图,△OCA≌△ODB,点C与点D,点A与点B是对应顶点,若∠CAO=70°,则∠DBO 的度数为()A.60°B.70°C.130°D.50°5、如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和38,则△EDF的面积为()A.6B.12C.4D.86、如图,在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,DE平分∠ADB,则∠B=()A.40°B.30°C.25°D.22.5〫7、如图,AB=AC,若要使△ABE≌△ACD,则添加的一个条件不能是()A.∠B=∠CB.BE=CDC.BD=CED.∠ADC=∠AEB8、已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为()A.40°B.100°C.40°或70° D.40°或100°9、如图,已知△ABC和△DCE均是等边三角形,点B、C、E在同一条直线上,AE与BD交于点O,AE与CD交于点G,AC与BD交于点F,连接OC、FG,则下列结论:①AE=BD;②AO=BF;③FG∥BE;④∠BOC=∠EOC;⑤BO=OC+AO,其中正确的结论有()个.A.5B.4C.3D.210、等腰三角形的周长为15cm,其中一边长为3cm,则该等腰三角形的腰长为()A.3cmB.6cmC.3cm或6cmD.8cm11、如图,点P是∠AOB平分线上一点,PD⊥OB,垂足为D,若PD=2,则点P到边OA 的距离是()A.1B.2C.D.412、若一个三角形两边的垂直平分线的交点在第三边上,则这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.不能确定13、如图,,BP和CP分别平分和,AD过点P,且与AB垂直。

第13章 全等三角形数学八年级上册-单元测试卷-华师大版(含答案)

第13章 全等三角形数学八年级上册-单元测试卷-华师大版(含答案)

第13章全等三角形数学八年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、用反证法证明“a<b”时第一步应假设()A.a>bB.a≤bC.a≥bD.a≠b2、下列命题中是真命题的是()A.同位角相等B.邻补角一定互补C.相等的角是对顶角D.有且只有一条直线与已知直线垂直3、如图,木工师傅在板材边角处作直角时,往往使用”三弧法”,其作法是(1)作线段AB·分别以A,B为圆心,以AB长为半径弧,两弧的交点为C(2)以C为圆心,仍以AB 长为半径作弧交AC的延长线于点D:(3)连接BD,BC下列说法不正确的是()= AB 2 C.sin 2A+cos 2D=1 D.点C是A.∠CBD=30° B.S△BDC△ABD的外心4、尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ5、如图,在△ABC中,∠ACB=45°,AD⊥BC于点D,点E为AD上一点,连接CE,CE=AB,若∠ACE=20°,则∠B的度数为()A.60°B.65°C.70°D.75°6、如图所示,在下列条件中,不能判断△ABD≌△BAC的条件是()A.∠D=∠C,∠BAD=∠ABCB.∠BAD=∠ABC,∠ABD=∠BACC.BD=AC,∠BAD=∠ABCD.AD=BC,BD=AC7、在中,,,则的度数为()A.50°B.55°C.60°D.70°8、如图,AB⊥BC,DC⊥BC,AE平分∠BAD,DE平分∠ADC,以下结论,其中正确的是()①∠AED=90°;②点E是BC的中点;③DE=BE;④AD=AB+CD.A.①②③B.①②④C.①③④D.②③④9、如图,△ABC中,AC=BC,点P为AB上的动点(不与A,B重合)过P作PE⊥AC于E,PF⊥BC于F设AP的长度为x,PE与PF的长度和为y,则能表示y与x之间的函数关系的图象大致是()A. B. C.D.10、下列各组图形中不一定相似的是( )A.各有一个角是45°的两个等腰三角形B.各有一个角是60°的两个等腰三角形C.各有一个角是105°的两个等腰三角形D.两个等腰直角三角形11、如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则∠EFC的度数为()A.35°B.40°C.45°D.60°12、如图,点A,B,P在⊙O上,且∠APB=50°,若点M是⊙O上的动点,要使ABM为等腰三角形,则所有符合条件的点M有()A.1个B.2个C.3个D.4个13、如图在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS,AB=AC,下面三个结论:①AS=AR;②PQ∥AB;③△BRP≌△CSP,其中正确的是()A.①②B.②③C.①③D.①②③14、下列命题的逆命题是假命题的是()A.直角三角形斜边上的中线等于斜边的一半B.线段垂直平分线上的点到线段两端的距离相等C.等腰三角形底边上的高线和中线互相重合D.两个全等三角形的面积相等15、如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D、E分别在AC、BC边上运动,且保持AD=CE.连接DE、DF、EF.在此运动变化过程中,下列结论:①△DFE是等腰直角三角形;②四边形CDFE不可能为正方形;③△CDE与△DAF不可能全等;④四边形CDFE的面积保持不变;⑤△CDE面积的最大值为8.其中正确的结论是()A.①②③B.①③④C.③④⑤D.①④⑤二、填空题(共10题,共计30分)16、如图所示,已知的周长是分别平分和于且则的面积是________.17、如图,在矩形ABCD中,AB=4,BC=5,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE.延长AF交边BC于点G,则CG为________.18、如图,在平面内将绕点逆时针旋转至,使,如果,那么旋转角________度.19、如图,已知∠ABC=∠BAD,添加一个条件使△ABC≌△BAD,你添加的条件是________20、如图,在△ABC中,AB=BC,∠ABC=30°,BD平分∠ABC交AC于点D,BC的垂直平分线EF交BC于点E,交BD于点F,若BF=6,则AC的长为________.21、如图,△ABC的中位线DE=5cm,把△ABC沿DE折叠,使点A落在边BC上的点F处,若A、F两点间的距离是8cm,则△ABC的面积为________cm2.22、命题“两直线平行,同位角相等.”的条件是________.23、已知Rt△ABC与Rt△DEC中∠ACB=∠ECD=90°,CD=CE= ,CB=CA= ,且点E、D、A在同一直钱上,连接BE,则△ABE的面积为________.24、命题:①对顶角相等;②垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等。

第13章 全等三角形数学八年级上册-单元测试卷-华师大版(含答案)

第13章 全等三角形数学八年级上册-单元测试卷-华师大版(含答案)

