万源市一中2018-2019学年上学期高二数学12月月考试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
万源市一中2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 下列命题中的说法正确的是( )
A .命题“若x 2=1,则x=1”的否命题为“若x 2=1,则x ≠1”
B .“x=﹣1”是“x 2+5x ﹣6=0”的必要不充分条件
C .命题“∃x ∈R ,使得x 2+x+1<0”的否定是:“∀x ∈R ,均有x 2+x+1>0”
D .命题“在△ABC 中,若A >B ,则sinA >sinB ”的逆否命题为真命题
2. 若实数x ,y 满足,则(x ﹣3)2+y 2
的最小值是( )
A .
B .8
C .20
D .2
3. 下列函数在(0,+∞)上是增函数的是( )
A .
B .y=﹣2x+5
C .y=lnx
D .y=
4. 已知a ∈R ,复数z=(a ﹣2i )(1+i )(i 为虚数单位)在复平面内对应的点为M ,则“a=0”是“点M 在第四象限”的( )
A .充分而不必要条件
B .必要而不充分条件
C .充分必要条件
D .既不充分也不必要条件
5. 已知双曲线C :22
221x y a b
-=(0a >,0b >),以双曲线C 的一个顶点为圆心,为半径的圆
被双曲线C 截得劣弧长为23
a π
,则双曲线C 的离心率为( )
A .6
5
B C .5 D
6. 一个几何体的三视图如图所示,则该几何体的体积为( )
A .
B .
C .
D .
7. 已知e 为自然对数的底数,若对任意的1[,1]x e
∈,总存在唯一的[1,1]y ∈-,使得2ln 1y
x x a y e -++= 成立,则实数a 的取值范围是( )
A.1[,]e e
B.2(,]e e
C.2(,)e +∞
D.21(,)e e e
+
【命题意图】本题考查导数与函数的单调性,函数的最值的关系,函数与方程的关系等基础知识,意在考查运用转化与化归思想、综合分析问题与解决问题的能力.
8. 如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,底面ABCD 是菱形,AB=2,∠BAD=60°.
(Ⅰ)求证:BD ⊥平面PAC ;
(Ⅱ)若PA=AB ,求PB 与AC 所成角的余弦值; (Ⅲ)当平面PBC 与平面PDC 垂直时,求PA 的长.
【考点】直线与平面垂直的判定;点、线、面间的距离计算;用空间向量求直线间的夹角、距离.
9. 若{}n a 为等差数列,n S 为其前项和,若10a >,0d <,48S S =,则0n S >成立的最大自 然数为( )
A .11
B .12
C .13
D .14 10.设0<a <1,实数x ,y
满足,则y 关于x 的函数的图象形状大致是( )
A
. B
. C
. D
.
11.设a ,b
为正实数,11a b
+≤23
()4()a b ab -=,则log a b =( )
A.0
B.1-
C.1 D .1-或0
【命题意图】本题考查基本不等式与对数的运算性质等基础知识,意在考查代数变形能与运算求解能力. 12.已知集合{
}
{
2
|5,x |y ,A y y x B A B ==-+===( )
A .[)1,+∞
B .[]1,3
C .(]3,5
D .[]3,5
【命题意图】本题考查二次函数的图象和函数定义域等基础知识,意在考查基本运算能力.
二、填空题
13.已知函数f (x )=sinx ﹣cosx
,则
= .
14.如果直线3ax+y ﹣1=0与直线(1﹣2a )x+ay+1=0平行.那么a 等于 .
15.将一张坐标纸折叠一次,使点()0,2与点()4,0重合,且点()7,3与点(),m n 重合,则m n +的
值是 .
16.将一个半径为3和两个半径为1的球完全装入底面边长为6的正四棱柱容器中,则正四棱柱容器的高的最小值为 .
17.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()211{ 5
2128
lnx x x
f x m x mx x +>=-++≤,,
,,
若
()()g x f x m =-有三个零点,则实数m 的取值范围是________.
18.在ABC ∆中,角A B C 、、的对边分别为a b c 、、,若1cos 2
c B a b ⋅=+,ABC ∆
的面积S =,
则边c 的最小值为_______.
