高三数学易错数列多选题 易错题难题自检题学能测试试卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学易错数列多选题 易错题难题自检题学能测试试卷
一、数列多选题
1.在数学课堂上,教师引导学生构造新数列:在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.将数列1,2进行构造,第1次得到数列1,3,2;第2次得到数列1,4,3,5,2;…;第(
)*
n n ∈N
次得到数列1,
123,,,,k x x x x ,2;…记1212n k a x x x =+++
++,数列{}n a 的前n 项为n S ,
则( ) A .12n k += B .133n n a a +=- C .()2
332
n a n n =
+
D .()1
33234
n n S n +=
+- 【答案】ABD 【分析】
根据数列的构造方法先写出前面几次数列的结果,寻找规律,再进行推理运算即可. 【详解】
由题意可知,第1次得到数列1,3,2,此时1k = 第2次得到数列1,4,3,5,2,此时3k = 第3次得到数列1, 5,4,7,3,8,5,7,2,此时 7k =
第4次得到数列1,6,5,9,4,11,7,10,3,11,8,13,5,12,7,9,2,此时15k = 第n 次得到数列1,123,
,,,k x x x x ,2 此时21n k =-
所以12n k +=,故A 项正确;
结合A 项中列出的数列可得: 12
3433339339273392781
a a a a =+⎧⎪=++⎪⎨=+++⎪⎪=++++⎩
123333(*)n n a n N ⇒=+++
+∈
用等比数列求和可得(
)33132
n n a -=+
则 (
)12
1
331
3
3332
2
n n n a
+++--=+
=+2
3
3
22
n +=+ 又 (
)331
333339
2n n a ⎡⎤
-⎢⎥-=+
-=⎢⎥⎣
⎦
22393332222
n n +++--=+ 所以 133n n a a +=-,故B 项正确;
由B 项分析可知(
)()
3313
3312
2
n n
n a -=+=+
即()
2
332
n a n n ≠
+,故C 项错误. 123n n S a a a a =++++
23
1
333322
22n n +⎛⎫=++++ ⎪⎝⎭()
23133132
2
n
n --=
+ 2339424n n +=+-()
133234n n +=+-,故D 项正确. 故选:ABD. 【点睛】
本题需要根据数列的构造方法先写出前面几次数列的结果,寻找规律,对于复杂问题,著名数学家华罗庚指出:善于“退”,足够的“退”,退到最原始而不失重要的地方,是学好数学的一个诀窍.所以对于复杂问题我们应该先足够的退到我们最容易看清楚的地方,认透了,钻深了,然后再上去,这就是以退为进的思想.
2.已知等比数列{}n a 首项11a >,公比为q ,前n 项和为n S ,前n 项积为n T ,函数
()()()()127f x x x a x a x a =+++,若()01f '=,则( )
A .{}lg n a 为单调递增的等差数列
B .01q <<
C .11n a S q ⎧⎫-⎨⎬-⎩⎭
为单调递增的等比数列
D .使得1n T >成立的n 的最大值为6
【答案】BCD 【分析】
令()()()
()127g x x a x a x a =+++,利用()()12
7001f g a a a '===可得
3411a a q ==,01q <<,B 正确;由()
()111lg lg lg 1lg n n a a q a n q -==+-可得A 错误;
由()111111111
n n n a a a q
S q q q q q --
=--=⋅---可得C 正确;由11a >,01q <<,41a =可推出671T T >=,81T <可得D 正确. 【详解】
令()()()
()127g x x a x a x a =+++,则()()f x xg x =, ()()()f x g x xg x ''∴=+,()()127001f g a a a '∴===,
因为{}n a 是等比数列,所以712741a a a a ==,即3
411a a q ==,
11a >,
01q ∴<<,B 正确;
()()111lg lg lg 1lg n n a a q a n q -==+-,{}lg n a ∴是公差为lg q 的递减等差数列,A 错
误;
()111111111n n n a a a q S q q q q q --
=--=⋅---,11n a S q ⎧⎫
∴-⎨⎬-⎩
⎭是首项为101a q q <-,公比为q 的递增等比数列,C 正确;
11a >,01q <<,41a =,
3n ∴≤时,1n a >,5n ≥时,01n a <<,4n ∴≤时,1n T >,7712
741T a a a a ===,8n ∴≥时,789
71n n T T a a a T =<=,又7
567
1T T a a =
>,7
67
1T T a =
>,所以使得1n T >成立的n 的最大值为6,D 正确. 故选:BCD 【点睛】
关键点点睛:利用等比数列的性质、通项公式、求和公式、数列的单调性求解是解题关键.
