单元检测《圆锥曲线与方程》
高中试卷-专题15 圆锥曲线的方程(单元测试卷)(含答案)

专题15 《圆锥曲线的方程》单元测试卷一、单选题1.(2020·辽宁省高三月考(文))若抛物线上的点M 到焦点的距离为10,则M 点到y 轴的距离是( )A .6B .8C .9D .10【答案】C 【解析】抛物线的焦点,准线为,由M 到焦点的距离为10,可知M 到准线的距离也为10,故到M 到的距离是9,故选C .2.(2019·涟水县第一中学高二月考)椭圆的焦距为,则的值等于( )A .B .C .或D .【答案】C 【解析】若椭圆的焦点在轴上时,则有,解得;若椭圆的焦点在轴上时,则有,解得.综上所述,或.故选:C.3.(2018·镇原县第二中学高二期末(文))设抛物线的顶点在原点,准线方程为x=﹣2,则抛物线的方程是( )A .y 2=﹣8x B .y 2=8xC .y 2=﹣4xD .y 2=4x【答案】B 【解析】∵准线方程为x=﹣2∴=2∴p=424y x =24y x =()10F ,1x =-2214x y m +=2m 53538x 2=5m =y 2=3m =5m =3∴抛物线的方程为y 2=8x 故选B4.(2020·天津高三一模)设为抛物线的焦点,过且倾斜角为的直线交于,两点,则( )AB .C .D .【答案】C【解析】由题意,得.又因为AB 的方程为,与抛物线联立,得,设,由抛物线定义得,,选C .5.(2018·镇原县第二中学高二期末(文))已知,,则椭圆的标准方程是( )A .B .C .或D .【答案】C 【解析】由,,,可解得,,则当椭圆的焦点在轴上时,此时椭圆的标准方程为:;当椭圆的焦点在轴上时,椭圆的标准方程为:.故选:C6.(2018·镇原县第二中学高二期末(文))双曲线,则()F 2:3C y x =F 30o C A B AB =6123(,0)4F 0k tan 30==34y x =-2=3y x 21616890x x -+=1122(,),(,)A x y B x y 12AB x x p =++=168312162+=9a b +=3c =221259x y +=2212516x y +=2212516x y +=2251162x y+=221169x y +=9a b +=3c =222a b c =+225a =216b =x 2212516x y +=y 2251162x y +=()2221012x y b b-=>0+=b =A .3B .2CD .【答案】D 【解析】双曲线的焦点在轴,,渐近线方程是,,解得:.故选:7.(2018·民勤县第一中学高二期末(文))已知椭圆的一个焦点为F (0,1),离心率,则椭圆的标准方程为()A .B .C .D .【答案】D 【解析】由题意知,又离心率,所以,,即所求椭圆的标准方程,故选D .8.(2019·涟水县第一中学高二月考)设双曲线(a >0,b >0)的虚轴长为2,焦距为( )A.y =x B .y =±2xC .y =x D .y =±x【答案】C 【解析】由题意知∴,a 2=c 2-b 2x a =by x a=±0+=k ===b =D12e =2212x y +=2212y x +=22143x y +=22134x y +=1c =12e =2a =2223b a c =-=22134x y +=22221x y a b-=12∴渐近线方程为y=±x.故选C.9.(2019·浙江省高二期中)如图,,,是椭圆上的三个点,经过原点,经过右焦点,若且,则该椭圆的离心率为( )A.BCD【答案】B【解析】取左焦点,连接,,根据椭圆的对称性可得:是矩形,设,中,即:解得:,则在中即:,.b a A B C 22221x y a b+=()0a b >>AB O AC F BF AC ^3BF CF =121F 111,,AF CF BF BF AC ^1AFBF 11,2,3,23,22CF m CF a m BF AF m AF a m AC a m ==-===-=-1Rt AF C D 22211AF AC CF +=222(3)(22)(2)m a m a m +-=-3am =1,AF a AF a ==1Rt AF F D 22211AF AF FF +=222(2)a a c +=222212,2c a c a ==故选:B10.(2018·安徽省合肥一中高三一模(文))已知椭圆的左、右焦点分别为,,是椭圆在第一象限上的一个动点,圆与的延长线,的延长线以及线段都相切,且为其中一个切点.则椭圆的离心率为( )ABCD【答案】B 【解析】设圆与的延长线相切于点,与相切于点,由切线长相等,得,,,,,由椭圆的定义可得,,,则,即,又,所以因此椭圆的离心率为.故选:B.二、多选题11.(2019·山东省青岛二中高二月考)(多选题)下列说法正确的是( )2221(1)x y a a+=>1F 2F A C 1F A 12F F 2AF ()3,0M C 1F A N 2AF T AN AT =11F N F M =22F T F M =1(,0)F c -2(,0)F c 122AF AF a +=()111223+22+F N F M c AF AN a AF AN a AN AT TF ==+==-+=+-222(3)a F M a c =-=--26a =3a =1b =c ==c e a ==A .方程表示两条直线B .椭圆的焦距为4,则C .曲线关于坐标原点对称D .双曲线的渐近线方程为【答案】ACD 【解析】方程即,表示,两条直线,所以A 正确;椭圆的焦距为4,则或,解得或,所以B 选项错误;曲线上任意点,满足,关于坐标原点对称点也满足,即在上,所以曲线关于坐标原点对称,所以C 选项正确;双曲线即,其渐近线方程为正确,所以D 选项正确.故选:ACD12.(2019·山东省高二期中)已知椭圆的中心在原点,焦点,在轴上,且短轴长为2,离心率,过焦点作轴的垂线,交椭圆于,两点,则下列说法正确的是( )A .椭圆方程为B .椭圆方程为C .D .的周长为【答案】ACD 【解析】2x xy x +=221102x y m m +=--4m =22259x y xy +=2222x y a b l -=b y xa=±2x xy x +=()10x x y +-=0x =10x y +-=221102x y m m +=--()1024m m ---=()2104m m ---=4m =8m =22259x y xy +=(),P x y 22259x y xy +=(),P x y (),P x y ¢--()()()()22259x y x y --+=--(),P x y ¢--22259x y xy +=22259x y xy +=2222x y a b l -=0l ¹b y x a=±C 1F 2F y 1F y C P Q 2213y x +=2213x y +=PQ =2PF Q D由已知得,2b =2,b =1,又,解得,∴椭圆方程为,如图:∴,的周长为.故选:ACD.13.(2019·江苏省苏州实验中学高二月考)已知双曲线过点且渐近线为,则下列结论正确的是( )A .的方程为B .C .曲线经过的一个焦点D .直线与有两个公共点【答案】AC 【解析】对于选项A :由已知,可得,从而设所求双曲线方程为,又由双曲线过点,从而,即,从而选项A 正确;对于选项B :由双曲线方程可知,,从而离心率为,所以B 选项错误;c a =222a b c =+23a =2213y x +=22b PQ a ===2PF Q D 4a =C (y x =C 2213x y -=C 21x y e -=-C 10x -=C y =±2213y x =2213x y l -=C (22133l ´-=1l =a =1b =2c =c e a ===对于选项C :双曲线的右焦点坐标为,满足,从而选项C 正确;对于选项D :联立,整理,得,由,知直线与双曲线只有一个交点,选项D 错误.故选AC 三、填空题14.(2019·江苏省高三三模)双曲线的焦距为______.【答案】【解析】双曲线的焦距为.故答案为:.15.(2019·重庆巴蜀中学高二期中(理))若双曲线的左焦点在抛物线的准线上,则的值为________.【答案】6【解析】双曲线的左焦点为,即,故.故答案为:.16.(2020·浙江省高三二模)已知椭圆,F 为其左焦点,过原点O 的直线l 交椭圆于A ,B 两点,点A 在第二象限,且∠FAB =∠BFO ,则直线l 的斜率为_____.【答案】【解析】设,则,,且,()2,021x y e -=-221013x x y ì-=ïí-=ïî220y +=2420D =-´=C 2212x y -=2212x y -=2c ==22154x y -=22y px =p 22154x y -=()3,0-32p -=-6p =622197x y C +=:()00,A x y ()00,B x y --00x <00y >2200197x y +=∵F 为其左焦点,∴,AB 的斜率.经分析直线AF 的斜率必存在,设为则,又,,∴,又,,可解得:,,∴直线l的斜率为.故答案为:17.(2019·乐清市知临中学高二期末)已知抛物线的焦点为,定点.若抛物线上存在一点,使最小,则点的坐标为________,最小值是______.【答案】 【解析】根据题意,作垂直于准线,画出几何关系如下图所示:()F tan BFO Ð=10y k x =2k =1212tan 1k k FAB k k -Ð==+FAB BFO Ð=Ð=220002x y ++=2200197x y +=0(3,0)x Î-0x =0y =00y x =22y x =F ()32A ,M MA MF +M ()22,72MH根据抛物线定义可知,,因而当在同一直线上时,的值最小,此时,的纵坐标为2,代入抛物线解析式可知,所以的横坐标为2,即,故答案为:,;四、解答题18.(2018·镇原县第二中学高二期末(文))已知双曲线的一条渐近线方程是,它的一个焦点在抛物线的准线上.(1)求双曲线的焦点坐标;(2)求双曲线的标准方程.【答案】(1);(2)【解析】因为抛物线的准线方程为,则由题意得,点是双曲线的左焦点.(1)双曲线的焦点坐标.(2)由(1)得,又双曲线的一条渐近线方程是,所以,,所以双曲线的方程为:.19.(2019·湖南省衡阳市八中高二月考)已知抛物线的焦点为,点在抛物线上,且点的横坐标为,.MF MH =,,A M H MA MF +72MA MF AH +==M 42x =M ()2,2M ()2,2M 72()222210,0x y a b a b-=>>y =224y x =()6,0F ±221927x y-=224y x =6x =-()16,0F -()6,0F ±22236a b c +==y =ba=29a =227b =221927x y -=22(0)y px p =>F M M 45MF =(1)求抛物线的方程;(2)设过焦点且倾斜角为的交抛物线于两点,求线段的长.【答案】(1);(2).【解析】(1)由题意得,∴,故抛物线方程为.(2)直线的方程为,即.与抛物线方程联立,得,消,整理得,其两根为,且.由抛物线的定义可知,.所以,线段的长是.20.(2020·陕西省西安市远东一中高二期末(理))已知抛物线C 的顶点为坐标原点O ,对称轴为x 轴,其准线过点.(1)求抛物线C 的方程;(2)过抛物线焦点F 作直线l ,使得抛物线C 上恰有三个点到直线l 的距离都为l 的方程.【答案】(1);(2)【解析】(1)由题意得,抛物线的焦点在轴正半轴上,设抛物线C 的方程为,因为准线过点,所以,即. 所以抛物线C 的方程为.(2)由题意可知,抛物线C 的焦点为.当直线l 的斜率不存在时,C 上仅有两个点到l 的距离为当直线l 的斜率存在时,设直线l 的方程为,F 45°l A B 、AB 24y x =8452p MF +==2p =24y x =l 0tan 45(1)y x -=°⋅-1y x =-214y x y x =-ìí=îy 2610x x -+=12,x x 126x x +=12||628AB x x p =++=+=AB 8()2,1--28y x =20x y ±-=x 22y px =()2,1-22p =4p =28y x =()2,0F ()2y k x =-要满足题意,需使在含坐标原点的弧上有且只有一个点P 到直线l 的距离为,过点P 的直线平行直线且与抛物线C 相切.设该切线方程为,代入,可得.由,得.,整理得,又,解得,即.因此,直线l 方程为.21.(2019·会泽县第一中学校高二月考(理))设抛物线:的焦点为,是上的点.(1)求的方程:(2)若直线:与交于,两点,且,求的值.【答案】(1)(2).【解析】(1)因为是上的点,所以, 因为,解得,抛物线的方程为.(2)设,,由得,则,,():2l y k x =-y kx m =+24y x =()222280k x km x m +-+=()2222840km k m D =--=2km =224m k =2km =21k =1k =±20x y ±-=C 22(0)x py p =>F (,1)M p p -C C l 2y kx =+C A B 13AF BF ⋅=k 24x y =1k =±(),1M p p -C ()221p p p =-0p >2p =C 24x y =()11,A x y ()22,B x y 224y kx x y=+ìí=î2480x kx --=216320k D =+>124x x k +=128x x =-由抛物线的定义知,,,则,,,解得.22.(2018·民勤县第一中学高二期末(文))在直线:上任取一点,过作以,为焦点的椭圆,当在什么位置时,所作椭圆长轴最短?并求此椭圆方程.【答案】,【解析】设关于:的对称点,则,,连交于,点即为所求点.:,即,解方程组,,当点取异于的点时,.满足题意的椭圆的长轴最短时,,所以,,.椭圆的方程为:.11AF y =+21BF y =+()()()()12121133AF BF y y kx kx ⋅=++=++()2121239k x x k x x =+++24913k =+=1k =±l 90x y -+=M M ()13,0F -()23,0F M ()5,4M -2214536x y +=()13,0F -l 90x y -+=(),F x y 3909220613x y x y y x -ì-+=ï=-ìïÞíí-=îï=-ï+î()9,6F -2F F l M M 2F F 1(3)2y x =--230x y +-=2305904x y x x y y ì+-==-ìÞíí-+==îî()5,4M -'M M 22''FM M F FF +>22a FF ===a =3c =22245936b a c =-=-=2214536x y +=23.(2019·安徽省高二期末(理))已知点为坐标原点椭圆的右焦点为,离心率为,点分别是椭圆的左顶点、上顶点,的边.(1)求椭圆的标准方程;(2)过点的直线交椭圆于两点直线分别交直线于两点,求.【答案】(1);(2)0.【解析】(1)如图所示由题意得为直角三角形,且,所以则所以椭圆的标准方程为:.O 2222:1(0)x y C a b a b+=>>F 12,P Q C POQ △PQ C F l A B 、PA PB 、2x a =M N 、FM FN ⋅uuuu r uuu r 22143x y +=POQ △PQ PQ =222a b c =+=ïïî1a b c ìï=íï=î22143x y +=(2)由题意,如图设直线的方程为:,,,则,,联立方程化简得.则.由三点共线易得,化简得,同理可得..l 1x my =+()11,A x y ()22,B x y ()34,M y ()44,N y 221143x my x y =+ìïí+=ïî22(34)690m y my ++-=122122634934m y y m y y m ì+=-ïï+íï⋅=-ï+î,,P A M ()31100422y y x --=--+13163y y my =+24263y y my =+1234341266(3,)(3,)9933y y FM FN y y y y my my ⋅==+=+⋅++uuuu r uuu r g ()122121236939y y m y y m y y =++++2222222936()36934990969189(34)()3()93434m m m m m m m m m --´+=+=+=--++-+-+++。
第二章圆锥曲线与方程检测试卷及答案解析

第二章 本章检测一、选择题(本题包括12小题,每小题5分,共60分.每小题给出的四个选项中,只有一个选项正确)1. 若椭圆22221(0)x y a b a b +=>>的离心率是32,则双曲线22221x y a b-=的离心率是( )A .54B .52C .32D .54 2. 已知双曲线中心在原点且一个焦点为(7,0)F ,直线1y x =-与其交于M N 、两点,MN 中点的横坐标为23-,则此双曲线的方程是( ) A .22134x y -= B .22143x y -= C .22152x y -= D .22125x y -= 3. 若抛物线y 2=2px 的焦点与椭圆22162x y +=的右焦点重合,则p 的值为( ) A .-2 B .2 C .-4 D .44.设双曲线22221x y a b-= (a >0,b >0)的一条渐近线与抛物线y =x 2+1只有一个公共点,则双曲线的离心率为( )A.54 B .5 C.52D. 5 5.以椭圆的右焦点为圆心的圆恰好过椭圆的中心,交椭圆于点,椭圆的左焦点为,且直线与此圆相切,则椭圆的离心率为( )A .22 B .32C .2-3D .3-1 6. 已知△ABC 的顶点A(-5,0)、B(5,0), △ABC 的内切圆圆心在直线x =3上,则顶点C 的轨迹方程是( )A.221916x y -= B.221169x y -= C.221916x y -=(x>3) D.221169x y -= (x>4) 建议用时 实际用时满分 实际得分120分钟150分7.已知A ,B 为抛物线C :y 2=4x 上的两个不同的点,F 为抛物线C 的焦点,若4FA FB =- ,则直线AB 的斜率为( )A .±23B .±32C .±34D .±438. 若点P 到A(1,0)的距离与到直线x =-1的距离相等,且点P 到直线l :x -y =0的距离等于582,则满足条件的点P 的个数是 ( )A .1B .2C .3D .49.已知双曲线C :x 2-24y =1,过点(1,1)作直线l ,使直线l 与双曲线C 只有一个交点,满足这个条件的直线l 共有( )A .1条B .2条C .3条D .4条 10. 双曲线22221x y a b-=的左焦点为,顶点为,是双曲线上任意一点,则分别以线段、为直径的两圆位置关系为( )A .相交B .相切C .相离D .以上情况都有可能11. 已知方程22ax by ab +=和0ax by c ++=,其中,ab ≠0,a ≠b ,c >0,它们所表示的曲线可能是下列图象中的( )12. 已知抛物线上一点0到其焦点的距离为5,双曲线的左顶点为,若双曲线的一条渐近线与直线平行,则实数的值是( ) A. B. C. D.二、填空题(本题共4小题,每小题5分,共20分.请将正确的答案填到横线上)A BC D13. 已知椭圆221x y m n+=与双曲线2x p -2y q 有共同的焦点,是椭圆和双曲线的一个交点,则 .14.若点O 和点F 分别为椭圆的中心和左焦点,点P 为椭圆上的任意一点,则的最大值为 . 15.平面上有三个点A(-2,y),B 0,2y ⎛⎫⎪⎝⎭,C(x ,y),若A B B C ⊥,则动点C 的轨迹方程是________.16.已知双曲线方程是x 2-22y =1,过定点P(2,1)作直线交双曲线于P 1,P 2两点,并使P(2,1)为P 1P 2的中点,则此直线方程是________.三、解答题(本题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤) 17.(10分)已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,求动圆圆心M 的轨迹方程18.(12分)设A ,B 分别为双曲线22221x y a b-= (a >0,b >0)的左、右顶点,双曲线的实轴长为43,焦点到渐近线的距离为 3.(1)求双曲线的方程; (2)已知直线y =33x -2与双曲线的右支交于M ,N 两点,且在双曲线的右支上存在点D ,使OM →+ON →=t OD →,求t 的值及点D 的坐标.19.(12分)如图所示,抛物线关于x 轴对称,它的顶点在坐标原点,点P(1,2),A(x 1,y 1),B(x 2,y 2)均在抛物线上.(1)写出该抛物线的方程及其准线方程;(2)当PA 与PB 的斜率存在且倾斜角互补时,求y 1+y 2的值及直线AB 的斜率.20.(12分)已知定点A(0,-1),点B 在圆F :x 2+(y -1)2=16上运动,F 为圆心,线段AB 的垂直平分线交BF 于P.(1)求动点P 的轨迹E 的方程;若曲线Q :x 2-2ax +y 2+a 2=1被轨迹E 包围着,求实数a 的最小值.(2)已知M(-2,0),N(2,0),动点G 在圆F 内,且满足|MG |·|NG|=|OG|2(O 为坐标原点),求·MG NG 的取值范围.21.(12分)已知椭圆22221x ya b+=(0)a b>>的离心率63e=,过点和的直线与原点的距离为32.(1)求椭圆的方程.(2)已知定点,若直线与椭圆交于两点.问:是否存在,使以为直径的圆过点?请说明理由22.(12分)设分别为椭圆:22221x ya b+=(0)a b>>的左、右两个焦点.(1)若椭圆上的点到两点的距离之和等于,写出椭圆的方程和焦点坐标.(2)设点是(1)中所得椭圆上的动点,求线段的中点的轨迹方程.(3)已知椭圆具有性质:若是椭圆上关于原点对称的两个点,点是椭圆上任意一点,当直线、的斜率都存在,并记为、时,那么与之积是与点位置无关的定值.试对双曲线22221x ya b-=写出类似的性质,并加以证明一、选择题1. B 解析:由椭圆22221(0)x y a b a b +=>>的离心率为,得.设,则,.又双曲线中,. 2. D 解析:设双曲线方程为.将代入,整理得.由根与系数的关系得,则. 又,解得,,所以双曲线的方程是3.D 解析:因为椭圆22162x y +=的右焦点为(2,0),所以抛物线y 2=2px 的焦点为(2,0),则p =4.4.D 解析:双曲线22221x y a b -=的一条渐近线为y =b a x ,由方程组2,1b y x a y x ⎧=⎪⎨⎪=+⎩消去y 得,x2-x +1=0有唯一解,所以Δ=2b a ⎛⎫⎪⎝⎭-4=0,b a =2,e =c a =22a b a +=21b a ⎛⎫+ ⎪⎝⎭= 5.5. D 解析:由题意得,,. 在直角三角形中,,即,整理得.等式两边同除以,得,即,解得或(舍去). 故6. C 解析:如图,|AD|=|AE|=8,|BF|=|BE|=2,|CD|=|CF|, 所以|CA|-|CB|=8-2=6.根据双曲线定义,所求轨迹是:以A 、B 为焦点,实轴长为6的双曲线的右支,方程为221916x y -=(x>3). 7.D 解析:由题意知焦点F(1,0), 直线AB 的斜率必存在且不为0,故可设直线AB 的方程为y =k(x -1)(k ≠0), 代入y 2=4x 中化简得ky 2-4y -4k =0, 设A(x 1,y 1),B(x 2,y 2),则y 1+y 2=4k,① y 1y 2=-4.