北京满井中学七年级上册数学期末试题及答案解答

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京满井中学七年级上册数学期末试题及答案解答 一、选择题
1.在数3,﹣3,
13,13-中,最小的数为( ) A .﹣3 B .13 C .1
3- D .3
2.近年来,国家重视精准扶贫,收效显著.据统计约有65 000 000人脱贫,把65 000 000用科学记数法表示,正确的是( )
A .0.65×108
B .6.5×107
C .6.5×108
D .65×106
3.一个由5个相同的小正方体组成的立体图形如图所示,则从正面看到的平面图形是( )
A .
B .
C .
D .
4.有理数a ,b 在数轴上的对应点的位置如图所示,则下列各式成立的是( )
A .a >b
B .﹣ab <0
C .|a |<|b |
D .a <﹣b
5.一项工程,甲独做需10天完成,乙单独做需15天完成,两人合作4天后,剩下的部分由乙独做全部完成,设乙独做x 天,由题意得方程( )
A .410 +415
x -=1 B .410 +415x +=1 C .410x + +415=1 D .410x + +15
x =1 6.如图,已知直线//a b ,点,A B 分别在直线,a b 上,连结AB .点D 是直线,a b 之间的一个动点,作//CD AB 交直线b 于点C,连结AD .若70ABC ︒∠=,则下列选项中D ∠不可能取到的度数为()
A .60°
B .80°
C .150°
D .170°
7.下列式子中,是一元一次方程的是( )
A .3x+1=4x
B .x+2>1
C .x 2-9=0
D .2x -3y=0
8.按如图所示图形中的虚线折叠可以围成一个棱柱的是( ) A . B . C . D .
9.如图,将长方形ABCD 绕CD 边旋转一周,得到的几何体是( )
A .棱柱
B .圆锥
C .圆柱
D .棱锥 10.赣州是中国脐橙之乡,据估计2013年全市脐橙总产量将达到150万吨,用科学计数法表示为 ( )吨.
A .415010⨯
B .51510⨯
C .70.1510⨯
D .61.510⨯ 11.用一个平面去截:①圆锥;②圆柱;③球;④五棱柱,能得到截面是圆的图形是( )
A .①②④
B .①②③
C .②③④
D .①③④
12.已知某商店有两个进价不同的计算器,都卖了100 元,其中一个盈利 60% ,另一个亏损20%,在这次买卖中,这家商店( )
A .不盈不亏
B .盈利 37.5 元
C .亏损 25 元
D .盈利 12.5 元
二、填空题
13.若代数式mx 2+5y 2﹣2x 2+3的值与字母x 的取值无关,则m 的值是__.
14.把一张长方形纸按图所示折叠后,如果∠AOB ′=20°,那么∠BOG 的度数是_____.
15.9的算术平方根是________
16.如图甲所示,格边长为cm a 的正方形纸片中间挖去一个正方形的洞,成为一个边宽为5cm 的正方形方框.把3个这样的方框按如图乙所示平放在集面上(边框互相垂直或平行),则桌面被这些方框盖住部分的面积是___________.
17.如图,这是一种数值转换机的运算程序,若第一次输入的数为7,则第2018次输出的数是_____;若第一次输入的数为x ,使第2次输出的数也是x ,则x =_____.
18.如图,是七(2)班全体学生的体有测试情况扇形统计图.若达到优秀的有25人,则不合格的学生有____人.
19.如图所示,ABC 90∠=,CBD 30∠=,BP 平分ABD.∠则ABP ∠=______度.
20.学校组织七年级部分学生参加社会实践活动,已知在甲处参加社会实践的有27人,在乙处参加社会实践的有19人,现学校再另派20人分赴两处,使在甲处参加社会实践的人数是乙处参加社会实践人数的2倍,设应派往甲处x人,则可列方程______.
21.小马在解关于x的一元一次方程32
3
2
a x
x
-
=时,误将- 2x看成了+2x,得到的解为
x=6,请你帮小马算一算,方程正确的解为x=_____.
22.如图是一个正方体的表面沿着某些棱剪开后展成的一个平面图形,若这个正方体的每两个相对面上的数字的和都相等,则这个正方体的六个面上的数字的总和为________.
23.如图,点O在直线AB上,射线OD平分∠AOC,若∠AOD=20°,则∠COB的度数为
_____度.
24.比较大小:﹣8_____﹣9(填“>”、“=”或“<“).
三、压轴题
25.如图,已知数轴上有三点A,B,C ,若用AB 表示A,B 两点的距离,AC 表示A ,C 两点的距离,且BC = 2 AB ,点A 、点C 对应的数分别是a 、c ,且| a - 20 | + | c +10 |= 0 .
(1)若点P,Q 分别从A,C 两点同时出发向右运动,速度分别为 2 个单位长度/秒、5个单位长度/ 秒,则运动了多少秒时,Q 到B 的距离与P 到B 的距离相等?
(2)若点P ,Q 仍然以(1)中的速度分别从A ,C 两点同时出发向右运动,2 秒后,动点R 从A点出发向左运动,点R 的速度为1个单位长度/秒,点M 为线段PR 的中点,点N为线段RQ的中点,点R运动了x 秒时恰好满足MN +AQ = 25,请直接写出x的值.
26.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=22,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.
(1)出数轴上点B表示的数;点P表示的数(用含t的代数式表示)
(2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问多少秒时P 、Q 之间的距离恰好等于2?
(3)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时追上点Q ?
(4)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.
27.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠.
(1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数.
(2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),
COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,请补全图形并加以说明.
28.如图,在平面直角坐标系中,点M 的坐标为(2,8),点N 的坐标为(2,6),将线段MN 向右平移4个单位长度得到线段PQ (点P 和点Q 分别是点M 和点N 的对应点),连接MP 、NQ ,点K 是线段MP 的中点.
(1)求点K 的坐标;
(2)若长方形PMNQ 以每秒1个单位长度的速度向正下方运动,(点A 、B 、C 、D 、E 分别是点M 、N 、Q 、P 、K 的对应点),当BC 与x 轴重合时停止运动,连接OA 、OE ,设运动时间为t 秒,请用含t 的式子表示三角形OAE 的面积S (不要求写出t 的取值范围);
(3)在(2)的条件下,连接OB 、OD ,问是否存在某一时刻t ,使三角形OBD 的面积等于三角形OAE 的面积?若存在,请求出t 值;若不存在,请说明理由.
29.在数轴上,图中点A 表示-36,点B 表示44,动点P 、Q 分别从A 、B 两点同时出发,相向而行,动点P 、Q 的运动速度比之是3∶2(速度单位:1个单位长度/秒).12秒后,动点P 到达原点O ,动点Q 到达点C ,设运动的时间为t (t >0)秒.
(1)求OC的长;
(2)经过t秒钟,P、Q两点之间相距5个单位长度,求t的值;
(3)若动点P到达B点后,以原速度立即返回,当P点运动至原点时,动点Q是否到达A点,若到达,求提前到达了多少时间,若未能到达,说明理由.
30.阅读下列材料,并解决有关问题:
我们知道,
(0)
0(0)
(0)
x x
x x
x x
>


