义乌市第三中学校2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

义乌市第三中学校2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1.函数f(x)在x=x0处导数存在,若p:f′(x0)=0:q:x=x0是f(x)的极值点,则()
A.p是q的充分必要条件
B.p是q的充分条件,但不是q的必要条件
C.p是q的必要条件,但不是q的充分条件
D.p既不是q的充分条件,也不是q的必要条件
2.将函数的图象上所有的点向左平移个单位长度,再把图象上各点的横坐标扩大到原来的2倍,则所得的图象的解析式为()
A.B.
C.D.
3.函数f(x)是以2为周期的偶函数,且当x∈(0,1)时,f(x)=x+1,则函数f(x)在(1,2)上的解析式为()
A.f(x)=3﹣x B.f(x)=x﹣3 C.f(x)=1﹣x D.f(x)=x+1
4.平面α与平面β平行的条件可以是()
A.α内有无穷多条直线与β平行
B.直线a∥α,a∥β
C.直线a⊂α,直线b⊂β,且a∥β,b∥α
D.α内的任何直线都与β平行
5.某单位综合治理领导小组成员之问的领导关系可以用框图表示,这种框图通常称为()
A.程序流程图B.工序流程图C.知识结构图D.组织结构图
6.如图表示的是四个幂函数在同一坐标系中第一象限内的图象,则幂函数y=x的图象是()
A .①
B .②
C .③
D .④
7. 若a >b ,则下列不等式正确的是( ) A

B .a 3>b 3
C .a 2>b 2
D .a >|b|
8. 已知f (x )=2sin (ωx+φ)的部分图象如图所示,则f (x )的表达式为( )
A
. B
. C

D

9. 若方程C :x 2
+
=1(a 是常数)则下列结论正确的是( )
A .∀a ∈R +,方程C 表示椭圆
B .∀a ∈R ﹣,方程
C 表示双曲线
C .∃a ∈R ﹣,方程C 表示椭圆
D .∃a ∈R ,方程C 表示抛物线 10.下列命题中错误的是( )
A .圆柱的轴截面是过母线的截面中面积最大的一个
B .圆锥的轴截面是所在过顶点的截面中面积最大的一个
C .圆台的所有平行于底面的截面都是圆面
D .圆锥所有的轴截面是全等的等腰三角形
11.已知变量,x y 满足约束条件20
170
x y x x y -+≤⎧⎪
≥⎨⎪+-≤⎩
,则y x 的取值范围是( )
A .9
[,6]5
B .9(,][6,)5
-∞+∞ C .(,3][6,)-∞+∞ D .[3,6] 12.已知抛物线C :y x 82=的焦点为F ,
准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若2=,则=QF ( ) A .6
B .3
C .
3
8 D .
3
4
第Ⅱ卷(非选择题,共100分)
二、填空题
13.若命题“∃x ∈R ,x 2﹣2x+m ≤0”是假命题,则m 的取值范围是 .
14.设数列{a n }满足a 1=1,且a n+1﹣a n =n+1(n ∈N *),则数列{
}的前10项的和为 .
15.已知函数()f x 是定义在R 上的奇函数,且当0x ≥时,2
()2f x x x =-,则()y f x =在R 上的解析式为 16.抛物线
的准线与双曲线
的两条渐近线所围成的三角形面积为__________
17.已知x 、y 之间的一组数据如下:
x 0 1 2 3 y 8 2 6
4
则线性回归方程
所表示的直线必经过点 .
18.如图是一个正方体的展开图,在原正方体中直线AB 与CD 的位置关系是 .
三、解答题
19.(理)设函数f (x )=(x+1)ln (x+1). (1)求f (x )的单调区间;
(2)若对所有的x ≥0,均有f (x )≥ax 成立,求实数a 的取值范围.
20.如图,在四棱锥P ﹣ABCD 中,底面ABCD 为等腰梯形,AD ∥BC ,PA=AB=BC=CD=2,PD=2,PA ⊥
PD ,Q 为PD 的中点. (Ⅰ)证明:CQ ∥平面PAB ;
(Ⅱ)若平面PAD ⊥底面ABCD ,求直线PD 与平面AQC 所成角的正弦值.
21.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=(2﹣a )(x ﹣1)﹣2lnx ,g (x )=1x
xe -.
(a ∈R ,e 为自然对数的底数)
(Ⅰ)当a=1时,求f (x )的单调区间; (Ⅱ)若函数f (x )在10,
2⎛⎫
⎪⎝⎭
上无零点,求a 的最小值; (Ⅲ)若对任意给定的x 0∈(0,e],在(0,e]上总存在两个不同的x i (i=1,2),使得f (x i )=g (x 0)成立,求a 的取值范围.
22.已知等比数列{a n }中,a 1=,公比q=.
(Ⅰ)S n 为{a n }的前n 项和,证明:S n =
(Ⅱ)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列{b n }的通项公式.
23.已知函数f(x)=x3+x.
(1)判断函数f(x)的奇偶性,并证明你的结论;
(2)求证:f(x)是R上的增函数;
(3)若f(m+1)+f(2m﹣3)<0,求m的取值范围.
(参考公式:a3﹣b3=(a﹣b)(a2+ab+b2))
24.已知函数f(x)=.
(1)求函数f(x)的最小正周期及单调递减区间;
(2)当时,求f(x)的最大值,并求此时对应的x的值.
义乌市第三中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1.【答案】C
【解析】解:函数f(x)=x3的导数为f'(x)=3x2,由f′(x0)=0,得x0=0,但此时函数f(x)单调递增,无极值,充分性不成立.
根据极值的定义和性质,若x=x0是f(x)的极值点,则f′(x0)=0成立,即必要性成立,
故p是q的必要条件,但不是q的充分条件,
故选:C
【点评】本题主要考查充分条件和必要条件的判断,利用函数单调性和极值之间的关系是解决本题的关键,比较基础.
2.【答案】B
【解析】解:将函数的图象上所有的点向左平移个单位长度,得到函数

