南开区二中2018-2019学年高二上学期数学期末模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南开区二中2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 已知球的半径和圆柱体的底面半径都为1且体积相同,则圆柱的高为( )
A .1
B .
C .2
D .4
2. 设集合M={x|x ≥﹣1},N={x|x ≤k},若M ∩N ≠¢,则k 的取值范围是( )
A .(﹣∞,﹣1]
B .[﹣1,+∞)
C .(﹣1,+∞)
D .(﹣∞,﹣1)
3. 在正方体8个顶点中任选3个顶点连成三角形,则所得的三角形是等腰直角三角形的概率为( )
A .
B .
C .
D .
4. 设集合A={x|y=ln (x ﹣1)},集合B={y|y=2x },则A B ( )
A .(0,+∞)
B .(1,+∞)
C .(0,1)
D .(1,2)
5. 已知函数f (x )=a x +b (a >0且a ≠1)的定义域和值域都是[﹣1,0],则a+b=( )
A .﹣
B .﹣
C .﹣
D .﹣或﹣
6. 奇函数f (x )在(﹣∞,0)上单调递增,若f (﹣1)=0,则不等式f (x )<0的解集是( ) A .(﹣∞,﹣1)∪(0,1) B .(﹣∞,﹣1)(∪1,+∞) C .(﹣1,0)∪(0,1) D .(﹣1,0)∪(1,+∞)
7. 某三棱椎的三视图如图所示,该三棱锥的四个面的面积中,最大的是( )
A .
B .8
C .
D .
8. 如果集合 ,A B ,同时满足{}{}{}{}1,2,3,41,1,1A
B B A B =≠≠,A =,就称有序集对
(),A B 为“ 好集对”. 这里有序集对(),A B 是指当A B ≠时,(),A B 和(),B A 是不同的集对, 那么
“好集对” 一共有( )个
A .个
B .个
C .个
D .个 9. 把“二进制”数101101(2)化为“八进制”数是( ) A .40(8)
B .45(8)
C .50(8)
D .55(8)
10.已知等差数列{}n a 的前项和为n S ,且120a =-,在区间()3,5内任取一个实数作为数列{}n a 的公差,则n S 的最小值仅为6S 的概率为( )
A .
15 B .16 C .314 D .13
11.已知函数()x e f x x
=,关于x 的方程2
()2()10f x af x a -+-=(a R Î)有3个相异的实数根,则a 的
取值范围是( )
A .21(,)21e e -+?-
B .21(,)21e e --?-
C .21(0,)21e e --
D .2121e e 禳-镲

-镲铪
【命题意图】本题考查函数和方程、导数的应用等基础知识,意在考查数形结合思想、综合分析问题解决问题的能力.
12.设偶函数f (x )满足f (x )=2x ﹣4(x ≥0),则{x|f (x ﹣2)<0}=( ) A .{x|x <﹣2或x >4} B .{x|x <0或x >4} C .{x|x <0或x >6} D .{x|0<x <4}
二、填空题
13.不等式的解集为R ,则实数m 的范围是

14.如图:直三棱柱ABC ﹣A ′B ′C ′的体积为V ,点P 、Q 分别在侧棱AA ′和CC ′上,AP=C ′Q ,则四棱锥B ﹣APQC 的体积为 .
15.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若△ABC 不是直角三角形,则下列命题正确的是 (写出所有正确命题的编号)
①tanA •tanB •tanC=tanA+tanB+tanC
②tanA+tanB+tanC 的最小值为3
③tanA ,tanB ,tanC 中存在两个数互为倒数 ④若tanA :tanB :tanC=1:2:3,则A=45°
⑤当tanB ﹣1=
时,则sin 2
C ≥sinA •sinB .
16.球O 的球面上有四点S ,A ,B ,C ,其中O ,A ,B ,C 四点共面,△ABC 是边长为2的正三角形,平面SAB ⊥平面ABC ,则棱锥S ﹣ABC 的体积的最大值为 .
17.如图,已知m ,n 是异面直线,点A ,B m ∈,且6AB =;点C ,D n ∈,且4CD =.若M ,N 分
别是AC ,BD 的中点,MN =m 与n 所成角的余弦值是______________.