② 又由FA →=-4FB →可得y 1=-4y 2,③ 联立①②③式解得k =±43.8.B 解析:点P 的轨迹方程为y 2=4x ,设P(t 2,2t),则点P 到直线x -y =0的距离为|t 2-2t |2,令|t 2-2t |2=582,解得4t 2-8t ±5=0,∴ t =-12或t =52,共2个.故选B.9.D 解析:数形结合可知过点(1,1),当斜率不存在时和与两条渐近线平行时所在的直线都符合.除此之外还应考虑设直线方程y =kx +1-k 与双曲线方程联立消元利用判别式为0可求得k =52也符合.所以有4条. 10.B 解析:如图所示,设的中点为,若在双曲线左支上,则,即圆心距为两圆半径之和,此时两圆外切;若在双曲线右支上,同理可求得,此时两圆内切,所以两圆位置关系为相切. 11. B 解析:方程可化成,可化成.对于A :由双曲线图象可知:,,∴,即直线的斜率应大于0,故错; 对于C :由椭圆图象可知:,,∴ ,即直线的斜率应小于0,故错;同理错.所以选B .12. B 解析:依题意知,所以,所以,所以,点的坐标为. 又,所以直线的斜率为.由题意得,解得. 二、填空题13. 解析:因为椭圆221x y m n+=与双曲线221x y p q -=有共同的焦点, 所以其焦点位于轴上,由其对称性可设在双曲线的右支上,左、右焦点分别为, 由椭圆以及双曲线的定义可得, , 由①②得,.所以.14. 6 解析:由题意,得F (-1,0), 设点,,则有 =1,解得=. 因为=,,=,,所以此二次函数对应的抛物线的对称轴为=-2, 因为-2≤≤2,所以当=2时,取得最大值 +2+3=6.15. y 2=8x 解析: AB =0,2y ⎛⎫ ⎪⎝⎭-(-2,y)=2,2y ⎛⎫- ⎪⎝⎭,BC =(x ,y)-0,2y ⎛⎫ ⎪⎝⎭=,2y x ⎛⎫⎪⎝⎭.∵ AB BC ⊥ ,∴ 0AB BC ⋅= ,∴2,2y ⎛⎫- ⎪⎝⎭·,2y x ⎛⎫ ⎪⎝⎭=0,即y 2=8x.∴ 动点C 的轨迹方程为y 2=8x.16.4x -y -7=0 解析:设点P 1(x 1,y 1),P 2(x 2,y 2),则由221112y x -=,222212y x -=,得k =()2121212122442x x y y x x y y +-⨯===-+, 从而所求方程为4x -y -7=0.将此直线方程与双曲线方程联立得14x 2-56x +51=0, 因为Δ>0,故此直线满足条件. 三、解答题17. 解:如图所示,设动圆M 与圆C 1及圆C 2分别外切于点A 和点B , 根据两圆外切的充要条件,得|MC 1|-|AC 1|=|MA|,|MC 2|-|BC 2|=|MB|.因为|MA|=|MB|,所以|MC 2|-|MC 1|=|BC 2|-|AC 1|=3-1=2. 这表明动点M 到两定点C 2、C 1的距离的差是常数2,且小于|C 1C 2|=6.根据双曲线的定义,动点M 的轨迹为双曲线的左支(点M 到C 2的距离大,到C 1的距离小), 这里a =1,c =3,则b 2=8,设点M 的坐标为(x ,y),则其轨迹方程为x 2-28y =1(x ≤-1).18.解:(1)由题意知a =23,∴ 一条渐近线为y =b23x ,即bx -23y =0,∴|bc |b 2+12= 3 ,∴ b 2=3,∴ 双曲线的方程为221123x y -=. (2)设M(x 1,y 1),N(x 2,y 2),D(x 0,y 0),则x 1+x 2=tx 0,y 1+y 2=ty 0, 将直线方程代入双曲线方程得x 2-163x +84=0,则x 1+x 2=163,y 1+y 2=12,∴ 0022043,31,123x yx y ⎧=⎪⎪⎨⎪-=⎪⎩∴ 0043,3,x y ⎧=⎪⎨=⎪⎩∴ t =4,点D 的坐标为(43,3).19.解:(1)由已知条件,可设抛物线的方程为y 2=2px(p >0). ∵ 点P(1,2)在抛物线上,∴ 22=2p ×1,解得p =2. 故所求抛物线的方程是y 2=4x ,准线方程是x =-1. (2)设直线PA 的斜率为k PA ,直线PB 的斜率为k PB , 则k PA =1121y x -- (x 1≠1),k PB =2221y x -- (x 2≠1), ∵ PA 与PB 的斜率存在且倾斜角互补,∴ k PA =-k PB .由点A(x 1,y 1),B(x 2,y 2)均在抛物线上,得y 21=4x 1,① y 22=4x 2,② ∴12221222111144y y y y --=---,∴ y 1+2=-(y 2+2).∴ y 1+y 2=-4.由①-②得,y 21-y 22=4(x 1-x 2),∴k AB =12121241y y x x y y -==--+ (x 1≠x 2).20. 解:(1)由题意得|PA|=|PB|,∴ |PA|+|PF|=|PB|+|PF|=4>|AF|=2, ∴动点P 的轨迹E 是以A 、F 为焦点的椭圆.设该椭圆的方程为22221y x a b+= (a>b>0),则2a =4,2c =2,即a =2,c =1,故b 2=a 2-c 2=3,∴ 动点P 的轨迹E 的方程为22143y x +=. 曲线Q:x 2-2ax +y 2+a 2=1,即(x -a)2+y 2=1,∴ 曲线Q 是圆心为(a,0),半径为1的圆. 而轨迹E 为焦点在y 轴上的椭圆,其左、右顶点分别为(-3,0),(3,0). 若曲线Q 被轨迹E 包围着,则-3+1≤a ≤3-1, ∴ a 的最小值为-3+1.(2)设G(x ,y),由|MG |·|NG|=|OG|2得:2222·(2)(2)x y x y ++-+=x 2+y 2.化简得x 2-y 2=2,即x 2=y 2+2,∴ ·MG NG =(x +2,y )·(x -2,y)=x 2+y 2-4=2(y 2-1). ∵ 点G 在圆F :x 2+(y -1)2=16内,∴x 2+(y -1)2<16, ∴ 0≤(y -1)2<16⇒-3<y<5⇒0≤y 2<25,∴-2≤2(y 2-1)<48,∴ •MG NG的取值范围为[-2,48). 21.解: (1)直线的方程为.依题意得解得所以椭圆方程为2213x y +=.(2)假若存在这样的值,由得22(13)1290k x kx +++=, 所以22(12)36(13)0k k D =-+>.① 设11()C x y ,、22()D x y ,,则②而212121212(2)(2)2()4y y kx kx k x x k x x =++=+++×.当且仅当时,以为直径的圆过点,则1212111y y x x =-++×, 即1212(1)(1)0y y x x +++=,所以21212(1)(21)()50k x x k x x +++++=. ③将②式代入③式整理解得76k =.经验证,76k =使①成立. 综上可知,存在76k =,使得以为直径的圆过点. 22.解:(1)椭圆的焦点在轴上,由椭圆上的点到两点的距离之和是4,得,即.又点312A 骣÷ç÷ç÷ç÷桫,在椭圆上,因此22232112b骣÷ç÷ç÷÷ç桫+=,得,于是. 所以椭圆的方程为22143x y +=,焦点,.(2)设椭圆上的动点,线段的中点满足111,22x y x y -+==,即,.因此=22(21)(2)143x y ++,即2214123y x 骣÷ç÷++=ç÷ç÷桫为所求的轨迹方程. (3)类似的性质为:若是双曲线22221x y a b -=上关于原点对称的两个点,点是双曲线上任意一点,当直线的斜率都存在,并记为时,那么与之积是与点位置无关的定值. 证明如下:设点的坐标为,则点的坐标为,其中22221m n a b -=.又设点的坐标为,由,PM PN y n y n k k x m x m -+==-+,得2222y n y ny n x m x mx m-+-?-+-.将22222222,b b y x b n a a =-=代入得22b a。
人教新课标版(A)高二选修1-1 第二章圆锥曲线与方程单元测试

人教新课标版(A )高二选修1-1 第二章 圆锥曲线与方程单元测试(时间:120分钟 分值:150分)一、选择题(每小题5分,共60分)1. 以112y 4x 22-=-的焦点为顶点,顶点为焦点的椭圆方程是A. 14y 16x 22=+B. 116y 4x 22=+C. 112y 16x 22=+D. 116y 12x 22=+2. 动圆的圆心在抛物线x 8y 2=上,且动圆恒与直线02x =+相切,则动圆必过点A. (4,0)B. (2,0)C. (0,2)D. (0,-2)3. AB 是抛物线x 18y 2=的一条过焦点的弦,20|AB |=,AD 、BC 垂直于y 轴,D 、C 分别为垂足,则梯形ABCD 的中位线长为A. 5B.211 C.29 D. 104. 方程2sin y 3sin 2x 22-θ++θ=1所表示的曲线是 A. 焦点在x 轴上的椭圆B. 焦点在y 轴上的椭圆C. 焦点在x 轴上的双曲线D. 焦点在y 轴上的双曲线5. 设P 为椭圆1by a x 2222=+上一点,1F 、2F 为焦点,如果∠75F PF 21=°,∠=12F PF 15°,则椭圆的离心率为A. 22B. 23C. 32D. 36 6. 以椭圆1144y 169x 22=+的右焦点为圆心,且与双曲线116y 9x 22=-的渐近线相切的圆的方程为A. 09x 10y x 22=+-+B. 09x 10y x 22=--+C. 09x 10y x 22=-++D. 09x 10y x 22=+++7. 椭圆11a 4y a 5x 222=++的焦点在x 轴上,而它的离心率的取值范围是A. ⎪⎭⎫ ⎝⎛51,0B. ⎪⎭⎫⎢⎣⎡1,51C. ⎥⎥⎦⎤ ⎝⎛55,0D. ⎪⎪⎭⎫⎢⎢⎣⎡1,55 8. 设双曲线1b y a x 2222=-与1by a x 2222=+-(0a >,0b >)的离心率分别为1e 、2e ,当a 、b 变化时,21e e +的最小值是A. 4B. 24C.2 D. 229. 设椭圆12y 6x 22=+和双曲线1y 3x 22=-的公共焦点分别为1F 、2F ,P 是两曲线的一个交点,则cos ∠21PF F 的值为A.41 B.31 C.32 D. 31-10. 过抛物线x 4y 2=的顶点O 作互相垂直的两弦OM 、ON ,则M 的横坐标1x 与N 的横坐标2x 之积为A. 64B. 32C. 16D. 411. 抛物线x y 2=和圆()1y 3x 22=+-上最近的两点之间的距离是A. 1B. 2C.1210- D.1211- 12. 已知圆的方程为4y x 22=+,若抛物线过点A (-1,0)、B (1,0),且以圆的切线为准线,则抛物线的焦点F 的轨迹方程是A. 14y 3x 22=+(0y ≠) B. 13y 4x 22=+(0y ≠) C. 14y 3x 22=+(0x ≠) D.13y 4x 22=+(0x ≠)二、填空题(每小题4分,共16分)13. (2004·湖南)1F 、2F 是椭圆C :14y 8x 22=+的焦点,在C 上满足1PF ⊥2PF 的点P的个数为__________。
单元素养卷圆锥曲线的方程A卷+答案解析(附后)

单元素养卷圆锥曲线的方程A卷命题人:泉州五中高级教师苏文新一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知抛物线的准线经过点,则抛物线的焦点坐标为 ( )A. B. C. D.2.椭圆上任意一点到两焦点的距离之和为( )A. B. 8 C. D. 43.已知顶点在x轴上的双曲线实轴长为4,其两条渐近线方程为,该双曲线的焦点为( )A. B. C. D.4.党的十八大报告指出,鼓励共同奋斗创造美好生活,不断实现人民对美好生活的向往。
为响应中央号召,某社区决定在现有的休闲广场内修建一个半径为4m的圆形水池来规划喷泉景观.设计如下:在水池中心竖直安装一根高出水面为2m的喷水管水管半径忽略不计,它喷出的水柱呈抛物线型,要求水柱在与水池中心水平距离为处达到最高,且水柱刚好落在池内,则水柱的最大高度为( )A. B. C. D.5.已知椭圆的长轴长是短轴长的2倍,则实数m的值是( )A. 2B. 或4C.D. 或26.抛物线的焦点为F,其准线与双曲线相交于A,B两点,若为等边三角形,则( )A. B. C. 2 D. 37.如图所示,,是双曲线C:的左、右焦点,过的直线与C的左、右两支分别交于A,B两点.若,则双曲线的离心率为( )A. 2B.C.D.8.已知椭圆的左,右焦点分别是,,若椭圆上存在一点M,使为坐标原点,且,则实数t的值为( )A. 2B.C.D. 1二、多选题:本题共4小题,共20分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得5分,部分选对的得2分,有选错的得0分。
9.若方程所表示的曲线为C,则下面四个说法中错误的是( )A. 若,则C为椭圆B. 若C为椭圆,且焦点在y轴上,则C. 曲线C可能是圆D. 若C为双曲线,则10.已知双曲线的一条渐近线方程为,则( )A. 为C的一个焦点B. 双曲线C的离心率为C. 过点作直线与C交于两点,则满足的直线有且只有两条D. 设为C上三点且关于原点对称,则斜率存在时其乘积为11.已知曲线C上任意一点到直线的距离比它到点的距离大2,则下列结论正确的是( )A. 曲线C的方程为B. 若曲线C上的一点A到点F的距离为4,则点A的纵坐标是C. 已知曲线C上的两点M,N到点F的距离之和为10,则线段MN的中点横坐标是5D. 已知,P是曲线C上的动点,则的最小值为512.已知椭圆C:,,分别为它的左右焦点,A,B分别为它的左右顶点,点P是椭圆上的一个动点,下列结论中正确的有( )A.存在P使得 B. 的最小值为C. ,则的面积为9D. 直线PA与直线PB斜率乘积为定值三、填空题:本题共4小题,每小题5分,共20分。
上海市北初级中学高中数学选修2-1第三章《圆锥曲线与方程》检测(含答案解析)

一、选择题1.设双曲线C :22221x y a b-=(0a >,0b >)的左、右焦分别是1F ,2F ,过1F 的直线交双曲线C 的左支于M ,N 两点若212=MF F F ,且112MF NF =,则双曲线C 的离心率是( ) A .2B .32C .54D .532.已知F 1、F 2分别为双曲线C :22221x y a b-=(a >0,b >0)的左、右焦点,点A 在双曲线上,且∠F 1AF 2=60°,若∠F 1AF 2的角平分线经过线段OF 2(O 为坐标原点)的中点,则双曲线的离心率为( )A B .2C D .23.已知过抛物线()220y px p =>的焦点F 的直线交抛物线于A ,B 两点,线段AB 的延长线交抛物线的准线于点M .若2BM =,3AF =,则AB =( ) A .4B .5C .6D .74.椭圆()2222:10x y C a b a b+=>>的左、右焦点分别是1F 、2F ,斜率为1的直线l 过左焦点1F 且交C 于A ,B 两点,且2ABF 的内切圆的面积是π,若椭圆C 离心率的取值范围为[42,,则线段AB 的长度的取值范围是( )A .B .[1 , 2]C .[4 8],D .5.P 是椭圆221169x y +=上的点,1F 、2F 是椭圆的左、右焦点,设12PF PF k ⋅=,则k的最大值与最小值之和是( ) A .16 B .9 C .7 D .25 6.圆22: ()4M x m y -+=与双曲线2222:1(0,0 ) y x C a b a b-=>>的两条渐近线相切于AB 、两点,若||1AB =,则C 的离心率为( )A B C .14D .47.人们已经证明,抛物线有一条重要性质:从焦点发出的光线,经过抛物线上的一点反射后,反射光线平行于抛物线的轴.探照灯、手电筒也是利用这个原理设计的.已知抛物线()220y px p =>的焦点为F ,从点F 出发的光线第一象限内抛物线上一点P 反射后的光线所在直线方程为2y =,若入射光线FP 的斜率为43,则抛物线方程为 ( ) A .28y x =B .26y x =C .24y x =D .22y x =8.已知1F 、2F 分别是双曲线22221(0,0)x y a b a b-=>>的左右焦点,过1F 作垂直于x 轴的直线交双曲线于A 、B 两点,若260AF B ∠<,则双曲线的离心率的范围是( )A .B .)+∞C .3⎛- ⎝D .9.已知双曲线()2222:10,0x y C a b a b-=>>的焦点到渐近线的距离为1,且与椭圆22182x y +=有公共焦点.则双曲线C 的渐近线方程为( )A .7y x =±B .y =C .y x =D .y =10.已知抛物线22(0)y px p =>的焦点为F ,点P 在抛物线上,点9,02Q p ⎛⎫⎪⎝⎭.若2QF PF =,且PQF △的面积为p =( )A .1B .2C .3D .411.12,F F 为双曲线2214x y -=-的两个焦点,点P 在双曲线上,且1290F PF ︒∠=,则12F PF △的面积是( )A .2B .4C .8D .1612.已知1F ,2F 分别是双曲线()222210,0x y a b a b-=>>的左、右焦点,抛物线28y x=的焦点与双曲线的一个焦点重合,点P 是两曲线的一个交点,12PF PF ⊥且121PF F S =△,则双曲线的离心率为( )A BC D .2二、填空题13.设F 为抛物线2:=3C y x 的焦点,过F 且倾斜角为30的直线交C 于A ,B 两点,则AB =________.14.如图,过抛物线2:4C y x =的焦点F 的弦AB 满足3AF FB =(点A 在x 轴上方),分别过,A B 作抛物线的切线,设两切线的交点为M ,则M 的坐标为__________.15.已知双曲线221x my +=的虚轴长是实轴长的2倍,则实数m =______.16.已知P 是双曲线221168x y -=右支上一点,12,F F 分别是双曲线的左、右焦点,O 为坐标原点,点,M N 满足()21220,,0PF PM F P PM PN PN F N PM PF λλμ⎛⎫⎪=>=+= ⎪⎝⎭⋅,若24PF =.则以O 为圆心,ON 为半径的圆的面积为________.17.过椭圆2222:1x y C a b+=(0)a b >>的左焦点F 作斜率为12的直线l 与C 交于A ,B 两点,若||||OF OA =,则椭圆C 的离心率为________.18.双曲线22221(00)x y C a b a b-=>>:,的左、右焦点分别为1F ,2F ,过2F 的直线交曲线C 右支于P 、Q 两点,且1PQ PF ⊥,若3PQ =14PF ,则C 的离心率等于________.19.设双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别是1F 、2F ,过1F 的直线与C 的左支交于M 、N 两点,若12MF F △是以1MF 为底边的等腰三角形,且1123MF NF =,则双曲线C 的离心率是________. 20.已知圆22:4440C x y x y +--+=,抛物线2:2(0)E y px p =>过点C ,其焦点为F ,则直线CF 被抛物线截得的弦长为________________.三、解答题21.已知抛物线2:2(0)C x py p =>上一点(,9)M m 到其焦点的距离为10. (Ⅰ)求抛物线C 的方程;(Ⅱ)设过焦点F 的直线l 与抛物线C 交于A ,B 两点,且抛物线在A ,B 两点处的切线分别交x 轴于P ,Q 两点,①设()11,A x y ,求点P 的横坐标;②求||||AP BQ ⋅的取值范围.22.已知椭圆2222:1(0)x y D a b a b +=>>的离心率为2e =,点1)-在椭圆D 上.(1)求椭圆D 的标准方程;(2)设点(2,0)M -,(2,0)N,过点F 的直线l 与椭圆交于A ,B 两点(A 点在x 轴上方),设直线MA ,NB (O 为坐标原点)的斜率分别为k 1,k 2,求证:12k k 为定值.23.点M 是椭圆223:11616x y C +=上一点,点A 是椭圆C 的左顶点,MO 的延长线交椭圆C于点B ,AMB 是以M 为直角顶点的三角形.若存在不同于点A ,B 的点C ,D ,使得0MC MD OA MC MD ⎛⎫⎪⋅+= ⎪⎝⎭,试探究直线AB 与CD 的位置关系,并说明理由. 24.已知椭圆22:41C x y +=及直线:l y x m =+,m R ∈. (1)当m 为何值时,直线l 与椭圆C 有公共点;(2)若直线l 与椭圆C 交于P 、Q 两点,且OP OQ ⊥,O 为坐标原点,求直线l 的方程. 25.阿波罗尼斯是古希腊数学家,他与阿基米德、欧几里得被称为亚历山大时期的“数学三巨匠”以他名字命名的阿波罗尼斯圆是指平面内到两定点距离比值为定值(0,1)λλλ>≠的动点的轨迹,已知点M 与两个定点O (0,0),A (3,0)的距离比为2. (1)求动点M 轨迹C 的方程; (2)过点A 斜率为12-的直线l 与曲线C 交于 E 、F 两点,求△OEF面积. 26.在平面直角坐标系中,动点M 到点(2,0)F 的距离和它到直线52x =的距离的比是常数5(1)求动点M 的轨迹方程;(2)若过点F 作与坐标轴不垂直的直线l 交动点M 的轨迹于,A B 两点,设点A 关于x 轴的对称点为P ,当直线l 绕着点F 转动时,试探究:是否存在定点Q ,使得,,B P Q 三点共线?若存在,求出点Q 的坐标;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D【分析】根据题意画出图形,结合图形建立关于c 、a 的关系式,再求离心率ce a=的值. 【详解】 解:如图所示,取1F M 的中点P ,则2122MF FF c ==,MP c a =-,1F P c a =-;又112NF MF =,则()14NF c a =-,242NF c a =-; 在2Rt NPF △中,22222NP PF NF +=, 在2Rt MPF △中,22222MP PF MF +=,得()()()()22224252c a c a c c a ---=--⎡⎤⎣⎦, 化简得223850c ac a -+=, 即()()350c a c a --=, 解得c a =或35c a =; 又1e >, ∴离心率53c e a ==. 故选:D .【点睛】本题考查求双曲线的离心率,解题关键是建立,a c 的等量关系,结合等腰三角形的性质与双曲线的定义可得.2.B解析:B 【分析】首先根据角平分线定理和双曲线的定义求得1AF 和2AF 的值,再结合余弦定理计算离心率.不妨设点A 在第一象限,12F AF ∠的角平分线交x 轴于点M ,因为点M 是线段2OF 的中点,所以12:3:1FM MF =,根据角平分线定理可知1231AF AF =,又因为122AF AF a -=,所以13AF a =,2AF a =,由余弦定理可得22221492372c a a a a a =+-⨯⨯⨯=,所以2274c a =,所以72c e a ==.故选:B 【点睛】本题考查双曲线的离心率,双曲线的定义,三角形角平分线定理,重点考查转化思想,计算能力,属于中档题型.3.A解析:A 【分析】设A 、B 在准线上的射影分别为为C 、N ,通过三角形相似,求|BF |,再求出||AB 即可. 【详解】解:设A 、B 在准线上的射影分别为为C 、N ,过抛物线22(0)y px p =>的焦点F 的直线交抛物线于A ,B 两点, 线段AB 的延长线交抛物线的准线l 于点M ,准线与x 轴的交点为H , ||2BM =,||3AF =,∴由BNM AMC ∽,可得||23||5BF BF =+, ||1BF ∴=,||||||4AB AF FB ∴=+=,故选:A .