==

⎪-<

,现在我们可以用这一结论来化简含有绝对值的式子,例如化简式子|1||2|
x x
++-时,可令10
x+=和20
x-=,分别求得1
x=-,2
x=(称
1-、2分别为|1|
x+与|2|
x-的零点值).在有理数范围内,零点值1
x=-和2
x=可将全体有理数不重复且不遗漏地分成如下三种情况:
(1)1
x<-;(2)1
-≤2
x<;(3)x≥2.从而化简代数式|1||2|
x x
++-可分为以下3种情况:
(1)当1
x<-时,原式()()
1221
x x x
=-+--=-+;
(2)当1-≤2
x<时,原式()()
123
x x
=+--=;
(3)当x≥2时,原式()()
1221
x x x
=++-=-
综上所述:原式
21(1)
3(12)
21(2)
x x
x
x x
-+<-


=-≤<

⎪-≥

通过以上阅读,请你类比解决以下问题:
(1)填空:|2|
x+与|4|
x-的零点值分别为;
(2)化简式子324
x x
-++.
31.(阅读理解)
若A,B,C为数轴上三点,若点C到A的距离是点C到B的距离的2倍,我们就称点C是(A,B)的优点.
例如,如图①,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是(A,B)的优点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是(A,B)的优点,但点D是(B,A)的优点.(知识运用)
如图②,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.
(1)数所表示的点是(M,N)的优点;
(2)如图③,A、B为数轴上两点,点A所表示的数为﹣20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以4个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B中恰有一个点为其余两点的优点?
32.如图所示,已知数轴上A,B两点对应的数分别为-2,4,点P为数轴上一动点,其对应的数为x.
(1)若点P到点A,B的距离相等,求点P对应的数x的值.
(2)数轴上是否存在点P,使点P到点A,B的距离之和为8?若存在,请求出x的值;若不存在,说明理由.
(3)点A,B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以5个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间.当点A与点B重合时,点P经过的总路程是多少?
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A
解析:A
【解析】
【分析】
有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.
【详解】
解:∵3>1
3