再把图象上各点的横坐标扩大到原来的2倍,得到函数.
故选B.
【点评】本题是基础题,考查函数的图象的平移与图象的伸缩变换,注意先平移后伸缩时,初相不变化,考查计算能力.
3.【答案】A
【解析】解:∵x∈(0,1)时,f(x)=x+1,f(x)是以2为周期的偶函数,
∴x∈(1,2),(x﹣2)∈(﹣1,0),
f(x)=f(x﹣2)=f(2﹣x)=2﹣x+1=3﹣x,
故选A.
4.【答案】D
【解析】解:当α内有无穷多条直线与β平行时,a与β可能平行,也可能相交,故不选A.
当直线a∥α,a∥β时,a与β可能平行,也可能相交,故不选B.
当直线a⊂α,直线b⊂β,且a∥β时,直线a 和直线b可能平行,也可能是异面直线,故不选C.
当α内的任何直线都与β平行时,由两个平面平行的定义可得,这两个平面平行,
故选D.
【点评】本题考查两个平面平行的判定和性质得应用,注意考虑特殊情况.
5.【答案】D
【解析】解:用来描述系统结构的图示是结构图,
某单位综合治理领导小组成员之问的领导关系可以用组织结构图表示.
故选D.
【点评】本题考查结构图和流程图的概念,是基础题.解题时要认真审题,仔细解答.6.【答案】D
【解析】解:幂函数y=x为增函数,且增加的速度比价缓慢,
只有④符合.
故选:D.
【点评】本题考查了幂函数的图象与性质,属于基础题.
7.【答案】B
【解析】解:∵a>b,令a=﹣1,b=﹣2,代入各个选项检验可得:
=﹣1,=﹣,显然A不正确.
a3=﹣1,b3=﹣6,显然B正确.
a2 =1,b2=4,显然C不正确.
a=﹣1,|b|=2,显然D 不正确.
故选B.
【点评】通过给变量取特殊值,举反例来说明某个命题不正确,是一种简单有效的方法.8.【答案】B
【解析】解:∵函数的周期为T==,
∴ω=
又∵函数的最大值是2,相应的x值为
∴=,其中k∈Z
取k=1,得φ=
因此,f(x)的表达式为,
故选B
【点评】本题以一个特殊函数求解析式为例,考查由y=Asin(ωx+φ)的部分图象确定其解析式、三角函数的图象与性质,周期与相位等概念,属于基础题.
9.【答案】B
【解析】解:∵当a=1时,方程C:即x2+y2=1,表示单位圆
∴∃a∈R+,使方程C不表示椭圆.故A项不正确;
∵当a<0时,方程C:表示焦点在x轴上的双曲线
∴∀a∈R﹣,方程C表示双曲线,得B项正确;∀a∈R﹣,方程C不表示椭圆,得C项不正确
∵不论a取何值,方程C:中没有一次项
∴∀a∈R,方程C不能表示抛物线,故D项不正确
综上所述,可得B为正确答案
故选:B
10.【答案】B
【解析】解:对于A,设圆柱的底面半径为r,高为h,设圆柱的过母线的截面四边形在圆柱底面的边长为a,则截面面积S=ah≤2rh.
∴当a=2r时截面面积最大,即轴截面面积最大,故A正确.
对于B,设圆锥SO的底面半径为r,高为h,过圆锥定点的截面在底面的边长为AB=a,则O到AB的距离为