【点睛】本题考查抛物线的定义及其应用,抛物线的几何性质,转化化归的思想方法,属于中档题.4.C解析:C 【分析】 由题可求得2121222ABF AF F BF F cSSS=+=,2222ABF EABEBF EAF S SSSa =++=,即可得出2aAB c=,再根据离心率范围即可求出. 【详解】设2ABF 的内切圆的圆心为E ,半径为r ,则2r ππ=,解得1r =,21212112121121211sin sin 22ABF AF F BF F SSSAF F F AF F BF F F BF F =+=⋅⋅⋅∠+⋅⋅⋅∠ 111122sin 452sin135222cAF c BF c AB =⋅⋅⋅+⋅⋅⋅=, 又22222111222ABF EAB EBF EAF S S S S AB r BF r AF r =++=⋅⋅+⋅⋅+⋅⋅()22114222AB BF AF a a =++=⨯=, 222ca ∴=,2a AB c ∴=,2242c e a =∈⎣⎦,,2,22a c ⎤∴∈⎦,则[]24,8ac∈,即线段AB 的长度的取值范围是[]4,8. 故选:C.【点睛】本题考查根据离心率范围求弦长范围,解题的关键是通过两种不同方式求出2ABF 的面积,得出2aAB c=可求解. 5.D解析:D 【分析】设(),P x y ,根据标准方程求得271616k x =-,再由椭圆的几何性质可得最大值与最小值,从而可得结论. 【详解】因为椭圆方程为椭圆221169x y +=,所以4,7a c =设(),P x y , 则()()22222127·771616k PF PF x y x y x ==-+-+-, 又2016x ≤≤.∴max min 16,9k k ==. 故max min +16+925k k ==. 所以k 的最大值与最小值的和为25. 故选:D. 【点睛】关键点点睛:解决本题的关键在于将所求得量表示成椭圆上的点的坐标间的关系,由二次函数的性质求得其最值.6.B解析:B 【分析】由曲线的对称性,以及数形结合分析得15b a =. 【详解】如图所示,1AB =,2MA MB ==,根据对称性可知,A B 关于x 轴对称,所以112sin 24AMO ∠==,因为OA AM ⊥,所以1cos 4AOM ∠=,渐近线OA 的斜率tan 15ak AOM b =∠==,所以115b a =, 所以22411515c b e a a ==+=, 故选:B .【点睛】方法点睛:本题考查双曲线离心率,求双曲线离心率是常考题型,涉及的方法包含: 1.根据,,a b c 直接求.2.根据条件建立关于,a c 的齐次方程求解.3.根据几何关系找到,,a b c 的等量关系求解.7.D解析:D 【分析】由抛物线方程可得焦点坐标,设出P 点坐标,由性质求出P 点坐标,表示出FP 的斜率,解出p ,即可得抛物线方程. 【详解】,02p F ⎛⎫⎪⎝⎭,设()00,P x y 由题意有02y =将02y =代入()220y px p =>得02x p=2,2P p ⎛⎫∴ ⎪⎝⎭,又,02p F ⎛⎫⎪⎝⎭,且FP 的斜率为43,有204232p p -=-解得:1p =故抛物线方程为:22y x =故选:D 【点睛】抛物线方程中,字母p 的几何意义是抛物线的焦点F 到准线的距离,2p等于焦点到抛物线顶点的距离.牢记它对解题非常有益.8.A解析:A 【分析】求出||AB ,根据212||2tan 2||AB AF B F F ∠=tan 30<可得2330e --<,再结合1e >可解得结果. 【详解】因为1(,0)F c -,由22221x c x ya b =-⎧⎪⎨-=⎪⎩解得2b y a =±,所以22||b AB a =, 因为260AF B ∠<,所以212||2tan 2||AB AF B F F ∠=tan 30<,所以22b ac <222c a ac -<,所以212e e -<,即2330e --<,解得3e -<<1e >,所以1e < 故选:A 【点睛】关键点点睛:求离心率的取值范围的关键是得到,,a b c 的不等式,根据212||2tan 2||AB AF B F F ∠=tan 30<可得所要的不等式.9.C解析:C 【分析】求出椭圆焦点坐标,得双曲线的焦点坐标,再由焦点到渐近线的距离可求得,a b ,得渐近线方程. 【详解】由题意已知椭圆的焦点坐标为(,即为双曲线的焦点坐标,双曲线中c = 渐近线方程为by x a=±,其中一条为0bx ay -=,1==,1b=,∴a=∴渐近线方程为y x=.故选:C.【点睛】关键点点睛:本题考查椭圆与双曲线的焦点坐标,考查双曲线的渐近线方程,关键是求出,a b.解题时要注意椭圆中222a b c=+,双曲线中222+=a b c.两者不能混淆.10.B解析:B【分析】根据题意得||4QF p=,||2PF p=,进而根据抛物线的定义得P点的横坐标为32Px p=,设点P在x轴上方,故P,再结合三角形PQF△面积即可得答案.【详解】解:由条件知(,0)2pF,所以||4QF p=,所以1||||22PF QF p==,由抛物线的准线为2px=-,及抛物线的定义可知,P点的横坐标为3222pp p-=,不妨设点P在x轴上方,则P,所以142PQFS p=⨯=2p=.故选:B【点睛】本题解题的关键在于根据抛物线的定义得P点的横坐标为32Px p=,进而求出P的纵坐标并结合三角形PQF△面积求解,考查运算求解能力,是中档题.11.B解析:B【分析】先求出双曲线的a,b,c,再利用12Rt PF F中三边关系求出128PF PF=,再由直角三角形面积公式即得结果.【详解】由2214xy-=-得标准方程为2214xy-=得221,4a b==,2145c∴=+=c∴=故12Rt PF F 中,()222212121212121222=2F F PF PF PF PFPF PF PF PF F F c ⎧==+⎪⎪=⎨+-=-⎪⎪⎩128PF PF ∴=所以12118422S PF PF =⋅=⨯=. 故选:B. 【点睛】本题考查了双曲线的定义和几何性质,考查了直角三角形的边长关系和面积公式,属于中档题.12.B解析:B 【分析】求出双曲线的半焦距,结合三角形的面积以及勾股定理,通过双曲线的定义求出a ,然后求解双曲线的离心率即可 【详解】由双曲线与抛物线有共同的焦点知2c =,因为12PF PF ⊥,且121PF F S =△,则122PF PF ⋅=,222212124PF PF F F c +==,点P 在双曲线上,则122PF PF a -=,故222121224PF PF PF PF a +-⋅=, 则22444c a -=,所以a =故选:B. 【点睛】本题考查双曲线以及抛物线的简单性质的应用,双曲线的定义的应用,考查计算能力,属于中档题..二、填空题13.12【解析】由知焦点所以设直线AB 方程为联立抛物线与直线方程消元得:设则根据抛物线定义知故填:解析:12 【解析】由2=3y x 知焦点3(0)4F ,,所以设直线AB方程为3)4y x =-,联立抛物线与直线方程,消元得:21616890x x -+=,设1122(,),(,)A x y B x y ,则12212x x +=,根据抛物线定义知12213||=x 1222AB x p ++=+=.故填:12. 14.【分析】由已知求得抛物线焦点坐标及准线方程由求得所在直线倾斜角得到斜率写出所在直线方程联立准线方程与抛物线方程求得的坐标可求利用导数求斜率写出直线的方程再求两直线的交点则的坐标可求【详解】解:由抛物解析:1,3⎛⎫- ⎪ ⎪⎝⎭【分析】由已知求得抛物线焦点坐标及准线方程,由3AF FB =求得AB 所在直线倾斜角,得到斜率,写出AB 所在直线方程,联立准线方程与抛物线方程,求得A 、B 的坐标可求,利用导数求斜率,写出直线AM 、BM 的方程,再求两直线的交点,则M 的坐标可求. 【详解】解:由抛物线2:4C y x =,得焦点(1,0)F ,准线方程为1x =-. 由题意设AB 所在直线的倾斜角为θ, 由3AF FB =,得2231cos 1cos θθ=-+,即1cos 2θ=.tanθ∴=则AB 所在直线方程为1)y x =-.联立21)4y x y x⎧=-⎪⎨=⎪⎩,得231030x x -+=.解得:13x =或3x =,因为点A 在x 轴上方所以A ,1,3B ⎛⎝⎭由y =y '=y =-y '=∴3|x y ='==13|x y ='==即AM 、BM:3)AMy x ∴--,1:)3BM y x +=-所以323(3)32313()33y x y x ⎧-=-⎪⎪⎨⎪+=--⎪⎩解得1233x y =-⎧⎪⎨=⎪⎩M ∴的坐标为23(1,)3-. 故答案为:23(1,)3-.【点睛】本题考查抛物线的简单性质,考查直线与抛物线位置关系的应用,考查计算能力,属于中档题.15.【分析】化双曲线方程为标准方程求得的值依题意列方程解方程求得的值【详解】双曲线方程化为标准方程得故依题意可知即解得【点睛】本小题主要考查双曲线的标准方程考查双曲线的虚轴和实轴考查运算求解能力属于基础题解析:1-4【分析】化双曲线方程为标准方程,求得,a b 的值,依题意列方程,解方程求得m 的值. 【详解】双曲线方程化为标准方程得2211y x m-=-,故11,a b m ==- 依题意可知2b a =12m-=,解得14m =-.【点睛】本小题主要考查双曲线的标准方程,考查双曲线的虚轴和实轴,考查运算求解能力,属于基础题.16.【分析】延长交于点由向量数量积和线性运算可知为线段的垂直平分线结合双曲线定义可求得利用中位线性质可求得进而得到结果【详解】延长交于点如下图所示:为的角平分线又为线段的垂直平分线由双曲线定义知:分别为 解析:64π【分析】延长2F N 交PM 于点Q ,由向量数量积和线性运算可知PN 为线段2F Q 的垂直平分线,结合双曲线定义可求得1FQ ,利用中位线性质可求得ON ,进而得到结果. 【详解】延长2F N ,交PM 于点Q ,如下图所示:22PF PM PN PM PF μ⎛⎫ ⎪=+ ⎪⎝⎭,PN ∴为2QPF ∠的角平分线, 又20PN F N ⋅=,2PN NF ∴⊥,PN ∴为线段2F Q 的垂直平分线,24PQ PF ∴==.由双曲线定义知:12248PF PF -=⨯=,18412PF ∴=+=,141216FQ ∴=+=, ,O N 分别为122,F F QF 中点,1182ON F Q ∴==, ∴以O 为圆心,ON 为半径的圆的面积64S π=. 故答案为:64π.【点睛】本题考查双曲线性质和定义的综合应用,涉及到平面向量数量积和线性运算的应用;解题关键是能够通过平面向量的线性运算和数量积运算确定垂直和平分关系.17.【分析】作出示意图记右焦点根据长度和位置关系计算出的长度再根据的形状列出对应的等式即可求解出离心率的值【详解】如图所示的中点为右焦点为连接所以因为所以所以又因为所以且所以又因为所以所以所以故答案为: 5【分析】作出示意图,记右焦点2F ,根据长度和位置关系计算出2,AF AF 的长度,再根据2AFF 的形状列出对应的等式,即可求解出离心率e 的值.【详解】如图所示,AF 的中点为M ,右焦点为2F ,连接2,MO AF ,所以2//MO AF , 因为OA OF=,所以OM AF ⊥,所以2AFAF ⊥,又因为12AF k =,所以212AF AF =且22AF AF a +=,所以242,33a aAF AF ==,又因为22222AF AF FF +=,所以222164499a a c +=,所以2259c a =,所以53e =. 故答案为:53.【点睛】本题考查椭圆离心率的求解,难度一般.(1)涉及到利用图形求解椭圆的离心率时,注意借助几何图形的性质完成求解;(2)已知,,a b c 任意两个量之间的倍数关系即可求解出椭圆的离心率.18.【分析】设则再利用双曲线的定义可得分别在中利用勾股定理即可获解【详解】如图设由=可得由双曲线定义有所以又所以因为所以即①②由②解得代入①得即所以故答案为:【点睛】本题考查双曲线的离心率的求法解题关键 10【分析】设||4(0)PQ t t =>,则13PF t =,再利用双曲线的定义可得232PF t a =-,1||4QF t a =+,分别在12PF F △,1PFQ 中利用勾股定理即可获解. 【详解】如图,设||4(0)PQ t t =>,由3PQ =14PF 可得13PF t =, 由双曲线定义,有12||||2PF PF a -=,所以232PF t a =-,21||||2QF PQ PF t a =-=+,又12||||2QF QF a -=,所以1||4QF t a =+,因为1PQ PF ⊥,所以22212||||4PF PF c +=,22211||||||PF PQ QF +=, 即222(3)(32)4t t a c +-=①,222(3)(4)(4)t t t a +=+②,由②解得t a =,代入①,得222(3)(32)4a a a c +-=,即22104a c =, 所以101042c e a ===. 故答案为:102【点睛】本题考查双曲线的离心率的求法,解题关键是建立关于,,a b c 的方程,考查学生的数学运算能力,是一道中档题.19.【详解】取的中点P 连接由题可知且所以又则在中在中得又所以故答案为:【点睛】本题考查双曲线离心率的求解涉及双曲线定义的应用考查计算能力属于中等题 解析:75【详解】取1F M 的中点P ,连接2PF ,由题可知212=MF F F ,且1132MF NF =, 所以22MF c =,MP c a =-,1F P c a =-. 又1132MF NF =,则()13NF c a =-,23NF c a =-. 在2Rt NPF △中,22222NP PF NF +=,在2Rt MPF △中,22222MP PF MF +=,得()()()()2222342c a c a c c a ---=--⎡⎤⎣⎦,2251270c ac a -+=,()()750a c a c --=.又1e >,所以75e =. 故答案为:75.【点睛】本题考查双曲线离心率的求解,涉及双曲线定义的应用,考查计算能力,属于中等题.20.【分析】根据圆心坐标求出抛物线方程和焦点坐标求出直线联立抛物线方程和直线方程根据弦长公式即可得解【详解】圆所以抛物线过点即其焦点为则直线联立直线与抛物线方程:整理得直线设其两根为弦长所以被抛物线截得解析:258【分析】根据圆心坐标求出抛物线方程和焦点坐标,求出直线42:33CF y x =-,联立抛物线方程和直线方程根据弦长公式即可得解. 【详解】圆22:4440C x y x y +--+=,所以()2,2C ,抛物线2:2(0)E y px p =>过点C ,即44,1p p ==,其焦点为1,02F ⎛⎫ ⎪⎝⎭,2041322CF k -==-则直线42:33CF y x =-,联立直线与抛物线方程:242332y x y x ⎧=-⎪⎨⎪=⎩,整理得281720x x -+=, 直线217640∆=->,设其两根为12,x x 弦长121725188x x p ++=+= 所以被抛物线截得的弦长为258. 故答案为:258【点睛】此题考查根据抛物线经过的点求抛物线方程和焦点坐标,根据直线与抛物线形成弦长公式求解弦长,关键在于熟练掌握直线与抛物线问题常见处理办法.三、解答题21.(1)24x y =;(2)①112x ;②[2,)+∞. 【分析】(1)可得抛物线的准线为2py =-,∴9102p +=,解得2p =,即可得抛物线的方程; (2)①设:1l y kx =+.设211(,)4x A x ,2(B x ,22)4x ,可得21111:()42x PA y x x x -=-,令0y =即得解;②||AP =||BQ =||||AP BQ ⋅的取值范围.【详解】(1)已知(9,)M m 到焦点F 的距离为10,则点M 到其准线的距离为10. 抛物线的准线为2py =-,∴9102p +=, 解得2p =,∴抛物线的方程为24x y =.(2)①由已知可判断直线l 的斜率存在,设斜率为k ,因为(0,1)F ,则:1l y kx =+.设211(,)4x A x ,2(B x ,22)4x ,由214y kx x y =+⎧⎨=⎩消去y 得,2440x kx --=, 124x x k ∴+=,124x x =-.由于抛物线C 也是函数214y x =的图象,且12y x '=,则21111:()42x PA y x x x -=-.令0y =,解得112x x =,11(,0)2P x ∴,②||AP.同理可得,||BQ∴||||AP BQ ⋅=20k ,||||AP BQ ∴⋅的取值范围为[2,)+∞.【点睛】方法点睛:解析几何里的最值范围问题常用的方法有:(1)函数法;(2)数形结合法;(3)导数法;(4)基本不等式法. 要根据已知条件灵活选择方法求解.22.(1)22142x y +=;(2)证明见解析.【分析】(1)由已知得到关于,a b 的方程组,解方程组即得解;(2)设直线l的方程为x my =理化简12k k 即得解.【详解】(1)椭圆D的离心率e ==a ∴=,又点1)-在椭圆D 上,22211a b∴+=,得2a =,b = ∴椭圆D 的标准方程22142x y +=.(2)由题意得,直线l的方程为x my =由22142x y x my ⎧+=⎪⎨⎪=+⎩消元可得()22220m y ++-=, 设())()1122,,,A x y B x y ,则1222y y m+=-+,12222y y m =-+,()()1212121212222()4(2(4x x x x x x my my my my ++=+++=++++221212(2()2)m y y m y y =+++2222(222)m m m ⎛⎛⎫=-++= ⎪ +⎝⎭⎝⎭ ()()()2112122121222212121212222223222422x k y x y y x y y y y k x y x y x x x x ----∴=⋅=⋅=⋅==-+++-++定值).【点睛】方法点睛:定值问题在几何问题中,有些几何量与参数无关,这就构成了定值问题,定值问题的处理常见的方法有:(1)特殊探究,一般证明;(2)直接求题目给定的对象的值,证明其结果是一个常数.23.//AB CD ,理由见解析.【分析】利用AM MO ⊥得M 是以OA 为直径的圆与椭圆的交点,解方程组求得M 点坐标.可求得AB k ,由数量积为0得CMD ∠的角平分线垂直于OA ,从而0MC MD k k +=,设直线:CD y kx m =+,()11,C x y ,()22,D x y ,直线方程代入椭圆方程后应用韦达定理得1212,x x x x +,代入0MC MD k k +=可求得参数关系以13k =-或22m k =+(过点M ,舍),由此可得两直线的位置关系.【详解】解:由题意(4,0)A -,因为AMB 是以M 为直角顶点的三角形,所以以AO 为直径的圆()2224x y ++=与椭圆223:11616x y C +=交于点M , 联立2222(2)4311616x y x y ⎧++=⎪⎨+=⎪⎩,解得:22x y =-⎧⎨=⎩或22x y =-⎧⎨=-⎩或40x y =-⎧⎨=⎩(舍), 不妨设()2,2M -,则(2,2)B -,2012(4)3AB k --==---. 由0MC MD OA MC MD ⎛⎫ ⎪⋅+= ⎪⎝⎭可得:CMD ∠的角平分线垂直于OA , 所以0MC MD k k +=,易知直线CD 斜率存在,设直线:CD y kx m =+,()11,C x y ,()22,D x y ,联立22311616y kx m x y =+⎧⎪⎨+=⎪⎩,得:()2221363160k x kmx m +++-=, 即122613km x x k -+=+,212231613m x x k-=+, 所以121222022MC MD y y k k x x --+=+=++, 即()12122(22)480kx x k m x x m ++-++-=,代入韦达定理可得:()()()4318311k m k k +=++, 所以13k =-或22m k =+(过点M ,舍) 因为13AB k =-,所以//AB CD . 【点睛】关键点点睛:本题考查直线与椭圆相交问题,解题方法是“设而不求”的思想方法,即设交点坐标为1122(,),(,)x y x y ,设直线方程,代入椭圆方程后应用韦达定理得1212,x x x x +(需要根据方便性,可能得1212,y y y y +),由题意中条件得出0MC MD k k +=,代入1212,x x x x +后可求得参数关系或参数值.从而判断出结论.24.(1)⎡⎢⎣⎦;(2)y x = 【分析】(1)将直线l 的方程与椭圆C 的方程联立,利用0∆≥可求得实数m 的取值范围; (2)设点()11,P x y 、()22,Q x y ,列出韦达定理,由OP OQ ⊥,可得出0OP OQ ⋅=,利用平面向量数量积的坐标运算,并代入韦达定理,进而可计算得出m 的值,由此可求得直线l 的方程.【详解】(1)联立直线l 的方程与椭圆C 的方程2241y x m x y =+⎧⎨+=⎩,消去y 得225210x mx m ++-=, 由于直线l 与椭圆C 有公共点,则()222420120160m m m ∆=--=-≥,解得m ≤≤, 因此,实数m的取值范围是⎡⎢⎣⎦;(2)设点()11,P x y 、()22,Q x y ,由韦达定理可得1225m x x +=-,21215m x x -=, OP OQ ⊥,所以,()()()21212121212122OP OQ x x y y x x x m x m x x m x x m ⋅=+=+++=+++()2222212520555m m m m --=-+==,解得5m =±.因此,直线l 的方程为y x =±【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式;(5)代入韦达定理求解.25.(1)228120x y x +-+=;(2. 【分析】(1)设(,)M x y ,由已知得 ||2||OM AM =,由两点的距离公式可得= ,化简可得动点M 轨迹C 的方程;(2)根据直线的点斜式方程可得方程()1:032l y x -=--,由点到直线的距离公式求得圆圆心()40,到直线l 的距离和原点到直线 l 的距离,根据三角形的面积公式可求得答案. 【详解】(1)设(,)M x y ,则 ||2||2||||OM OM AM AM =⇒=,= ,所以动点M 轨迹C 的方程为228120x y x +-+=; (2)直线()1:032l y x -=--,即230x y +-=,又圆22(4)4x y -+=,圆心()40,到直线l,所以2EF == l所以 12OEF S ∆==. 【点睛】本题考查求动点的轨迹方程,以及运用几何法求圆的弦长,属于中档题.求点的轨迹方程的常用方法之一:直译法——“四步一回头”,四步:(1)建立适当坐标系,设出动点M 的坐标(),x y ;(2)写出适合条件的点M 的集合(){}|P P M P M =;(3)将()P M “翻译”成代数方程(),0f x y =;(4)化简代数方程(),0f x y =为最简形式.一回头:回头看化简方程的过程是否为同解变形,验证求得的方程是否为所要求的方程. 26.(1)2215x y +=;(2)存在定点5,02Q ⎛⎫ ⎪⎝⎭,使得,,P B Q 三点共线. 【分析】(1)设(,)M x y=化简可得结果; (2)联立直线l 与椭圆方程,根据韦达定理得1212,x x x x +,椭圆的对称性知,若存在定点Q ,则点Q 必在x 轴上,设(,0)Q t ,根据//PB PQ 列式,结合1212,x x x x +可求出52t =. 【详解】(1)设(,)M x y5=,化简得2215x y += 故动点M 的轨迹方程为2215x y +=. (2)由题知(2,0)F 且直线l 斜率存在,设为k ,则直线l 方程为(2)y k x =- 由22(2)15y k x x y =-⎧⎪⎨+=⎪⎩得2222(51)202050k x k x k +-+-= 设1122(,),(,)A x y B x y ,则2212122220205,5151k k x x x x k k -+==++, 由椭圆的对称性知,若存在定点Q ,则点Q 必在x 轴上故假设存在定点(,0)Q t ,使得,,P B Q 三点共线,则//PB PQ 且11(,)P x y - 又212111(,),(,).PB x x y y PQ t x y =-+=-211211()()()x x y y y t x ∴-=+-,即211121()(2)(4)()x x k x k x x t x --=+--化简得12122(2)()40x x t x x t -+++= 将2212122220205,5151k k x x x x k k -+==++式代入上式得2222205202(2)405151k k t t k k -⨯-+⨯+=++ 化简得52t = 故存在定点5(,0)2Q ,使得,,P B Q 三点共线.【点睛】关键点点睛:由椭圆的对称性知,若存在定点Q ,则点Q 必在x 轴上是解题关键.。