1
3
->﹣3,
∴在数3,﹣3,1
3

1
3
-中,最小的数为﹣3.
故选:A.
【点睛】
此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.B
解析:B
【解析】
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.
详解:65 000 000=6.5×107.
故选B.
点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中
1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
3.A
解析:A
【解析】
【分析】
从正面看:共分3列,从左往右分别有1,1,2个小正方形,据此可画出图形.
【详解】
∵从正面看:共分3列,从左往右分别有1,1,2个小正方形,
∴从正面看到的平面图形是

故选:A.
【点睛】
本题考查简单组合体的三视图,解题时注意:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.
4.D
解析:D
【解析】
【分析】
根据各点在数轴上的位置得出a、b两点到原点距离的大小,进而可得出结论.
【详解】
解:∵由图可知a<0<b,
∴ab<0,即-ab>0
又∵|a|>|b|,
∴a<﹣b.
故选:D.
【点睛】
本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.
5.B
解析:B
【解析】
【分析】
直接利用总工作量为1,分别表示出两人完成的工作量进而得出方程即可.【详解】
设乙独做x天,由题意得方程:
4 10+
4
15
x
=1.
故选B.
【点睛】
本题主要考查了由实际问题抽象出一元一次方程,正确表示出两人完成的工作量是解题的关键.
6.A
解析:A
【解析】
【分析】
延长CD交直线a于E.由∠ADC=∠AED+∠DAE,判断出∠ADC>70°即可解决问题.【详解】
解:延长CD交直线a于E.
∵a∥b,
∴∠AED=∠DCF,
∵AB∥CD,
∴∠DCF=∠ABC=70°,
∴∠AED=70°
∵∠ADC=∠AED+∠DAE,
∴∠ADC>70°,
故选A.
【点睛】
本题考查平行线的性质,三角形的外角等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
7.A
解析:A
【解析】A. 3x+1=4x是一元一次方程,故本选项正确;
B. x+2>1是一元一次不等式,故本选项错误;
C. x2−9=0是一元二次方程,故本选项错误;
D. 2x−3y=0是二元一次方程,故本选项错误。