∴截面三角形SAB的高为,∴截面面积
S==≤=.
故截面的最大面积为.故B错误.
对于C ,由圆台的结构特征可知平行于底面的截面截圆台,所得几何体仍是圆台,故截面为圆面,故C 正确.
对于D ,由于圆锥的所有母线长都相等,轴截面的底面边长为圆锥底面的直径,故圆锥所有的轴截面是全等的等腰三角形,故D 正确.
故选:B .
【点评】本题考查了旋转体的结构特征,属于中档题.
11.【答案】A 【解析】
试题分析:作出可行域,如图ABC ∆内部(含边界),y
x 表示点(,)x y 与原点连线的斜率,易得59(,)22
A ,
(1,6)B ,9
9
2552
OA
k ==,661OB k ==,所以965y x ≤≤.故选A .
考点:简单的线性规划的非线性应用. 12.【答案】A
解析:抛物线C :y x 82
=的焦点为F (0,2),准线为l :y=﹣2,
设P (a ,﹣2),B (m ,),则=(﹣a ,4),=(m ,﹣2),
∵,∴2m=﹣a ,4=﹣4,∴m 2=32,由抛物线的定义可得|QF|=
+2=4+2=6.故选A .
二、填空题
13.【答案】 m >1 .
【解析】解:若命题“∃x ∈R ,x 2
﹣2x+m ≤0”是假命题,
则命题“∀x ∈R ,x 2
﹣2x+m >0”是真命题,
即判别式△=4﹣4m <0, 解得m >1, 故答案为:m >1
14.【答案】 .
【解析】解:∵数列{a n }满足a 1=1,且a n+1﹣a n =n+1(n ∈N *
),
∴当n ≥2时,a n =(a n ﹣a n ﹣1)+…+(a 2﹣a 1)+a 1=n+…+2+1=.
当n=1时,上式也成立,
∴a n =.
∴=2

∴数列{}的前n 项的和S n =
=
=

∴数列{
}的前10项的和为

故答案为:.
15.【答案】222,0
2,0
x x x y x x x ⎧-≥⎪=⎨--<⎪⎩
【解析】
试题分析:令0x <,则0x ->,所以()()()2
2
22f x x x x x -=---=+,又因为奇函数满足
()()f x f x -=-,所以()()2
20f x x x x =--<,所以()y f x =在R 上的解析式为22
2,02,0
x x x y x x x ⎧-≥⎪
=⎨--<⎪⎩。