《圆锥曲线与方程》单元测试卷、答案

《圆锥曲线与方程》单元测试卷一、选择题:(本大题共10小题,每小题4分,共40分.)1.方程132-=y x 所表示的曲线是( )(A )双曲线 (B )椭圆 (C )双曲线的一部分 (D )椭圆的一部分 2.平面内两定点A 、B 及动点P ,设命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P 的轨迹是以A .B 为焦点的椭圆”,那么 ( ) (A )甲是乙成立的充分不必要条件 (B )甲是乙成立的必要不充分条件 (C )甲是乙成立的充要条件 (D )甲是乙成立的非充分非必要条件3.椭圆14222=+a y x 与双曲线1222=-y a x 有相同的焦点,则a 的值是 ( ) (A )12 (B )1或–2 (C )1或12(D )1 4.若抛物线的准线方程为x =–7, 则抛物线的标准方程为( )(A )x 2=–28y (B )y 2=28x (C )y 2=–28x(D )x 2=28y5.已知椭圆192522=+y x 上的一点M 到焦点F 1的距离为2,N 是MF 1的中点,O 为原点,则|ON|等于 (A )2(B ) 4 (C ) 8(D )23( ) 6.顶点在原点,以x 轴为对称轴的抛物线上一点的横坐标为6,此点到焦点的距离等于10,则抛物线焦点到准线的距离等于 ( ) (A ) 4 (B )8 (C )16 (D )327.21F F 为双曲线2214x y -=-的两个焦点,点P 在双曲线上,且1290F PF ∠= ,则21PF F ∆的面积是 (A ) 2 (B )4 (C )8 (D )16 ( )8.过点P (4,4)与双曲线221169x y -=只有一个公共点的直线有几条 ( ) (A ) 1 (B ) 2 (C )3 (D )49、已知双曲线中心在原点且一个焦点为)0,7(F ,直线1-=x y 与其交于N M 、两点,MN 中点的横坐标为32-,则此双曲线的方程是 ( ) (A )14322=-y x (B )13422=-y x (C )12522=-y x (D )15222=-y x 10.若椭圆22221x y a b+=,A A '为长轴,B B '为短轴,F 为靠近A 点的焦点,若'B F AB ⊥,则此椭圆的离心率为 ( ) (A )12 (B)12 (C ) 12 (D)2二、填空题:(本大题共4小题,每小题4分,共16分。
高中数学选修2-1 第二章《圆锥曲线与方程》单元测试题(含答案)

12PF F S =解析:设P (x 0,y 0),PF 的中点为(x ,y ),则y 0=14x 20,又F (0,1),∴⎩⎪⎨⎪⎧x =x 02y =y 0+12,∴⎩⎨⎧x 0=2xy 0=2y -1,代入y 0=14x 20得2y -1=14(2x )2,化简得x 2=2y -1,故选A. 答案:A7.抛物线y 2=4x 的焦点到双曲线x 2-y 23=1的渐近线的距离是( )A.12B.32C .1 D. 3 解析:由已知解出抛物线的焦点坐标和双曲线的渐近线方程,利用点到直线的距离公式求解.由题意可得抛物线的焦点坐标为(1,0),双曲线的渐近线方程为3x -y =0或3x +y =0, 则焦点到渐近线的距离d 1=|3×1-0|32+-12=32或d 2=|3×1+0|32+12=32. 答案:B8.直线y =x +b 与抛物线x 2=2y 交于A 、B 两点,O 为坐标原点,且OA ⊥OB ,则b =( )A .2B .-2C .1D .-1解析:设A (x 1,y 1),B (x 2,y 2), 联立方程组⎩⎨⎧y =x +b ,x 2=2y ,消去y ,得x 2-2x -2b =0,所以x 1+x 2=2,x 1x 2=-2b ,y 1y 2=(x 1+b )(x 2+b )=x 1x 2+b (x 1+x 2)+b 2=b 2,∴点C 的轨迹是以F 为焦点,l 1为准线的抛物线, ∴所求轨迹的方程为x 2=4y . (2)由题意易知直线l 2的斜率存在,又抛物线方程为x 2=4y ,当直线AB 斜率为0时|PQ |=4 2.当直线AB 斜率k 不为0时,设中点坐标为(t,2),P (x 1,y 1),Q (x 2,y 2),则有x 21=4y 1,x 22=4y 2,两式作差得x 21-x 22=4(y 1-y 2),即得k =x 1+x 24=t 2,则直线方程为y -2=t2(x -t ),与x 2=4y 联立得x 2-2tx +2t 2-8=0.由根与系数的关系得x 1+x 2=2t ,x 1x 2=2t 2-8, |PQ |=x 1-x 22+y 1-y 22=1+k 2[x 1+x 22-4x 1x 2]=⎝ ⎛⎭⎪⎫1+t 24[4t 2-42t 2-8]=8-t 24+t 2≤6,即|PQ |的最大值为6.19.(本小题满分12分)已知双曲线的焦点在x 轴上,离心率为2,F 1,F 2为左、右焦点,P 为双曲线上一点,且∠F 1PF 2=60°,12PF F S =123,求双曲线的标准方程.解析:如图所示,设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0).∴所求k 的值为2.21.(本小题满分12分)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (0,1),离心率为22,过点B (0,-2)及左焦点F 1的直线交椭圆于C ,D 两点,右焦点设为F 2.(1)求椭圆的方程; (2)求△CDF 2的面积. 解析:(1)由题意知b =1,c a =22,且c 2=a 2+b 2,解得a =2,c =1. 易得椭圆方程为x 22+y 2=1.(2)∵F 1(-1,0),∴直线BF 1的方程为y =-2x -2,由⎩⎨⎧y =-2x -2x22+y 2=1得9x 2+16x +6=0.∵Δ=162-4×9×6=40>0, 所以直线与椭圆有两个公共点,设为C (x 1,y 1),D (x 2,y 2),则⎩⎪⎨⎪⎧x 1+x 2=-169x 1·x 2=23∴|CD |=1+-22|x 1-x 2|=5·x 1+x 22-4x 1x 2=5·⎝ ⎛⎭⎪⎫-1692-4×23=1092,又点F 2到直线BF 1的距离d =455, 故CDF S2=12|CD |·d =4910. 22.(本小题满分12分)过点C (0,1)的椭圆x 2a 2+y 2b2=1(a >b >0)的离心率为。
高二数学选修21第2章圆锥曲线与方程单元检测(含答案)题型归纳

高二数学选修21第2章圆锥曲线与方程单元检测(含答案)题型归纳圆锥曲线与方程是高二数学最常考察的知识点,以下是第2章圆锥曲线与方程单元检测,希望对大家有帮助。
一、填空题1.已知A-12,0,B是圆F:_-122+y2=4 (F为圆心)上一动点,线段AB的垂直平分线交BF于P,则动点P的轨迹为________.2.方程5(_+2)2+(y-1)2=|3_+4y-12|所表示的曲线是________.3.F1、F2是椭圆的两个焦点,M是椭圆上任一点,从焦点F2向△F1MF2顶点M 的外角平分线引垂线,垂足为P,延长F2P交F1M的延长线于G,则P点的轨迹为__________(写出所有正确的序号).①圆;②椭圆;③双曲线;④抛物线.4.已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点P向_轴作垂线段PP,则线段PP的中点M的轨迹是____________.5.一圆形纸片的圆心为O,点Q是圆内异于O点的一定点,点A是圆周上一点,把纸片折叠使点A与点Q重合,然后抹平纸片,折痕CD与OA交于P点.当点A运动时点P的轨迹是________.6.若点P到F(4,0)的距离比它到直线_+5=0的距离小1,则点P的轨迹表示的曲线是________.7.已知两点F1(-5,0),F2(5,0),到它们的距离的差的绝对值是6的点M的轨迹是__________.8.一动圆与⊙C1:_2+y2=1外切,与⊙C2:_2+y2-8_+12=0内切,则动圆圆心的轨迹为______________.二、解答题9.已知圆A:(_+3)2+y2=100,圆A内一定点B(3,0),动圆P过B点且与圆A内切,求证:圆心P的轨迹是椭圆.10.已知△ABC中,BC=2,且sinB-sinC=12sinA,求△ABC的顶点A的轨迹.能力提升11.如图所示,在正方体ABCDA1B1C1D1中,P是侧面BB1C1C内一动点,若P到直线BC与直线C1D1的距离相等,则动点P的轨迹所在的曲线是________(写出正确的所有序号).①直线;②圆;③双曲线;④抛物线.12.如图所示,已知点P为圆R:(_+c)2+y2=4a2上一动点,Q(c,0)为定点(c0,为常数),O为坐标原点,求线段PQ的垂直平分线与直线RP的交点M的轨迹.1.椭圆定义中,常数F1F2不可忽视,若常数2.双曲线定义中,若常数F1F2,则这样的点不存在;若常数=F1F2,则动点的轨迹是以F1、F2为端点的两条射线.3.抛物线定义中Fl,若Fl,则点的轨迹是经过点F,且垂直于l的直线.第2章圆锥曲线与方程2.1 圆锥曲线知识梳理3.两个定点F1,F2的距离的和焦点焦距4.两个定点F1,F2距离的差的绝对值焦点焦距5.到一个定点F和一条定直线l(F不在l上)的距离相等的点定点F 定直线l6.圆锥曲线作业设计1.椭圆解析由已知,得PA=PB,PF+BP=2,PA+PF=2,且PA+PFAF,即动点P的轨迹是以A、F为焦点的椭圆.2.抛物线解析由题意知(_+2)2+(y-1)2=|3_+4y-12|5.左侧表示(_,y)到定点(-2,1)的距离,右侧表示(_,y)到定直线3_+4y-12=0的距离,故动点轨迹为抛物线.3.①解析∵F2MP=GMP,且F2PMP,F2P=GP,MG=MF2.取F1F2中点O,连结OP,则OP为△GF1F2的中位线.OP=12F1G=12(F1M+MG)=12(F1M+MF2).又M在椭圆上,MF1+MF2=常数,设常数为2a,则OP=a,即P在以F1F2的中点为圆心,a为半径的圆上.4.椭圆5.椭圆6.抛物线解析由题意知P到F的距离与到直线_=-4的距离相等,所以点P的轨迹是抛物线.7.双曲线8.双曲线的一支9.证明设PB=r.∵圆P与圆A内切,圆A的半径为10,两圆的圆心距PA=10-r,即PA+PB=10(大于AB).点P的轨迹是以A、B两点为焦点的椭圆.10.解由正弦定理得:sinA=a2R,sinB=b2R,sinC=c2R.代入sinB-sinC=12sinA得:b-c=12a,即b-c=1,即AC-AB=1 (A的轨迹是以B、C为焦点且靠近B的双曲线的一支,并去掉与BC的交点.11.④解析∵D1C1面BCC1B1,C1P平面BCC1B1,D1C1C1P,点P到直线C1D1的距离即为C1P的长度,由题意知,点P到点C1的距离与点P到直线BC的距离相等,这恰符合抛物线的定义.12.解由题意,得MP=MQ,RP=2a.MR-MQ=MR-MP=RP=2a点M的轨迹是以R、Q为两焦点,实轴长为2a的双曲线右支.第2章圆锥曲线与方程单元检测的全部内容就是这些,预祝大家新学期可以取得更好的成绩。
数学:第二章《圆锥曲线与方程》测试(2)(新人教A版选修1-1)

圆锥曲线与方程 单元测试时间:90分钟 分数:120分一、选择题(每小题5分,共60分)1.椭圆122=+my x 的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为( ) A .41 B .21C .2D .4 2.过抛物线x y 42=的焦点作直线l 交抛物线于A 、B 两点,若线段AB 中点的横坐标为3,则||AB 等于( )A .10B .8C .6D .43.若直线y =kx +2与双曲线622=-y x 的右支交于不同的两点,则k 的取值范围是( )A .315(-,)315 B .0(,)315 C .315(-,)0 D .315(-,)1-4.(理)已知抛物线x y 42=上两个动点B 、C 和点A (1,2)且∠BAC =90°,则动直线BC 必过定点( )A .(2,5)B .(-2,5)C .(5,-2)D .(5,2)(文)过抛物线)0(22>=p px y 的焦点作直线交抛物线于1(x P ,)1y 、2(x Q ,)2y 两点,若p x x 321=+,则||PQ 等于( )A .4pB .5pC .6pD .8p5.已知两点)45,4(),45,1(--N M ,给出下列曲线方程:①0124=-+y x ;②322=+y x ;③1222=+y x ;④1222=-y x .在曲线上存在点P 满足|MP|=|NP|的所有曲线方程是( ) (A )①③ (B )②④ (C )①②③ (D )②③④6.已知双曲线12222=-by a x (a >0,b >0)的两个焦点为1F 、2F ,点A 在双曲线第一象限的图象上,若△21F AF 的面积为1,且21tan 21=∠F AF ,2tan 12-=∠F AF ,则双曲线方程为( )A .1351222=-y xB .1312522=-y xC .1512322=-y x D .1125322=-y x 7.圆心在抛物线)0(22>=y x y 上,并且与抛物线的准线及x 轴都相切的圆的方程是( )A .041222=---+y x y x B .01222=+-++y x y x C .01222=+--+y x y x D .041222=+--+y x y x8.双曲线的虚轴长为4,离心率26=e ,1F 、2F 分别是它的左、右焦点,若过1F 的直线与双曲线的右支交于A 、B 两点,且||AB 是||2AF 的等差中项,则||AB 等于( ) A .28 B .24 C .22 D .8. 9.(理)已知椭圆22221a y x =+(a >0)与A (2,1),B (4,3)为端点的线段没有公共点,则a 的取值范围是( ) A .2230<<a B .2230<<a 或282>a C .223<a 或 282>a D .282223<<a(文)抛物线)2(2)2(2+-=-m y x 的焦点在x 轴上,则实数m 的值为( ) A .0 B .23C .2D .3 10.已知双曲线中心在原点且一个焦点为)0,7(F ,直线1-=x y 与其相交于N M ,两点,MN 中点横坐标为32-,则此双曲线的方程是( ) (A) 14322=-y x (B) 13422=-y x (C) 12522=-y x (D) 15222=-y x 11.将抛物线342+-=x x y 绕其顶点顺时针旋转090,则抛物线方程为( )(A )x y -=+2)1(2(B )2)1(2-=+x y (C )x y -=-2)1(2(D )2)1(2-=-x y12.若直线4=+ny mx 和⊙O ∶422=+y x 没有交点,则过),(n m 的直线与椭圆14922=+y x 的交点个数( )A .至多一个B .2个C .1个D .0个 二、填空题(每小题4分,共16分)13.椭圆198log 22=+y x a 的离心率为21,则a =________.14.已知直线1+=x y 与椭圆122=+ny mx )0(>>n m 相交于A ,B 两点,若弦AB 的中点的横坐标等于31-,则双曲线12222=-n y m x 的两条渐近线的夹角的正切值等于________.15.长为l (0<l <1)的线段AB 的两个端点在抛物线2x y =上滑动,则线段AB 中点M 到x 轴距离的最小值是________.16.某宇宙飞船的运行轨道是以地球中心F 为焦点的椭圆,测得近地点A 距离地面)km (m ,远地点B 距离地面)km (n ,地球半径为)km (R ,关于这个椭圆有以下四种说法: ①焦距长为m n -;②短轴长为))((R n R m ++;③离心率Rn m mn e 2++-=;④若以AB 方向为x 轴正方向,F 为坐标原点,则与F 对应的准线方程为)())((m n R n R m x -++2-=,其中正确的序号为________. 三、解答题(共44分) 17.(本小题10分)已知椭圆的一个顶点为A (0,-1),焦点在x 轴上.若右焦点到直线022=+-y x 的距离为3.(1)求椭圆的方程;(2)设椭圆与直线)0(≠+=k m kx y 相交于不同的两点M 、N.当AN AM =时,求m 的取值范围.18.(本小题10分)双曲线)0,0(12222>>=-b a by a x 的右支上存在与右焦点和左准线等距离的点,求离心率e 的取值范围.19.(本小题12分)如图,直线l 与抛物线x y =2交于),(,),(2211y x B y x A 两点,与x 轴相交于点M ,且121-=y y . (1)求证:M 点的坐标为)0,1(;(2)求证:OB OA ⊥;(3)求AOB ∆的面积的最小值.20.(本小题12分)已知椭圆方程为1822=+y x ,射线x y 22=(x ≥0)与椭圆的交点为M ,yx过M作倾斜角互补的两条直线,分别与椭圆交于A、B两点(异于M).(1)求证直线AB的斜率为定值;(2)求△AMB面积的最大值.圆锥曲线单元检测答案1. A2.B 3 D 4 理C 文A 5 D 6 A 7 D 8A 9 理B 文B 10 D 11 B 12 B13.24或69 14.3415.42l 16.①③④17.(1)依题意可设椭圆方程为 1222=+y ax ,则右焦点F (0,12-a )由题设322212=+-a 解得32=a 故所求椭圆的方程为1322=+y x . 1322=+y x ………………………………………………4分. (2)设P 为弦MN 的中点,由⎪⎩⎪⎨⎧=++=1322y x mkx y 得 0)1(36)13(222=-+++m mkx x k 由于直线与椭圆有两个交点,,0>∆∴即 1322+<k m ①………………6分13322+-=+=∴k mkx x x N M p 从而132+=+=k m m kx y p p mkk m x y k pp Ap 31312++-=+=∴ 又MN AP AN AM ⊥∴=,,则 kmk k m 13132-=++- 即 1322+=k m ②…………………………8分把②代入①得 22m m > 解得 20<<m 由②得 03122>-=m k 解得21>m .故所求m 的取范围是(2,21)……………………………………10分 18.设M )(0,0y x 是双曲线右支上满足条件的点,且它到右焦点F 2的距离等于它到左准线的距离2MN ,即MN MF =2,由双曲线定义可知e MF MF eMNMF =∴=211……5分由焦点半径公式得000x eaex aex ∴=-+ee e a -+=2)1(…………………………7分 而a ee e a ax ≥-+∴≥20)1( 即 0122≤--e e 解得1221+≤≤-e 但 1211+≤<∴>e e ……………………………………10分19. (1 ) 设M 点的坐标为)0,(0x , 直线l 方程为0x my x +=, 代入x y =2得002=--x my y ① 21,y y 是此方程的两根,∴1210=-=y y x ,即M 点的坐标为(1, 0). (2 ) ∵ 121-=y y∴ 0)1(21212122212121=+=+=+y y y y y y y y y y x x∴ OB OA ⊥.(3)由方程①,m y y =+21, 121-=y y , 且 1||0==x OM ,于是=-=∆||||2121y y OM S AOB 212214)(21y y y y -+=4212+m ≥1, ∴ 当0=m 时,AOB ∆的面积取最小值1.20.解析:(1)∵ 斜率k 存在,不妨设k >0,求出M (22,2).直线MA 方程为)22(2-=-x k y ,直线AB 方程为)22(2--=-x k y . 分别与椭圆方程联立,可解出2284222-+-=k k k x A ,2284222-++=k k k x B . ∴22)(=--=--BA B A B A B A x x x x k x x y y . ∴ 22=AB k (定值). (2)设直线AB 方程为m x y +=22,与1822=+y x 联立,消去y 得mx x 24162+ 0)8(2=-+m .由0>∆得44<<-m ,且0≠m ,点M 到AB 的距离为3||m d =. 设AMB ∆的面积为S .∴ 2)216(321)16(321||41222222=≤-==⋅m m d AB S . 当22±=m 时,得2max =S .圆锥曲线课堂小测时间:45分钟 分数:60分 命题人:郑玉亮一、选择题(每小题4分共24分)1.0≠c 是方程 c y ax =+22表示椭圆或双曲线的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .不充分不必要条件2.与曲线1492422=+y x 共焦点,而与曲线1643622=-y x 共渐近线的双曲线方程为 ( )A .191622=-x yB .191622=-y xC .116922=-x yD .116922=-y x3.我国发射的“神舟3号”宇宙飞船的运行轨道是以地球的中心2F 为一个焦点的椭圆,近地点A 距地面为m 千米,远地点B 距地面为n 千米,地球半径为R 千米,则飞船运行轨道的短轴长为( )A .))((2R n R m ++B .))((R n R m ++C .mnD .2mn4.若椭圆)1(122>=+m y m x 与双曲线)0(122>=-n y nx 有相同的焦点F 1、F 2,P 是两曲线的一个交点,则21PF F ∆的面积是 ( ) A .4B .2C .1D .215.圆心在抛物线x y 22=上,且与x 轴和该抛物线的准线都相切的一个圆的方程是( ) A .041222=---+y x y x B .01222=+-++y x y xC .01222=+--+y x y xD .041222=+--+y x y x6.已知双曲线12222=-by a x 的离心率2[∈e ,]2.双曲线的两条渐近线构成的角中,以实轴为角平分线的角记为θ,则θ的取值范围是( ). A .6π[,]2π B .3π[,]2π C .2π[,]32π D .32π[,π]二、填空题(每小题4分共16分)7.若圆锥曲线15222=++-k y k x 的焦距与k 无关,则它的焦点坐标是__________. 8.过抛物线x y 42=的焦点作直线与此抛物线交于P ,Q 两点,那么线段PQ 中点的轨迹方 程是 .9.连结双曲线12222=-b y a x 与12222=-ax b y (a >0,b >0)的四个顶点的四边形面积为1S ,连结四个焦点的四边形的面积为2S ,则21S S的最大值是________.10.对于椭圆191622=+y x 和双曲线19722=-y x 有下列命题:①椭圆的焦点恰好是双曲线的顶点; ②双曲线的焦点恰好是椭圆的顶点; ③双曲线与椭圆共焦点;④椭圆与双曲线有两个顶点相同.其中正确命题的序号是 . 三、解答题(20分)11.(本小题满分10分)已知直线l 与圆0222=++x y x 相切于点T ,且与双曲线122=-y x 相交于A 、B 两点.若T 是线段AB 的中点,求直线l 的方程.12.(10分)已知椭圆2222by a x +(a >b >0)的离心率36=e ,过点),0(b A -和)0,(a B 的直线与原点的距离为23. (1)求椭圆的方程.(2)已知定点)0,1(-E ,若直线)0(2≠+=k kx y 与椭圆交于C 、D 两点.问:是否存在k 的值,使以CD 为直径的圆过E 点?请说明理由.参考答案1 B2 A3 A4 C5 D6 C 7.(0,7±)8.222-=x y 9.2110.①② 11.解:直线l 与x 轴不平行,设l 的方程为 a ky x += 代入双曲线方程 整理得012)1(222=-++-a kay y k ……………………3分 而012≠-k ,于是122--=+=k aky y y B A T 从而12--=+=k a a ky x T T 即 )1,1(22k a k ak T --……5分点T 在圆上 012)1()1(22222=-+-+-∴ka k a k ak 即22+=a k ① 由圆心)0,1(-'O .l T O ⊥' 得 1-=⋅'l T O k k 则 0=k 或 122+=a k当0=k 时,由①得 l a ∴-=,2的方程为 2-=x ;当122+=a k 时,由①得 1=a l K ∴±=,3的方程为13+±=y x .故所求直线l 的方程为2-=x 或 13+±=y x …………………………10分 12.解:(1)直线AB 方程为:0=--ab ay bx .依题意⎪⎪⎩⎪⎪⎨⎧=+=233622ba ab ac , 解得 ⎩⎨⎧==13b a ,∴ 椭圆方程为 1322=+y x . (2)假若存在这样的k 值,由⎩⎨⎧=-++=033222y x kx y ,得)31(2k +09122=++kx x . ∴ 0)31(36)12(22>+-=∆k k . ①设1(x C ,)1y 、2(x D ,)2y ,则⎪⎪⎩⎪⎪⎨⎧+=+-=+⋅2212213193112k x x k k x x , ②而4)(2)2)(2(212122121+++=++=⋅x x k x x k kx kx y y .要使以CD 为直径的圆过点E (-1,0),当且仅当C E ⊥DE 时,则1112211-=++⋅x y x y ,即0)1)(1(2121=+++x x y y .∴ 05))(1(2)1(21212=+++++x x k x x k . ③ 将②式代入③整理解得67=k .经验证,67=k ,使①成立. 综上可知,存在67=k ,使得以CD 为直径的圆过点E .。