3.已知数列{}n a 中,11a =,1111n n a a n n +⎛⎫
-=+ ⎪⎝⎭
,*n N ∈.若对于任意的[]1,2t ∈,不等式
()22212n
a t a t a a n
<--++-+恒成立,则实数a 可能为( ) A .-4 B .-2
C .0
D .2
【答案】AB 【分析】 由题意可得
11111n n a a n n n n +-=-++,利用裂项相相消法求和求出1
22n a n n
=-<,只需()222122t a t a a --++-+≥对于任意的[]1,2t ∈恒成立,转化为
()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,然后将选项逐一验证即可求解.
【详解】
111
n n n a a n n
++-
=,11111(1)1n n a a n n n n n n +∴-==-+++,
则
11111n n a a n n n n --=---,12111221n n a a n n n n ---=-----,,2111
122
a a -=-, 上述式子累加可得:111n a a n n -=-,1
22n a n n
∴=-<,
()222122t a t a a ∴--++-+≥对于任意的[]1,2t ∈恒成立,
整理得()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,
对A ,当4a =-时,不等式()()2540t t +-≤,解集5,42
⎡⎤-⎢⎥⎣⎦
,包含[]1,2,故A 正确;
对B ,当2a =-时,不等式()()2320t t +-≤,解集3,22⎡⎤
-⎢⎥⎣⎦
,包含[]1,2,故B 正确;
对C ,当0a =时,不等式()210t t +≤,解集1,02⎡⎤-⎢⎥⎣⎦
,不包含[]1,2,故C 错误;
对D ,当2a =时,不等式()()2120t t -+≤,解集12,2
⎡⎤-⎢⎥⎣
⎦
,不包含[]1,2,故D 错误,
故选:AB. 【点睛】
本题考查了裂项相消法、由递推关系式求通项公式、一元二次不等式在某区间上恒成立,考查了转化与划归的思想,属于中档题.
4.设n S 是等差数列{}n a 的前n 项和,且12a =,38a =则( ) A .512a = B .公差3d = C .()261n S n n =+ D .数列11n n a a +⎧
⎫⎨
⎬
⎩⎭
的前n 项和为64n
n + 【答案】BCD 【分析】
根据已知条件求出等差数列{}n a 的通项公式和前n 项和公式,即可判断选项A 、B 、
C ,
再利用裂项求和即可判断选项D. 【详解】
因为数列{}n a 是等差数列,则312228a a d d =+=+=,解得:3d =,故选项B 正确; 所以()21331n a n n =+-⨯=-,
对于选项A :535114a =⨯-=,故选项A 不正确;
对于选项C :()()
2222132612
n n S n n n ++-⨯⎡⎤⎣⎦=⨯=+,所以故选项C 正确; 对于选项D :()()111111313233132n n a a n n n n +⎛⎫
==- ⎪-+-+⎝⎭
, 所以前n 项和为1111111
1132558811
3132n n ⎛⎫
-+-+-+
+
- ⎪-+⎝⎭
()611132322324
n n n n n ⎛⎫=-== ⎪
++⎝⎭+,故选项D 正确, 故选:BCD.
【点睛】
方法点睛:数列求和的方法
(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法
(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;
(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;
(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;
(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如
()()1n
n a f n =-类型,可采用两项合并求解.