第13章全等三角形数学八年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、如图,在Rt△ABC中,AB=CB,B O⊥AC,把△ABC折叠,使AB落在AC上,点B与AC 上的点E重合,展开后折痕AD交BO与点F,连接DE,EF,下列结论:①AB=2BD;②图中有4对全等三角形;③若将△DEF沿EF折叠,则点D不一定落在AC上;④BD=BF;⑤,其中正确的有()A.4个B.3个C.2个D.1个2、如图,已知直线PQ⊥MN于点O,点A,B分别在MN,PQ上,OA=1,OB=2,在直线MN或直线PQ上找一点C,使△ABC是等腰三角形,则这样的C点有()A.3个B.4个C.7个D.8个3、如图,AB//DE,AC//DF,AC=DF,下列条件中,不能判定△ABC≌△DEF的是()A.AB=DEB.∠B=∠EC.EF=BCD.EF//BC4、如图,∠CAB=∠DAB下列条件中不能使△ABC≌△ABD的是()A.∠C=∠DB.∠ABC=∠ABDC.AC=ADD.BC=BD5、下列说法中:①线段是轴对称图形,②成轴对称的两个图形对称点的连线互相平行,③等腰三角形的角平分线就是底边的垂直平分线,④已知两腰就能确定等腰三角形的形状和大小,正确的有( ).A.1个B.2个C.3个D.4个6、如图所示,已知△ABC和△BDE都是等边三角形,下列结论:①AE=CD;②BF=BG;③BH 平分∠AHD;④∠AHC=60°;⑤△BFG是等边三角形;⑥FG∥AD,其中正确的有()A.3个B.4个C.5个D.6个7、下列四个命题:①如果∠A=∠B,那么∠A与∠B是对顶角;②过一点有且只有一条直线与已知直线平行;③同位角相等,两直线平行;④互相垂直的两条线段一定相交,其中正确的个数是()A.1B.2C.3D.48、如图,在△ABC中,BD平分∠ABC,BC的垂直平分线交BD于点E,连接CE,若∠A=60°,∠ACE=24°,则∠ABE的度数为()A.24°B.30°C.32°D.48°9、如图,在△ABC中,AB=AC,∠A=36°,BD,CE分别平分∠ABC,∠ACB,若CD=3,则CE等于()A.2B.2.5C.3D.3.510、如图,矩形中,点在上,且平分,,,则矩形的面积为()A. B.24 C. D.1211、如图,D,E分别为△ABC的边AC,BC上的点,AE⊥BD,垂足为F,且AF=EF.若∠ABC=36°,∠C=44°,则∠EAC的度数为()A.18°B.28°C.36°D.38°12、如图,△ABC中,AB=AC,AD⊥BC,下列结论中错误的是()A.D是BC中点B.AD平分∠BACC.AB=2BDD.∠B=∠C13、若△ABC的三边长分别为a、b、c,满足(a-b)(a2+b2-c2)=0,则△ABC是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形14、已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为()A.40°B.100°C.40°或100°D.70°或50°15、如图,∠BAC=60°,AD是∠BAC的角平分线,点D在AD上,过点D作DE∥AB交AC于点E.若DE=2,则点D到AB的距离为()A.1B.C.2D.2二、填空题(共10题,共计30分)16、如图,在△ABC中,AC=BC,∠ACB=100°,点D在线段AB上运动(D不与A,B 重合),连接CD,作∠CDE=40°,DE交BC于点E.若△CDE是等腰三角形,则∠ADC 的度数是________.17、如图,在△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,C,D,E在同一条直线上,连结BD,BE.有以下结论①△ACE≌△BCD;②BD=CE;③∠ADB=45°;④∠ACE+∠DBC=45°.其中正确结论的是________.(写上序号)18、如图,D为△ABC中BC边上一点,AB=CB,AC=AD,∠BAD=21°,则∠C=________.19、如图,在△ABC中,D.E两点分别在边AC、AB上,AB=AC,BC=BD,AD=DE=BE,求∠A的度数________.20、如图,在平行四边形ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为________.21、如图,PA、PB是的切线,A、B为切点,点C、D在⊙O上.若∠P=102°,则∠A +∠C=________°.22、把命题“邻补角互补”写成“如果…”“那么…”的形式是________。

2020年华师大版八年级数学上学期第13章全等三角形单元检测题(含答案)

2020年华师大版八年级数学上学期第13章全等三角形单元检测题(含答案)

