通信原理第2章确知信号

合集下载

樊昌信《通信原理》(第7版)课后习题(确知信号)【圣才出品】

樊昌信《通信原理》(第7版)课后习题(确知信号)【圣才出品】

第2章确知信号思考题2-1 何谓确知信号?答:确知信号是指其取值在任何时间都是确定和可预知的信号,通常可以用数学公式表示它在任何时间的取值。

例如,振幅、频率和相位都是确定的一段正弦波,它就是一个确知信号。

2-2 试分别说明能量信号和功率信号的特性。

答:(1)能量信号的能量为一个有限正值,但其平均功率等于零。

(2)功率信号的能量为无穷大,其平均功率为一个有限正值。

2-3 试用语言(文字)描述单位冲激函数的定义。

答:单位冲击函数是指宽度无穷小,高度为无穷大,积分面积为1的脉冲。

其仅有理论上的意义,是不可能物理实现的一种信号。

2-4 试画出单位阶跃函数的曲线。

答:如图2-1所示。

图2-12-5 试述信号的四种频率特性分别适用于何种信号。

答:(1)功率信号的频谱适用于周期性的功率信号。

(2)能量信号的频谱密度适用于能量信号。

(3)能量信号的能量谱密度适用于能量信号。

(4)功率信号的功率谱密度适用于功率信号。

2-6 频谱密度S(f)和频谱C(jnω0)的量纲分别是什么?答:频谱密度的量纲是伏特/赫兹(V/Hz);频谱的量纲是伏特(V)。

2-7 自相关函数有哪些性质?答:自相关函数的性质:(1)自相关函数是偶函数;(2)与信号的能谱密度函数或功率谱密度函数是傅立叶变换对的关系;(3)当τ=0时,能量信号的自相关函数R(0)等于信号的能量,功率信号的自相关函数R(0)等于信号的平均功率。

2-8 冲激响应的定义是什么?冲激响应的傅里叶变换等于什么?答:(1)冲激响应的定义:输入为单位冲激函数时系统的零状态响应,一般记作h(t)。

(2)冲激响应的傅里叶变换等于系统的频率响应,即H(f)。

习题2-1 试判断下列信号是周期信号还是非周期信号,能量信号还是功率信号:(1)s1(t)=e-t u(t)(2)s2(t)=sin(6πt)+2cos(10πt)(3)s3(t)=e-2t解:若0<E<∞,而功率P→0,则为能量信号;若能量E→0,而0<P<∞,则为功率信号。

第2章确知信号

第2章确知信号

令T 等于信号的周期T0 ,于是平均功率为
T

T / 2
T / 2
s ( t ) dt
2
1
T0


T0 / 2
T0 / 2
s ( t ) dt
2
(2.2-45)
由周期函数的巴塞伐尔(Parseval)定理:
P 1 T0

T0 / 2
T0 / 2
s ( t ) dt
2

n
T0 / 2 T0 / 2
s (t )e
dt
1 T

T0 / 2
T0 / 2
s ( t )[cos( 2 nf 0 t ) j sin( 2 nf 0 t )] dt 1 T
T

T0 / 2
s ( t ) cos( 2 nf 0 t ) dt j

T0 / 2
T0 / 2
T0 / 2
j n
s ( t ) dt
Cn Cn e
-双边谱,复振幅 |Cn| -振幅, n-相位
(2.2 - 4)
第2章 确知信号

周期性功率信号频谱的性质

对于物理可实现的实信号,由式(2.2-1)有
C n
1 T0

T0 / 2
T0 / 2
s (t )e
j 2 nf 0 t
2



S ( f ) df
2
(2.2-37)
将|S(f)|2定义为能量谱密度。 式(2.2-37)可以改写为
E



G ( f ) df
(2.2-38)

第2章 确知信号(简)

第2章 确知信号(简)