故选A.
8.C
解析:C
【解析】
【分析】
利用棱柱的展开图中两底面的位置对A 、D 进行判断;根据侧面的个数与底面多边形的边数相同对B 、C 进行判断.
【详解】
棱柱的两个底面展开后在侧面展开图相对的两边上,所以A 、D 选项错误;
当底面为三角形时,则棱柱有三个侧面,所以B 选项错误,C 选项正确.
故选:C .
【点睛】
本题考查了棱柱的展开图:通过结合立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.
9.C
解析:C
【解析】
【分析】
根据面动成体可得长方形ABCD 绕CD 边旋转所得的几何体.
【详解】
解:将长方形ABCD 绕CD 边旋转一周,得到的几何体是圆柱,
故选:C .
【点睛】
此题考查了平面图形与立体图形的联系,培养学生的观察能力和空间想象能力.
10.D
解析:D
【解析】
【分析】
将150万改写为1500000,再根据科学记数法的形式为10n a ⨯,其中110a ≤<,n 是原数的整数位数减1.
【详解】
150万=1500000=61.510⨯,
故选:D.
【点睛】
本题考查科学记数法,其形式为10n a ⨯,其中110a ≤<,n 是整数,关键是确定a 和n 的值.
11.B
解析:B
【解析】
【分析】
根据圆锥、圆柱、球、五棱柱的形状特点判断即可.
【详解】
圆锥,如果截面与底面平行,那么截面就是圆;
圆柱,如果截面与上下面平行,那么截面是圆;
球,截面一定是圆;
五棱柱,无论怎么去截,截面都不可能有弧度.
故选B .
12.D
解析:D
【解析】
【分析】
设盈利的计算器的进价为x ,则(160%)100x +=,亏损的计算器的进价为y ,则(120%)100y -=,用售价减去进价即可.
【详解】
解:设盈利的计算器的进价为x ,则(160%)100x +=,62.5x =,亏损的计算器的进价为y ,则(120%)100y -=,125y =,20062.512512.5--=元,所以这家商店盈利了12.5元..
故选:D
【点睛】
本题考查了一元一次方程的应用,找准等量关系列出方程是解题的关键.
二、填空题
13.2
【解析】
解:mx2+5y2﹣2x2+3=(m ﹣2)x2+5y2+3,∵代数式mx2+5y2﹣2x2+3的值与字母x 的取值无关,则m ﹣2=0,解得m=2.故答案为2.
点睛:本题主要考查合并同类
解析:2
【解析】
解:mx 2+5y 2﹣2x 2+3=(m ﹣2)x 2+5y 2+3,∵代数式mx 2+5y 2﹣2x 2+3的值与字母x 的取值无关,则m ﹣2=0,解得m =2.故答案为2.
点睛:本题主要考查合并同类项的法则.即系数相加作为系数,字母和字母的指数不变.与字母x 的取值无关,即含字母x 的系数为0.
14.80°
【解析】
【分析】
由轴对称的性质可得∠B′OG=∠BOG,再结合已知条件即可解答.【详解】
解:根据轴对称的性质得:∠B′OG=∠BOG
又∠AOB′=20°,可得∠B′OG+∠BOG=
解析:80°
【解析】
【分析】
由轴对称的性质可得∠B′OG=∠BOG,再结合已知条件即可解答.
【详解】
解:根据轴对称的性质得:∠B′OG=∠BOG
又∠AOB′=20°,可得∠B′OG+∠BOG=160°
∴∠BOG=1
2
×160°=80°.
故答案为80°.
【点睛】
本题考查轴对称的性质,理解轴对称性质以及掌握数形结合思想是解答本题的关键. 15.【解析】
【分析】
根据算术平方根的定义,即可得到答案.
【详解】
解:∵,
∴的算术平方根是;
故答案为:.
【点睛】
本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.
【解析】
【分析】
根据算术平方根的定义,即可得到答案.
【详解】
3


【点睛】
本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.
16.【解析】
【分析】
根据题意列出含a 的代数式表示桌面被这些方框盖住部分的面积即可.
【详解】
解:算出一个正方形方框的面积为:,
桌面被这些方框盖住部分的面积则为:
故填:.
【点睛】
本题结合求
解析:60200a -
【解析】
【分析】
根据题意列出含a 的代数式表示桌面被这些方框盖住部分的面积即可.
【详解】
解:算出一个正方形方框的面积为:22
(10)a a --,
桌面被这些方框盖住部分的面积则为:2223(10)4560200.a a a ⎡⎤--+⨯=-⎣⎦ 故填:60200a -.
【点睛】
本题结合求阴影部分面积列代数式,理解题意并会表示阴影部分面积是解题关键. 17.2; 0或3或6
【解析】
【分析】
先计算出前6次输出结果,据此得出循环规律,从而得出答案;根据数值转换机的运算程序,求出所有x 的值,使得输入的数和第2次输出的数相等即可.
【详解】
解析:2; 0或3或6
【解析】
【分析】
先计算出前6次输出结果,据此得出循环规律,从而得出答案;根据数值转换机的运算程序,求出所有x 的值,使得输入的数和第2次输出的数相等即可.
【详解】
解:∵第1次输出的结果为7+3=10,
第2次输出的结果为
12
×10=5, 第3次输出结果为5+3=8,
第4次输出结果为12×8=4,
第5次输出结果为1
2
×4=2,
第6次输出结果为1
2
×2=1,
第7次输出结果为1+3=4,
第8次输出结果为1
2
×4=2,
……
∴输出结果除去前3个数后,每3个数为一个周期循环,∵(2018﹣3)÷3=671…2,
∴第2018次输出的数是2,
如图,
若x=1
4
x,则x=0;
若x=1
2
x+3,则x=6;
若x=1
2
(x+3),则x=3;
故答案为:2、0或3或6.
【点睛】
此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.
18.5
【解析】
【分析】
根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.
【详解】
解:∵学生总人数=25÷50%=50(人),
∴不合格的学生人数=50×(1-5
解析:5
【解析】
【分析】
根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.
【详解】
解:∵学生总人数=25÷50%=50(人),
∴不合格的学生人数=50×(1-50%-40%)=5(人), 故答案为:5.
【点睛】
本题考查了扇形统计图,熟知扇形统计图中各数据所表示的意义是解题关键. 19.60
【解析】
【分析】
本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分 ,所以只要求 的度数即可.
【详解】
解:,,