考点:函数的奇偶性。

16.【答案】
【解析】【知识点】抛物线双曲线 【试题解析】抛物线的准线方程为:x=2;
双曲线的两条渐近线方程为:
所以
故答案为:
17.【答案】 (,5) .
【解析】解:∵,
=5
∴线性回归方程y=a+bx 所表示的直线必经过点(1.5,5)
故选C
【点评】解决线性回归直线的方程,利用最小二乘法求出直线的截距和斜率,注意由公式判断出回归直线一定过样本中心点.
18.【答案】 异面 .
【解析】解:把展开图还原原正方体如图,
在原正方体中直线AB 与CD 的位置关系是异面. 故答案为:异面.
三、解答题
19.【答案】
【解析】解:(1)由f'(x)=ln(x+1)+1≥0得,∴f(x)的增区间为,减区间为

(2)令g(x)=(x+1)ln(x+1)﹣ax.“不等式f(x)≥ax在x≥0时恒成立”⇔“g(x)≥g(0)在x≥0时恒成立.”g'(x)=ln(x+1)+1﹣a=0⇒x=e a﹣1﹣1.
当x∈(﹣1,e a﹣1﹣1)时,g'(x)<0,g(x)为减函数.
当x∈(e a﹣1﹣1,+∞)时,g'(x)>0,g(x)为增函数.
“g(x)≥0在x≥0时恒成立”⇔“e a﹣1﹣1≤0”,即e a﹣1≤e0,即a﹣1≤0,即a≤1.
故a的取值范围是(﹣∞,1].
20.【答案】
【解析】(Ⅰ)证明:取PA的中点N,连接QN,BN.
∵Q,N是PD,PA的中点,
∴QN∥AD,且QN=AD.
∵PA=2,PD=2,PA⊥PD,
∴AD=4,
∴BC=AD.又BC∥AD,
∴QN∥BC,且QN=BC,
∴四边形BCQN为平行四边形,
∴BN∥CQ.又BN⊂平面PAB,且CQ⊄平面PAB,
∴CQ∥平面PAB.
(Ⅱ)解:取AD的中点M,连接BM;取BM的中点O,连接BO、PO.
由(Ⅰ)知PA=AM=PM=2,
∴△APM为等边三角形,
∴PO⊥AM.同理:BO⊥AM.
∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PO⊂平面PAD,
∴PO ⊥平面ABCD .
以O 为坐标原点,分别以OB ,OD ,OP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,
则D (0,3,0),A (0,﹣1,0),P (0,0,),C (,2,0),Q (0,,).

=(
,3,0),
=(0,3,﹣
),
=(0,,
).
设平面AQC 的法向量为=(x ,y ,z ),
∴,令y=﹣得=(3,﹣,5).
∴cos <
,>=
=﹣

∴直线PD 与平面AQC 所成角正弦值为

21.【答案】(1) f (x )的单调减区间为(0,2],单调增区间为[2,+∞);(2) 函数f (x )在10,2⎛⎫ ⎪⎝⎭
上无零点,则a 的最小值为2﹣4ln2;(3)a 的范围是3,21e ⎛⎤
-∞-
⎥-⎝⎦
. 【解析】试题分析:(Ⅰ)把a=1代入到f (x )中求出f ′(x ),令f ′(x )>0求出x 的范围即为函数的增区间,令f ′(x )<0求出x 的范围即为函数的减区间; (Ⅱ)f (x )<0时不可能恒成立,所以要使函数在(0,
12)上无零点,只需要对x ∈(0,1
2
)时f (x )>0恒成立,列出不等式解出a 大于一个函数,利用导数得到函数的单调性,根据函数的增减性得到这个函数的最大值即可得到a 的最小值;
试题解析:
(1)当a=1时,f (x )=x ﹣1﹣2lnx ,则f ′(x )=1﹣,
由f ′(x )>0,得x >2; 由f ′(x )<0,得0<x <2.
故f (x )的单调减区间为(0,2],单调增区间为[2,+∞); (2)因为f (x )<0在区间上恒成立不可能,
故要使函数上无零点,
只要对任意的
,f (x )>0恒成立,即对
恒成立.
令,则