(18)“圆锥曲线与方程”单元测试

“圆锥曲线与方程”单元测试(第一卷)一、选择题:(每小题5分,计50分)1、(2008海南、宁夏文)双曲线1102x y -=的焦距为( )D.2.(2004全国卷Ⅰ文、理)椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的 直线与椭圆相交,一个交点为P ,则||2PF = ( )A .23B .3C .27D .43.(2006辽宁文)方程22520x x -+=的两个根可分别作为( )A.一椭圆和一双曲线的离心率 B.两抛物线的离心率 C.一椭圆和一抛物线的离心率 D.两椭圆的离心率4.(2006四川文、理)直线y=x-3与抛物线x y 42=交于A 、B 两点,过A 、B 两点向 抛物线的准线作垂线,垂足分别为P 、Q ,则梯形APQB 的面积为( ) (A )48. (B )56 (C )64 (D )72.5.(2007福建理)以双曲线116922=-y x 的右焦点为圆心,且与其渐近线相切的圆的方程是( )A . B.C . D.6.(2004全国卷Ⅳ理)已知椭圆的中心在原点,离心率21=e ,且它的一个焦点与抛物线 x y 42-=的焦点重合,则此椭圆方程为( )A .13422=+y x B .16822=+y x C .1222=+y x D .1422=+y x7.(2005湖北文、理)双曲线)0(122≠=-mn ny m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为( ) A .163 B .83 C .316 D .388. (2008重庆文)若双曲线2221613x y p-=的左焦点在抛物线y 2=2px 的准线上,则p 的值为 ( )(A)2 (B)3 (C)49.(2002北京文)已知椭圆1532222=+n y m x 和双曲线1322222=-n y m x 有公共的焦点,那么 双曲线的渐近线方程是( ) A .y x 215±= B .x y 215±= C .y x 43±= D .x y 43±=10.(2003春招北京文、理)在同一坐标系中,方程)0(0122222>>=+=+b a by ax by a x 与的曲线大致是( )二、填空题:(每小题5分,计20分)11. (2005上海文)若椭圆长轴长与短轴长之比为2,它的一个焦点是()0,152,则椭圆的标准方程是_________________________12.(2008江西文)已知双曲线22221(0,0)x y a b a b -=>>的两条渐近线方程为y x =,若顶点到渐近线的距离为1,则双曲线方程为 .13.(2007上海文)以双曲线15422=-y x 的中心为顶点,且以该双曲线的右焦点为焦点的 抛物线方程是 .14.(2008天津理)已知圆C 的圆心与抛物线x y 42=的焦点关于直线x y =对称.直线0234=--y x与圆C 相交于B A ,两点,且6=AB ,则圆C 的方程为 .“圆锥曲线与方程”单元测试(第二卷)11._______________, 12.________________, 13.________________, 14.________________.三、解答题:(15—18题各13分,19、20题各14分)15.(2006北京文)椭圆C:22221(0)x y a b a b +=>>的两个焦点为F 1,F 2,点P 在椭圆C 上,且11212414,||,||.33PF F F PF PF ⊥== (Ⅰ)求椭圆C 的方程;(Ⅱ)若直线l 过圆x 2+y 2+4x-2y=0的圆心M , 交椭圆C 于,A B 两点, 且A 、B 关于点M 对称,求直线l的方程..16.(2005重庆文)已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3( (1)求双曲线C 的方程; (2)若直线2:+=kx y l 与双曲线C 恒有两个不同的 交点A 和B ,且2>⋅OB OA (其中O 为原点). 求k 的取值范围.17.(2007安徽文)设F是抛物线G:x2=4y的焦点.(Ⅰ)过点P(0,-4)作抛物线G的切线,求切线方程:(Ⅱ)设A、B为抛物线G上异于原点的两点,且满足0FA,延长AF、BF分别交抛物线G于点·FBC,D,求四边形ABCD面积的最小值.18.(2008辽宁文) 在平面直角坐标系xOy 中,点P 到两点(0,(0的距离之和等于4,设点P 的轨迹为C . (Ⅰ)写出C 的方程;(Ⅱ)设直线1y kx =+与C 交于A ,B 两点.k 为何值时OA ⊥OB ?此时AB 的值是多少?19. (2002广东、河南、江苏)A 、B 是双曲线x 2-y22=1上的两点,点N(1,2)是线段AB 的中点(1)求直线AB 的方程;(2)如果线段AB 的垂直平分线与双曲线相交于C 、D 两点,那么A 、B 、C 、D 四点是否共圆?为什么?20.(2007福建理)如图,已知点F(1,0),直线l:x=-1,P为平面上的动点,过P作直线l的垂线,垂足为点Q,且=。
(典型题)高中数学选修1-1第二章《圆锥曲线与方程》检测卷(答案解析)

一、选择题1.已知斜率为16的直线l 与双曲线22221(0,0)x y C a b a b-=>>:相交于B 、D 两点,且BD 的中点为(1,3)M ,则C 的离心率为( )A .2BC .3D 2.直线3y x与曲线2||194y x x -=的公共点的个数是( )A .1B .2C .3D .43.已知抛物线2:2C y px =的焦点为F ,过抛物线上两点A ,B 分别向抛物线C 的准线作垂线,垂足为M ,N ,且()95OBN OAM ABNM S S S +=梯形△△,当直线AB 经过点F 且点F 到抛物线C 准线的距离为4时,直线l 的斜率为( )A .2±B .±C .8±D .±4.双曲线()2222:10,0x y C a b a b-=>>的一条渐近线被圆()2223x y -+=截得的弦长为2,则C 的离心率为( )A .3B .2C D5.设双曲线2222:1(0,0)x y C a b a b-=>>的左焦点为F ,直线20x y -=过点F 且与双曲线C 在第一象限的交点为P ,O 为坐标原点,||||OP OF =,则双曲线的离心率为( )A BC .2D 6.过椭圆:T 2212x y +=上的焦点F 作两条相互垂直的直线12l l 、,1l 交椭圆于,A B 两点,2l 交椭圆于,C D 两点,则AB CD +的取值范围是( )A .⎣B .⎣C .⎣D .⎣ 7.已知点A 是抛物线24x y =的对称轴与准线的交点,点F 为抛物线的焦点,点P 在抛物线上,且满足||||PA m PF =,则m 的最大值是( )A .1BC .2D .48.已知椭圆()2222:10x y C a b a b+=>>的左右焦点分别是F 1,F 2,过右焦点F 2且斜率为的直线与椭圆相交于A ,B 两点,若满足223AF F B =,则椭圆的离心率为( )A .35B .12C .22D .329.已知双曲线()2222:10,0x y C a b a b-=>>的左右焦点分别为1F ,2F ,实轴长为4,点P 为其右支上一点,点Q 在以()0,4为圆心、半径为1的圆上,若1PF PQ +的最小值为8,则双曲线的渐近线方程为( ) A .12y x =±B .y x =±C .3y x =±D .5y x =±10.已知1F ,2F 是双曲线()222210,0x y a b a b-=>>的左、右焦点,过1F 的直线l 与双曲线的左、右两支分别交于点A ,B ,若2ABF 为等边三角形,则该双曲线的渐近线的斜率为( ) A .2±B .3C .6±D .7±11.顶点在原点,经过点()3,6-,且以坐标轴为轴的抛物线的标准方程是( ) A .2123y x =或212=-x y B .2123y x =-或212=-x y C .2123y x =或212x y =D .2123y x =-或212x y =12.P 为椭圆22:11713x y C +=上一动点,1F ,2F 分别为左、右焦点,延长1F P 至点Q ,使得2PQ PF =,则动点Q 的轨迹方程为( )A .()22234x y ++= B .()22268x y ++= C .()22234x y -+=D .()22268x y -+=二、填空题13.已知中心在原点,对称轴为坐标轴的椭圆,其中一个焦点坐标为()2,0F ,椭圆被直线:3l y x =+所截得的弦的中点横坐标为2-,则此椭圆的标准方程为______.14.已知双曲线22:143x y C -=的左、右焦点分别12,F F ,P 为双曲线上异于顶点的点,以1PF ,2PF 为直径的圆与直线l 分别相切于A ,B 两点,则12cos ,AB F F <>=___________.15.已知ABC 中,()1,0B -、()1,0C ,1k 、2k 分别是直线AB 和AC 的斜率.关于点A 有如下四个命题:①若A 是双曲线2212y x -=上的点,则122k k ⋅=;②若122k k ⋅=-,则A 是椭圆2212x y +=上的点;③若121k k ,则A 是圆221x y +=上的点;④若2AB AC =,则A 点的轨迹是圆. 其中所有真命题的序号是__________.16.已知椭圆22:143x y C +=的左、右焦点分别为12F F 、,过2F 且倾斜角为π4的直线l 交椭圆C 于A B 、两点,则1F AB 的面积为___________. 17.已知抛物线218y x =的焦点为F ,过F 的直线l 与抛物线交于A 、B 两点,抛物线的准线与y 轴交于点M ,当AMAF最大时,弦AB 长度是___________. 18.已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,过点F 且与x 轴垂直的直线与双曲线C 和双曲线C 的一条渐近线分别相交于P ,Q 两点(P ,Q 在同一象限内),若P 为线段QF 的中点,且||PF =,则双曲线C 的标准方程为_________. 19.已知抛物线C :2y x =的焦点为F ,A ()00,x y 是C 上一点,054AF x =,则0x =________.20.如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分,过对称轴的截口BAC 是椭圆的一部分,灯丝位于椭圆的一个焦点1F 上,片门位于另一个焦点2F 上.由椭圆一个焦点1F 发出的光线,经过旋转椭圆面反射后集中到另一个焦点2F .已知12BC F F ⊥,1163F B =,124F F =,则截口BAC 所在椭圆的离心率为______.三、解答题21.已知椭圆2222:1(0)x y E a b a b +=>>过点21,2P ⎛⎫ ⎪ ⎪⎝⎭,离心率2e =. (1)求椭圆E 的方程;(2)过点(0,3)M 的直线l 与椭圆E 相交于A ,B 两点. ①当直线OA ,OB 的斜率之和为34时(其中O 为坐标原点),求直线l 的斜率k ; ②求MA MB ⋅的取值范围.22.已知椭圆具有如下性质:若椭圆的方程为()222210x y a b a b+=>>,则椭圆在其上一点()'',A x y 处的切线方程为''221x y x ya b+=,试运用该性质解决以下问题:在平面直角坐标系xOy 中,已知椭圆C :()222210x y a b a b +=>>的离心率为2,且经过点21,A ⎛⎫ ⎪ ⎪⎝⎭. (1)求椭圆C 的方程;(2)设F 为椭圆C 的右焦点,直线l 与椭圆C 相切于点P (点P 在第一象限),过原点O 作直线l 的平行线与直线PF 相交于点Q ,问:线段PQ 的长是否为定值?若是,求出定值;若不是,说明理由.23.已知抛物线2:2(0)C x py p =>上一点(),2P m 到其焦点F 的距离为4. (1)求抛物线C 的方程;(2)过点F 且斜率为1的直线l 与C 交于A ,B 两点,O 为坐标原点,求OAB 的面积.24.已知椭圆22:11612x y E +=,1F 、2F 为左、右焦点,()2,3A .(1)求12tan F AF ∠及12F AF ∠的角平分线所在直线l 的方程;(2)在椭圆E 上是否存在关于直线l 对称的相异两点?若存在,请找出:若不存在,说明理由.25.椭圆2222:1(0)x y E a b a b +=>>的左焦点为1F ,右焦点为2F,离心率2e =,过1F 的直线交椭圆于A ,B 两点,且2ABF的周长为. (1)求椭圆E 的方程;(2)若直线AB,求2ABF 的面积.26.椭圆()2222:10x y C a b a b+=>>过点31,2⎛⎫- ⎪⎝⎭,离心率为12,左、右焦点分别为1F 、2F ,过2F 的直线l 交椭圆于A 、B 两点.(1)求椭圆C 的方程; (2)当1F AB的面积为11时,求直线l 的斜率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】设()()1122,,B x y D x y 、,用“点差法”表示出a 、b 的关系,即可求出离心率 【详解】设()()1122,,B x y D x y 、,则22112222222211x y a bx y a b ⎧-=⎪⎪⎨⎪-=⎪⎩, 两式作差得:22221212220x x y y a b---=,整理得:()()()() 21212 21212y y yyba x x x x+-=+-BD的中点为(1,3)M,且直线l的斜率为16,代入有:22611262ba=⨯=即22212c aa-=,解得62cea.故选:D【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a、b、c的关系,消去b,构造离心率e的方程或(不等式)即可求出离心率.2.C解析:C【分析】由于已知曲线函数中含有绝对值符号,将x以0为分界进行分类讨论,当x≥0时,曲线为焦点在y轴上的双曲线,当x<0时,曲线为焦点在y轴上的椭圆,进而在坐标系中作出直线与曲线的图像,从而可得出交点个数.【详解】当0x≥时,曲线2194x xy-=的方程为22194y x-=当0x<时,曲线2194x xy-=的方程为22194y x+=,∴曲线2194x xy-=的图象如图,在同一坐标系中作出直线3y x的图象,可得直线与曲线交点个数为3个.故选:C【点晴】本题讨论曲线类型再利用数形结合法求交点个数是解题的关键.3.B解析:B 【分析】根据题意,求得4p =,可得抛物线的方程,因为()95OBN OAM ABNM S S S +=梯形△△,所以49OMN OAB ABMN S S S +=梯形△△,根据面积公式,结合抛物线定义,即可求得AB ,不妨设AB 的斜率为k ,可得直线AB 的方程,与抛物线联立,根据韦达定理,可求得A B x x +的值,代入弦长公式,即可求得答案. 【详解】因为点F 到抛物线C 准线的距离为4,所以4p =,所以28y x =, 设抛物线C 的准线与x 轴交于点H ,因为()95OBN OAM ABNM S S S +=梯形△△,所以()()11422192M N A BOMN OABABMNM N OH y y OF y y S S S AM BN y y ⋅-+⋅-+==+⋅-梯形△△,因为2OH OF ==,M N A B y y y y -=-,AM BN AB +=,所以449OMN OAB ABMN S S S AB +==梯形△△,则9AB =,显然直线AB 的斜率存在,不妨设为k ,则():2AB y k x =-, 与抛物线联立可得:()22224840k x k x k -++=, 从而284A B x x k +=+, 所以28489A B A k B x x =++=+=,解得22k =±. 故选:B【点睛】解题的关键是根据面积的关系,得到49OMN OAB ABMN S S S +=梯形△△,结合图象,可求得9AB =,再利用抛物线的弦长公式求解,考查分析计算,化简求值的能力,属中档题.4.D解析:D 【分析】设双曲线C 的渐近线方程为y kx =,其中bk a=±,利用圆的半径、渐近线截圆所得弦长的一半、弦心距三者满足勾股定理可求得k的值,再利用e =可求得双曲线C 的离心率e 的值. 【详解】设双曲线C 的渐近线方程为y kx =,其中b k a=±, 圆()2223x y -+=的圆心坐标为()2,0,半径为r =圆心到直线y kx =的距离为d =另一方面,由于圆的半径、渐近线截圆所得弦长的一半、弦心距三者满足勾股定理,可得d ===,解得1k =±,1ba∴=, 因此,双曲线C的离心率为c e a ===== 故选:D. 【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a 、c 的值,根据离心率的定义求解离心率e 的值;(2)齐次式法:由已知条件得出关于a 、c 的齐次方程,然后转化为关于e 的方程求解; (3)特殊值法:通过取特殊位置或特殊值,求得离心率.5.D解析:D 【分析】焦点三角形1PFF 满足||||OP OF =,可根据三角形一边的中线是该边的一半,可判断该三角形是直角三角形.算出该三角形的中位线OH ,可得到12PF =,根据双曲线定义和勾股定理计算出,a c 求解. 【详解】直线20x y -+=过点F,可得()F 设右焦点为1F ,PF 的中点为H .因为O 是1FF 的中点,且||||OP OF =,故三角形1PFF 为直角三角形.1PF PF ⊥,故OH PF ⊥由点到直线距离公式有1OH ==故12PF =,12PF PF a -=,(2222112PF PF F F +==故()2222220a ++=. 可得1a =ce a== 故选:D 【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式c e a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).6.C解析:C 【分析】当直线12l l 、有一条斜率不存在时,可直接求得AB CD +=12l l 、的斜率都存在且不为0时,不妨设直线1l 的斜率为k ,则直线2l 的斜率为1k-,则可得直线1l 的方程,与椭圆联立,根据韦达定理及弦长公式,可求得AB 的表达式,同理可求得CD 的表达式,令21k t +=,则可得2112t tAB CD +=+-,令2112y t t =+-,根据二次函数的性质,结合t 的范围,即可求得AB CD +的范围,综合即可得答案. 【详解】当直线12l l 、有一条斜率不存在时,不妨设直线1l 斜率不存在,则直线2l 斜率为0,此时AB =,22b CD a ===所以AB CD +=当直线12l l 、的斜率都存在且不为0时,不妨设直线1l 的斜率为k ,则直线2l 的斜率为1k-, 不妨设直线12l l 、都过椭圆的右焦点(1,0)F , 所以直线1:(1)l y k x =-,直线21:(1)l y x k=--, 联立1l 与椭圆T 22(1)12y k x x y =-⎧⎪⎨+=⎪⎩,可得2222)202142(-=+-+x k x k k , 22222(4)4(12)(22)880k k k k ∆=--+-=+>,22121222422,1212k k x x x x k k-+=⋅=++,所以12AB x =-=22)12k k +==+,同理22221))2112k k CD k k ⎛⎫+- ⎪+⎝⎭==+⎛⎫+- ⎪⎝⎭,所以2222))122k k B k C k A D +++=+++, 令21k t +=,因为0k ≠,所以1t >,所以AB D C ==+=22211212t t t t =+-+-,令2211119224y t t t ⎛⎫=+-=--+ ⎪⎝⎭, 因为1t >,所以1(0,1)t∈,所以92,4y ⎛⎤∈ ⎥⎦⎝,所以141,92y ⎡⎫∈⎪⎢⎭⎣,所以18262,323AB CD y ⎡⎫+=⨯∈⎢⎪⎪⎢⎣, 综上AB CD +的取值范围是82,323⎡⎤⎢⎥⎣. 故选:C 【点睛】解题的关键是设出直线的方程,结合韦达定理及弦长公式,求得AB CD +的表达式,再根据二次函数性质求解,易错点为需求直线12l l 、中有一个不存在时,AB CD +的值,考查计算求值的能力,属中档题.7.B解析:B 【分析】由抛物线的对称性可不妨设P 在第一象限或为原点,过P 作准线1y =-的垂线,垂足为E ,利用抛物线的定义可得1sin PAE m=∠,求出sin PAE ∠的最小值后可得m 的最大值. 