平分,

故答案为60.
【点睛】
解析:60
【解析】
【分析】
本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分ABD ∠ ,所以只要求ABD ∠ 的度数即可.
【详解】
解:ABC 90∠=,CBD 30∠=,
ABD 120∠∴=,
BP 平分ABD ∠,
ABP 60∠∴=.
故答案为60.
【点睛】
角平分线的性质是将两个角分成相等的两个角角平分线的性质在求角中经常用到.
20.【解析】
【分析】
设应派往甲处x 人,则派往乙处人,根据甲处参加社会实践的人数是乙处参加社会实践人数的2倍,即可得出关于x 的一元一次方程,此题得解.
【详解】
解:设应派往甲处x 人,则派往乙处人,
解析:()27x 21920x ⎡⎤+=+-⎣⎦
【解析】
【分析】
设应派往甲处x 人,则派往乙处()20x -人,根据甲处参加社会实践的人数是乙处参加社会实践人数的2倍,即可得出关于x 的一元一次方程,此题得解.
【详解】
解:设应派往甲处x 人,则派往乙处()20x -人,
根据题意得:()27x 21920x ⎡⎤+=+-⎣⎦.
故答案为()27x 21920x ⎡⎤+=+-⎣⎦.
【点睛】
本题考查由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.
21.3
【解析】
【分析】
先根据题意得出a 的值,再代入原方程求出x 的值即可.
【详解】
∵方程的解为x=6,
∴3a+12=36,解得a=8,
∴原方程可化为24-2x=6x ,解得x=3.
故答案为3
解析:3
【解析】
【分析】
先根据题意得出a 的值,再代入原方程求出x 的值即可.
【详解】 ∵方程
3232
a x x +=的解为x=6, ∴3a+12=36,解得a=8,
∴原方程可化为24-2x=6x ,解得x=3.
故答案为3
【点睛】
本题考查的是一元一次方程的解,熟知解一元一次方程的基本步骤是解答此题的关键. 22.36
【解析】
【分析】
根据题意和展开图,求出x 和A 的值,然后计算数字综合即可解决.
【详解】
解:∵正方体的每两个相对面上的数字的和都相等

∴x=2,A=14
∴数字总和为:9+3+6+6+
解析:36
【解析】
【分析】
根据题意和展开图,求出x 和A 的值,然后计算数字综合即可解决.
【详解】
解:∵正方体的每两个相对面上的数字的和都相等 ∴
()934322
x x x A +=++=+- ∴x=2,A=14
∴数字总和为:9+3+6+6+14-2=36,
故答案为36.
【点睛】 本题考查了正方体的展开图和一元一次方程,解决本题的关键是正确理解题意,能够找到正方体展开图中相对的面
23.140
【解析】
【分析】
【详解】
解:∵OD 平分∠AOC,
∴∠AOC=2∠AOD=40°,
∴∠COB=180°﹣∠COA=140°
故答案为:140
解析:140
【解析】
【详解】
解:∵OD平分∠AOC,
∴∠AOC=2∠AOD=40°,
∴∠COB=180°﹣∠COA=140°
故答案为:140
24.>.
【解析】
【分析】
先求出两个数的绝对值,再根据绝对值大的反而小进行比较.
【详解】
∵|﹣8|=8,|﹣9|=9,8<9,
∴﹣8>﹣9.
故答案是:>.
【点睛】
考查简单的有理数比较大小
解析:>.
【解析】
【分析】
先求出两个数的绝对值,再根据绝对值大的反而小进行比较.
【详解】
∵|﹣8|=8,|﹣9|=9,8<9,
∴﹣8>﹣9.
故答案是:>.
【点睛】
考查简单的有理数比较大小,比较两个负数的大小的解题关键是绝对值大的反而小.三、压轴题
25.(1)10
7
秒或10秒;(2)
14
13