再令,

,故m (x )在
上为减函数,于是

从而,l (x )>0,于是l (x )在上为增函数,所以

故要使
恒成立,只要a ∈[2﹣4ln2,+∞),
综上,若函数f (x )在10,
2⎛

⎪⎝⎭
上无零点,则a 的最小值为2﹣4ln2; (3)g ′(x )=e 1﹣x ﹣xe 1﹣x =(1﹣x )e 1﹣x ,
当x ∈(0,1)时,g ′(x )>0,函数g (x )单调递增; 当x ∈(1,e]时,g ′(x )<0,函数g (x )单调递减. 又因为g (0)=0,g (1)=1,g (e )=e •e 1﹣e >0, 所以,函数g (x )在(0,e]上的值域为(0,1]. 当a=2时,不合题意;
当a ≠2时,f ′(x )=,x ∈(0,e]
当x=
时,f ′(x )=0.
由题意得,f (x )在(0,e]上不单调,故,即

又因为,当x →0时,2﹣a >0,f (x )→+∞,

所以,对任意给定的x 0∈(0,e],在(0,e]上总存在两个不同的x i (i=1,2), 使得f (x i )=g (x 0)成立,当且仅当a 满足下列条件:

令h (a )=,
则h
,令h ′(a )=0,得a=0或a=2,
故当a ∈(﹣∞,0)时,h ′(a )>0,函数h (a )单调递增;

时,h ′(a )<0,函数h (a )单调递减.
所以,对任意,有h (a )≤h (0)=0, 即②对任意恒成立. 由③式解得:
.④
综合①④可知,当a 的范围是3,21e ⎛⎤
-∞-
⎥-⎝⎦
时,对任意给定的x 0∈(0,e],在(0,e]上总存在两个不同的
x i(i=1,2),使f(x i)=g(x0)成立.
22.【答案】
【解析】证明:(I)∵数列{a n}为等比数列,a1=,q=
∴a n=×=,
S n=
又∵==S n
∴S n=
(II)∵a n=
∴b n=log3a1+log3a2+…+log3a n=﹣log33+(﹣2log33)+…+(﹣nlog33)
=﹣(1+2+…+n)
=﹣
∴数列{b n}的通项公式为:b n=﹣
【点评】本题主要考查等比数列的通项公式、前n项和以及对数函数的运算性质.
23.【答案】
【解析】解:(1)f(x)是R上的奇函数
证明:∵f(﹣x)=﹣x3﹣x=﹣(x3+x)=﹣f(x),
∴f(x)是R上的奇函数
(2)设R上任意实数x1、x2满足x1<x2,∴x1﹣x2<0,
f(x1)﹣f(x2)=(x1﹣x2)+[(x1)3﹣(x2)3]=(x1﹣x2)[(x1)2+(x2)2+x1x2+1]=(x1﹣x2)[(x1+x2)
2+1]<0恒成立,
2+x
2
因此得到函数f(x)是R上的增函数.
(3)f(m+1)+f(2m﹣3)<0,可化为f(m+1)<﹣f(2m﹣3),
∵f(x)是R上的奇函数,∴﹣f(2m﹣3)=f(3﹣2m),
∴不等式进一步可化为f(m+1)<f(3﹣2m),
∵函数f(x)是R上的增函数,
∴m+1<3﹣2m,

24.【答案】
【解析】解:(1)f(x)=﹣
=sin2x+sinxcosx﹣
=+sin2x﹣
=sin(2x﹣)…3分
周期T=π,
因为cosx≠0,所以{x|x≠+kπ,k∈Z}…5分
当2x﹣∈,即+kπ≤x≤+kπ,x≠+kπ,k∈Z时函数f(x)单调递减,
所以函数f(x)的单调递减区间为,,k∈Z…7分
(2)当,2x﹣∈,…9分
sin(2x﹣)∈(﹣,1),当x=时取最大值,
故当x=时函数f(x)取最大值为1…12分
【点评】本题主要考查了三角函数中的恒等变换应用,三角函数的周期性及其求法,三角函数最值的解法,属于基础题.。

相关文档
最新文档