【命题意图】本题考查用空间向量知识求异面直线所成的角,考查空间想象能力,推理论证能力,运算求解能力.
18.已知椭圆中心在原点,一个焦点为F (﹣2,0),且长轴长是短轴长的2倍,则该椭圆的标准方程
是 .
三、解答题
19.设椭圆C :
+
=1(a >b >0)过点(0,4),离心率为.
(1)求椭圆C 的方程;
(2)求过点(3,0)且斜率为的直线被椭圆所截得线段的中点坐标.
20.(本小题满分12分)
已知圆C :02
2
=++++F Ey Dx y x 的圆心在第二象限,半径为2,且圆C 与直线043=+y x 及y 轴都
相切.
(1)求F E D 、、;
(2)若直线022=+-y x 与圆C 交于B A 、两点,求||AB .
21.已知△ABC 的三边是连续的三个正整数,且最大角是最小角的2倍,求△ABC 的面积.
22.已知x 2﹣y 2+2xyi=2i ,求实数x 、y 的值.
23.(本小题满分12分)已知函数()2
ln f x ax bx x =+-(,a b ∈R ).
(1)当1,3a b =-=时,求函数()f x 在1,22⎡⎤⎢⎥⎣⎦
上的最大值和最小值;
(2)当0a =时,是否存在实数b ,当(]0,e x ∈(e 是自然常数)时,函数()f x 的最小值是3,若存在,求
出b 的值;若不存在,说明理由;
24.已知S n为等差数列{a n}的前n项和,且a4=7,S4=16.(1)求数列{a n}的通项公式;
(2)设b n=,求数列{b n}的前n项和T n.
南开区二中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)
一、选择题
1.【答案】B
【解析】解:设圆柱的高为h,则
V圆柱=π×12×h=h,V球==,
∴h=.
故选:B.
2.【答案】B
【解析】解:∵M={x|x≥﹣1},N={x|x≤k},
若M∩N≠¢,
则k≥﹣1.
∴k的取值范围是[﹣1,+∞).
故选:B.
【点评】本题考查了交集及其运算,考查了集合间的关系,是基础题.
3.【答案】C
【解析】解:正方体8个顶点中任选3个顶点连成三角形,所得的三角形是等腰直角三角形只能在各个面上,在每一个面上能组成等腰直角三角形的有四个,
所以共有4×6=24个,
而在8个点中选3个点的有C83=56,
所以所求概率为=
故选:C
【点评】本题是一个古典概型问题,学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题.
4.【答案】A
【解析】解:集合A={x|y=ln(x﹣1)}=(1,+∞),集合B={y|y=2x}=(0,+∞)
则A∪B=(0,+∞)
故选:A.
【点评】本题考查了集合的化简与运算问题,是基础题目.
5. 【答案】B
【解析】解:当a >1时,f (x )单调递增,有f (﹣1)=+b=﹣1,f (0)=1+b=0,无解;
当0<a <1时,f (x )单调递减,有f (﹣1)==0,f (0)=1+b=﹣1,
解得a=,b=﹣2;
所以a+b=
=﹣;
故选:B
6. 【答案】A
【解析】解:根据题意,可作出函数图象:
∴不等式f (x )<0的解集是(﹣∞,﹣1)∪(0,1) 故选A .
7. 【答案】C
【解析】
【分析】通过三视图分析出几何体的图形,利用三视图中的数据求出四个面的面积中的最大值. 【解答】解:由题意可知,几何体的底面是边长为4的正三角形,棱锥的高为4,并且高为侧棱
垂直底面三角形的一个顶点的三棱锥,
两个垂直底面的侧面面积相等为:8, 底面面积为:
=4

另一个侧面的面积为: =4,
四个面中面积的最大值为4;
故选C . 8. 【答案】B 【解析】
试题分析:因为{}{}{}{}1,2,3,41,1,1A
B B A B =≠≠,A =,所以当{1,2}A =时,{1,2,4}B =;当
{1,3}A =时,{1,2,4}B =;当{1,4}A =时,{1,2,3}B =;当{1,2,3}A =时,{1,4}B =;当{1,2,4}A =时,{1,3}B =;当{1,3,4}A =时,{1,2}B =;所以满足条件的“好集对”一共有个,故选B.