例如: s(t ) 5sin(2000t 60),
t
1 2 2 周期为: T0 f0 0 2000
非周期信号
s (t )
T
t
第2章 确知信号
2、按照能量是否有限区分: (1)能量信号 归一化功率——电流在单位电阻(1)上消耗的功率: 能量信号 功率信号
S ( f ) s(t )e j 2ft dt

j 2ft 而S(f)的傅里叶逆变换即为原信号: s(t ) S ( f )e df

第2章 确知信号
2. 能量信号频谱密度S(f)和周期性功率信号频谱Cn的主要区别: S(f)是连续谱,Cn是离散谱; S(f)的单位是V/Hz,而Cn的单位是V。
T0 / 2
s(t )[cos(2 nf 0t ) j sin(2 nf 0t )]dt
1 T0 / 2 s(t ) cos(2 nf0t )dt j T0
T0 / 2

T0 / 2
T0 / 2
s(t )sin(2 nf 0t )dt
Re(Cn ) j Im(Cn )
第2章 确知信号
2. 周期性功率信号频谱的性质 1 T /2 Cn C (nf0 ) s(t )e j 2nf t dt T0 T / 2
0 0 0
(2.2 1)
(1)离散谱
对于周期性功率信号来说,其频谱函数Cn是离散的,只
在f0的整数倍nf0上才取值。 (2)复振幅
式(2.2-1)中频谱函数Cn是一个复数,代表在频率nf0
Cn

1 1
2
离散性 谐波性 收敛性

nf 0
第2章 确知信号

樊昌信《通信原理》(第6版)(课后习题 确知信号)【圣才出品】

樊昌信《通信原理》(第6版)(课后习题  确知信号)【圣才出品】

其自相关函数为
2-7 已知一信号 s(t)的自相关函数为
(1)试求其功率谱密度 Ps(f)和功率 P; (2)试画出 RS(τ)和 Pn(f)的曲线。 解:(1)功率谱密度与自相关函数互为傅里叶变换,故
功率

(2)自相关函数和功率谱密度随频率的变化曲线如图 2-2 所示:
4/6
圣才电子书

又因
PБайду номын сангаас
1 T
T /
T
2 /2
s
2
(
t
)dt
1 ,故
s(t)是功率信号。
该信号周期为 T0 1,基波频率为 f0 1,则其傅里叶级数

Cn 1 , n 1
Cn 0 , others
故信号的功率谱密度为
P( f )
Cn 2 ( f nf
) ( f f0 )( f f0 ) 。
n
十万种考研考证电子书、题库视频学习平 台
图 2-2
2-8 已知一信号 s(t)的自相关函数是以 2 为周期的周期性函数:
试求 s(t)的功率谱密度 Pn(f)并画出其曲线。 解:周期性功率信号的功率谱密度是自相关函数的傅里叶变换,则
功率谱密度曲线如图 2-3 所示:
图 2-3
5/6
圣才电子书
十万种考研考证电子书、题库视频学习平
2-5 试求出 s(t)=Acoswt 的自相关函数,并从其自相关函数求出其功率。 解:(1)根据题意可知,s(t)为周期性功率信号,其自相关函数定义为
其中T0 2 / w 。
(2)由自相关函数的性质可知,平均功率为

功率谱密度为
P( f ) R( )e j2 f d A2 cos( 2 )e j2 f d

《通信原理》第二、三章_作业及答案

《通信原理》第二、三章_作业及答案

《通信原理》第二、三章_作业及答案本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March第二、三章 作业一、填空题1. 确知信号 是指其取值在任何时间都是确定的和可预知的信号,按照是否具有周期重复性,可分为 周期 信号 和 非周期 信号。