【详解】由抛物线24x y =可得准线方程为:1y =-,故()0,1A -.如图,由抛物线的对称性可不妨设P 在第一象限或为原点, 过P 作准线1y =-的垂线,垂足为E ,则PE PF =,故1||||sin ||||PF PE PAE m PA PA ===∠, 当直线AP 与抛物线相切时,PAE ∠最小,而当P 变化时,02PAE π<∠≤,故当直线AP 与抛物线相切时sin PAE ∠最小,设直线:1AP y kx =-,由241x yy kx ⎧=⎨=-⎩得到2440x kx -+=,216160k ∆=-=,故1k =或1k =-(舍),所以直线AP 与抛物线相切时4PAE π∠=,故1m的最小值为2即m, 故选:B. 【点睛】方法点睛:与抛物线焦点有关的最值问题,可利用抛物线的定义把到焦点的距离问题转化为到准线的距离问题.8.D解析:D 【分析】首先设直线2x y c =+,与椭圆方程联立,得到根与系数的关系,同时由条件可得123y y =-,与根与系数的关系联立消元可得22213242a b c +=,求得椭圆的离心率. 【详解】设直线方程为2x y c =+,设()11,A x y ,()22,B x y ,与椭圆方程联立得22224102a b y cy b ⎛⎫++-= ⎪⎝⎭,2122212cy y a b +=-+,4122212b y y a b =-+ ① 223AF F B =,()()1122,3,c x y x c y ∴--=-, 得123y y =- ②,由①②联立可得,22213242a bc +=即22222323c a b a c =+=-,得2243c a =,椭圆的离心率c e a ==. 故选:D 【点睛】方法点睛:本题考查直线与椭圆的位置关系的综合问题,考查学生的转化和计算能力,属于中档题型,求离心率是圆锥曲线常考题型,涉及的方法包含1.根据,,a b c 直接求,2.根据条件建立关于,a c 的齐次方程求解,3.根据几何关系找到,,a b c 的等量关系求解.9.D解析:D 【分析】设设()0,4E ,由12224PF PF a PF =+=+,可得124P PF PQ PQ F +++=,当且仅当,P Q ,()0,4E 和2F 四点共线时取得最小值,进而可得25EF =,设()2,0F c 即可求出c 的值,进而可求出b 的值,由by x a=±可得渐近线方程. 【详解】设()0,4E ,由双曲线的定义可知:12224PF PF a PF =+=+, 所以124P PF PQ PQ F +++=,当,P Q 在圆心()0,4E 和2F 连线上时,1PF PQ +最小,()2mi 2n 1PFPQ EF =-+,所以2418EF +-=,解得25EF =,设()2,0F c ()0c >5=,解得3c =,因为2a =,所以b =,所以双曲线的渐进线为:2b y x x a =±=±, 故选:D 【点睛】关键点点睛:本题解题的关键点是由双曲线的定义可得124P PF PQ PQ F +++=,利用2,,,P Q E F 共线时()2mi 2n1PF PQEF =-+求出25EF =.10.C解析:C 【分析】利用双曲线的定义可求得12AF a =,24AF a =,利用余弦定理可求得ca的值,利用公式=b a . 【详解】2ABF 为等边三角形,22AB AF BF ∴==,且260ABF ∠=︒,由双曲线的定义可得121212||BF AB AF a B AF F BF =+-==-,212AF AF a -=,24AF a ∴=,在12AF F △中12AF a =,24AF a =,12120F AF ∠=,由余弦定理可得2212121222cos12027F F c AF AF AF AF a ==+-⋅︒=,即7c a =,所以22222216b b c a c a a a a -⎛⎫===-= ⎪⎝⎭. 因此,该双曲线的渐近线的斜率为6±. 故选:C.【点睛】思路点睛:求解双曲线的渐近线的常用思路:(1)定义法:直接利用a ,b ,求得比值,则焦点在x 轴时渐近线by x a=±,焦点在y 轴时渐近线ay x b=±; (2)构造齐次式,利用已知条件,结合222+=a b c ,构建b a 的关系式(或先构建ca的关系式),再根据焦点位置写渐近线即可.11.D解析:D 【分析】设出抛物线方程为22y mx =或22x ny =,代入点的坐标求出参数值可得.【详解】设抛物线方程为22y mx =,则262(3)m =⋅-,3m =-23y x =-, 或设方程为22x ny =,则2(3)26n =⨯,14n =,方程为212x y =. 所以抛物线方程为2123y x =-或212x y =. 故选:D .【点睛】关键点点睛:抛物线的标准方程有四种形式,在不确定焦点位置(或开口方向时),需要分类讨论.象本题在抛物线过一点的坐标,则需要考虑焦点在x 轴和y 轴两种情况,焦点在x 轴上时可以直接设方程为2y mx =,代入点的坐标求出参数值,不必考虑焦点是在x轴正半轴还是在负半轴,焦点在y 轴也类似求解.12.B解析:B 【分析】由椭圆的122PF PF a +==2PQ PF =,所以112PF PQ FQ a +===Q 的轨迹为以()12,0F -为圆心,径的圆,即可求得动点Q 的轨迹方程. 【详解】由2211713x y +=可得:a =,因为122PF PF a +==2PQ PF =,所以112PF PQ FQ a +===所以动点Q 的轨迹为以()12,0F -为圆心, 故动点Q 的轨迹方程为()22268x y ++=. 故选:B. 【点睛】方法点睛:求轨迹方程的常用方法(1)直接法:如果动点满足的几何条件本身就是一些几何量,如(距离和角)的等量关系,或几何条件简单明了易于表达,只需要把这种关系转化为,x y 的等式,就能得到曲线的轨迹方程;(2)定义法:某动点的轨迹符合某一基本轨迹如直线、圆锥曲线的定义,则可根据定义设方程,求方程系数得到动点的轨迹方程;(3)几何法:若所求轨迹满足某些几何性质,如线段的垂直平分线,角平分线的性质,则可以用几何法,列出几何式,再代入点的坐标即可;(4)相关点法(代入法):若动点满足的条件不变用等式表示,但动点是随着另一动点(称之为相关点)的运动而运动,且相关点满足的条件是明显的或是可分析的,这时我们可以用动点的坐标表示相关点的坐标,根据相关点坐标所满足的方程,求得动点的轨迹方程;(5)交轨法:在求动点轨迹时,有时会出现求两个动曲线交点的轨迹问题,这类问题常常通过解方程组得出交点(含参数)的坐标,再消去参数参数求出所求轨迹的方程.二、填空题13.【分析】设椭圆方程为代入直线方程整理就后应用韦达定理结合弦中点横坐标求得关系再由可得得椭圆方程【详解】设椭圆方程为由得所以由题意又所以椭圆方程为故答案为:【点睛】方法点睛:本题考查求椭圆的标准方程解解析:22184x y +=【分析】设椭圆方程为22221(0)x y a b a b+=>>,代入直线方程整理就后应用韦达定理结合弦中点横坐标求得,a b 关系,再由2c =可得,a b 得椭圆方程.【详解】设椭圆方程为22221(0)x y a b a b +=>>,由222213x ya b y x ⎧+=⎪⎨⎪=+⎩,得2222222()690a b x a x a a b +++-=,所以212226a x x a b +=-+,由题意222622a a b-=-⨯+,222a b =, 又2c =,所以22224a b b c -===,28a =,椭圆方程为22184x y +=.故答案为:22184x y +=.【点睛】方法点睛:本题考查求椭圆的标准方程.解题方法是韦达定理.由直线方程与椭圆方程联立方程组,消元后应用韦达定理可得出弦中点坐标,从而得出,a b 的关系.然后结论半焦距c 可求解.14.【分析】求得双曲线的设运用双曲线的定义和三角形的中位线定理可得由相切的性质判断四边形为直角梯形过作垂足为运用直角三角形的勾股定理和向量的夹角的定义和直角三角形的余弦函数的定义计算可得所求值【详解】解【分析】求得双曲线的a , c ,设1PF m =,2PF n =,运用双曲线的定义和三角形的中位线定理可得MN ,由相切的性质判断四边形ABNM 为直角梯形,过N 作NQ AM ⊥,垂足为Q ,运用直角三角形的勾股定理和向量的夹角的定义和直角三角形的余弦函数的定义,计算可得所求值. 【详解】解:因为双曲线22:143x y C -=,所以2a =,227c a b =+= 依题意画出如下图形,设1PF ,2PF 的中点分别为M ,N ,过点N 作NQ AM ⊥交AM 于点Q ,连接MN ,所以12172MN F F ==,设1PF m =,2PF n =,则24m n a -==所以11122AM PF m ==,21122BN PF n ==,所以()122MQ AM BN m n =-=-=,在Rt MNQ 中223NQ MN MQ =-=,因为//NQ BA ,所以MNQ ∠为12,AB F F 的夹角,所以12321cos ,77QN AB F F MN <>===故答案为:217【点睛】本题考查双曲线的定义、方程和性质,以及直线和圆相切的性质,考查直角三角形的勾股定理和锐角三角函数的定义、向量的夹角的概念,考查方程思想和化简运算能力和推理能力.15.①③【分析】设点可得出结合斜率公式可判断A 选项的正误;求出动点的轨迹方程可判断②的正误;根据求出点的轨迹方程可判断③的正误;由求出点的轨迹方程可判断④的正误【详解】设动点的坐标为对于①由于点是双曲线解析:①③ 【分析】设点(),A x y ,可得出2212y x =+,结合斜率公式可判断A 选项的正误;求出动点A 的轨迹方程,可判断②的正误;根据121k k ,求出点A 的轨迹方程,可判断③的正误;由2AB AC =求出点A 的轨迹方程,可判断④的正误. 【详解】设动点A 的坐标为(),A x y .对于①,由于点A 是双曲线2212y x -=上的点,则2212y x =+,所以,22122221112y y y y k k y x x x =⋅===+--,①正确;对于②,21222111y y y k k x x x =⋅==-+--,化简可得2212y x +=,②错误;对于③,21221111y y y k k x x x =⋅==-+--,化简可得221x y +=,③正确;对于④,由2AB AC ==化简可得2251639x y ⎛⎫-+= ⎪⎝⎭, 当点A 为圆2251639x y ⎛⎫-+= ⎪⎝⎭与x 轴的交点时,A 、B 、C 三点无法构成三角形,④错误.故答案为:①③. 【点睛】方法点睛:求动点的轨迹方程有如下几种方法:(1)直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程;(2)定义法:如果能确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程;(3)相关点法:用动点Q 的坐标x 、y 表示相关点P 的坐标0x 、0y ,然后代入点P 的坐标()00,x y 所满足的曲线方程,整理化简可得出动点Q 的轨迹方程;(4)参数法:当动点坐标x 、y 之间的直接关系难以找到时,往往先寻找x 、y 与某一参数t 得到方程,即为动点的轨迹方程;(5)交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程.16.【分析】先求出直线的方程与椭圆方程联立消去x 求出|y1-y2|利用即可求出的面积【详解】由题意得:直线:设则有:消去x 得:7y2+6y-9=0∴即的面积为【点睛】求椭圆(双曲线)的焦点弦三角形的面积【分析】先求出直线l 的方程,与椭圆方程联立,消去x ,求出| y 1- y 2|,利用11212|1|||2F AB S F F y y =-△即可求出1F AB 的面积. 【详解】由题意得: 直线l :1y x =-, 设1122(,),(,)A x y B x y ,则有:2213412y x x y =-⎧⎨+=⎩消去x 得:7y 2+6y -9=0, ∴121269,77y y y y +=-=-12211111|||227|2227F AB S F F y y -∴=⨯=⨯⨯==△即1F AB 【点睛】求椭圆(双曲线)的焦点弦三角形的面积: (1)直接求出弦长|AB |,利用11||2F AB AB d S =△; (2)利用11212|1|||2F AB S F F y y =-△. 17.【分析】作出图形过点作垂直于抛物线的准线于点可得出可知当取最小值时即直线与抛物线相切时最大可求出直线的斜率求出点的坐标利用对称性可求得点的坐标抛物线的焦点弦长公式进而可求得弦的长度【详解】设点为第一 解析:8【分析】作出图形,过点A 作AE 垂直于抛物线218y x =的准线于点E ,可得出1sin AM AF AME=∠,可知当AME ∠取最小值时,即直线AM 与抛物线相切时,AM AF 最大,可求出直线AM 的斜率,求出点A 的坐标,利用对称性可求得点B 的坐标,抛物线的焦点弦长公式,进而可求得弦AB 的长度. 【详解】设点A 为第一象限内的点,过点A 作AE 垂直于抛物线218y x =的准线于点E ,如下图所示:由抛物线的定义可得AE AF =,则1sin AM AM AF AE AME==∠, 可知当AME ∠取最小值时,即直线AM 与抛物线相切时,AMAF最大, 抛物线218y x =的焦点为()0,2F ,易知点()0,2M -. 当直线AM 与抛物线218y x =相切时,直线AM 的斜率存在, 设直线AM 的方程为2y kx =-,联立228y kx x y=-⎧⎨=⎩,消去y 得28160x kx -+=,264640k ∆=-=,因为点A 在第一象限,则0k >,解得1k =,方程为28160x x -+=,解得4x =,此时,228x y ==,即点()4,2A ,此时AB y ⊥轴,由对称性可得()4,2B -, 因此,448AB =+=. 故答案为:8 【点睛】方法点睛:有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式12AB x x p =++或12AB y y p =++,若不过焦点,则必须用一般弦长公式.18.【分析】根据题意结合双曲线性质可知结合整理求得结果【详解】根据题意可知因为P 为线段QF 的中点所以又因为联立解得所以双曲线C 的标准方程为:故答案为:【点睛】思路点睛:该题考查的是有关双曲线方程的求解问解析:2213x y -=【分析】根据题意,结合双曲线性质,可知22bc b a a =,23b a =,结合222c a b =+,整理求得结果.【详解】根据题意,可知2b PF a ==, 因为P 为线段QF 的中点,所以2QF PF =,又因为bcQF a =,联立2222232b abc b a a c a b ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得1a b ==, 所以双曲线C 的标准方程为:2213x y -=.故答案为:2213x y -=.【点睛】思路点睛:该题考查的是有关双曲线方程的求解问题,解题思路如下: (1)根据题意,明确量之间的关系;(2)利用题中条件,建立关于,,a b c 之间的关系,结合222c a b =+,求得,a b 的值,得到结果.19.【分析】根据焦半径公式可得:结合抛物线方程求解出的值【详解】由抛物线的焦半径公式可知:所以故答案为:【点睛】结论点睛:抛物线的焦半径公式如下:(为焦准距)(1)焦点在轴正半轴抛物线上任意一点则;(2 解析:1【分析】根据焦半径公式可得:00524x p x +=,结合抛物线方程求解出0x 的值. 【详解】由抛物线的焦半径公式可知:0015224AF x x =+=,所以01x =, 故答案为:1. 【点睛】结论点睛:抛物线的焦半径公式如下:(p 为焦准距)(1)焦点F 在x 轴正半轴,抛物线上任意一点()00,P x y ,则02p PF x =+;(2)焦点F 在x 轴负半轴,抛物线上任意一点()00,P x y ,则02p PF x =-+; (3)焦点F 在y 轴正半轴,抛物线上任意一点()00,P x y ,则02p PF y =+; (4)焦点F 在y 轴负半轴,抛物线上任意一点()00,P x y ,则02p PF y =-+. 20.【分析】取焦点在轴建立平面直角坐标系由题意及椭圆性质有为椭圆通径得结合及解出代入离心率公式计算即可【详解】解:取焦点在轴建立平面直角坐标系由及椭圆性质可得为椭圆通径所以又解得所以截口所在椭圆的离心率解析:13【分析】取焦点在x 轴建立平面直角坐标系,由题意及椭圆性质有BC 为椭圆通径,得2163b a =,结合24c =及222a b c =+解出,,a b c 代入离心率公式计算即可.【详解】解:取焦点在x 轴建立平面直角坐标系,由12BC F F ⊥及椭圆性质可得,BC 为椭圆通径,所以21163b F B a ==,1224F Fc ==又222a b c =+,解得6,2,a c b ===所以截口BAC 所在椭圆的离心率为13故答案为:13【点睛】求椭圆的离心率或其范围的方法:(1)求,,a b c 的值,由22222221c a b b a a a-==-直接求e ; (2)列出含有,,a b c 的齐次方程(或不等式),借助于222a b c =+消去b ,然后转化成关于e 的方程(或不等式)求解.三、解答题21.(1)2212x y +=;(2)①3k =-;②808,9⎡⎫⎪⎢⎣⎭.【分析】(1)把点代入方程结合离心率列方程组求解即可;(2)①设直线l 方程为,代入椭圆E 的方程可得,结合判别式与韦达定理,利用直线OA ,OB 的斜率之和为34进而求出直线斜率即可;②当直线l 的斜率不存在时,直线l 的方程为0x =,求得8MA MA ⋅=,当直线l 的斜率存在时,由(2)①得28821MA MB k ⋅=++,从而求得范围.【详解】解:(1)由题意得222221,2c a a b c ⎧=⎪⎨⎪=+⎩,解得222a c =,22b c =.设椭圆E 的方程为222212x y c c +=,又因为点1,2P ⎛⎫ ⎪ ⎪⎝⎭在椭圆E 上, 所以222211122c c+=,22222,1c a b ===,所以椭圆E 的方程为2212x y +=;(2)①设直线l 方程为:3y kx =+,代入椭圆E 的方程可得,()222112160kx kx +++=因为直线l 与椭圆E 有两个交点,所以216640∆=->k ,即24k >. 设()11,A x y ,()22,B x y ,则1221221k x x k +=-+,1221621x x k ⋅=+, 11223,3y kx y kx =+=+.又()1212121233244OA OB x x y y k k k k x x x x ++=+=+=-=⋅ 解得3k =-,经检验成立.所以,直线l 的斜率3k =-; ②当直线l 的斜率不存在时,直线l 的方程为0x =,将0x =代入2212x y +=,解得1y =±,则(0,1)A ,(0,1)B -,8MA MA ⋅=当直线l 的斜率存在时,由(2)①得()()()()22121212216133121k MA MA x x y y k x x k +⋅=⋅+--=+⋅=+()2228211882121k k k ⎡⎤++⎣⎦==+++因为24k >,所以MA MA ⋅的范围为808,9⎛⎫⎪⎝⎭.综上,得MA MB ⋅的取值范围是808,9⎡⎫⎪⎢⎣⎭. 【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.22.(1)2212x y +=;(2.【分析】(1)根据椭圆离心率为2,以及椭圆经过点2A ⎛⎫ ⎪ ⎪⎝⎭,结合椭圆的性质列方程求解即可;(2)设()00,P x y ,题意可知,切线l 的方程为0022x x y y +=,过原点O 且与l 平行的直线'l 的方程为0020x x y y +=,求出Q 的坐标,表示出PQ 的长,再化简即可得结论. 【详解】(1)由题意知2222221112c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩1a b ⎧=⎪⇒⎨=⎪⎩∴椭圆C 的方程为2212x y +=.(2)设()00,P x y ,题意可知,切线l 的方程为0022x x y y +=, 过原点O 且与l 平行的直线'l 的方程为0020x x y y +=, 椭圆C 的右焦点()1,0F ,所以直线PF 的方程为()00010y x x y y ---=, 联立()000001020y x x y y x x y y ⎧---=⎨+=⎩,所以2000002,22y x y Q x x ⎛⎫-⎪--⎝⎭,所以PQ =====为定值. 【点睛】方法点睛:探索圆锥曲线的定值问题常见方法有两种:① 从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;② 直接推理、计算,并在计算推理的过程中消去变量,从而得到定值. 23.(1)28x y =;(2) 【分析】(1)由题中条件,根据抛物线的定义,得到242p+=,求出p ,即可得出抛物线方程; (2)先由(1)得到焦点坐标,得出直线l 的方程,设()11,A x y ,()22,B x y ,联立直线与抛物线方程,结合韦达定理,以及抛物线的焦点弦公式,求出弦长AB ,再由点到直线距离公式,以及三角形面积公式,即可求出结果. 【详解】(1)因为抛物线2:2(0)C x py p =>上一点(),2P m 到其焦点F 的距离为4,所以242p+=,解得4p =, 所以抛物线C 的方程为28x y =; (2)由(1)可得,()0,2F ;则过点F 且斜率为1的直线l 的方程为:2y x =+,即20x y -+=, 设()11,A x y ,()22,B x y ,由228y x x y=+⎧⎨=⎩消去x ,整理得21240y y -+=, 则1212y y +=,因此1212416AB AF BF y y p =+=++=+=, 又点O 到直线20x y-+=的距离为d ==,所以OAB 的面积为12OABS AB d ==. 【点睛】 思路点睛:求解圆锥曲线中三角形的面积问题时,一般需要联立直线与曲线方程,结合韦达定理,弦长公式,以及三角形面积公式,即可得出三角形的面积. 24.(1)124tan 3F AF ∠=,直线l 的方程为210x y --=;(2)不存在,理由见解析.。
第三章 圆锥曲线与方程单元测试(解析版)