第13章试卷[时间:90分钟分值:100分]第Ⅰ卷(选择题共30分)1.已知等腰三角形的一个内角为100°,则这个等腰三角形的顶角为()A.40°B.100°C.40°或100°D.70°或50°2.如图,已知AB=DB,∠ABD=∠CBE,则下列结论:①BE=BC;②∠D=∠A;③∠C=∠E;④AC=DE,能使△ABC≌△DBE 的条件有()A.1 个B.2 个C.3 个D.4个第2题图第3题图3.如图,△ABC中,AB的垂直平分线交AC于点D,如果AC=5 cm,BC=4 cm,那么△DBC的周长是()A.6 cm B.7 cmC.8 cm D.9 cm4.如图,∠E=∠F=90°,∠B=∠C,AE=AF,则下列结论:①∠EAC=∠F AB;②CM=BN;③CD=DN;④△ACN≌△ABM.其中正确的有()A.4个B.3个C.2个D.1个第4题图第5题图5.如图,在△ABC中,CD⊥AB于点D,BE平分∠ABC交CD 于点E,若S△BCE=24,BC=12,则DE等于()A.10B.7C.5D.46.如图,直线l、l′、l″表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有()A.一处B.二处C.三处D.四处7.如图,AB=AC,BE⊥AC于E,CF⊥AB于F,BE、CF交于点D,则下列结论中,不正确的是()A.△ABE≌△ACFB.点D在∠BAC的平分线上C.△BDF≌△CDED.点D是BE的中点8.两组邻边分别相等的四边形叫做“筝形”.如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,小詹在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO;③△ABD≌△CBD.其中正确的结论有()A.0个B.1个C.2个D.3个9.如图,点E在△ABC的外部,点D在BC边上,DE交AC于点F,若∠EDC=∠EAC=∠BAD,AC=AE,则()A.△ABD≌△AFD B.△ABC≌△ADEC.△AFE≌△ADC D.△AFE≌△DFC10.如图,在△ABC中,∠A=50°,∠B=∠C,点D、E、F分别在边BC、CA、AB上,且满足BF=CD,BD=CE,∠BFD=30°,则∠FDE的度数为()A.75°B.80°C.65°D.95°第Ⅱ卷(非选择题共70分)二、填空题(每小题3分,共18分)11.“全等三角形面积相等”是命题,条件是,结论是.12.如图,AB=AC,FD⊥BC于D,DE⊥AB于E,若∠AFD=145°,则∠EDF=度.第12题图第13题图13.如图,已知∠B=∠C,添加一个条件使△ABD≌△ACE(不标注新的字母,不添加新的线段),你添加的条件是.(写出一个即可)14.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=6,BD=4,则点D到AB的距离是__2__.第14题图第15题图15.如图,在△ABC中,AB=AC,∠ABC、∠ACB的平分线BD、CE相交于O点,且BD交AC于点D,CE交AB于点E,某同学分析图形后得出以下结论:①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE.上述结论一定正确的是(填序号).16.如图,在△ABC中,CD、BE是边AB和AC上的高,点M 在BE的延长线上,且BM=AC,点N在CD上,且AB=CN,则∠MAN 的度数是.三、解答题(共52分)17.(7分)如图,在△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:(1)△AEF≌△CEB;(2)AF=2CD.18.(6分)如图,轮船从A港出发,以28海里/小时的速度向正北方向航行,此时测的灯塔M在北偏东30°的方向上.半小时后,轮船到达B处,此时测得灯塔M在北偏东60°的方向上(即∠DBM=60°).(1)求轮船在B处时与灯塔M的距离;(2)轮船从B处继续沿正北方向航行,又经半小时后到达C处.求此时轮船与灯塔M的距离是多少?灯塔M在轮船的什么方向上?19.(7分)如图,在△ABC中,∠ACB=90°,AC=BC=AD.(1) 作∠A的平分线交CD于点E;(2) 过点B作CD的垂线,垂足为F;(3) 请写出图中两对全等三角形(不添加任何字母),并选择其中一对加以证明.20.(6分)如图,四边形ABCD是正方形,E是CD边上任意一点,连结AE,作BF⊥AE,DG⊥AE,垂足分别为F,G.求证:BF-DG=FG.21.(8分)如图,在△ABC中,∠B=2∠C,且AD⊥BC于D.求证:CD=AB+BD.22.(8分)如图,已知∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为点F.(1)求证:△ABC≌△ADE;(2)求∠F AB+∠DAE的度数;(3)请问线段CE、BF、DE之间有什么数量关系?请说明理由.23.(10分) (1)如图1,在四边形ABCD中,AB∥DC,点E是BC的中点,若AE是∠BAD的平分线,试判断AB、AD、DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC,得到AB=FC,从而把AB、AD、DC转化在一个三角形中即可判断.AB、AD、DC之间的等量关系为;(2)问题探究:如图2,在四边形ABCD中,AB∥CD,AF与DC 的延长线交于点F,E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.图1图2参考答案第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.B2.C3. D【解析】∵DE是AB的垂直平分线,∴AD=BD,∴△DBC的周长=BD+CD+BC=AD+CD+BC=AC+BC.∴AC=5 cm,BC=4 cm,∴△DBC的周长是9 cm.4. B5. D6. D答图【解析】 如答图,加油站的地址有四处.7. D8. D9. B【解析】 在△AEF 与△DCF 中,∵∠EDC =∠EAC ,∠AFE =∠CFD ,∴∠C =∠E .∵∠EAC =∠BAD ,∴∠DAE =∠BAC .∵AC =AE ,∴△ABC ≌△ADE ( A.S.A.).10. C【解析】 ∵∠B =∠C ,∠A =50°,∴∠B =∠C =12×(180°-50°)=65°.∵∠BFD =30°,∠BFD +∠B +∠FDB =180°,∴∠FDB =85°.在△BDF 和△CED 中,⎩⎪⎨⎪⎧BF =CD ,∠B =∠C ,BD =CE ,∴△BDF ≌△CED (S.A.S.),∴∠BFD =∠CDE =30°.又∵∠FDE +∠FDB +∠CDE =180°,∴∠FDE =180°-30°-85°=65°.第Ⅱ卷(非选择题 共70分)二、填空题(每小题3分,共18分)11. 真 两个三角形全等 它们的面积相等12. 5513. AB =AC 或AD =AE 或BD =CE 或BE =CD14. 2【解析】 ∵BC =6,BD =4,∴CD =2.∵∠C =90°, AD 平分∠CAB ,∴点D 到AB 的距离=CD =2.15. ①③④16. 90°【解析】 ∵CD 、BE 是边AB 和AC 上的高,∴∠ADC =∠AEB =90°,∴∠ABM +∠BAC =90°,∠BAC +∠ACN =90°,∴∠ABM =∠ACN .在△ABM 和△ACN 中,⎩⎪⎨⎪⎧AB =CN ,∠ABM =∠ACN ,BM =AC ,∴△ABM ≌△NCA ,∴∠BAM =∠CNA .∵∠CNA =∠ADC +∠BAN =90°+∠BAN ,∠BAM =∠MAN +∠BAN ,∴∠MAN =90°.三、解答题(共52分)17. 证明: (1)∵AD ⊥BC ,∴∠B +∠BAD =90°.∵CE ⊥AB ,∴∠B +∠BCE =90°.∴∠EAF =∠ECB .在△AEF 和△CEB 中,⎩⎪⎨⎪⎧∠AEF =∠CEB =90°,AE =CE ,∠F AE =∠BCE ,∴△AEF ≌△CEB (S .A .S .)(2)∵△AEF ≌△CEB ,∴AF =BC .∵AB =AC ,AD ⊥BC ,∴CD =BD ,BC =2CD .∴AF =2CD .18.答图解:(1)AB=28×0.5=14,∠BAM=30°,∠DBM=60°,∴∠BMA=∠DBM-∠BAM=30°,∴BM=AB,∴BM=14,∴轮船在B处时与灯塔M的距离为14海里.(2)∵BC=14,BM=BC,∠CBM=60°,∴△BMC是等边三角形,∴CM=BC=14,∠BCM=60°,∴此时轮船与灯塔M的距离是14海里,灯塔M在轮船的南偏东60°方向上.19.答图解:(1)如答图,AE为满足条件的角平分线.(2)如答图,BF为满足条件的垂线.(3)△ACE≌△ADE,△ACE≌△CBF.证明:△ACE≌△CBF.在△ACD中,AC=AD,且AE平分∠CAD,∴AE⊥CD,∴∠AEC=90°.∵BF⊥CD,∴∠CFB=90°,∴∠AEC=∠CFB①.∵∠CAE+∠ACE=90°,∠BCF+∠ACE=90°,∴∠CAE=∠BCF②.又∵AC=CB③,∴由①②③知,△ACE≌CBF(A.A.S.).20. 证明:∵四边形ABCD是正方形,∴AB=AD,∠DAB=90°.∵BF ⊥AE ,DG ⊥AE ,∴∠AFB =∠AGD =∠ADG +∠DAG =90°. ∵∠DAG +∠BAF =90°,∴∠ADG =∠BAF .∵在△BAF 和△ADG 中,⎩⎪⎨⎪⎧∠BAF =∠ADG ,∠AFB =∠DGA ,AB =AD ,∴△BAF ≌△ADG (A .A .S .), ∴BF =AG ,AF =DG .∵AG =AF +FG ,∴BF =AG =DG +FG ,∴BF -DG =FG .21.答图证明:如答图,在DC上取DE=BD.∵AD⊥BC,∴AB=AE,∴∠B=∠AEB.在△ACE中,∠AEB=∠C+∠CAE.又∵∠B=2∠C,∴2∠C=∠C+∠CAE,∴∠C=∠CAE,∴AE=CE,∴CD=CE+DE=AB+BD.22.答图(1)证明:∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE.在△BAC 和△DAE 中,⎩⎪⎨⎪⎧AB =AD ,∠BAC =∠DAE ,AC =AE ,∴△BAC ≌△DAE (S.A.S.).(2)解:∵∠CAE =90°,AC =AE ,∴∠E =45°.由(1)知△BAC ≌△DAE ,∴∠CAB =∠DAE ,∠BCA =∠E =45°,∴∠F AB +∠DAE =∠F AB +∠CAB =∠F AC .∵AF ⊥CB ,∠BCA =45°,∴∠F AC =45°,∴∠F AB +∠DAE =45°.(3)解:CE =2BF +2DE .理由:如答图,延长BF 到G ,使得FG =FB ,连结AG .∵AF ⊥BG ,∴AB =AG ,∴∠ABF =∠G .∵△BAC ≌△DAE ,∴AB =AD ,∠CBA =∠EDA ,CB =ED ,∴AG =AD ,∠ABF =∠CDA ,∴∠G =∠CDA .∵∠GCA =∠DCA =45°.在△CGA 和△CDA 中,⎩⎪⎨⎪⎧∠GCA =∠DCA ,∠CGA =∠CDA ,AG =AD ,∴△CGA ≌△CDA ( A.A.S.),∴CG =CD .∵CG =CB +BF +FG =CB +2BF =DE +2BF , ∴CD =2BF +DE ,∴CE =2BF +2DE .23. AD =AB +DC(1)【解析】如图1,延长AE 交DC 的延长线于点F . ∵AB ∥DC ,∴∠BAE =∠F .∵E 是BC 的中点,∴CE =BE .在△AEB 和△FEC 中,⎩⎪⎨⎪⎧∠BAE =∠F ,∠AEB =∠FEC ,BE =CE ,∴△AEB ≌△FEC (A .A .S ),∴AB =FC .∵AE 是∠BAD 的平分线,∴∠DAF =∠BAF , ∴∠DAF =∠F ,∴DF =AD ,∴AD =DC +CF =DC +AB .(2)解:AB =AF +CF .证明:如答图,延长AE 交DF 的延长线于点G ,答图∵E 是BC 的中点,∴CE =BE .∵AB ∥DC ,∴∠BAE =∠G ,在△AEB 和△GEC 中,⎩⎪⎨⎪⎧∠BAE =∠G ,∠AEB =∠GEC ,BE =CE ,∴△AEB ≌△GEC ,∴AB =GC .∵AE 是∠BAF 的平分线,∴∠BAG =∠F AG ,∵AB ∥CD ,∴∠BAG =∠G ,∴∠F AG =∠G , ∴F A =FG ,∴AB =CG =AF +CF .1、生活不相信眼泪,眼泪并不代表软弱。

第13章 全等三角形数学八年级上册-单元测试卷-华师大版(含答案)

第13章 全等三角形数学八年级上册-单元测试卷-华师大版(含答案)