2.能量信号,其 能量 等于一个有限正值,但 平均功率 为零;功率信号,其 平均功率 等于一个有限正值,但其 能量 为无穷大。

3.周期性功率信号的频谱函数C n 是 离散的 (连续的/离散的),只在 f0 的整数倍上取值。

能量信号的频谱密度是 连续的 (连续谱/离散谱)。

4.平稳随机过程的统计特性不随时间的推移而不同,其一维分布与 时间 无关,二维分布只与 时间间隔 有关。

5.平稳随机过程的各态历经性可以把 统计 平均简化为 时间 平均,从而大大简化了运算。

6.功率谱密度为P (ω)的平稳随机过程的自相关函数R (ζ)为 (写出表达式即可)。

7.高斯分布的概率密度函数f(x)=8.高斯过程通过线性系统以后是高斯过程,平稳过程通过线性系统以后是 平稳 过程。

某平稳随机过程的期望为a ,线性系统的传输函数为H (ω),则输出的随机过程的均值为a H (ω)。

9.一个均值为零,方差为σ2窄带平稳高斯随机过程,其同相分量和正交分量均是 平稳高斯 过程,且均值为 0 ,方差为 2n σ 。

10.窄带随机过程可表示为)](cos[)(t t t c ξξϕωα+和t t t t c s c c ωξωξsin )(cos )(-。

11.一个均值为零方差为2n σ的窄带平稳高斯过程,其包络的一维分布服从瑞利 分布,相位的一维分布服从 均匀 分布。

12.白噪声在 不同时刻 (同一时刻/不同时刻)上,随机变量之间不相关,在 同一时刻 (同一时刻/不同时刻)上,随机变量之间均相关。

13.高斯白噪声是指噪声的概率密度服从 高斯 分布,功率谱密度服从均匀 分布。

通信原理第六版课后思考题答案

通信原理第六版课后思考题答案

通信原理第六版课后思考题答案第一章绪论1.1以无线广播和电视为例,说明图1-1模型中的信息源,受信者及信道包含的具体内容是什么在无线电广播中,信息源包括的具体内容为从声音转换而成的原始电信号,收信者中包括的具体内容就是从复原的原始电信号转换乘的声音;在电视系统中,信息源的具体内容为从影像转换而成的电信号。

收信者中包括的具体内容就是从复原的原始电信号转换成的影像;二者信道中包括的具体内容分别是载有声音和影像的无线电波1.2何谓数字信号,何谓模拟信号,两者的根本区别是什么数字信号指电信号的参量仅可能取有限个值;模拟信号指电信号的参量可以取连续值。

他们的区别在于电信号参量的取值是连续的还是离散可数的1.3何谓数字通信,数字通信有哪些优缺点传输数字信号的通信系统统称为数字通信系统;优缺点:数字通行系统的模型见图1-4所示。

其中信源编码与译码功能是提高信息传输的有效性和进行模数转换;信道编码和译码功能是增强数字信号的抗干扰能力;加密与解密的功能是保证传输信息的安全;数字调制和解调功能是把数字基带信号搬移到高频处以便在信道中传输;同步的功能是在首发双方时间上保持一致,保证数字通信系统的有序,准确和可靠的工作。

1-5按调制方式,通信系统分类?根据传输中的信道是否经过调制,可将通信系统分为基带传输系统和带通传输系统。

1-6按传输信号的特征,通信系统如何分类?按信号特征信道中传输的信号可分为模拟信号和数字信号,相应的系统分别为模拟通信系统和数字通信系统。

1-7按传输信号的复用方式,通信系统如何分类?频分复用,时分复用,码分复用。

1-8单工,半双工及全双工通信方式是按什么标准分类的?解释他们的工作方分为并行传输和串行传输。

并行传输是将代表信息的数字信号码元以组成的方式在两条或两条以上的并行信道上同时传输,其优势是传输速度快,无需附加设备就能实现收发双方字符同步,缺点是成本高,常用于短距离传输。

串行传输是将代表信息的数字码元以串行方式一第1/10页个码元接一个码元地在信道上传输,其优点是成本低,缺点是传输速度慢,需要外加措施解决收发双方码组或字符同步,常用于远距离传输。

通信原理第2章 确知信号

通信原理第2章 确知信号
n 1

它的意义在于: (1)把一个时域信号转换为频域表达,从而引出频谱的概 念; (2)揭示了周期信号的实质,即一个周期信号是由不同频 率的谐波分量构成。当信号被分解为各次谐波之后,就可 以从频域来分析问题。因此,傅里叶分析实质上是一种频 域分析方法。信号的频域特性即信号的内在本质,而信号 的时域波形只是信号的外在形式。

j 2nt / T0
j 2nt / T0 Cn e n 1

C 0 C n (cos2ntf 0 j sin2ntf 0 ) C n (cos2ntf 0 j sin2ntf 0 ) n 1 n 1 C 0 [(C n C n ) cos 2ntf 0 j(C n C n ) sin2ntf 0 ] n 1