114
13

【解析】
【分析】
(1)由绝对值的非负性可求出a,c的值,设点B对应的数为b,结合BC 2 AB,求出b 的值,当运动时间为t秒时,分别表示出点P、点Q对应的数,根据“Q到B的距离与P 到B的距离相等”列方程求解即可;
(2)当点R运动了x秒时,分别表示出点P、点Q、点R对应的数为,得出AQ的长,
由中点的定义表示出点M、点N对应的数,求出MN的长.根据MN+AQ=25列方程,分三种情况讨论即可.
(1)∵|a -20|+|c +10|=0,
∴a -20=0,c +10=0,
∴a =20,c =﹣10.
设点B 对应的数为b .
∵BC =2AB ,∴b ﹣(﹣10)=2(20﹣b ).
解得:b =10. 当运动时间为t 秒时,点P 对应的数为20+2t ,点Q 对应的数为﹣10+5t .
∵Q 到B 的距离与P 到B 的距离相等,
∴|﹣10+5t ﹣10|=|20+2t ﹣10|,
即5t ﹣20=10+2t 或20﹣5t =10+2t ,
解得:t =10或t =
107. 答:运动了107
秒或10秒时,Q 到B 的距离与P 到B 的距离相等.
(2)当点R 运动了x 秒时,点P 对应的数为20+2(x +2)=2x +24,点Q 对应的数为﹣10+5(x +2)=5x ,点R 对应的数为20﹣x ,∴AQ =|5x ﹣20|.
∵点M 为线段PR 的中点,点N 为线段RQ 的中点,
∴点M 对应的数为
224202x x ++-=442x +, 点N 对应的数为
2052x x -+=2x +10, ∴MN =|442
x +﹣(2x +10)|=|12﹣1.5x |. ∵MN +AQ =25,∴|12﹣1.5x |+|5x ﹣20|=25.
分三种情况讨论:
①当0<x <4时,12﹣1.5x +20﹣5x =25,
解得:x =1413
; 当4≤x ≤8时,12﹣1.5x +5x ﹣20=25,
解得:x =667
>8,不合题意,舍去; 当x >8时,1.5x ﹣12+5x ﹣20=25, 解得:x 3
1141=. 综上所述:x 的值为
1413或11413. 【点睛】
本题考查了一元一次方程的应用、数轴、绝对值的非负性以及两点间的距离,找准等量关系,正确列出一元一次方程是解题的关键.
26.(1)﹣14,8﹣5t;(2)2.5或3秒时P、Q之间的距离恰好等于2;(3)点P运动11秒时追上点Q;(4)线段MN的长度不发生变化,其值为11,见解析.
【解析】
【分析】
(1)根据已知可得B点表示的数为8﹣22;点P表示的数为8﹣5t;(2)设t秒时P、Q 之间的距离恰好等于2.分①点P、Q相遇之前和②点P、Q相遇之后两种情况求t值即可;(3)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,根据AC﹣BC=AB,列出方程求解即可;(3)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.
【详解】
(1)∵点A表示的数为8,B在A点左边,AB=22,
∴点B表示的数是8﹣22=﹣14,
∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t>0)秒,
∴点P表示的数是8﹣5t.
故答案为:﹣14,8﹣5t;
(2)若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2.分两种情况:
①点P、Q相遇之前,
由题意得3t+2+5t=22,解得t=2.5;
②点P、Q相遇之后,
由题意得3t﹣2+5t=22,解得t=3.
答:若点P、Q同时出发,2.5或3秒时P、Q之间的距离恰好等于2;
(3)设点P运动x秒时,在点C处追上点Q,
则AC=5x,BC=3x,
∵AC﹣BC=AB,
∴5x﹣3x=22,
解得:x=11,
∴点P运动11秒时追上点Q;
(4)线段MN的长度不发生变化,都等于11;理由如下:
①当点P在点A、B两点之间运动时:
MN=MP+NP=1
2
AP+
1
2
BP=
1
2
(AP+BP)=
1
2
AB=
1
2
×22=11;
②当点P运动到点B的左侧时:
MN =MP ﹣NP =