5.关于等差数列和等比数列,下列四个选项中正确的有( ) A .若数列{}n a 的前n 项和22n S n =,则数列{}n a 为等差数列
B .若数列{}n a 的前n 项和1
22n n S +=-,则数列{}n a 为等比数列
C .若等比数列{}n a 是递增数列,则{}n a 的公比1q >
D .数列{}n a 是等比数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,仍为等比数
列 【答案】AB 【分析】
对于A ,求出 42n a n =-,所以数列{}n a 为等差数列,故选项A 正确;对于B , 求出
2n n a =,则数列{}n a 为等比数列,故选项B 正确;对于选项C ,有可能
10,01a q <<<,不一定 1q >,所以选项C 错误;对于D ,比如公比1q =-,n 为偶
数,n S ,2n n S S -,32n n S S -,⋯,均为0,不为等比数列.故选项D 不正确. 【详解】
对于A ,若数列{}n a 的前n 项和2
2n S n =,所以212(1)(2)n S n n -=-≥,所以
142(2)n n n a S S n n -=-=-≥,适合12a =,所以数列{}n a 为等差数列,故选项A 正
确;
对于B ,若数列{}n a 的前n 项和1
22n n S +=-,所以122(2)n
n S n -=-≥,所以
12(2)n n n n a S S n -=-=≥,又1422a =-=,2218224a S S =-=--=, 212a a =
则数列{}n a 为等比数列,故选项B 正确;
对于选项C ,若等比数列{}n a 是递增数列,则有可能10,01a q <<<,不一定 1q >,所以选项C 错误;
对于D ,数列{}n a 是等比数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯不一定为等比数列,比如公比1q =-,n 为偶数,n S ,2n n S S -,32n n S S -,⋯,均为0,不为等比数列.故选项D 不正确. 故选:AB 【点睛】
方法点睛:求数列的通项常用的方法有:(1)公式法;(2)归纳法;(3)累加法;(4)累乘法;(5)构造法. 要根据已知条件灵活选择方法求解.
6.设数列{}n a 的前n 项和为*
()n S n N ∈,关于数列{}n a ,下列四个命题中正确的是
( )
A .若1*()n n a a n N +∈=,则{}n a 既是等差数列又是等比数列
B .若2
n S An Bn =+(A ,B 为常数,*n N ∈),则{}n a 是等差数列
C .若()11n
n S =--,则{}n a 是等比数列
D .若{}n a 是等差数列,则n S ,2n n S S -,*
32()n n S S n N -∈也成等差数列
【答案】BCD 【分析】
利用等差等比数列的定义及性质对选项判断得解. 【详解】
选项A: 1*()n n a a n N +∈=,10n n a a +∴-=得{}n a 是等差数列,当0n a =时不是等比数列,故错; 选项B:
2n S An Bn =+,12n n a a A -∴-=,得{}n a 是等差数列,故对;
选项C: ()11n
n S =--,112(1)(2)n n n n S S a n --∴-==⨯-≥,当1n =时也成立,
12(1)n n a -∴=⨯-是等比数列,故对;
选项D: {}n a 是等差数列,由等差数列性质得n S ,2n n S S -,*
32()n n S S n N -∈是等差数
列,故对; 故选:BCD 【点睛】
熟练运用等差数列的定义、性质、前n 项和公式是解题关键.
7.若数列{}n a 的前n 项和是n S ,且22n n S a =-,数列{}n b 满足2log n n b a =,则下列选项正确的为( ) A .数列{}n a 是等差数列
B .2n
n a =
C .数列{}2n
a 的前n 项和为2122
3
n +-
D .数列11n n b b +⎧
⎫
⎨
⎬⋅⎩⎭
的前n 项和为n T ,则
1n T <
【答案】BD 【分析】
根据22n n
S a =-,利用数列通项与前n 项和的关系得1,1
,2
n n S n a S n =⎧=⎨≥⎩,求得通项n a ,然后再根据选项求解逐项验证. 【详解】
当1n =时,12a =,
当2n ≥时,由22n n S a =-,得1122n n S a --=-, 两式相减得:12n n a a -=, 又212a a =,
所以数列{}n a 是以2为首项,以2为公比的等比数列, 所以2n
n a =,2
4n
n a =,数列{
}2n
a 的前n 项和为()14144414
3
n n n S +--'=
=
-, 则22log log 2n
n n b a n ===, 所以
()11111
11
n n b b n n n n +==-⋅⋅++,
所以 1111111
(11123411)
n T n n n =-+-++-=-<++, 故选:BD 【点睛】
方法点睛:求数列的前n 项和的方法 (1)公式法:①等差数列的前n 项和公式,()()
11122
n n n a a n n S na d +-=
=+②等比数列的前n 项和公式()
11,1
1,11n
n na q S a q q q
=⎧⎪=-⎨≠⎪
-⎩;
(2)分组转化法:把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.
(3)裂项相消法:把数列的通项拆成两项之差求和,正负相消剩下首尾若干项.
(4)倒序相加法:把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广.
(5)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列对应项之积构成的,则这个数列的前n 项和用错位相减法求解.
(6)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.
8.已知等差数列{}n a 的前n 项和为n S ,218a =,512a =,则下列选项正确的是( ) A .2d =- B .122a =
C .3430a a +=
D .当且仅当11n =时,n S 取得最大值
【答案】AC 【分析】
先根据题意得等差数列{}n a 的公差2d =-,进而计算即可得答案. 【详解】
解:设等差数列{}n a 的公差为d ,
则52318312a a d d =+=+=,解得2d =-.