T0 / 2
T0 / 2
S ( t )e
j 2nf 0 t
* dt C n

即频谱函数的负频率和正频率部分存在“复数共轭”关系
双边谱
11
根据频谱函数的负频率和正频率之间的“复数共轭”关系
S (t )
n
C

n
e
j 2nt / T0
C0 C ne
3
(2)周期信号和非周期信号
周期信号:定义在(- ∞, +∞)区间上,且每隔一定的时间间
隔按相同规律重复变化的信号。
s(t ) s(t T0 ), t T0-信号的周期, T0 > 0
满足上述条件的最小T0称为信号的基波周期, f0 =1/T0称为信 号的基频。 非周期信号是不具有重复性的信号,如:符号函数、单位冲 激信号、单位阶跃信号等。

通信原理-第2章

通信原理-第2章

思考问题
(2.1) 为什么能量信号的平均功率为零,举例说明哪 些信号是能量信号,哪些信号是功率信号?
(2.2.1) 周期信号的频谱特性? (2.2.2) 为什么能量信号用频谱密度来表示它的频
域特性?
2.1 确知信号的类型
❖ 按照周期性区分: ➢ 周期信号:每隔一定时间T,周而复始且无始无终的信 号。
g a (t )
它的傅里叶变换为

1 0
t /2 t /2
Ga ( f )
/2 e j2 ft dt
/2
1 (e j f e j f ) sin( f ) Sa( f )
j2 f
f
ga(t) 1
0
t
Ga(f)
R( ) lim 1
T /2
s(t)s(t )dt
T T T / 2

性质:
当 = 0时,自相关函数R(0)等于信号的平均功率:
R(0) lim 1 T / 2 s 2 (t)dt P
T T
T / 2
功率信号的自相关函数也是偶函数。
2.3.2 功率信号的自相关函数
【例2.1】 试求图2-2(a)所示周期性方波的频谱。
V ,
/2 t /2
s(t)
s(t) 0,
/ 2 t (T / 2)
s(t) s(t T ),
由式(2.2-1):
t
V

-T
0
t
T
/2
Cn

1 T
/2 Ve j 2 nf0t dt
矩形脉冲的带宽等于其脉
冲持续时间的倒数,在这里

通信原理-确知信号_2

通信原理-确知信号_2

s(t)
V
0 T
t
其频谱:

Cn

1 T
Ve j 2nf0t dt
0

1 T

V
j 2nf 0
e
j 2nf0t

0
V 1 e j 2nf0 V
1 e j 2n / T
T j2nf0
j 2n
可见:此信号不是偶函数,所以其频谱Cn是 复函数 。
则其能量谱密度G(f )为:
G(f ) = |S(f )|2
能量——Parseval定理
E
s2 (t)dt
S( f ) 2df

ቤተ መጻሕፍቲ ባይዱ

G( f )df 2 G( f )df



0
例 【2-6】试求例【2-3】中矩形脉冲的能量谱密度 。

在例【2-3】中,已经求出其频谱密度:
0
2/
f
评注:矩形脉冲的带宽等于其脉冲持续时间的倒数,即 (1/) Hz 。
例 【2-4】试求单位冲激函数 (函数) 的频谱密度。
解 函数的定义:
(t)dt 1 且 (t) 0, t 0
函数的频谱密度:
( f )
(t)e j2ft dt 1
f
)

V
n T
2
Sa2f

(
f
nf0)
2.2.2 能量信号的频谱密度
频谱密度的定义:
—— 能量信号s(t) 的傅里叶变换:
S ( f ) s(t)e j2ft dt
S(f)的逆傅里叶变换为原信号: s(t) S ( f )e j2ft df

2确知信号

2确知信号
Cn
第2章 确知信号 章
求图所示周期性方波的频谱。 0 ≤ t ≤τ V , s(t ) = τ <t <T 0,
s(t ) = s(t − T ),
1 T
τ
s(t)
−∞ < t < ∞
-T
V 0 τ
T
τ
t
Cn =