2021-2022学年高二数学同步精品课堂讲、例、测(苏教版2019选择性必修第一册)第三章圆锥曲线与方程一、单选题1.不垂直于坐标轴的直线l 与双曲线()222210,0x y a b a b-=>>的渐近线交于A ,B 两点,若线段AB 的中点为M ,AB 和OM 的斜率满足2AB OM k k ⋅=,则顶点在坐标原点O ,焦点在x轴上,且经过点(P a 的抛物线方程是()A .24y x =B .22y x=C.2y =D.22y x =【答案】C【分析】运用点差法得到222AB OM b k k a⋅==得解【详解】设1122(,),(,)A x y B x y ,则22112222222200x y a b x y a b ⎧-=⎪⎪⎨⎪-=⎪⎩,相减得,1212121222()()()()0x x x x y y y y a b +-+--=,所以2121221212y y y y b x x x x a -+⋅=-+,即12212212120202y y y y b x x x x a +--⋅=+--,所以222AB OM b k k a⋅==,b a =22(0)y px p =>,则22,pa p ==.于是所求抛物线方程是2y =.故选:C .2.双曲线C :()222210,0x y a b a b-=>>的右焦点为2F ,过点2F 且倾斜角为3π的直线与双曲线右支交于A ,B两点,则双曲线离心率的取值范围为()A .()1,2B.(C.)+∞D .()2,+∞【答案】A【分析】根据题意,直线l 的斜率为k 进而作出图形,数形结合得b a <故2c e a ==<=,进而得12e <<.【详解】因为过2F 的直线l 的倾斜角为3π,所以直线l 的斜率为tan3k π==因为直线l 与双曲线右支交于A ,B 两点,如图所示:由图象知:ba<,所以2c e a ==<=,又1e >,所以12e <<,故选:A .3.双曲线2222:1(0,0)x y E a b a b-->>的左右焦点分别为1F 、2F ,过点2F 的直线与圆222x y a +=相切于点A ,与双曲线左支交于点P ,且112||PF F F =,则双曲线的离心率为()A B .2C .73D .53【答案】D【分析】根据题意,作出图形,结合定义可得222PF a c =+,由21cos 2a c PF F c +∠=与21cos bPF F c∠=,化简求值即可【详解】在12PF F △中,112PF F F =,222PF a c =+,由余弦定理可知,21cos 2a cPF F c+∠=,在2Rt F O A △中,21cos b PF F c ∠=,2a c bc c+∴=,化简可得:223250c ac a --=,53e ∴=.故选:D.4.已知1F ,2F 是椭圆2212516x y +=的左右焦点,P 是椭圆上任意一点,过1F 引12 ∠F PF 的外角平分线的垂线,垂足为Q ,则Q 与短轴端点的最近距离为()A .4B .3C .2D .1【答案】D 【分析】根据角平分线的性质和椭圆的定义可得OQ 是12F F M △的中位线,||5OQ a ==,可得Q 点的轨迹是以O 为圆心,以5为半径的圆,由此可得选项.【详解】P 是焦点为1F 、2F 的椭圆2212516x y +=上一点,PQ 12F PF ∠的外角平分线,1QF PQ ⊥,设1FQ 的延长线交2F P 的延长线于点M ,1∴=PM PF ,12210+== PF PF a ,22||210∴=+==MF PM PF a ,由题意知OQ 是12F F M △的中位线,||5∴==OQ a ,Q ∴点的轨迹是以O 为圆心,以5为半径的圆,∴当点Q 与y 轴重合时,Q 与短轴端点取最近距离541=-=-=d a b,故选:D .5.已知直线AB 过抛物线24y x =的焦点F ,点B 关于x 轴的对称点为1B ,直线1AB 与x 轴相交于(),0C m 点,则实数m 的值为()A .1-B .2-C .32-D .12-【答案】A【分析】设抛物线的准线与x 轴交于1C ,过点A ,B 分别作准线的垂线,垂足为M ,N ,可证得11~AMC BNC ,有11AC F BC F ∠=∠,所以点1C 与点C 重合,故得解.【详解】设抛物线的准线与x 轴的交点为1C ,过点,A B 分别作准线的垂线,垂足分别为,M N .因为1////AM FC BN ,所以11MC AF AM NC BF BN==,又因为01190AMC BNC ∠=∠=,所以11~AMC BNC ,所以11MAC NBC ∠=∠,即11AC F BC F ∠=∠,因为点B 关于x 轴的对称点为1B ,所以点1C 与点C 重合,所以1m =-.故选:A6.已知椭圆22:13620x y C +=的右焦点是F ,直线()0y kx k =≠与椭圆C 交于A 、B 两点,则222AF BF +的最小值是()A .36B .48C .72D .96【答案】D【分析】求得2AF BF a +=,结合a c BF a c -<<+,利用二次函数的基本性质可求得222AF BF +的最小值.【详解】设椭圆C 的左焦点为F ',在椭圆C 中,6a =,b =4c ==,由题意可知,点A 、B 关于原点对称,且O 为FF '的中点,所以,四边形AFBF '为平行四边形,所以,BF AF '=,由椭圆的定义可得212AF BF AF AF a '+=+==,0k ≠ ,a c BF a c ∴-<<+,即210BF <<,()()2222222122324144349696AF BF BFBF BF BF BF ∴+=-+=-+=-+≥,当且仅当4BF =时,等号成立,因此,222AF BF +的最小值为96.故选:D.【点睛】关键点点睛:解决本题的关键在于以下几点:(1)问题中出现了焦点,一般利用相应曲线的定义,本题中利用对称性结合椭圆定义可得出AF BF +;(2)利用椭圆的几何性质得出焦半径的取值范围.7.已知圆22(2)9x y ++=的圆心为C ,过点(2,0)M 且与x 轴不重合的直线l 交圆C 于A 、B 两点,点A 在点M 与点B 之间,过点M 作直线AC 的平行线交直线BC 于点P ,则点P 的轨迹是()A .圆的一部分B .椭圆的一部分C .双曲线的一部分D .抛物线的一部分【答案】C 【分析】根据题意找出几何关系CAB CBA ∠=∠,得到CAB AMP ∠=∠,所以PM PB =,即可得到--3PM PC PB PC BC ===,可求点P 的轨迹.【详解】由已知条件可知AC BC =,所以三角形是等腰三角形,CAB CBA ∠=∠,因为//MP AC 所以CAB AMP∠=∠则三角形BMP 是等腰三角形,PM PB =所以--3||4PM PC PB PC BC MC ===<=所以点P 的轨迹是双曲线的左支.故选:C【点睛】考查数形结合解集动点轨迹问题,本题的关键是根据图形,确定PM PM =.8.平面直角坐标系xOy 中,直线:(2)(0)l y k x k =+>与抛物线2:8C y x =相交于AB 、两点,F 为C 的焦点,若2FA FB =,则点A 到y 轴的距离为()A .3B .4C .5D .6【答案】B【分析】根据题意画出图形,抛物线的准线为':2l x =-,直线:(2)(0)l y k x k =+>恒过定点(2,0)P -,过,A B分别作'AM l ⊥于M ,'BN l ⊥于N ,根据抛物线的定义和已知条件可得点B 为AP 的中点,进而可得点B 的横坐标为1,则26AM BN ==从而可求出答案【详解】解:设抛物线2:8C y x =的准线为':2l x =-,直线:(2)(0)l y k x k =+>恒过定点(2,0)P -,如图过,A B 分别作'AM l ⊥于M ,'BN l ⊥于N ,因为2FA FB =,所以2AM BN =,所以点B 为AP 的中点,连接OB ,则12OB AF =,所以OB BF =,所以点B 的横坐标为1,所以26AM BN ==,所以点A 到y 轴的距离为4,故选:B【点睛】考查直线与抛物线的位置关系,考查抛物线的定义的应用,解题的关键是根据题意画出图形,灵活运用抛物线的定义9.如图,O 是坐标原点,P 是双曲线2222:1(0,0)x y E a b a b-=>>右支上的一点,F 是E 的右焦点,延长PO ,PF 分别交E 于Q ,R 两点,已知QF ⊥FR ,且||2||QF FR =,则E 的离心率为()A 174B 173C 214D 213【答案】B【分析】令双曲线E 的左焦点为F ',连线即得PFQF ' ,设FR m =,借助双曲线定义及直角F PR ' 用a 表示出|PF|,||PF ',再借助Rt F PF ' 即可得解.【详解】如图,令双曲线E 的左焦点为F ',连接,,PF QF RF ''',由对称性可知,点O 是线段PQ 中点,则四边形PFQF '是平行四边形,而QF ⊥FR ,于是有PFQF ' 是矩形,设FR m =,则|||2∣PF FQ m '==,||22PF m a =-,||2,||32RF m a PR m a '=+=-,在Rt F PR ' 中,222(2)(32)(2)m m a m a +-=+,解得43am =或m =0(舍去),从而有82,||33a a PF PF ='=,Rt F PF ' 中,22282433a a c ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,整理得22179c a =,173c e a ==所以双曲线E 的离心率为173.故选:B10.已知椭圆E :2212x y +=的左焦点为F ,过点P (2,t )作椭圆E 的切线PA 、PB ,切点分别是A 、B ,则三角形ABF 面积最大值为()A 2B .1C .2D .43【答案】A【分析】设11(,)A x y ,22(,)B x y ,并求出切线PA 、PB 的方程,进而求出直线AB 方程,并确定其过定点(1,0),且定点为椭圆的右焦点2F ,再联立方程求得12222t y y t +=+,12212y y t -=+,再表示出ABF S = 本不等式求出范围即可.【详解】由椭圆方程2212x y +=,知222,1a b ==,21c ∴=(1,0)F ∴-,设右焦点为2(1,0)F ,即22FF =设11(,)A x y ,22(,)B x y ,由椭圆的切线方程可知切线PA 的方程为1112x x y y +=,切线PB 的方程为2212x xy y +=由于点P 在切线PA 、PB 上,则112211x ty x ty +=⎧⎨+=⎩,故直线AB 方程为1x ty +=,所以直线AB 过定点(1,0),且定点为椭圆的右焦点2F ,联立方程22112x ty x y +=⎧⎪⎨+=⎪⎩,消去x 得:22(2)210t y ty +--=由韦达定理得12222ty y t +=+,12212y y t -=+,21211||222ABF S FF y y ∴=⨯⨯-=⨯V =1m =≥,则221t m =-,12m m+≥,则11012m m<≤+(ABFS m m===+,当且仅当1m =,即0t =时,等号成立,故三角形ABF 故选:A【点睛】考查椭圆的切线方程,直线与椭圆的位置关系,考查利用基本不等式求三角形的面积得最值,解题的关键是清楚椭圆方程22221x y a b+=在椭圆上一点00(,)P x y 的切线方程为00221x x y x a b +=.二、多选题11.已知抛物线E :2y x =,O 为坐标原点,一束平行于x 轴的光线1l 从点41,116P ⎛⎫⎪⎝⎭射入,经过E 上的点()11,A x y 反射后,再经E 上的另一点()22,B x y 反射后,沿直线2l 射出,经过点Q ,则()A .12116x x =B .54AB =C .ABP QBP ∠=∠D .延长AO 交E 的准线于点C 则存在实数λ使得CB CQλ=uur uuu r【答案】ACD【分析】根据抛物线的光学性质可知,直线AB 经过抛物线的焦点,直线2l 平行于x 轴,由此可求出点,A B 的坐标,判断各选项的真假.【详解】如图所示:因为141,1,16P l ⎛⎫ ⎪⎝⎭过点P 且1//l x 轴,故(1,1)A ,故直线101:1414AF y x -⎛⎫=⋅- ⎪⎝⎭-化简得4133y x =-,由24133y x y x ⎧=-⎪⎨⎪=⎩消去x 并化简得231044y y --=,即1214y y =-,()21212116x x y y ==,故A 正确;又11y =,故214y =-,B 11,164⎛⎫- ⎪⎝⎭,故1211251216216p AB x x =++=++=,故B 错误;因为412511616AP AB =-==,故APB △为等腰三角形,所以ABP APB ∠=∠,而12l l //,故PBQ APB ∠=∠,即ABP PBQ ∠=∠,故C 正确;直线:AO y x =,由14y xx =⎧⎪⎨=-⎪⎩得11,,44C ⎛⎫-- ⎪⎝⎭故C B y y =,所以C ,B,Q 三点共线,故D 正确.故选:ACD .12.定义:以双曲线的实轴为虚轴,虚轴为实轴的双曲线与原双曲线互为共轭双曲线.以下关于共轭双曲线的结论正确的是()A .与()222210,0x y a b a b -=>>共轭的双曲线是()222210,0y x a b a b-=>>B .互为共轭的双曲线渐近线不相同C .互为共轭的双曲线的离心率为1e 、2e 则122e e ≥D .互为共轭的双曲线的4个焦点在同一圆上【答案】CD【分析】由共轭双曲线的定义可判断A 选项的正误;利用双曲线的渐近线方程可判断B 选项的正误;利用双曲线的离心率公式以及基本不等式可判断C 选项的正误;求出两双曲线的焦点坐标以及圆的方程,可判断D 选项的正误.【详解】对于A 选项,由共轭双曲线的定义可知,与()222210,0x y a b a b -=>>共轭的双曲线是()222210,0y x a b b a-=>>,A 错;对于B 选项,双曲线()222210,0x y a b a b-=>>的渐近线方程为b y x a =±,双曲线()222210,0y x a b b a-=>>的渐近线方程为b y x a =±,B 错;对于C 选项,设c ,双曲线22221x y a b -=的离心率为1c e a =,双曲线22221y x b a-=的离心率为2c e b =,所以,222122c b a b a e e ab ab a b +===+≥=,当且仅当a b =时,等号成立,C 对;对于D 选项,设c 22221x y a b-=的焦点坐标为(),0c ±,双曲线22221y x b a-=的焦点坐标为()0,c ±,这四个焦点都在圆222x y c +=上,D 对.故选:CD.13.已知焦点在y 轴,顶点在原点的抛物线1C ,经过点()2,2P ,以1C 上一点2C 为圆心的圆过定点()0,1A ,记M ,N 为圆2C 与x 轴的两个交点()A .抛物线1C 的方程为22x y=B .当圆心2C 在抛物线上运动时,MN 随2C 的变化而变化C .当圆心2C 在抛物线上运动时,记||AM m =,||AN n =,m nn m+有最大值D .当且仅当2C 为坐标原点时,AM AN ⊥【答案】ACD【分析】由已知,设抛物线方程为22x py =,将点()2,2P 代入即可判断A 选项;设圆心22,2a C a ⎛⎫⎪⎝⎭,求出圆的半径,写出圆的方程,令0y =,可求得M 、N ,由此可判断B 选项;设(1,0)M a -,(1,0)N a +,根据条件可求得m nn m+,利用基本不等式讨论即可判断C 选项;再根据222||||||AM AN MN +≥可判断D 选项.【详解】解:由已知,设抛物线方程为22x py =,2222p =⨯,解得1p =.所求抛物线C 的方程为22x y =,故A 正确;设圆心22,2a C a ⎛⎫ ⎪⎝⎭,则圆的半径r =圆2C 的方程为222222()122a a x a y a ⎛⎫⎛⎫-+-=+- ⎪ ⎪⎝⎭⎝⎭,令0y =,得22210x ax a -+-=,得11x a =-,21x a =+,12||2MN x x =-=(定值),故B 不正确;设(1,0)M a -,(1,0)N a +,m =n ==,222m n m n n m mn ++===当0a =时,2m nn m+=,当0a ≠时,m n n m +=≤,故当且仅当a =m nn m+取得最大值为,故C 正确;由前分析,2222||||24||4AM AN a MN +=+≥=,即2222224a a a a -++++=,当且仅当0a =时,222||||||AM AN MN +=,故D 正确;故选:ACD .14.已知椭圆C :()222210x y a b a b+=>>的左、右端点分别为1A ,2A ,点P ,Q 是椭圆C 上关于原点对称的两点(异于左右端点),且1212PA PA k k ⋅=-,则下列说法正确的有()A .椭圆C 2B .椭圆C 的离心率不确定C .11PA QA k k ⋅的值受点P ,Q 的位置影响D .12cos A PA ∠的最小值为13-【答案】AD 【分析】设(,)P x y ,则2222(1x y b a =-,从而可得1222A P A P b k k a ⋅=-,再结合已知条件可得2212b a =,进而可求出椭圆的离心率,可对A ,B 选项判断;由已知条件可得四边形12A PA Q 为平行四边形,则有12A Q PA k k =,结合已知条件可得1112PA QA k k ⋅=-,从而可知11PA QA k k ⋅的值不受点P ,Q 的位置影响,设1221,PA A PA A αβ∠=∠=,由题意得1tan tan 2αβ⋅=,则结合基本不等式可得12tan A PA ∠≤-P 为短轴的端点时12A PA ∠最大,进而可求出12cos A PA ∠的最小值【详解】解:设(,)P x y ,则2222(1)xy b a=-,因为12(,0),(,0)A a A a -,所以1222222A P A P y y y b k k x a x a x a a ⋅=⋅==-+--,因为1212PA PA k k ⋅=-,所以2212b a -=-,所以2212b a =,所以离心率2e ===,所以A 正确,B 错误;因为点P ,Q 是椭圆C 上关于原点对称的两点,所以四边形12A PA Q 为平行四边形,所以12A Q PA k k =,因为1212PA PA k k ⋅=-,所以1112PA QA k k ⋅=-,不受P ,Q 位置影响,所以C 错误;设1221,PA A PA A αβ∠=∠=,由题意得1tan tan 2αβ⋅=,则有12A PA παβ∠=--,所以12tan tan tan tan()tan()1tan tan A PA αβπαβαβαβ+∠=--=-+=-≤--当且仅当tan tan αβ=时取等号,即当αβ=时,即当点P 为短轴的端点时12A PA ∠最大,此时12cos A PA ∠最小,1212A PA A PO ∠=∠,111sin AO A PO A P ∠===,所以2121121cos cos 212sin 1233A PA A PO A PO ∠=∠=-∠=-⨯=-,所以D 正确,故选:AD.【点睛】考查椭圆的性质的应用,考查计算能力和转化思想,解题的关键是由1212PA PA k k ⋅=-可得2212b a =,从而可求出椭圆的离心率,设1221,PA A PA A αβ∠=∠=,则有1tan tan 2αβ⋅=,再结合基本不等式可得12tan tan tan tan()tan()1tan tan A PA αβπαβαβαβ+∠=--=-+=-≤--,从而可知当点P 为短轴的端点时12A PA ∠最大,进而可得答案,属于中档题三、填空题15.已知椭圆2222:1(0)x y C a b a b+=>>,过右焦点FC 相交于A ,B 两点,若12AF FB =,则椭圆C 的离心率为____.【答案】23【分析】数形结合,使用椭圆的第二定义进行计算,得到,BE AB ,然后利用cos BE ABE AB∠=计算即可.【详解】如图,作AD 垂直右准线交右准线于点D ,作BC 垂直右准线交右准线于点C 作AE 垂直BC 于点E由12AF FB =,设,2AF m FB m == ,则3AB m =由2,AF FB m mAD AD e e e e====所以mBE BC AD e=-=,又直线AB 360ABE AFx ∠=∠= 所以112cos 323BE ABE e ABe ∠===⇒=故答案为:2316.双曲线22221x y a b-=的离心率为2,过其左支上一点M 作平行于x 轴的直线交渐近线于P 、Q 两点,若4PM MQ ⋅=,则该双曲线的焦距为________.【答案】8【分析】设()00,M x y ,写出渐近线方程,即可得00,a P y y b ⎛⎫- ⎪⎝⎭,00,a Q y y b ⎛⎫⎪⎝⎭,结合4PM MQ ⋅=可得222024a x y b=-,由()00,M x y 在双曲线上可求出24a =,结合离心率可求出4c =,即可求出焦距.【详解】解:设()00,M x y ,则2200221x y a b-=,双曲线渐近线方程为b y x a =±,所以当0y y =时,0a x y b =±,即00,a P y y b ⎛⎫- ⎪⎝⎭,00,a Q y y b ⎛⎫⎪⎝⎭,因为//PQ x 轴,所以00a MP y x b =--,00a MQ y x b =-,则2220024P x M a M bQ y =-⋅=,又2200221x y a b-=,即2222002a y x a b -=,所以24a =,即2a =,则离心率22c c e a ===,所以4c =,所以焦距为28c =,故答案为:8.【点睛】考查了双曲线的离心率,双曲线的渐近线方程.本题的关键是求出a 的值.17.已知抛物线2:2(0)E y px p =>的焦点为F ,O 为坐标原点,点A 在E 上,且2AF OF =,若OA ,则p =______.【答案】【分析】设()00,A x y ,进而结合抛物线的定义与已知条件得,2p A p ⎛⎫± ⎪⎝⎭,进而由OA =解得答案.【详解】解:设()00,A x y ,由题知,02p F ⎛⎫⎪⎝⎭,2p OF =,因为2AF OF =,所以2AF p OF ==因为点A 在E 上,所以02F x p A p +==,解得02px =,所以,2p A p ⎛⎫± ⎪⎝⎭,所以2OA =,解得p =故答案为:18.已知椭圆G :22216x y b+=(0b <<1F ,2F ,短轴的两个端点分别为1B ,2B ,点P 在椭圆C 上,且满足1212PF PF PB PB +=+,当m 变化时,给出下列四个命题:①点P 的轨迹关于y轴对称;②存在m 使得椭圆C 上满足条件的点P 仅有两个;③OP 的最小值为2;④OP ,其中正确命题的序号是__.【答案】①③【分析】运用椭圆的定义和对称性进行分析即可判断①②;由图象可得当P 的横坐标和纵坐标的绝对值相等时,OP 的值取得最小,即可判断③;点P 靠近坐标轴时,OP 越大,点P 远离坐标轴时,OP 越小,易得2 3m =2=,可得OP 的最小值为2,即可判断③;椭圆上的点到中心的距离小于等于a ,由于点P 不在坐标轴上,可得OP <.【详解】由椭圆的对称性及1212PF PF PB PB +=+,所以可得以1B ,2B 为焦点的椭圆为椭圆222166y xm +=-,则点P 为椭圆22216x y m +=与椭圆222166y x m+=-的交点,因为椭圆G 的长轴顶点()椭圆222166y x m+=-的长轴顶点(0,所以两个椭圆的交点有4个,①正确②不正确,点P 靠近坐标轴时(0m →或m →,OP 越大,点P 远离坐标轴时,OP 越小,易得2 3m =时,取得最小值,此时两椭圆方程为:22163x y +=,22163y x +=,两方程相加得222222x y +=⇒=,即OP 的最小值为2,③正确;椭圆上的点到中心的距离小于等于a ,由于点P 不在坐标轴上,∴OP <故答案为:①③.【点睛】考查椭圆的对称性和到定点距离的最值的判断,解题关键是由椭圆上的点到焦点的距离之和等于到短轴的顶点距离之和可得另一个椭圆.四、解答题19.已知椭圆2222:1(0)x y E a b a b +=>>的离心率为2,依次连结E的四个顶点构成的四边形面积为(1)求E 的方程;(2)设E 的左,右焦点分别为1F ,2F ,经过点(2,0)M -的直线l 与E 交于A ,B 两点,且12//F A F B ,求l 的斜率.【答案】(1)2212x y +=;(2)12或12-.【分析】(1)由题意可得:22ab ==⎪⎩,解方程组即可求解;(2)设直线l 的方程为2x ty =-,联立222,1,2x ty x y =-⎧⎪⎨+=⎪⎩利用根与系数的关系,再结合1//2F A F B 的坐标关系,建立等式即可求解【详解】(1)依题意可得:22ab ==⎪⎩解得a =1b =,所以椭圆E 的方程为2212x y +=.