第13章全等三角形数学八年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、已知等腰三角形的两边长分别是3和6,则它的周长等于()A.12B.12或15C.15或18D.152、已知:如图,在△ABC中,∠C=90°,∠CAB=60°,AD平分∠BAC,点D到AB的距离DE=2cm,则BC等于()A.2cmB.4cmC.6cmD.8cm3、点G为△ABC的重心(△ABC三条中线的交点),以点G为圆心作⊙G与边AB,AC相切,与边BC相交于点H,K,若AB=4,BC=6,则HK的长为()A. B. C. D.4、能说明△ABC≌△DEF的条件是()A.AB=DE,AC=DF,∠C=∠FB.AC=EF,∠A=∠D,∠B=∠EC.AB=DE,BC=EF,∠A=∠DD.BC=EF,AB=DE,∠B=∠E5、下面是小刚同学在一次测试中解答的部分填空题,其中解答正确的个数是()①已知实数a,b满足a= +3,即=3;②若x2=9,则x=3;③有一个角为100°的两个等腰三角形一定相似A.1B.2C.3D.06、下列结论中正确的有()①若一个三角形中最大的角是80°,则这个三角形是锐角三角形②三角形的角平分线、中线和高都在三角形内部③一个三角形最少有一个角不小于60°④一个等腰三角形一定是钝角三角形A.1个B.2个C.3个D.4个7、已知下列命题:①若,则;②若,则;③有两条边及一个角对应相等的两个三角形全等;④底角相等的两个等腰三角形全等.其中是真命题的个数是().A. 个B. 个C. 个D. 个8、如图,AB=AD,AC=AE,DAB= CAE=50°,以下四个结论:①△ADC≌△ABE;②CD=BE;③DOB=50°;④点A在DOE的平分线上,其中结论正确的个数是()A.1B.2C.3D.49、如图,都是等边三角形,且B,C,D在一条直线上,连结,点M,N分别是线段BE,AD上的两点,且,则的形状是()A.等腰三角形B.直角三角形C.等边三角形D.不等边三角形10、要判定两个直角三角形全等,下列说法正确的有()①有两条直角边对应相等;②有两个锐角对应相等;③有斜边和一条直角边对应相等;④有一条直角边和一个锐角相等;⑤有斜边和一个锐角对应相等;⑥有两条边相等.A.6个B.5个C.4个D.3个11、如图,在△ABC中,AB=AC,过点A作AD∥BC,若∠1=70°,则∠BAC的大小为()A.40°B.30°C.70°D.50°12、小冬不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1,2,3,4的四块),你认为将其中的哪一块带去,能配一块与原来一样大小的三角形?应该带()A.第1块B.第2块C.第3块D.第4块13、如图,,,则等于()A. B. C. D.14、如图,已知直线AB∥CD,∠C=135°,∠A=45°,则△AEF的形状是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形15、用反证法证明“△ABC的三个内角中至少有一个内角大于或等于60°”,第一步应假设()A.三角形的三个内角都小于60°B.三角形的三个内角中至多有一个角大于或等于60°C.三角形的兰个内角中有两个角大于或等于60°D.三角形的三个内角都大于或等于60°二、填空题(共10题,共计30分)16、如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,分别以AB,AC,BC为边在AB同侧作正方形ABEF,ACPQ,BDMC,记四块阴影部分的面积分别为S1, S2,S3, S4,则S1+S2+S3+S4=________.17、如图,△ABC中,∠B=35°,∠BCA=75°,请依据尺规作图的作图痕迹,计算∠α=________°18、在RtABC中,∠C=90°,AC=BC=(如图),若将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,联结C′B,则C′B的长为________.19、如图,△ABC中,D是BC边的中点,AE平分∠BAC,BE⊥AE于E,若AB=5,AC=7,则ED=________20、如图,AB与⊙O相切于点C,∠A=∠B,OA=10,AB=16,则OC的长为________21、如图,在△ABC中,AB=2,AC=,∠BAC=105°,△ABD,△ACE,△BCF都是等边三角形,则四边形AEFD的面积为________.22、如图,等腰△ABC中,AB=AC,∠BAC=50°,AB的垂直平分线MN交AC于点D,则∠DBC的度数是________.23、如图,△ABC中,AB=AC,∠BAC=120°,AC的垂直平分线交BC于点D,垂足为E,若DE=2cm,则BD的长为________.24、如图,等腰△ABC的周长为27cm,底边BC=7cm,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为________cm .cm25、如图,在中,,.DE垂直平分AB,交BC于点E,则________.三、解答题(共5题,共计25分)26、如图,点M,N分别在正三角形ABC的BC,CA边上,且BM=CN,AM,BN交于点Q.求证:∠BQM=60°.27、如图,点B、E、C、F在同一条直线上,∠B=∠DEF,AB=DE,BE=CF.求证:∠A=∠D.28、三月三,放风筝.如图所示是小明制作的风筝,他根据DE=DF,EH=FH,不用度量,就知道∠DEH=∠DFH.请你用所学知识给予证明.29、某班参加校运动会的19名运动员的运动服号码恰是1~19号,这些运动员随意地站成一个圆圈,则一定有顺次相邻的某3名运动员,他们运动服号码数之和不小于32,请你说明理由.30、如图,AD是∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F,.AB=20 cm,AC=12 cm.求DE的长.参考答案一、单选题(共15题,共计45分)1、D2、C3、A4、D5、B6、B7、A8、D9、C10、B12、B13、C14、D15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。

第13章 全等三角形数学八年级上册-单元测试卷-华师大版(含答案)

第13章 全等三角形数学八年级上册-单元测试卷-华师大版(含答案)

第13章全等三角形数学八年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、如图,在△ABC中,按以下步骤作图:①分别以点B和C为圆心,以大于BC的长为半径作弧,两弧相交于点M和N;②作直线MN交AC于点D,连接BD.若AC=6,AD=2,则BD的长为()A.2B.3C.4D.62、如图,在中,,分别以点和点为圆心,大于的长为半径作弧,两弧相交于两点,作直线交于点,交于点,连结.若,则的长为()A. B. C. D.3、在ABC和中,已知∠A= ,∠B= ,添加下列条件中的一个,不能使ABC≌一定成立的是()A.AC=B.BC=C.AB=D.∠C=4、在三角形内部到三角形三个顶点距离相等的点应是三角形的()A.三条高的交点B.三条角平分线的交点C.三条中线的交点D.三条垂直平分线的交点5、如图,△ABC中,点D在BC上,点E在AB上,BD=BE,下列四个条件中,不能使△ADB ≌△CEB的条件是()A.AD=CEB.AE=CDC.∠BAC=∠BCAD.∠ADB=∠CEB6、下列命题中正确的是()A.平分弦的直径垂直于弦B.与直径垂直的直线是圆的切线C.对角线互相垂直的四边形是菱形D.联结等腰梯形四边中点的四边形是菱形7、如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为()A.6B.3C.2D.18、如图,AE⊥AB,BD⊥AB,C为线段AB上一点,满足CE⊥CD,CE=CD,若AE=4,BD=3,则AB的长为( )A.7B.8C.9D.129、如图,在正方形ABCD中,对角线AC,BD交于点O,折叠正方形ABCD,使AB边落在AC 上,点B落在点H处,折痕AE分别交BC于点E,交BO于点F,连结FH,则下列结论正确的有几个()⑴AD=DF;(2)= ;(3)= ﹣1;(4)四边形BEHF为菱形.A.1个B.2个C.3个D.4个10、已知图中的两个三角形全等,则等于()A.70°B.50°C.60°D.70°11、一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是()A.13cmB.14cmC.13cm或14cmD.以上都不对12、三名同学分别站在一个三角形三个顶点的位置上,他们在玩抢凳子的游戏,要求在他们中间放一个凳子,抢到凳子者获胜,为使游戏公平,凳子应放的最适当的位置在三角形的()A.三条角平分线的交点B.三边中线的交点C.三边上高所在直线的交点D.三边的垂直平分线的交点13、等腰三角形的两边长分别为和,则它的周长为()A. B. C. D. 或14、如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E.△ABC的周长为19,△ACE的周长为13,则AB的长为()A.3B.6C.12D.1615、如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交与点O,AD与BC交与点P,BE与CD交与点Q,连接PQ.有下列结论:①AD=BE ②AP=BQ ③∠AOB=60°④DE=DP 其中正确的结论有()A.①②③B.①③④C.①②D.②③④二、填空题(共10题,共计30分)16、如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是________秒.17、命题“在角的内部,到角的两边距离相等的点在角的平分线上”的逆命题是:________18、如图,AE=BF,AD∥BC,AD=BC,则有△ADF≌________,且DF=________.19、如图,在Rt△ABC中,∠C=90°,过点C作△ABC外接圆⊙O的切线交AB的垂直平分线于点D,AB的垂直平分线交AC于点E,若OE=2,AB=8,则CD=________。