0
Ve
− j 2 π nf 0 t
dt =
1 V − T j 2 π nf
0 0 0 0 0 0
|Cn|
Cn的模偶对称
-5
-4
-3
-2
-1
0
1
2
3
4
5
n
(a) 振幅谱
θn
Cn的相位奇对称
-5
-4 -3
-2
-1 0 1 2
3 4 5
n
(b) 相位谱
第2章 确知信号 章
将式(2.2-5)代入式(2.2-2),得到
s (t ) =
n = −∞
∑C

n
e
j 2 π nt / T 0
dt = 1 ⋅ ∫ δ (t )dt = 1
−∞

第2章 确知信号 章
δ函数的性质: δ函数可以用抽样函数的极限表示:
δ ( t ) = lim
k
k→∞
因为,可以证明


k
π
sin c ( kt )
−∞
π
sin c ( kt ) dt = 1
t
式中k越大、振幅越大、波形零点的间隔越 小、波形振荡的衰减越快,但积分等于1。 和下式比较:
0, u (t ) = 1, 当 t < 0, 当t ≥ 0

通信原理教程第二章 信号

通信原理教程第二章  信号

P(X xn) = 1
∵P(X xi) = P(X = x1) + P(X = x2) + … + P(X = xi),

0

FX
(x)


i
pk
k1
1
x x1 x1 x xi1
x xn
性质:
FX(- ) = 0
FX(+) = 1
若x1 < x2,则有: FX(x1) FX(x2) ,
随机变量的概念:若某种试验A的随机结果用X表示,则称此
X为一呼叫次数是一个
随机变量。 随机变量的分布函数:
定义:FX(x) = P(X x) 性质: ∵ P(a < X b) + P(X a) = P(X b),
f(t)sin t)( 0t1
f(t)f(t1)
求频谱:
t
C ( jn 0 ) T 1 0 T T 0 0 // 2 2 s ( t ) e j n 0 td 0 1 t si t ) e n j2 n d ( t t ( 4 n 2 2 1 )
解:单位冲激函数常简称为函数,其定义是:
(t)dt 1 (t) 0
t 0
(t)的频谱密度: (f)(t)e j td 1 t(t)d 1 t


7
Sa(t)及其频谱密度的曲线:
(f)
(t)
1
0
t
0
f
函数的物理意义: 高度为无穷大,宽度为无穷小,面积为1的脉冲。
将上式两端求导,得到其概率密度:
性质:
n
pX(x) pi(xxi) i1

通信原理课件第2章确知信号

通信原理课件第2章确知信号
测试信号
用于系统性能测试和故障诊断,如误码率测试和信号质量评估等。
THANKS
感谢观看
确知信号的应用
在通信系统中,确知信号常被用作载 波信号或调制信号,以传递信息。
可以用确定的数学函数来表示确知信 号,例如正弦波、余弦波、方波等。
确知信号的分类
周期信号和非周期信号
根据信号波形重复性的不同,可以将确知信号分为周期信号和非周期信号。周 期信号的波形在时间上重复出现,而非周期信号则没有这种重复性。
确定性
确知信号的波形是确定的 ,不受外界干扰的影响, 因此其取值是确定的,不 具有随机性。
02
CATALOGUE
确知信号的频域分析
频域分析的基本概念
频域
在信号处理中,频域是描述信号 频率特性的一个抽象空间,通过 将信号分解为不同频率的正弦波
分量来研究信号的频率特性。
傅里叶分析
傅里叶分析是研究信号在频域中 的性质和行为的一种数学工具, 通过将信号表示为正弦波的叠加 ,可以分析信号的频率成分和频
能量信号与功率信号
能量信号是指能量有限的信号,其能量值在时间上可变;功率信号是指功率有限的信号, 其功率值在时间上可变。能量信号和功率信号的时域波形和频域特性有所不同。
确知信号的时域运算
信号的加法与减法
将两个同频率、同相位的信号相加或相减,可以得到一个新的信号。新信号的幅度和相位可以通过简单的代数运算得 到。
率变化。
频谱
频谱是信号在频域中的表示形式 ,通过将信号的幅度或功率随频 率变化的规律绘制成图,可以直
观地了解信号的频率特性。
确知信号的频谱
确定性信号
确知信号也称为确定性信号,是 指信号在时间上是确定的,即对 于任意给定的时间,信号都有一