【命题意图】本题考查正弦定理、余弦定理、三角形面积公式、基本不等式等基础知识,意在考查基本运算能
力.
三、解答题
19.设函数f(x)=x2e x.
(1)求f(x)的单调区间;
(2)若当x∈[﹣2,2]时,不等式f(x)>m恒成立,求实数m的取值范围.
20.如图,M、N是焦点为F的抛物线y2=2px(p>0)上两个不同的点,且线段MN中点A的横坐标为,
(1)求|MF|+|NF|的值;
(2)若p=2,直线MN与x轴交于点B点,求点B横坐标的取值范围.
21.(本小题满分10分)选修4-1:几何证明选讲.
如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于E,过E的切线与AC交于D. (1)求证:CD=DA;
(2)若CE=1,AB=2,求DE的长.
22.(本题满分12分)已知向量(sin ,
(sin cos ))2
a x x x =+,)cos sin ,(cos x x x
b -=,R x ∈,记函数 x f ⋅=)(.
(1)求函数)(x f 的单调递增区间;
(2)在ABC ∆中,角C B A ,,的对边分别为c b a ,,且满足C a c b cos 22=-,求)(B f 的取值范围.
【命题意图】本题考查了向量的内积运算,三角函数的化简及性质的探讨,并与解三角形知识相互交汇,对基本运算能力、逻辑推理能力有一定要求,但突出了基础知识的考查,仍属于容易题.
23.如图,三棱柱ABC ﹣A 1B 1C 1中,AB=AC=AA 1=BC 1=2,∠AA 1C 1=60°,平面ABC 1⊥平面AA 1C 1C ,AC 1与A 1C 相交于点D .
(1)求证:BD ⊥平面AA 1C 1C ; (2)求二面角C 1﹣AB ﹣C 的余弦值.
24.(本小题满分12分)
一个盒子里装有编号为1、2、3、4、5的五个大小相同的小球,第一次从盒子里随机抽取2个小球,记下球的编号,并将小球放回盒子,第二次再从盒子里随机抽取2个小球,记下球的编号.
(Ⅰ)求第一次或第二次取到3号球的概率;
(Ⅱ)设ξ为两次取球时取到相同编号的小球的个数,求ξ的分布列与数学期望.
万源市一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)
一、选择题
1.【答案】D
【解析】解:A.命题“若x2=1,则x=1”的否命题为“若x2≠1,则x≠1”,故A错误,
B.由x2+5x﹣6=0得x=1或x=﹣6,即“x=﹣1”是“x2+5x﹣6=0”既不充分也不必要条件,故B错误,
C.命题“∃x∈R,使得x2+x+1<0”的否定是:“∀x∈R,均有x2+x+1≤0﹣5,故C错误,
D.若A>B,则a>b,由正弦定理得sinA>sinB,即命题“在△ABC中,若A>B,则sinA>sinB”的为真命题.则命题的逆否命题也成立,故D正确
故选:D.
【点评】本题主要考查命题的真假判断,涉及四种命题的关系以及充分条件和必要条件的判断,含有量词的命题的否定,比较基础.
2.【答案】A
【解析】解:画出满足条件的平面区域,如图示:
,
由图象得P(3,0)到平面区域的最短距离d min=,
∴(x﹣3)2+y2的最小值是:.
故选:A.
【点评】本题考查了简单的线性规划问题,考查数形结合思想,是一道基础题.
3.【答案】C
【解析】解:对于A,函数y=在(﹣∞,+∞)上是减函数,∴不满足题意;
对于B,函数y=﹣2x+5在(﹣∞,+∞)上是减函数,∴不满足题意;
对于C,函数y=lnx在(0,+∞)上是增函数,∴满足题意;
对于D,函数y=在(0,+∞)上是减函数,∴不满足题意.
故选:C.
【点评】本题考查了基本初等函数的单调性的判断问题,是基础题目.
4.【答案】A
【解析】解:若a=0,则z=﹣2i(1+i)=2﹣2i,点M在第四象限,是充分条件,
若点M在第四象限,则z=(a+2)+(a﹣2)i,推出﹣2<a<2,推不出a=0,不是必要条件;故选:A.
【点评】本题考查了充分必要条件,考查了复数问题,是一道基础题.