第13章 全等三角形数学八年级上册-单元测试卷-华师大版(含答案)

第13章 全等三角形数学八年级上册-单元测试卷-华师大版(含答案)

第13章全等三角形数学八年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、如图,某同学把一块三角形的玻璃打破成了三块,现要到玻璃店去配一块大小、形状完全相同的玻璃,那么他可以()A.带①去B.带②去C.带③去D.带①和②去2、如图,在⊙O中,已知=,那么图中共有几对全等三角形()A.2对B.3对C.4对D.5对3、若等腰三角形的周长为26cm,一边为11cm,则腰长为()A.11cmB.7.5cmC.11cm或7.5cmD.以上都不对4、等腰三角形的一边长为4 cm,另一边长为9 cm,则它的周长为( )A.13 cmB.17 cmC.22 cmD.17 cm或22 cm5、对于△ABC嘉淇用尺规进行了如下操作:如图:⑴分别以点B和点C为圆心,BA,CA为半径作弧,两弧相交于点D;⑵作直线AD交BC边于点E.根据嘉淇的操作方法,可知线段AE是()A.△ABC的高线B.△ABC的中线C.边BC的垂直平分线D.△ABC的角平分线6、如图所示,在第1个中,;在边上任取一点,延长到,使,得到第2个;在边上任取一点,延长到,使,得到第3个…按此做法继续下去,则第个三角形中以为顶点的底角度数是()A. B. C. D.7、如图,在△ABC中,D是BC上的一点,已知AC=5,AD=6,BD=10,CD=5,则△ABC的面积是()A.30B.36C.72D.1258、如图,△ABC与△CED均为等边三角形,且B,C,D三点共线.线段BE,AD相交于点O,AF⊥BE于点F.若OF=1,则AF的长为()A.1B.C.D.29、如图,在直角三角形ABC中,∠BAC=90°,AB=AC,D为BC上一点,AB=BD,DE⊥BC,交AC于E,则图中的等腰三角形的个数有()A.3个B.4个C.5个D.6个10、思考下列命题:(1)等腰三角形一腰上的高线等于腰长的一半,则顶角为75度;(2)两圆圆心距小于两圆半径之和,则两圆相交;(3)在反比例函数y= 2 x 中,如果函数值y<1时,那么自变量x>2;(4)圆的两条不平行弦的垂直平分线的交点一定是圆心;(5)三角形的重心是三条中线的交点,而且一定在这个三角形的内部;其中正确命题的有几个()A.1B.2C.3D.411、一个三角形如果有两边的垂直平分线的交点在第三边上,那么这个三角形是()A.等腰三角形;B.等边三角形;C.直角三角形;D.等腰直角三角形.12、如图,已知E,F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M,O为BD 的中点,则下列结论:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤.其中正确结论的是()A.①③④B.②④⑤C.①③⑤D.①③④⑤13、联欢会上,A,B,C三名选手站在一个三角形三个顶点上玩抢凳子游戏,在他们中间放个木凳,谁先抢到凳子就获胜,为使游戏公平,凳子应放的最适当位置是△ABC的( )A.三边中线的交点B.三边中垂线的交点C.三条角平分线的交点 D.三边上高的交点14、有下面的说法:①全等三角形的形状相同;②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长、面积分别相等.其中正确的说法有( )A.1个B.2个C.3个D.4个15、如图,在下列条件中,不能判断△ABD≌△BAC的条件是()A.∠D=∠C,∠BAD=∠ABCB.BD=AC,∠BAD=∠ABCC.∠BAD=∠ABC,∠BAD=∠ABCD.AD=BC,BD=AC二、填空题(共10题,共计30分)16、如图,在△ABC中,AB=6cm,AC=4cm,BC的垂直平分线分别角AB、BC于D、E,则△ACD的周长为________cm.17、如图,AD=AB,∠C=∠E,∠CDE=55 ,则∠ABE=________.18、已知等腰三角形的两边长是6cm和11cm,则它的周长是________.19、如图,在△ABC中,AB=AC=5,BC=8,将△ABC绕着点B旋转得到△A′BC′,点A 的对应点A′,点C的对应点C′.如果点A′在BC边上,那么点C和点C′之间的距离为________.20、在△ABC中,∠A=30°,当∠B=________度时,AC=BC.21、如图,△ACE ≌△DBF ,如果∠E=∠F ,AD=10 ,BC=2 ,那么线段AB的长是________.22、如图,在正方形ABCD中,等边三角形AEF的顶点E,F分别在边BC和CD上,则∠AEB =________.23、如图,是等边三角形内一点,将线段绕点顺时针旋转60°得到线段,连接.若,则四边形的面积为________.24、如图,在河对岸有一等腰三角形场地EFG,FG=EG , 为了估测场地的大小,在笔直的河岸上依次取点C,D,B,A,使点E,G,D在同一直线上,在D观测F后,发现,测得CD=12米,DB=6米,AB=12米,则FG=________米.25、在△ABC,AB=AC=5,BC=6,若点P在边AC上移动,则BP的最小值是________.三、解答题(共5题,共计25分)26、如图,已知AB=AD,且AC平分∠BAD,求证:BC=DC27、已知:如图,AB=CD,线段AC的垂直平分线与线段BD的垂直平分线相交于点E.求证:∠ABE=∠CDE.28、如图,中,,,于点D,点E在的延长线上,,连接,求的度数.29、如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD30、已知命题:如图,点A,D,B,E在同一条直线上,且AD=BE,∠A=∠FDE,则△ABC ≌△DEF.判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,请添加一个适当条件使它成为真命题,并加以证明.参考答案一、单选题(共15题,共计45分)2、C3、C4、C5、A6、C7、B8、C9、B10、B11、C12、D13、B14、D15、B二、填空题(共10题,共计30分)16、17、18、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。

第13章 全等三角形数学八年级上册-单元测试卷-华师大版(含答案)

第13章 全等三角形数学八年级上册-单元测试卷-华师大版(含答案)