通信原理(第二版)第2章确知信号与随机信号分析

通信原理(第二版)第2章确知信号与随机信号分析
通信原理(第二版)第 2章确知信号与随机
信号分析
目录
• 确知信号分析 • 随机信号分析 • 确知信号与随机信号的应用 • 信号分析的现代方法
01
确知信号分析
定义与分类
定义
确知信号是指在任何时刻都已知 其全部信息的信号,如正弦波、 方波等。
分类
连续信号和离散信号,周期信号 和非周期信号,实信号和复信号 等。
小波变换具有多分辨率分析的 特点,能够适应不同频率的信 号处理需求。
小波变换在信号降噪、特征提 取、模式识别等领域有着广泛 的应用。
神经网络在信号分析中的应用
神经网络能够通过学习自动提取信号 中的特征,具有很强的自适应性。
神经网络在语音识别、图像处理、雷 达信号处理等领域有着广泛的应用。
神经网络可以处理非线性信号,对于 一些难以用传统方法处理的复杂信号 非常有效。
随机信号的时域分析
自相关函数
描述随机信号取值在时间上的相关性。
互相关函数
描述两个随机信号在时间上的相关性。
谱估计
通过时域数据估计随机信ห้องสมุดไป่ตู้的功率谱密度的方法。
03
确知信号与随机信号的应 用
确知信号在通信中的应用
载波信号
用于调制信息信号,实现信息的 传输。
脉冲信号
用于数字通信中表示二进制状态, 如脉冲编码调制(PCM)。
确知信号的频域分析
01
02
03
傅里叶级数
将确知信号表示为无穷多 个正弦波的叠加,每个正 弦波具有不同的幅度、频 率和相位。
频谱密度函数
描述信号中各频率分量的 强度,通常用图形表示, 即频谱图。
频谱分析
通过频谱图分析信号中各 频率分量的特性,如频率 范围、幅度和相位等。

通信原理第7版第2章樊昌信版

通信原理第7版第2章樊昌信版
条件2:在一周期内,极大值和极小值的数目应是有 限个。
条件3:在一周期内,信号绝对可积。
例1
不满足条件1的例子如下图所示,这个信号的周期为8,它是这样 组成的:后一个阶梯的高度和宽度是前一个阶梯的一半。可见在 一个周期内它的面积不会超过8,但不连续点的数目是无穷多个。
8
f t
1
1 2
O
8t

3
5
n
基波 1.5
1
0.5
0
-0.5
-1
-1.5
0
1
2
3
4
5
6
t
基波+三次谐波
1 0.5
0 -0.5
-1
0
1
2
3
4
5
6
t
基波+三次谐波+五次谐波
1 0.5
0 -0.5
-1
0
1
2
3
4
5
6
t
基波+三次谐波+五次谐波+七次谐波
1 0.5
0 -0.5
-1
0
1
2
3
4
5
6
t
傅里叶级数的指数形式
三角形式的傅里叶级数,含义比较明确,但运算常感 不便,因而经常采用指数形式的傅里叶级数。
● A0/2为直流分量; ● A1cos(t+1)称为基波或一次谐波,它的角频率(基频)与原周期信号相同 ( 2 );
T
● A2cos(2t+2)称为二次谐波,它的频率是基波的2倍; ● 一般而言,Ancos(nt+n)称为n次谐波。
例:将图示方波信号f(t)展开为傅里叶级数。
e j t cos t j sin t

通信原理第2章

通信原理第2章

(
)

lim
T
1 T
T /2
T / 2 f1(t) f2 (t )dt
对周期功率信号f 1(t)和f 2(t),其互相关函数定义为
R12
(
)

1 T0
T0 / 2 f1(t) f2 (t )dt
T0 / 2
2. 互相关函数的物理意义 设f 1(t)和f 2(t)是两个矩形信号,
2. 冲激信号

(t)

, 0,
t 0 t0
且 (t)dt 1
直流信号占功率,频率为零。
3. 升余弦脉冲信号
f
(t)