12AP ﹣12BP =12(AP ﹣BP )=12
AB =11, ∴线段MN 的长度不发生变化,其值为11.
【点睛】 本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.
27.(1)41°;(2)见解析.
【解析】
【分析】
(1)根据角平分线的定义可得12AOC AOB ∠∠=
,12AOE AOD ∠∠=,进而可得∠COE=()12
AOB AOD ∠∠-,即可得答案;(2)分别讨论OA 在∠BOD 内部和外部的情况,根据求得结果进行判断即可.
【详解】
(1)∵射线OC 平分AOB ∠、射线OE 平分AOD ∠,
∴12AOC AOB ∠∠=,12
AOE AOD ∠∠=, ∴COE AOC AOE ∠∠∠=- =
1122
AOB AOD ∠∠- =()12AOB AOD ∠∠- =
12
BOD ∠ =01822
⨯ =41°
(2)α与β之间的数量关系发生变化, 如图,当OA 在BOD ∠内部,
∵射线OC 平分AOB ∠、 射线OE 平分AOD ∠, ∴11O ,22
AOC A B AOE AOD ∠∠∠∠=
=, ∴COE AOC AOE β∠∠∠==+ =
1122
AOB AOD ∠∠+ =()12AOB AOD ∠∠+
=12α
如图,当OA 在BOD ∠外部,
∵射线OC 平分AOB ∠、射线OE 平分AOD ∠,
∴11,22
AOC AOB AOE AOD ∠∠∠∠=
=, ∴COE AOC AOE β∠∠∠==+ =1122AOB AOD ∠∠=
+ =
()12AOB AOD ∠∠+ =()013602
BOD ∠- =()
013602
α- =011802α-
∴α与β之间的数量关系发生变化.
【点睛】
本题考查角平分线的定义,正确作图,熟记角的特点与角平分线的定义是解决此题的关键.
28.(1)(4,8)(2)S △OAE =8﹣t (3)2秒或6秒
【解析】
【分析】
(1)根据M和N的坐标和平移的性质可知:MN∥y轴∥PQ,根据K是PM的中点可得K 的坐标;
(2)根据三角形面积公式可得三角形OAE的面积S;
(3)存在两种情况:
①如图2,当点B在OD上方时
②如图3,当点B在OD上方时,
过点B作BG⊥x轴于G,过D作DH⊥x轴于H,分别根据三角形OBD的面积等于三角形OAE的面积列方程可得结论.
【详解】
(1)由题意得:PM=4,
∵K是PM的中点,
∴MK=2,
∵点M的坐标为(2,8),点N的坐标为(2,6),
∴MN∥y轴,
∴K(4,8);
(2)如图1所示,延长DA交y轴于F,
则OF⊥AE,F(0,8﹣t),
∴OF=8﹣t,
∴S△OAE=1
2
OF•AE=
1
2
(8﹣t)×2=8﹣t;
(3)存在,有两种情况:,
①如图2,当点B在OD上方时,
过点B作BG⊥x轴于G,过D作DH⊥x轴于H,则B(2,6﹣t),D(6,0),∴OG=2,GH=4,BG=6﹣t,DH=8﹣t,OH=6,
S△OBD=S△OBG+S四边形DBGH+S△ODH,
=1
2OG•BG+
1
2
(BG+DH)•GH﹣1
2
OH•DH,
=1
2×2(6-t)+
1
2
×4(6﹣t+8﹣t)﹣
1
2
×6(8﹣t),
=10﹣2t,
∵S△OBD=S△OAE,
∴10﹣2t=8﹣t,
t=2;
②如图3,当点B在OD上方时,
过点B作BG⊥x轴于G,过D作DH⊥x轴于H,
则B(2,6﹣t),D(6,8﹣t),
∴OG=2,GH=4,BG=6﹣t,DH=8﹣t,OH=6,S△OBD=S△ODH﹣S四边形DBGH﹣S△OBG,
=1
2OH•DH﹣
1
2
(BG+DH)•GH﹣1
2
OG•BG,
=1
2×2(8-t)﹣
1
2
×4(6﹣t+8﹣t)﹣
1
2
×2(6﹣t),
=2t﹣10,
∵S△OBD=S△OAE,
∴2t﹣10=8﹣t,
t=6;
综上,t的值是2秒或6秒.
【点睛】
本题考查四边形综合题、矩形的性质、三角形的面积、一元一次方程等知识,解题关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.
29.(1)20;(2)t=15s或17s (3)4 3 s.
【解析】