第13章全等三角形数学八年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合),给出以下四个结论:①AE=CF;②△EPF是等腰直角三角形;③2S四边形AEPF=S△ABC;④BE+CF=EF.上述结论中始终正确的有()A.4个B.3个C.2个D.1个2、如图△ABC 的∠ABC 的外角平分线 BD 与∠ACB 的外角平分线 CE 交于 P,过 P 作 MN ∥AB 交 AC 于M,交 BC 于 N,且 AM=8,BN=5,则 MN=()A.2B.3C.4D.53、如图,在△ABC中,AB=AC,D,E两点分别在AC, BC上,BD是∠ABC的平分线,DE//AB,若BE=5 cm,CE=3 cm,则△CDE的周长是()A.15 cmB.13 cmC.11 cmD.9 cm4、如果一个等腰三角形的一个角为30°,则这个三角形的顶角为()A.120°B.30°C.90°D.120°或30°5、在正方形ABCD中,E、F是对角线AC上两点连接BE、BF、DE、DF,则A添加下列哪一个条件可以判定四边形BEDF是菱形()A.∠1=∠2B.BE=DFC.∠EDF=60°D.AB=AF6、一个等腰三角形的顶角等于70°,则这个等腰三角形的底角度数是()A.50°B.55°C.65°D.110°7、如图所示,E.F分别是正方形ABCD的边CD,AD上的点,且CE=DF,AE,BF相交于点O,下列结论①AE=BF;②AE⊥BF;③AO=OE;④S△AOB=S四边形DEOF中,错误的有()A.1个B.2个C.3个D.4个8、如图,在Rt△ABC中,AB=CB,BO⊥AC,把△ABC折叠,使AB落在AC上,点B与AC上的点E重合,展开后,折痕AD交BO于点F,连接DE、EF,下列结论:①AB=2BD;②图中有4对全等三角形;③若将△DEF沿EF折叠,则点O不一定落在AC上;④BD=BF,上述结论中正确的是()A.①②③④B.②④C.①③④D.①②④9、如图,在∠AOB的两边上,分别取OM=ON,再分别过点M、N作OA、OB的垂线,交点为P,画射线OP,则OP平分∠AOB的依据是()A.SSSB.SASC.AASD.HL10、如图,在等腰三角形纸片中,,点分别在边上,连接,将沿翻折使得点恰好落在点处,则的长为()A. B. C. D.11、到三角形各顶点距离相等的点是三角形三条()A.中线的交点B.角平分线的交点C.高线的交点D.三边垂直平分线的交点12、如图,在中,,的垂直平分线交于点.交于点,且与的比为4:1,则的度数为()A.20°B.22.5°C.25°D.30°13、下列能判定三角形是等腰三角形的是( )A.有两个角为30°、60B.有两个角为40°、80°C.有两个角为50°、80D.有两个角为100°、120°14、如图,AB∥ED,CD=BF,若要说明△ABC≌△EDF,则还需要补充的条件可以是( )A.AC=EFB.AB=EDC.∠B=∠ED.不用补充15、如图,中,,点在边上,且满足,为线段的中点,若,,则()A. B. C. D.6二、填空题(共10题,共计30分)16、如图,在中,,,则图中阴影部分的面积是________ .17、如图所示,两块完全相同的含30°角的直角三角形叠放在一起,且∠DAB=30°.有以下四个结论:①AF⊥BC;②△ADG≌△ACF;③O为BC的中点;④AG:GE=:4其中正确结论的序号是________ .18、如图,将矩形ABCD沿EF折叠,使点D落在点B处,点C落在点C'处,P为折痕EF上的任意一点,过点P作PG⊥BE,PH⊥BC,垂足分别为G,H。

第13章 全等三角形数学八年级上册-单元测试卷-华师大版(含答案)

第13章 全等三角形数学八年级上册-单元测试卷-华师大版(含答案)

第13章全等三角形数学八年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、在等腰△ABC中,AB=AC=9,BC=6,DE是AC的垂直平分线,交AB、AC于点D、E,则△BDC的周长是()A.6B.9C.12D.152、在直角坐标系中,已知A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P共有()A.1个B.2个C.3个D.4个3、如图,,BP和CP分别平分和,AD过点P,且与AB垂直。

若点P到BC的距离是4,则AD的长为()A.8B.6C.4D.24、在长方形台球桌上打台球时,球的反射角∠1等于入射角∠2,如图所示.如果∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证∠1的度数为()A.30°B.45°C.60°D.75°5、如图所示,在三角形中,,,在上分别取点,使,,,则图中的等腰三角形有()A. 个B. 个C. 个D. 个6、如图,在Rt△ABC中,AC=BC=2,将△ABC绕点A逆时针旋转60°,连接BD,则图中阴影部分的面积是()A.2 ﹣2B.2C. ﹣1D.47、如图,、、分别表示的三边长,下面三角形中与一定全等的是()A. B. C.D.8、如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E, S△ABC=32,DE =4,AB=6,则AC的长是( )A.8B.9C.10D.129、如图,⊙O的半径OB和弦AC相交于点D,∠AOB=90°,则下列结论错误的是().A.∠C=45°B.∠OAB=45°C.OB∶AB=1∶D.∠ABC=4∠CAB10、下列命题正确的是()A.到角两边距离相等的点在这个角的平分线上B.垂直于同一条直线的两条直线互相平行C.平行于同一条直线的两条直线互相平行D.等腰三角形的高线、角平分线、中线互相重合11、已知图中的两个三角形全等,则∠a的度数是()A.72°B.60°C.58°D.50°12、如图,在和中,,,, .连接、交于点M,连接.下列结论:①;②;③平分;④平分其中正确的结论个数有()个.A.4B.3C.2D.113、如图,在△ABC中,BC=8cm,AB的垂直平分线交AB于点D,交边AC点E,AC的长为12cm,则△BCE的周长等于()A.16cmB.20cmC.24cmD.26cm14、等腰三角形的两边长分别为4厘米和9厘米,则这个三角形的周长为()A.22厘米B.17厘米C.13厘米D.17厘米或22厘米15、等腰三角形一边长是6,另一边长是12,则周长是()A.24B.30C.24或30D.18二、填空题(共10题,共计30分)16、如图,等腰三角形ABC的底边BC长为6,面积是24,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为________.17、如图,把平面内一条数轴x绕点O逆时针旋转角θ(0°<θ<90°)得到另一条数轴y,x轴和y轴构成一个平面斜坐标系.规定:已知点P是平面斜坐标系中任意一点,过点P 作y轴的平行线交x轴于点A,过点P作x轴的平行线交y轴于点B,若点A在x轴上对应的实数为a,点B在y轴上对应的实数为b,则称有序实数对(a,b)为点P的斜坐标.在平面斜坐标系中,若θ=45°,点P的斜坐标为(1,2 ),点G的斜坐标为(7,﹣2 ),连接PG,则线段PG的长度是________.18、一个等腰三角形的边长分别是4cm和7cm,则它的周长是________19、如图,在中,,,的垂直平分线交于点,交于点,连接,则________度.20、如图,在△ABC中,∠ABC与∠ACB的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.若△ADE的周长为9,△ABC的周长是14,则BC=________.21、如图,O是△ABC内一点,且O到三边AB、BC、CA的距离OF=OD=OE,若∠BAC=70°,∠BOC=________.22、如图,E是正方形ABCD内一点,若ABE是等边三角形,那么∠BCE=________。

第13章 全等三角形数学八年级上册-单元测试卷-华师大版(含答案)

第13章 全等三角形数学八年级上册-单元测试卷-华师大版(含答案)