考点:元素与集合的关系的判断.
【方法点晴】本题主要考查了元素与集合关系的判断与应用,其中解答中涉及到集合的交集和集合的并集运算与应用、元素与集合的关系等知识点的综合考查,着重考查了分类讨论思想的应用,以及学生分析问题和解答问题的能力,试题有一定的难度,属于中档试题,本题的解答中正确的理解题意是解答的关键.1111]
9. 【答案】D
【解析】解:∵101101(2)=1×25+0+1×23+1×22+0+1×20
=45(10).
再利用“除8取余法”可得:45(10)=55(8). 故答案选D .
10.【答案】D 【解析】

点:等差数列.
11.【答案】
D
第Ⅱ卷(共90分)12.【答案】D
【解析】解:∵偶函数f(x)=2x﹣4(x≥0),故它的图象
关于y轴对称,
且图象经过点(﹣2,0)、(0,﹣3),(2,0),
故f(x﹣2)的图象是把f(x)的图象向右平移2个
单位得到的,
故f(x﹣2)的图象经过点(0,0)、(2,﹣3),(4,0),则由f(x﹣2)<0,可得0<x<4,
故选:D.
【点评】本题主要考查指数不等式的解法,函数的图象的平移规律,属于中档题.
二、填空题
13.【答案】.
【解析】解:不等式,
x2﹣8x+20>0恒成立
可得知:mx2+2(m+1)x+9x+4<0在x∈R上恒成立.
显然m<0时只需△=4(m+1)2﹣4m(9m+4)<0,
解得:m<﹣或m>
所以m<﹣
故答案为:
14.【答案】V
【解析】
【分析】四棱锥B﹣APQC的体积,底面面积是侧面ACC′A′的一半,B到侧面的距离是常数,求解即可.【解答】解:由于四棱锥B﹣APQC的底面面积是侧面ACC′A′的一半,不妨把P移到A′,Q移到C,
所求四棱锥B﹣APQC的体积,转化为三棱锥A′﹣ABC体积,就是:
故答案为:
15.【答案】①④⑤
【解析】解:由题意知:A≠,B≠,C≠,且A+B+C=π
∴tan(A+B)=tan(π﹣C)=﹣tanC,
又∵tan(A+B)=,
∴tanA+tanB=tan(A+B)(1﹣tanAtanB)=﹣tanC(1﹣tanAtanB)=﹣tanC+tanAtanBtanC,
即tanA+tanB+tanC=tanAtanBtanC,故①正确;
当A=,B=C=时,tanA+tanB+tanC=<3,故②错误;
若tanA,tanB,tanC中存在两个数互为倒数,则对应的两个内角互余,则第三个内角为直角,这与已知矛盾,故③错误;
由①,若tanA:tanB:tanC=1:2:3,则6tan3A=6tanA,则tanA=1,故A=45°,故④正确;
当tanB﹣1=时,tanA•tanB=tanA+tanB+tanC,即tanC=,C=60°,
此时sin2C=,
sinA•sinB=sinA•sin(120°﹣A)=sinA•(cosA+sinA)=sinAcosA+sin2A=sin2A+﹣
cos2A=sin(2A﹣30°)≤,
则sin2C≥sinA•sinB.故⑤正确;
故答案为:①④⑤
【点评】本题以命题的真假判断为载体,考查了和角的正切公式,反证法,诱导公式等知识点,难度中档.
16.【答案】.
【解析】解:由题意画出几何体的图形如图
由于面SAB⊥面ABC,所以点S在平面ABC上的射影H落在AB上,根据球体的对称性可知,当S在“最高点”,也就是说H为AB中点时,SH最大,棱锥S﹣ABC的体积最大.
∵△ABC是边长为2的正三角形,所以球的半径r=OC=CH=.
在RT△SHO中,OH=OC=OS
∴∠HSO=30°,求得SH=OScos30°=1,
∴体积V=Sh=××22×1=.
故答案是.
【点评】本题考查锥体体积计算,根据几何体的结构特征确定出S位置是关键.考查空间想象能力、计算能力.