【分析】 (1)设P 、Q 速度分别为3m 、2m ,根据12秒后,动点P 到达原点O 列方程,求出P 、Q 的速度,由此即可得到结论.
(2)分两种情况讨论:①当A 、B 在相遇前且相距5个单位长度时;②当A 、B 在相遇后且相距5个单位长度时;列方程,求解即可.
(3)算出P 运动到B 再到原点时,所用的时间,再算出Q 从B 到A 所需的时间,比较即可得出结论.
【详解】
(1)设P 、Q 速度分别为3m 、2m ,根据题意得:12×3m =36,解得:m =1,∴P 、Q 速度分别为3、2,∴BC =12×2=24,∴OC =OB -BC =44-24=20.
(2)当A 、B 在相遇前且相距5个单位长度时:3t +2t +5=44+36,5t =75,∴ t =15(s );
当A 、B 在相遇后且相距5个单位长度时:3t +2t -5=44+36,5t =85,∴ t =17(s ). 综上所述:t =15s 或17s .
(3)P 运动到原点时,t =3644443++=1243s ,此时QB =2×1243=2483
>44+38=80,∴Q 点已到达A 点,∴Q 点已到达A 点的时间为:3644804022
+==(s ),故提前的时间为:
1243-40=43
(s ). 【点睛】 本题考查了一元一次方程的应用-行程问题以及数轴上的动点问题.解题的关键是找出等量关系,列出方程求解.
30.(1) 2x =-和4x = ;(2) 35(4)11(43)35(3)x x x x x x --<-⎧⎪+-≤<⎨⎪+≥⎩
【解析】
【分析】
(1)令x +2=0和x -4=0,求出x 的值即可得出|x +2|和|x -4|的零点值,
(2)零点值x =3和x =-4可将全体实数分成不重复且不遗漏的如下3种情况:x <-4、-4≤x <3和x ≥3.分该三种情况找出324x x -++的值即可.
【详解】
解:(1)2x =-和4x =,
(2)由30x -=得3,x =由40x +=得4x =-,
①当4x <-时,原式()()32435x x x =---+=--,
②当4-≤3x <时,原式()()32411x x x =--++=+,
③当x ≥3时,原式()()32435x x x =-++=+,
综上所述:原式()35(4)11(43)353x x x x x x ⎧--<-⎪=+-≤<⎨⎪+≥⎩
, 【点睛】
本题主要考查了绝对值化简方法,解决本题的关键是要熟练掌握绝对值化简方法.
31.(1)2或10;(2)当t 为5秒、10秒或7.5秒时,P 、A 和B 中恰有一个点为其余两点的优点.
【解析】
【分析】
(1)设所求数为x ,根据优点的定义分优点在M 、N 之间和优点在点N 右边,列出方程解方程即可;(2)根据优点的定义可知分三种情况:①P 为(A ,B )的优点;②P 为(B ,A )的优点;③B 为(A ,P )的优点.设点P 表示的数为x ,根据优点的定义列出方程,进而得出t 的值.
【详解】
解:(1)设所求数为x ,
当优点在M 、N 之间时,由题意得x ﹣(﹣2)=2(4﹣x ),解得x=2;
当优点在点N 右边时,由题意得x ﹣(﹣2)=2(x ﹣4),解得:x=10;
故答案为:2或10;
(2)设点P 表示的数为x ,则PA=x+20,PB=40﹣x ,AB=40﹣(﹣20)=60,
分三种情况:
①P 为(A ,B )的优点.
由题意,得PA=2PB ,即x ﹣(﹣20)=2(40﹣x ),
解得x=20,
∴t=(40﹣20)÷4=5(秒);
②P 为(B ,A )的优点.
由题意,得PB=2PA ,即40﹣x=2(x+20),
解得x=0,
∴t=(40﹣0)÷4=10(秒);
③B 为(A ,P )的优点.
由题意,得AB=2PA ,即60=2(x+20)
解得x=10,
此时,点P 为AB 的中点,即A 也为(B ,P )的优点,
∴t=30÷4=7.5(秒);
综上可知,当t 为5秒、10秒或7.5秒时,P 、A 和B 中恰有一个点为其余两点的优点.
【点睛】
本题考查了一元一次方程的应用及数轴,解题关键是要读懂题目的意思,理解优点的定义,找出合适的等量关系列出方程,再求解.
32.(1)x=1;(2) x =-3或x =5;(3) 30.
【解析】。

相关文档
最新文档