第13章全等三角形数学八年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、两个直角三角形全等的条件是()A.一个锐角对应相等B.一条边对应相等C.两条直角边对应相等 D.两个角对应相等2、已知等腰三角形一腰上的高与另一腰的夹角为50°,则底角的度数为()A.40°B.70°C.40°或140°D.70°或20°3、如图,在△ABC中,∠C=90°,点D在AB上,BC=BD,DE⊥AB交AC于点E,△ABC的周长为12,△ADE的周长为6,则BC的长为()A.3B.4C.5D.64、如图,一量角器放置在∠AOB上,角的一边OA与量角器交于点C、D,且点C处的度数是20°,点D处的度数为110°,则∠AOB的度数是()A.20°B.25°C.45°D.55°5、如图,AB是⊙O的直径,PD切⊙O于点C,交AB的延长线于点D,且CO=CD,则∠PCA=()A.30°B.45°C.60°D.67.5°6、下列给出的简记中,不能判定两个三角形全等的是()A. B. C. D.7、如图,在和中,,,,.连接、交于点M,连接.下列结论:①;②;③平分;④平分其中正确的结论个数有()个.A.4B.3C.2D.18、如图,△ABC中,AB=AC=12厘米, BC=8厘米,点D为AB的中点.如果点P在线段BC 上以4厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动;当点Q的运动速度为下列哪个值时,能够在某一时刻使△BPD与△CQP全等()A.2或3厘米/秒B.4厘米/秒C.3厘米/秒D.4或6厘米/秒9、如图,RtΔABC中,AB=AC,D,E是斜边BC上两点,∠DAE=45°,将ΔADC绕点A顺时针旋转90°后,得到ΔAFB,连接EF,下列结论:①ΔAED≌ΔAEF,②,③ΔABC的面积等于四边形AFBD的面积,④,⑤BE+DC=DE,其中正确的是()A.①②④B.①③④C.③④⑤D.①③⑤10、如右图,在△ABC中,∠C=90°,AB的垂直平分线MN分别交AC,AB于点D,E.若∠CBD : ∠DBA =3:1,则∠A为().A.18°B.20°C.22.5°D.30°11、如图,Rt△ABC中,∠C=90°,∠A<∠B,且∠A≠30°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点P在△ABC的其他边上,则可以画出不同的点P的个数为()A.4B.5C.6D.712、如图,中,是边上的高线,点E在上,且,则的度数为(  )A. B. C. D.13、如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CDB.EC=BFC.∠A=∠DD.AB=BC14、已知等腰三角形的底边长为4,腰长为9,则它的周长为( )A.13B.17C.22D.17或2215、如图,AD平分∠BAC交BC于点D,DE⊥AB于点E,DF⊥AC于点F.若S△ABC=12,DF=2,AC=3,则AB的长是()A.2B.4C.7D.9二、填空题(共10题,共计30分)16、如图,在⊙O的内接四边形ABCD中,AB=3,AD=5,∠BAD=60°,点C为弧BD的中点,则AC的长是________.17、如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D,E,AD与CE交于点F,请你添加一个适当的条件:________(答案不唯一),使△ADB≌△CEB.18、如图,如图,在正方形ABCD中,点P在AB边上,于E点,于F点,若,,则________.19、如图,在△ABC中,AB=AC,D、E分别为AB、AC上的点,∠BDE、∠CED的平分线分别交BC于点F、G,EG∥AB.若∠A=38°,则∠BFD的度数为________.20、若周长为12的等腰三角形的腰长为x,则x的取值范围是________.21、如图,在中,为的中点,平分,,与相交于点,若的面积比的面积大,则的面积是________.(用含的式子表示)22、如图EB交AC于M,交FC于D,AB交FC于N,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论有________(填序号).23、如图,在菱形ABCD中,AB=BD,点E、F分别是线段AB、AD上的动点(不与端点重合),且AE=DF,BF与DE相交于点G.给出如下几个结论:①△AED≌△DFB;②∠BGE大小会发生变化;③CG平分∠BGD;④若AF=2DF,则BG=6GF;.其中正确的结论有________(填序号).24、如图,已知∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F,AB=6,AC=3,则BE的长为________.25、如图,在平面直角坐标系xOy中,A(2,1)、B(4,1)、C(1,3).若△ABC与△ABD全等,则点D坐标为________.三、解答题(共5题,共计25分)26、如图,已知AB=AD,且AC平分∠BAD,求证:BC=DC27、已知,如图,DN=EM,且DN⊥AB于D,EM⊥AC于E,BM=CN,求证:∠B=∠C.28、如图,已知D为BC的中点,DE⊥AB,DF⊥AC,点E、F为垂足,且BE=CF.求证:△ABC是等腰三角形.29、如图,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数.30、如图,在△ABC中,∠C=40°,∠B=68°,AB、AC的垂直平分线分别交BC于D、E.求∠EAD的度数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第13章试卷[时间:90分钟分值:100分]第Ⅰ卷(选择题共30分)1.已知等腰三角形的一个内角为100°,则这个等腰三角形的顶角为()A.40°B.100°C.40°或100°D.70°或50°2.如图,已知AB=DB,∠ABD=∠CBE,则下列结论:①BE=BC;②∠D=∠A;③∠C=∠E;④AC=DE,能使△ABC≌△DBE 的条件有()A.1 个B.2 个C.3 个D.4个第2题图第3题图3.如图,△ABC中,AB的垂直平分线交AC于点D,如果AC=5 cm,BC=4 cm,那么△DBC的周长是()A.6 cm B.7 cmC.8 cm D.9 cm4.如图,∠E=∠F=90°,∠B=∠C,AE=AF,则下列结论:①∠EAC=∠F AB;②CM=BN;③CD=DN;④△ACN≌△ABM.其中正确的有()A.4个B.3个C.2个D.1个第4题图第5题图5.如图,在△ABC中,CD⊥AB于点D,BE平分∠ABC交CD 于点E,若S△BCE=24,BC=12,则DE等于()A.10B.7C.5D.46.如图,直线l、l′、l″表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有()A.一处B.二处C.三处D.四处7.如图,AB=AC,BE⊥AC于E,CF⊥AB于F,BE、CF交于点D,则下列结论中,不正确的是()A.△ABE≌△ACFB.点D在∠BAC的平分线上C.△BDF≌△CDED.点D是BE的中点8.两组邻边分别相等的四边形叫做“筝形”.如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,小詹在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO;③△ABD≌△CBD.其中正确的结论有()A.0个B.1个C.2个D.3个9.如图,点E在△ABC的外部,点D在BC边上,DE交AC于点F,若∠EDC=∠EAC=∠BAD,AC=AE,则()A.△ABD≌△AFD B.△ABC≌△ADEC.△AFE≌△ADC D.△AFE≌△DFC10.如图,在△ABC中,∠A=50°,∠B=∠C,点D、E、F分别在边BC、CA、AB上,且满足BF=CD,BD=CE,∠BFD=30°,则∠FDE的度数为()A.75°B.80°C.65°D.95°第Ⅱ卷(非选择题共70分)二、填空题(每小题3分,共18分)11.“全等三角形面积相等”是命题,条件是,结论是.12.如图,AB=AC,FD⊥BC于D,DE⊥AB于E,若∠AFD=145°,则∠EDF=度.第12题图第13题图13.如图,已知∠B=∠C,添加一个条件使△ABD≌△ACE(不标注新的字母,不添加新的线段),你添加的条件是.(写出一个即可)14.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=6,BD=4,则点D到AB的距离是__2__.第14题图第15题图15.如图,在△ABC中,AB=AC,∠ABC、∠ACB的平分线BD、CE相交于O点,且BD交AC于点D,CE交AB于点E,某同学分析图形后得出以下结论:①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE.上述结论一定正确的是(填序号).16.如图,在△ABC中,CD、BE是边AB和AC上的高,点M 在BE的延长线上,且BM=AC,点N在CD上,且AB=CN,则∠MAN 的度数是.