所以120a =,342530a a a a +=+=,11110201020a a d =+=-⨯=, 所以当且仅当10n =或11时,n S 取得最大值. 故选:AC 【点睛】
本题考查等差数列的基本计算,前n 项和n S 的最值问题,是中档题. 等差数列前n 项和n S 的最值得求解常见一下两种情况:
(1)当10,0a d ><时,n S 有最大值,可以通过n S 的二次函数性质求解,也可以通过求满足10n a +<且0n a >的n 的取值范围确定;
(2)当10,0a d <>时,n S 有最小值,可以通过n S 的二次函数性质求解,也可以通过求满足10n a +>且0n a <的n 的取值范围确定;
二、平面向量多选题
9.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一条直线上,且重心到外心的距离是重心到垂心距离的一半,此直线被称为三角形的欧拉线,该定理则被称为欧拉线定理.设点O 、G 、H 分别是ABC 的外心、重心、垂心,且M 为BC 的中点,则( )
A .0GA G
B G
C ++=
B .24AB A
C HM MO +=-
C .3AH OM =
D .OA OB OC ==
【答案】ABD 【分析】
向量的线性运算结果仍为向量可判断选项A ;由12GO HG =
可得2
3
HG HO =,利用向量的线性运算()
266AB AC AM GM HM HG +===-,再结合HO HM MO =+集合判断选项B ;利用222AH AG HG GM GO OM =-=-=故选项C 不正确,利用外心的性质可判断选项D ,即可得正确选项. 【详解】
因为G 是ABC 的重心,O 是ABC 的外心,H 是ABC 的垂心, 且重心到外心的距离是重心到垂心距离的一半,所以1
2
GO HG =
, 对于选项A :因为G 是ABC 的重心,M 为BC 的中点,所以2AG GM =, 又因为2GB GC GM +=,所以GB GC AG +=,即0GA GB GC ++=,故选项A 正确;
对于选项B :因为G 是ABC 的重心,M 为BC 的中点,所以2AG GM =,
3AM GM =,因为12GO HG =
,所以2
3
HG HO =, ()
226663AB AC AM GM HM HG HM HO ⎛⎫
+===-=- ⎪⎝⎭
()
646424HM HO HM HM MO HM MO =-=-+=-,即24AB AC HM MO +=-,
故选项B 正确;
对于选项C :222AH AG HG GM GO OM =-=-=,故选项C 不正确; 对于选项D :设点O 是ABC 的外心,所以点O 到三个顶点距离相等,即
OA OB OC ==,故选项D 正确;
故选:ABD. 【点睛】
关键点点睛:本题解题的关键是利用已知条件12GO HG =
得2
3
HG HO =,利用向量的线
性运算结合2AG GM =可得出向量间的关系.
10.已知向量(4,3)a k =,(4,3)b k =,则( ) A .若a b ⊥,则0k = B .若//a b ,则1k =
C .若a b >,则1k <
D .若a b a b +=-,则a b ⊥
【答案】AD 【分析】
先根据a b ⊥建立方程44330k k ⨯+⨯=解得0k =,判断选项A 正确;再根据//a b ,建立方程(4,3)(4,3)k k λ=解得1k =±,判断选项B 错误;接着根据a b >建立不等式
4(3)(4)3k k +>+解得11k -<<,判断选项C 错误;最后根据
a b a b +=-,化简整理得到a b ⊥,判断选项D 正确.
【详解】
解:因为(4,3)a k =,(4,3)b k =,a b ⊥,则44330k k ⨯+⨯=,解得0k =,故选项A 正确;
因为(4,3)a k =,(4,3)b k =,//a b ,则λa b ,即(4,3)(4,3)k k λ=,解得1k =±,
故选项B 错误;
因为(4,3)a k =,(4,3)b k =,a b >,则>,解得
11k -<<,故选项C 错误;
因为(4,3)a k =,(4,3)b k =,a b a b +=-,则0a b ⋅=,0a ≠,0b ≠,所以
a b ⊥,故选项D 正确. 故答案为:AD. 【点睛】
本题考查利用向量垂直求参数、利用向量共线求参数、根据向量的模的大小关系求参数的范围、利用向量的运算判断向量垂直,是中档题.。