5.【答案】B
考点:双曲线的性质.
6.【答案】B
【解析】解:三视图复原的几何体是一个半圆锥和圆柱的组合体,
它们的底面直径均为2,故底面半径为1,
圆柱的高为1,半圆锥的高为2,
故圆柱的体积为:π×12×1=π,
半圆锥的体积为:×=,
故该几何体的体积V=π+=,
故选:B
7.【答案】B
【解析】
8.【答案】
【解析】解:(I)证明:因为四边形ABCD是菱形,所以AC⊥BD,
又因为PA⊥平面ABCD,所以PA⊥BD,PA∩AC=A
所以BD⊥平面PAC
(II)设AC∩BD=O,因为∠BAD=60°,PA=AB=2,
所以BO=1,AO=OC=,
以O为坐标原点,分别以OB,OC为x轴、y轴,以过O且垂直于平面ABCD的直线为z轴,建立空间直角坐标系O﹣xyz,则
P(0,﹣,2),A(0,﹣,0),B(1,0,0),C(0,,0)
所以=(1,,﹣2),
设PB与AC所成的角为θ,则cosθ=|
(III)由(II)知,设,
则
设平面PBC的法向量=(x,y,z)
则=0,
所以令
,
平面PBC 的法向量所以,
同理平面PDC 的法向量,因为平面PBC ⊥平面PDC ,
所以=0,即﹣6+=0,解得t=
,
所以PA=
.
【点评】本小题主要考查空间线面关系的垂直关系的判断、异面直线所成的角、用空间向量的方法求解直线的夹角、距离等问题,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力
9. 【答案】A 【解析】
考
点:得出数列的性质及前项和.
【方法点晴】本题主要考查了等差出数列的性质及前项和问题的应用,其中解答中涉及到等差数列的性质,等差数列的前项和等公式的灵活应用的知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档题,本题的解答中,由“10a >,0d <”判断前项和的符号问题是解答的关键.
10.【答案】A
【解析】解:0<a <1,实数x ,y 满足,即y=
,故函数y 为偶函数,它的图象关于y 轴对称, 在(0,+∞)上单调递增,且函数的图象经过点(0,1),
故选:A .
【点评】本题主要指数式与对数式的互化,函数的奇偶性、单调性以及特殊点,属于中档题.
11.【答案】B.
【解析】2
3
2
3
()4()()44()a b ab a b ab ab -=⇒+=+,故
11a b a b ab
++≤⇒≤
2322()44()1184()82()()a b ab ab ab ab ab ab ab ab ++⇒≤⇒=+≤⇒+≤,而事实上12ab ab +≥=,
∴1ab =,∴log 1a b =-,故选B.
12.【答案】D
【解析】
{}{{}|5,||3,A y y B x y x x =≤===≥[]3,5A
B ∴=,故选D.
二、填空题
13.【答案】 .
【解析】解:∵函数f (x )=sinx ﹣cosx=sin (x ﹣),
则
=
sin (﹣)=﹣
=﹣
,
故答案为:﹣
.
【点评】本题主要考查两角差的正弦公式,属于基础题.
14.【答案】
.
【解析】解:∵直线3ax+y ﹣1=0与直线(1﹣2a )x+ay+1=0平行,
∴3aa=1(1﹣2a ),解得a=﹣1或a=, 经检验当a=﹣1时,两直线重合,应舍去
故答案为:.
【点评】本题考查直线的一般式方程和平行关系,属基础题.
15.【答案】345
【解析】
考点:点关于直线对称;直线的点斜式方程.
16.【答案】4+.
【解析】解:作出正四棱柱的对角面如图,
∵底面边长为6,∴BC=,
球O的半径为3,球O1的半径为1,
则,
在Rt△OMO1中,OO1=4,,
∴=,
∴正四棱柱容器的高的最小值为4+.
故答案为:4+.
【点评】本题考查球的体积和表面积,考查空间想象能力和思维能力,是中档题.