A 2
1

cos
2
t

0
t
2 其它
其频谱为: F ( f ) f (t)e j2 ftdt
思考: 周期信号是什么信号?非周期信号呢?
通信信号f(t)的能量(消耗在1Ω电阻上)E为
E f 2 (t)dt
其平均功率P为
P f 2 (t) lim 1 T/ 2 f 2 (t)dt T T -T/ 2
2.1.2 常用系统的分类
1. 线性系统和非线性系统
kr(t)=g[kf(t)] r1(t)+r2(t)=g[f1(t)+f2(t)]
T0 2
An

2 T0
Tt
是周期信号f(t)的第n次余弦波的振幅
2 T0 2
Bn T0
f (t)sin 2πnf0tdt 是周期信号f(t)的第n次正弦波的振幅;
T0 2
f0

1 T0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

dt
所以: 信号的“频谱” 所以:能量信号的“频谱”是连续的 比较S(f)与Cn。。。。。 与 。。。。。 比较 连续vs离散 连续 离散 单位=? 单位=?
周期性功率函数的频谱密度=? 周期性功率函数的频谱密度=?
冲击函数的频谱密度
δ ( t ) = lim
k
k→∞
π
S a ( kt )
抽样函数的极限
例【2-6】 】
s ( t ) = cos 2 π f 0 t
1 S ( f ) = [δ ( f − f 0 ) + δ ( f + f 0 ) ] 2
谐波上具有非零频谱, 谐波上具有非零频谱,因此频谱密度无穷大 引入冲击函数, 引入冲击函数,把频谱密度推广到了功率函数上
2.2.3 能量信号的能量谱密度
2.2.4 功率信号的功率谱密度
2.3 时域特性
能量信号的自相关函数 功率信号的自相关函数 能量信号的互相关函数 功率信号的互相关函数
物理意义? 物理意义?
上述积分难以计算
s ( t ) = cos 2 π f 0 t
信号,即周期T无穷大 非周期功率信号,即周期 无穷大
2.2.2 能量信号频谱密度
能量信号的傅立叶变换对
s (t ) =


−∞
S ( f )e
j 2 π ft
df
− j 2 π ft
S( f ) =


−∞
s ( t )e
第 2 章 确知信号
确知信号的类型 确知信号的频域性质 功率信号的频谱 能量信号的频谱密度 能量信号的能量谱密度 功率信号的功率谱密度 确知信号的时域性质 能量信号的自相关函数 功率信号的自相关函数 能量信号的互相关函数 功率信号的互相关函数
2011-12-31
确知信号分析是基础 复习、分析、 复习、分析、讨论 重在理解、应用 重在理解、
冲击函数的频谱密度
∆( f ) =


−∞
δ (t )e
− j 2 π ft
dt = 1 ⋅ ∫

−∞
δ ( t )Biblioteka dt = 1冲击函数也可看作单位阶跃函数的导数 t<0 0 u (t ) = u ' (t ) = δ (t ) t≥0 1
利用冲击函数, 利用冲击函数,可以求功率函数的频谱密度了
2.2.1 功率信号的频谱
信号, 周期性的功率信号,可展开为傅立叶级数
s (t ) =
n = −∞
∑C

n
e
j 2 π nt / T 0
1 C n = C ( nf 0 ) = T0

T0 / 2
− T0 / 2
s ( t )e − j 2 π nf 0 t
所以: 所以:周期性功率信号的频谱是离散的
1
2.1 确知信号的类型
周期性
周期信号 非中期信号
能量与功率信号
能量信号 功率信号
0 < E = ∫ s 2 (t )dt < ∞
−∞

平方可积 平均功率
非确知信号也分能量信号、 非确知信号也分能量信号、功率信号 能量信号的功率=? 能量信号的功率=? 功率信号的能量=? 功率信号的能量=?
1 0 < P = lim T →∞ T

T /2
−T / 2
s 2 (t )dt < ∞
2.2 确知信号的频域特性
频域特性也叫频率特性
由其各个频率分量的分布表示
频域特性的作用
带宽 抗噪能力
周期 非周期
能力信号 功率信号
频谱(密度) 频谱(密度) 能量谱(密度) 能量谱(密度) 功率谱(密度) 功率谱(密度)
你能快速排除哪些组合? 你能快速排除哪些组合?
相关文档
最新文档