三、解答题(共52分)17.(7分)如图,在△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:(1)△AEF≌△CEB;(2)AF=2CD.18.(6分)如图,轮船从A港出发,以28海里/小时的速度向正北方向航行,此时测的灯塔M在北偏东30°的方向上.半小时后,轮船到达B处,此时测得灯塔M在北偏东60°的方向上(即∠DBM=60°).(1)求轮船在B处时与灯塔M的距离;(2)轮船从B处继续沿正北方向航行,又经半小时后到达C处.求此时轮船与灯塔M的距离是多少?灯塔M在轮船的什么方向上?19.(7分)如图,在△ABC中,∠ACB=90°,AC=BC=AD.(1) 作∠A的平分线交CD于点E;(2) 过点B作CD的垂线,垂足为F;(3) 请写出图中两对全等三角形(不添加任何字母),并选择其中一对加以证明.20.(6分)如图,四边形ABCD是正方形,E是CD边上任意一点,连结AE,作BF⊥AE,DG⊥AE,垂足分别为F,G.求证:BF-DG=FG.21.(8分)如图,在△ABC中,∠B=2∠C,且AD⊥BC于D.求证:CD=AB+BD.22.(8分)如图,已知∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为点F.(1)求证:△ABC≌△ADE;(2)求∠F AB+∠DAE的度数;(3)请问线段CE、BF、DE之间有什么数量关系?请说明理由.23.(10分) (1)如图1,在四边形ABCD中,AB∥DC,点E是BC的中点,若AE是∠BAD的平分线,试判断AB、AD、DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC,得到AB=FC,从而把AB、AD、DC转化在一个三角形中即可判断.AB、AD、DC之间的等量关系为;(2)问题探究:如图2,在四边形ABCD中,AB∥CD,AF与DC 的延长线交于点F,E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.图1图2参考答案第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.B2.C3. D【解析】∵DE是AB的垂直平分线,∴AD=BD,∴△DBC的周长=BD+CD+BC=AD+CD+BC=AC+BC.∴AC=5 cm,BC=4 cm,∴△DBC的周长是9 cm.4. B5. D6. D答图【解析】 如答图,加油站的地址有四处.7. D8. D9. B【解析】 在△AEF 与△DCF 中,∵∠EDC =∠EAC ,∠AFE =∠CFD ,∴∠C =∠E .∵∠EAC =∠BAD ,∴∠DAE =∠BAC .∵AC =AE ,∴△ABC ≌△ADE ( A.S.A.).10. C【解析】 ∵∠B =∠C ,∠A =50°,∴∠B =∠C =12×(180°-50°)=65°.∵∠BFD =30°,∠BFD +∠B +∠FDB =180°,∴∠FDB =85°.在△BDF 和△CED 中,⎩⎪⎨⎪⎧BF =CD ,∠B =∠C ,BD =CE ,∴△BDF ≌△CED (S.A.S.),∴∠BFD =∠CDE =30°.又∵∠FDE +∠FDB +∠CDE =180°,∴∠FDE =180°-30°-85°=65°.第Ⅱ卷(非选择题 共70分)二、填空题(每小题3分,共18分)11. 真 两个三角形全等 它们的面积相等12. 5513. AB =AC 或AD =AE 或BD =CE 或BE =CD14. 2【解析】 ∵BC =6,BD =4,∴CD =2.∵∠C =90°, AD 平分∠CAB ,∴点D 到AB 的距离=CD =2.15. ①③④16. 90°【解析】 ∵CD 、BE 是边AB 和AC 上的高,∴∠ADC =∠AEB =90°,∴∠ABM +∠BAC =90°,∠BAC +∠ACN =90°,∴∠ABM =∠ACN .在△ABM 和△ACN 中,⎩⎪⎨⎪⎧AB =CN ,∠ABM =∠ACN ,BM =AC ,∴△ABM ≌△NCA ,∴∠BAM =∠CNA .∵∠CNA =∠ADC +∠BAN =90°+∠BAN ,∠BAM =∠MAN +∠BAN ,∴∠MAN =90°.三、解答题(共52分)17. 证明: (1)∵AD ⊥BC ,∴∠B +∠BAD =90°.∵CE ⊥AB ,∴∠B +∠BCE =90°.∴∠EAF =∠ECB .在△AEF 和△CEB 中,⎩⎪⎨⎪⎧∠AEF =∠CEB =90°,AE =CE ,∠F AE =∠BCE ,∴△AEF ≌△CEB (S .A .S .)(2)∵△AEF ≌△CEB ,∴AF =BC .∵AB =AC ,AD ⊥BC ,∴CD =BD ,BC =2CD .∴AF =2CD .18.答图解:(1)AB=28×0.5=14,∠BAM=30°,∠DBM=60°,∴∠BMA=∠DBM-∠BAM=30°,∴BM=AB,∴BM=14,∴轮船在B处时与灯塔M的距离为14海里.(2)∵BC=14,BM=BC,∠CBM=60°,∴△BMC是等边三角形,∴CM=BC=14,∠BCM=60°,∴此时轮船与灯塔M的距离是14海里,灯塔M在轮船的南偏东60°方向上.19.答图解:(1)如答图,AE为满足条件的角平分线.(2)如答图,BF为满足条件的垂线.(3)△ACE≌△ADE,△ACE≌△CBF.证明:△ACE≌△CBF.在△ACD中,AC=AD,且AE平分∠CAD,∴AE⊥CD,∴∠AEC=90°.∵BF⊥CD,∴∠CFB=90°,∴∠AEC=∠CFB①.∵∠CAE+∠ACE=90°,∠BCF+∠ACE=90°,∴∠CAE=∠BCF②.又∵AC=CB③,∴由①②③知,△ACE≌CBF(A.A.S.).20. 证明:∵四边形ABCD是正方形,∴AB=AD,∠DAB=90°.∵BF ⊥AE ,DG ⊥AE ,∴∠AFB =∠AGD =∠ADG +∠DAG =90°. ∵∠DAG +∠BAF =90°,∴∠ADG =∠BAF .∵在△BAF 和△ADG 中,⎩⎪⎨⎪⎧∠BAF =∠ADG ,∠AFB =∠DGA ,AB =AD ,∴△BAF ≌△ADG (A .A .S .), ∴BF =AG ,AF =DG .∵AG =AF +FG ,∴BF =AG =DG +FG ,∴BF -DG =FG .21.答图证明:如答图,在DC上取DE=BD.∵AD⊥BC,∴AB=AE,∴∠B=∠AEB.在△ACE中,∠AEB=∠C+∠CAE.又∵∠B=2∠C,∴2∠C=∠C+∠CAE,∴∠C=∠CAE,∴AE=CE,∴CD=CE+DE=AB+BD.22.答图(1)证明:∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE.在△BAC 和△DAE 中,⎩⎪⎨⎪⎧AB =AD ,∠BAC =∠DAE ,AC =AE ,∴△BAC ≌△DAE (S.A.S.).(2)解:∵∠CAE =90°,AC =AE ,∴∠E =45°.由(1)知△BAC ≌△DAE ,∴∠CAB =∠DAE ,∠BCA =∠E =45°,∴∠F AB +∠DAE =∠F AB +∠CAB =∠F AC .∵AF ⊥CB ,∠BCA =45°,∴∠F AC =45°,∴∠F AB +∠DAE =45°.(3)解:CE =2BF +2DE .理由:如答图,延长BF 到G ,使得FG =FB ,连结AG .∵AF ⊥BG ,∴AB =AG ,∴∠ABF =∠G .∵△BAC ≌△DAE ,∴AB =AD ,∠CBA =∠EDA ,CB =ED ,∴AG =AD ,∠ABF =∠CDA ,∴∠G =∠CDA .∵∠GCA =∠DCA =45°.在△CGA 和△CDA 中,⎩⎪⎨⎪⎧∠GCA =∠DCA ,∠CGA =∠CDA ,AG =AD ,∴△CGA ≌△CDA ( A.A.S.),∴CG =CD .∵CG =CB +BF +FG =CB +2BF =DE +2BF , ∴CD =2BF +DE ,∴CE =2BF +2DE .23. AD =AB +DC(1)【解析】如图1,延长AE 交DC 的延长线于点F . ∵AB ∥DC ,∴∠BAE =∠F .∵E 是BC 的中点,∴CE =BE .在△AEB 和△FEC 中,⎩⎪⎨⎪⎧∠BAE =∠F ,∠AEB =∠FEC ,BE =CE ,∴△AEB ≌△FEC (A .A .S ),∴AB =FC .∵AE 是∠BAD 的平分线,∴∠DAF =∠BAF , ∴∠DAF =∠F ,∴DF =AD ,∴AD =DC +CF =DC +AB .(2)解:AB =AF +CF .证明:如答图,延长AE 交DF 的延长线于点G ,答图∵E 是BC 的中点,∴CE =BE .∵AB ∥DC ,∴∠BAE =∠G ,在△AEB 和△GEC 中,⎩⎪⎨⎪⎧∠BAE =∠G ,∠AEB =∠GEC ,BE =CE ,∴△AEB ≌△GEC ,∴AB =GC .∵AE 是∠BAF 的平分线,∴∠BAG =∠F AG ,∵AB ∥CD ,∴∠BAG =∠G ,∴∠F AG =∠G , ∴F A =FG ,∴AB =CG =AF +CF .1、学而不思则罔,思而不学则殆。

相关文档
最新文档