17.【答案】
7 1
4⎛⎤ ⎥⎝⎦,
【解析】
18.【答案】1
三、解答题
19.【答案】
【解析】解:(1)…
令
∴f(x)的单增区间为(﹣∞,﹣2)和(0,+∞);
单减区间为(﹣2,0).…
(2)令
∴x=0和x=﹣2,…
∴
∴f(x)∈[0,2e2]…
∴m<0…
20.【答案】
【解析】解:(1)设M(x1,y1),N(x2,y2),则x1+x2=8﹣p,|MF|=x1+,|NF|=x2+,
∴|MF|+|NF|=x1+x2+p=8;
(2)p=2时,y2=4x,
若直线MN斜率不存在,则B(3,0);
若直线MN斜率存在,设A(3,t)(t≠0),M(x1,y1),N(x2,y2),则
代入利用点差法,可得y12﹣y22=4(x1﹣x2)
∴k MN=,
∴直线MN的方程为y﹣t=(x﹣3),
∴B的横坐标为x=3﹣,
直线MN代入y2=4x,可得y2﹣2ty+2t2﹣12=0
△>0可得0<t2<12,
∴x=3﹣∈(﹣3,3),
∴点B横坐标的取值范围是(﹣3,3).
【点评】本题考查抛物线的定义,考查点差法,考查学生分析解决问题的能力,属于中档题.
21.【答案】
【解析】解:(1)证明:
如图,连接AE,
∵AB是⊙O的直径,
AC,DE均为⊙O的切线,
∴∠AEC=∠AEB=90°,
∠DAE=∠DEA=∠B,
∴DA=DE.
∠C=90°-∠B=90°-∠DEA=∠DEC,
∴DC=DE,
∴CD =DA .
(2)∵CA 是⊙O 的切线,AB 是直径, ∴∠CAB =90°,
由勾股定理得CA 2=CB 2-AB 2, 又CA 2=CE ×CB ,CE =1,AB =2, ∴1·CB =CB 2-2,
即CB 2-CB -2=0,解得CB =2, ∴CA 2=1×2=2,∴CA = 2.
由(1)知DE =12CA =2
2,
所以DE 的长为2
2.
22.【答案】
【解析】(1)由题意知,)cos )(sin cos (sin 2
3
cos sin )(x x x x x x x f +-+
=⋅= )3
2sin(2cos 232sin 21π-=-=
x x x ……………………………………3分 令2
23
22
2π
ππ
π
π+
≤-
≤-
k x k ,Z k ∈,则可得12
512
π
ππ
π+
≤≤-
k x k ,Z k ∈. ∴)(x f 的单调递增区间为]12
5,12
[π
ππ
π+
-
k k (Z k ∈).…………………………5分
23.【答案】
【解析】解:(1)∵四边形AA 1C 1C 为平行四边形,∴AC=A 1C 1,
∵AC=AA 1,∴AA 1=A 1C 1,
∵∠AA 1C 1=60°,∴△AA 1C 1为等边三角形, 同理△ABC 1是等边三角形, ∵D 为AC 1的中点,∴BD ⊥AC 1, ∵平面ABC 1⊥平面AA 1C 1C ,
平面ABC 1∩平面AA 1C 1C=AC 1,BD ⊂平面ABC 1, ∴BD ⊥平面AA 1C 1C .
(2)以点D 为坐标原点,DA 、DC 、DB 分别为x 轴、y 轴、z 轴,建立空间直角坐标系, 平面ABC 1
的一个法向量为,设平面ABC
的法向量为
,
由题意可得
,
,则
,
所以平面ABC
的一个法向量为=
(,1,1),
∴cos θ
=
.
即二面角C 1﹣AB ﹣C
的余弦值等于
.
【点评】本题在三棱柱中求证线面垂直,并求二面角的平面角大小.着重考查了面面垂直的判定与性质、棱柱的性质、余弦定理、二面角的定义及求法等知识,属于中档题.
24.【答案】
【解析】解:(Ⅰ)事件“第一次或第二次取到3号球的概率”的对立事件为“二次取球都没有取到3号球”,
∴所求概率为22
44225516
125
C C P C C =-⋅=(6分)
(Ⅱ)0,1,2,ξ= 23253(0)10C P C ξ===,1123253(1)5C C P C ξ⋅===,2
2251
(2)10
C P C ξ===
,(9分) 故ξ的分布列为:
(10分)
∴3314
012105105
E ξ=⨯+⨯+⨯= (12分)。