17.【答案】
5 12
【解析】
18.【答案】.
【解析】解:已知∴∴为所求;
故答案为:
【点评】本题主要考查椭圆的标准方程.属基础题.
三、解答题
19.【答案】
【解析】解:(1)将点(0,4)代入椭圆C的方程得=1,∴b=4,…
由e==,得1﹣=,∴a=5,…
∴椭圆C 的方程为+=1.…
(2)过点(3,0)且斜率为的直线为y=(x ﹣3),… 设直线与椭圆C 的交点为A (x 1,y 1),B (x 2,y 2),
将直线方程y=(x ﹣3)代入椭圆C 方程,整理得x 2
﹣3x ﹣8=0,…
由韦达定理得x 1+x 2=3,
y 1+y 2=(x 1﹣3)+(x 2﹣3)=(x 1+x 2)﹣
=﹣
.…
由中点坐标公式AB 中点横坐标为,纵坐标为﹣,
∴所截线段的中点坐标为(,﹣).…
【点评】本题考查椭圆的方程与几何性质,考查直线与椭圆的位置关系,考查韦达定理的运用,确定椭圆的方程是关键.
20.【答案】(1) 22=D ,24-=E ,8=F ;(2)2=AB . 【解析】

题解析:(1)由题意,圆C 方程为2)()(2
2
=-+-b y a x ,且0,0><b a ,
∵圆C 与直线043=+y x 及y 轴都相切,∴2-=a ,
25
|
43|=+b a ,∴22=b , ∴圆C 方程为2)22()2(2
2=-++y x , 化为一般方程为0824222
2=+-++y x y x ,
∴22=D ,24-=E ,8=F .
(2)圆心)22,2(-C 到直线022=+-y x 的距离为12
|
22222|=+--=d ,
∴21222||22=-=-=d r AB . 考点:圆的方程;2.直线与圆的位置关系.1 21.【答案】
【解析】解:由题意设a=n 、b=n+1、c=n+2(n ∈N +),
∵最大角是最小角的2倍,∴C=2A,
由正弦定理得,则,
∴,得cosA=,
由余弦定理得,cosA==,
∴=,
化简得,n=4,
∴a=4、b=5、c=6,cosA=,
又0<A<π,∴sinA==,
∴△ABC的面积S===.
【点评】本题考查正弦定理和余弦定理,边角关系,三角形的面积公式的综合应用,以及方程思想,考查化简、计算能力,属于中档题.
22.【答案】
【解析】解:由复数相等的条件,得﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)
解得或﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)
【点评】本题考查复数相等的条件,以及方程思想,属于基础题.
23.【答案】
【解析】【命题意图】本题考查利用导数研究函数的单调性与最值、不等式的解法等基础知识,意在考查逻辑思维能力、等价转化能力、分析与解决问题的能力、探究能力、运算求解能力.
(2)当0a =时,()ln f x bx x =-.
假设存在实数b ,使()(]()
ln 0,e g x bx x x =-∈有最小值3,
11
()bx f x b x x
-'=-
=
.………7分 ①当0b ≤时,()f x 在(]0,e 上单调递减,()min 4
()e 13,f x f be b e
==-==(舍去).………8分 ②当10e b <
<时,()f x 在10,b ⎛⎫ ⎪⎝⎭上单调递减,在1,e b ⎛⎤
⎥⎝⎦
上单调递增, ∴2
min 1()1ln 3,e f x g b b b ⎛⎫==+== ⎪⎝⎭
,满足条件.……………………………10分
③当1e b ≥时,()f x 在(]0,e 上单调递减,()min 4
()e e 13,e
f x
g b b ==-==(舍去),………11分
综上,存在实数2
e b =,使得当(]0,e x ∈时,函数()
f x 最小值是3.……………………………12分
24.【答案】
【解析】解:(1)设等差数列{a n }的公差为d ,依题意得…(2分)
解得:a 1=1,d=2a n =2n ﹣1…
(2)由①得…(7分)
∴…(11分)
∴…(12分)
【点评】本题考查等差数列的通项公式的求法及数列的求和,突出考查裂项法求和的应用,属于中档题.。

相关文档
最新文档