(2)由题可知:直线l 的斜率存在且不为零,故设直线l 的方程为2x ty =-,设()11,A x y ,()22,B x y ,由(1)可知:1(1,0)F -,2(1,0)F ,则()1111,F A x y =+ ,()2221,F B x y =-,因为1//2F A F B,所以()()122111x y x y +=-,10y ≠,20y ≠,化简得213y y =,所以1214y y y +=,21213y y y ⋅=,得()()21212163y y y y ⋅+=.联立222,1,2x ty x y =-⎧⎪⎨+=⎪⎩消去x 得,()222420t y ty +-+=,由0∆>得22t >,12242t y y t +=+,12222y y t =+,则()222216162322t t t=++,解得2t =或2t =-,故l 的斜率为12或12-.20.已知点()4,0M -,()4,0N ,动点P满足条件PM PN -=P 的轨迹为C .(1)求C 的方程;(2)过曲线C 的一个焦点作倾斜角为45°的直线l 与曲线C 交于A ,B 两点,求AB .【答案】(1)221124x y -=;(2)AB =.【分析】(1)先判断出轨迹为双曲线,然后根据焦点坐标和实轴长度求解出双曲线的方程;(2)写出直线l 的方程,联立直线方程与双曲线的方程,利用弦长公式求解出AB .【详解】解:(1)因为8PM PN MN -=<=,所以点P 的轨迹是以,M N为焦点,实轴长为所以24a c ==,所以222212,16124a b c a ==-=-=,所以C 的方程为:221124x y -=;(2)不妨设焦点()4,0F ,则直线l :4y x =-由2241124y x x y =-⎧⎪⎨-=⎪⎩消去y 得:212300x x -+=.设()11,A x y ,()22,B x y ,则1212x x +=,1230x x =,所以AB ===21.平面直角坐标系中,点()1,0F ,直线l :3x =-.动点P 到l 的距离比线段PF 的长度大2,记P 的轨迹为E .(1)求E 的方程;(2)设点()()1,0A t t >在E 上,C ,D 为E 上异于A 的两个动点,且直线AC ,AD 的斜率互为相反数,求证:直线CD 的斜率为定值,并求出该定值.【答案】(1)24y x =;(2)证明见解析,1-.【分析】(1)依题意,线段PF 的长度等于P 到l ':1x =-的距离,由抛物线定义可得其方程;(2)设直线CD 方程为y kx b =+(0k ≠),与E 联立得()222240k x bk x b +-+=,由“直线AC ,AD 的斜率互为相反数”结合韦达定理得()2120k b k b +-+-=,进而可证得结果.【详解】(1)由已知,线段PF 的长度等于P 到l ':1x =-的距离,则点P 的轨迹是以()1,0F 为焦点,l ':1x =-为准线的抛物线,所以,E 的方程为24y x =.(2)将1x =代入24y x =得2t =.则()1,2A 易知直线CD 斜率存在,设为k ,知0k ≠,直线CD 方程为y kx b =+.由24,y x y kx b⎧=⎨=+⎩得()222240k x bk x b +-+=.则242C D bk x x k -+=,22C D b x x k=.①则2211D D AD D D y kx b k x x -+-==--,2211C C AC C C y kx b k x x -+-==--,因为直线AC ,AD 的斜率互为相反数,所以,()()()()()22222201111C D C D C D AC AD C D C D kx x b k x x b kx b kx b k k x x x x +--+--+-+-+=+==----,则()()()22220C D C D kx x b k x x b +--+--=.②联立①②,得()2120k b k b +-+-=,所以1k =-或2k b =-.若2k b =-,则CD 的方程为()212y kx k k x =+-=-+,恒过点()1,2A ,不合题意;所以1k =-,即直线CD 的斜率为定值1-.22.已知椭圆C 的右焦点为(1,0)F ,点A 为椭圆C 的上顶点,过点F 与x 轴垂直的直线与椭圆C 相交于P ,Q 两点,且3PQ =.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线l 的倾斜角为30°,且与椭圆C 交于M ,N 两点,问是否存在这样的直线l 使得0FA FM FN ++= ?若存在,求l 的方程;若不存在,说明理由.【答案】(Ⅰ)22143x y +=;(Ⅱ)不存在,理由见解析.【分析】(1)根据题给条件,建立关于a ,b ,c 的方程即可求出结果.(2)这是典型的解析几何存在性问题,先假设满足条件的直线存在,由题给条件设直线的方程,根据题中的向量等式,求解出直线方程,从而得出结论.【详解】(1)设椭圆C 的标准方程为22221(0)x y a b a b+=>>,根据题意可得2222123c b a a b c=⎧⎪⎪=⎨⎪=+⎪⎩,解得123c a b ⎧=⎪=⎨⎪=⎩,所以椭圆C 的标准方程为22143x y +=.(2)由题及(1)知,(03),(1,0)A F ,,假设存在直线l 满足题意,并设直线l 的方程为:33y x t =+,()11,M x y ,()22,N x y .由223143y x t x y ⎧=+⎪⎪⎨⎪+=⎪⎩,得()2213831230x tx t ++-=,由()22Δ)4131230t =-⨯⨯->,得12,3313t x x -<<+=-.由题意知:点F 为AMN 的重心,所以123A F x x x x ++=,即03+=,解得t =当t =t <所以不存在直线l ,使得0FA FM FN ++= .。
高中数学 第二章 圆锥曲线与方程单元测试1 北师大版选修11

第二章 圆锥曲线与方程(时间:100分钟,满分:120分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.双曲线x 2-y 2=3的渐近线方程为( ) A .y =±x B .y =±3xC .y =±3xD .y =±33x解析:选A.双曲线的标准方程为x 23-y 23=1,故其渐近线方程为y =±bax =±x .2.抛物线y 2=8x 的焦点坐标是( ) A .(4,0) B .(2,0) C .(0,2) D .(0,4) 解析:选B.y 2=8x 的焦点坐标为(p2,0),即(2,0).3.若双曲线x 216-y 220=1上一点P 到它的右焦点的距离是9,那么点P 到它的左焦点的距离是( )A .17B .17或1C .45+9D .以上都错解析:选B.设F 1,F 2为其左、右焦点,由双曲线定义|||PF 1|-|PF 2|=|||PF 1|-9=2a =8,所以|PF 1|=1或17.4.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右两个焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则椭圆C 的离心率是( )A.36B.13C.12D.33解析:选D.因为|F 1F 2|=2c ,所以|PF 2||F 1F 2|=tan 30°,所以|PF 2|=233c ,|PF 1|=2|PF 2|=43c3.由椭圆定义:|PF 1|+|PF 2|=23c =2a ,故e =c a =33.5.已知抛物线y =2px 2(p >0)的准线与圆x 2+y 2-4y -5=0相切,则p 的值为( ) A .10 B .6 C.18 D.124解析:选C.抛物线方程可化为x 2=12py (p >0),由于圆x 2+(y -2)2=9与抛物线的准线y=-18p 相切,所以3-2=18p ,所以p =18.6.设F 1,F 2是双曲线x 23-y 2=1的两个焦点,过右焦点F 2作倾斜角为π4的弦AB ,则△F 1AB的面积为( )A. 6 B .2 6 C.233 D.433解析:选B.直线AB 的方程为y =x -2,将其代入x 23-y 2=1,整理得:2x 2-12x +15=0,因为x 1+x 2=6,x 1x 2=152,所以y 1+y 2=x 1-2+x 2-2=2.y 1y 2=(x 1-2)(x 2-2)=-12.|y 1-y 2|=(y 1+y 2)2-4y 1y 2= 6.S △F 1AB =12|F 1F 2||y 1-y 2|=12×4×6=2 6.7.若直线l 过点(3,0)与双曲线4x 2-9y 2=36只有一个公共点,则这样的直线有( ) A .1条 B .2条 C .3条 D .4条 解析:选C.双曲线方程可化为x 29-y 24=1,知(3,0)为双曲线的右顶点,故符合要求的直线l 有3条,其中一条是切线,另两条是交线(分别与两渐近线平行).8.已知定直线l 与平面α成60°角,点P 是平面α内的一动点,且点P 到直线l 的距离为3,则动点P 的轨迹是( )A .圆B .椭圆的一部分C .抛物线的一部分D .椭圆解析:选D.以l 为轴,底面半径为3的圆柱被与l 成60°的平面α所截,截面边界线为椭圆.9.已知椭圆x 2a 2+y 2b 2=1(a >b >0)与双曲线x 2-y 22=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的标准方程是( )A.x 22+y 2=1B.x 23+y 24=1C.x 29+y 26=1 D.x 225+y 220=1 解析:选C.因为双曲线的离心率为31=3,所以椭圆的离心率为33,即c a =33,又因为a 2-b 2=c 2=3,所以a =3,b = 6.故椭圆的标准方程为x 29+y 26=1.10.已知抛物线x 2=4y 上有一条长为6的动弦AB ,则AB 中点到x 轴的最短距离S 为( )A.34B.32 C .1 D .2解析:选D.设A (x 1,y 1),B (x 2,y 2).抛物线准线方程为y =-1.根据梯形中位线定理,得所求距离为:S =y 1+y 22=y 1+1+y 2+12-1,由抛物线定义得S =|AF |+|BF |2-1≥|AB |2-1=2,当A 、B 、F 三点共线时取等号,故选D.二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上) 11.双曲线x 24-y 2=1的离心率等于________.解析:因为a =2,b =1,所以c =a 2+b 2=5,所以e =c a =52. 答案:5212.与椭圆x 24+y 2=1共焦点且过点P (2,1)的双曲线方程是________.解析:由此双曲线与x 24+y 2=1共焦点,故该双曲线可设为x 2a 2-y 23-a 2=1,将(2,1)代入双曲线得a 2=2.故双曲线方程为x 22-y 2=1.答案:x 22-y 2=113.椭圆4x 2+9y 2=144内一点P (3,2),过点P 的弦恰好以P 为中点,那么这条弦所在的直线方程为________.解析:设该弦与椭圆交于A (x 1,y 1),B (x 2,y 2), 4x 21+9y 21=144,①4x 22+9y 22=144,②①-②得,4(x 1+x 2)(x 1-x 2)+9(y 1+y 2)(y 1-y 2)=0,又因为x 1+x 2=6,y 1+y 2=4.所以k =y 2-y 1x 2-x 1=-23,故该弦所在直线为y -2=-23(x -3),即2x +3y -12=0. 答案:2x +3y -12=014.抛物线y 2=2x 上距点M (m ,0)(m >0)最近的点恰好是抛物线的顶点,则m 的取值范围是________.解析:设P (x ,y )为抛物线上任一点,则|PM |2=(x -m )2+y 2=x 2-2(m -1)x +m 2=[x -(m -1)]2+2m -1. 因为m >0,所以m -1>-1.由于x ≥0,且由题意知当x =0时,|PM |最小.则对称轴x =m -1应满足-1<m -1≤0,所以0<m ≤1. 答案:(0,1]15.从一块短轴长为2b 的椭圆形玻璃镜中划出一块面积最大的矩形,其面积的取值范围是[3b 2,4b 2],则该椭圆离心率e 的取值范围是________.解析:由对称性知矩形中心在原点,且两组对边平行于x 轴,y 轴,设矩形在第一象限的顶点坐标为(x ,y )(x >0,y >0),S 矩形=4xy =2ab (2x a ·y b )≤2ab (x 2a 2+y 2b2)=2ab ∈[3b 2,4b 2],所以3b 2≤2ab ≤4b 2,即12≤b a ≤23,e 2=c 2a 2=1-(b a )2∈[59,34],故e ∈[53,32].答案:[53,32] 三、解答题(本大题共5小题,共55分.解答应写出必要的文字说明、证明过程或演算步骤)16.(本小题满分10分)已知椭圆C 的中心在原点,焦点在x 轴上,长轴长为18,且两个焦点恰好将长轴三等分.求椭圆的标准方程及其离心率.解:设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0),由题意知:2a =18,2a =6c ,解得a =9,c=3,故b 2=a 2-c 2=72,所以椭圆C 的方程是x 281+y 272=1,离心率e =c a =39=13.17.(本小题满分10分)k 代表实数,讨论方程kx 2+2y 2-8=0所表示的曲线.解:当k <0时,曲线y 24-x 2-8k=1为焦点在y 轴上的双曲线;当k =0时,曲线2y 2-8=0为两条平行于x 轴的直线y =2或y =-2; 当0<k <2时,曲线x 28k +y 24=1为焦点在x 轴上的椭圆;当k =2时,曲线x 2+y 2=4为一个圆;当k >2时,曲线y 24+x 28k=1为焦点在y 轴上的椭圆.18.(本小题满分10分)已知直线l :y =x +t 与椭圆C :x 2+2y 2=2交于A ,B 两点. (1)求椭圆C 的长轴长和焦点坐标;(2)若|AB |=423,求t 的值.解:(1)因为x 2+2y 2=2,所以x 22+y 2=1,所以a =2,b =1,所以c =1,所以长轴为2a =22,焦点坐标分别为F 1(-1,0), F 2(1,0).(2)设点A (x 1,y 1),B (x 2,y 2).因为⎩⎪⎨⎪⎧x 2+2y 2-2=0,y =x +t ,消元化简得3x 2+4tx +2t 2-2=0,所以⎩⎪⎨⎪⎧Δ=16t 2-12(2t 2-2)=24-8t 2>0,x 1+x 2=-4t 3,x 1x 2=2t 2-23,所以|AB |=1+12|x 1-x 2|=2324-8t 2, 又因为|AB |=423,所以2324-8t 2=423,解得t =±1. 19.(本小题满分12分)已知:双曲线x 2-2y 2=2的左、右焦点分别为F 1、F 2,动点P 满足|PF 1|+|PF 2|=4.(1)求动点P 的轨迹E 的方程;(2)若M 是曲线E 上的一个动点,求|MF 2|的最小值.并说明理由. 解:(1)由题意知,F 1(-3,0),F 2(3,0), 且|PF 1|+|PF 2|=4>23,所以P 点的轨迹是以F 1,F 2为焦点的椭圆, 且a =2,c =3,从而b =1.所以动点P 的轨迹方程为x 24+y 2=1.(2)设M (x ,y ),则|MF 2|=(x -3)2+y 2, 因为x 24+y 2=1,所以y 2=1-x 24,所以|MF 2|=34x 2-23x +4=(32x -2)2=⎪⎪⎪⎪⎪⎪32x -2. 因为M ∈E ,所以x ∈[-2,2],所以|MF 2|=2-32x ,x ∈[-2,2].显然|MF 2|在[-2,2]上为减函数, 所以|MF 2|有最小值2- 3.20.(本小题满分13分)已知抛物线y 2=4x ,过点M (0,2)的直线l 与抛物线交于A 、B 两点,且直线l 与x 轴交于点C .(1)求证:|MA |、|MC |、|MB |成等比数列;(2)设MA →=αAC →,MB →=βBC →,试问α+β是否为定值?若是,求出此定值;若不是,请说明理由.解:(1)证明:设直线l 的方程为y =kx +2(k ≠0),联立方程⎩⎪⎨⎪⎧y =kx +2,y 2=4x ,得k 2x 2+(4k -4)x +4=0.设A (x 1,y 1),B (x 2,y 2),C (-2k,0),则x 1+x 2=-4k -4k 2,x 1x 2=4k2.①|MA |·|MB |=[x 21+(y 1-2)2]·[x 22+(y 2-2)2]=(1+k 2)2x 21x 22=(1+k 2)x 1x 2=4(1+k 2)k2, |MC |2=(-2k)2+(-2)2=4(1+k 2)k2, 所以|MC |2=|MA |·|MB |,即|MA |,|MC |,|MB |成等比数列.(2)由MA →=αAC →,MB →=βBC →,得(x 1,y 1-2)=α(-2k -x 1,-y 1),(x 2,y 2-2)=β(-2k-x 2,-y 2),即α=-kx 1kx 1+2,β=-kx 2kx 2+2, 则α+β=-2k 2x 1x 2-2k (x 1+x 2)k 2x 1x 2+2k (x 1+x 2)+4.将①代入得α+β=-1,故α+β为定值且定值为-1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学《圆锥曲线与方程》单元测试题一、选择题:(本大题共12小题,每小题5分,共60分)1曲线 与曲线 (0 <k<9) 具有( ) A 、相等的长、短轴 B 、相等的焦距C 、相等的离心率D 、相同的焦点坐标2、若k 可以取任意实数,则方程x 2+ky 2=1所表示的曲线不可能是( ) A.直线 B.圆 C.椭圆或双曲线 D.抛物线3、如果抛物线y 2= ax 的准线是直线x=-1,那么它的焦点坐标为( )A .(1, 0)B .(2, 0)C .(3, 0)D .(-1, 0) 4、平面内过点A (-2,0),且与直线x=2相切的动圆圆心的轨迹方程是 ( )A . y 2=-2xB . y 2=-4xC .y 2=-8xD .y 2=-16x5、双曲线虚轴的一个端点为M ,两个焦点为F 1、F 2,∠F 1MF 2=120°,则双曲线的离心率为 ( )A .3B .26 C .36 D .336、若椭圆的中心及两个焦点将两条准线之间的距离四等分,则椭圆的离心率为( )A 、B 、C 、D 、 7、过点P (2,-2)且与22x -y 2=1有相同渐近线的双曲线方程是( )A .14222=-x yB .12422=-y xC .12422=-x yD .14222=-y x 8、抛物线214y x =关于直线0x y -=对称的抛物线的焦点坐标是( ) A 、(1,0) B 、1(,0)16 C 、(0,0) D 、1(0,)169、中心在原点,对称轴为坐标轴,离心率e =,一条准线方程为30x -=的双曲线方程是 ( )(A )22134x y -= (B )22153y x -= (C )22124x y -= (D )22142y x -= 192522=+y x 192522=-+-ky k x 2122233310、已知方程0,,0(022>≠≠=++=+c b a ab c by ax ab by ax 其中和),它们所表示的曲线可能是( )A B C D11、已知双曲线 和椭圆 (a>0, m>b>0)的离心率互为 倒数,那么以a 、b 、m 为边长的三角形是( )A 、锐角三角形B 、直角三角形C 、钝角三角形D 、等腰三角形12、过抛物线y 2=4x 的焦点作直线,交抛物线于A(x 1, y 1) ,B(x 2, y 2)两点,如果x 1+ x 2=6,那么|AB|=( )A .8B .10C .6D .4二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中的横线上。
13、椭圆x 29 +y 24=1(x ≥0,y ≥0)与直线x-y-5=0的距离的最小值为__________14、过双曲线 的两焦点作实轴的垂线,分别与渐近线交于A 、B 、C 、D 四点,则矩形ABCD 的面积为15、抛物线的焦点为椭圆14922=+y x 的左焦点,顶点在椭圆中心,则抛物线方程为 .16、 动点到直线x=6的距离是它到点A(1,0)的距离的2倍,那么动点的轨迹方程是_________________________.12222=-by a x 12222=+b y m x 1322=-y x一、选择题答案二、填空题答案13、 14、 15 、 16 、三、解答题:本大题共6小题,共74分。
解答应写出文字说明、证明过程或推演步骤17.(本小题满分12分)已知点(A 和B 动点C 引A 、B 两点的距离之差 的绝对值为2,点C 的轨迹与直线2y x =-交于D 、E 两点,求线段DE 的长。
18(本小题满分12分)已知抛物线的顶点为椭圆22221x y a b+=(0)a b >>的中心.椭圆的离心率是抛物线离心率的一半,且它们的焦点在同一坐标轴上。
又抛物线与椭圆交于点2(,3M ,求抛物 线与椭圆的方程.19.(本小题满分12分) 双曲线)0,1(12222>>=-b a by a x 的焦距为2c ,直线l 过点(a ,0)和(0,b ),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和.54c s ≥求双曲线的离心率e 的取值范围.20、直线y =kx +b 与椭圆2214x y +=交于A 、B 两点,记△AOB 的面积为S . (I)求在k =0,0<b <1的条件下,S 的最大值; (Ⅱ)当|AB |=2,S =1时,求直线AB 的方程.21.、(本小题满分12分).如图, 直线y=21x 与抛物线y=81x 2-4交于A 、B 两点, 线段AB 的垂直平分线与直线y=-5交于Q 点.(1) 求点Q 的坐标;(2) 当P 为抛物线上位于线段AB 下方(含A 、B) 的动点时, 求ΔOPQ 面积的最大值.22、(本小题满分14分)已知椭圆)0(12222>>=+b a by a x 的离心率为22。
(1) 若圆(x-2)2+(y-1)2=320与椭圆相交于A 、B 两点且线段AB 恰为圆的直径,求椭圆方程;(2) 设L 为过椭圆右焦点F 的直线,交椭圆于M 、N 两点,且L 的倾斜角为600。
求NFMF 的值。
一、选择题1、B2、D3、A4、C5、B6、B7、A8、D9、C 10、 11、B 12、A二、填空题13、 -8 14、 15 、xy542-= 16、 3x2+4y2+4x32=0三、解答题17.解:设点(,)C x y,则 2.CA CB-=±根据双曲线定义,可知C的轨迹是双曲线22221,x ya b-=由22,2a c AB===得221,2,a b==故点C的轨迹方程是22 1.2yx-=由22122yxy x⎧-=⎪⎨⎪=-⎩得2460,0,x x+-=∆>∴直线与双曲线有两个交点,设1122(,),(,),D x yE x y则12124,6,x x x x+=-=-故12DE x x=-==18. 因为椭圆的准线垂直于x轴且它与抛物线的准线互相平行所以抛物线的焦点在x轴上,可设抛物线的方程为)0(2≠=aaxy)362,32(-M在抛物线上a32)362(2=-∴4=∴a∴抛物线的方程为xy42=)362,32(-M在椭圆上19249422=+∴ba①又2122=-==abaace②3316由①②可得3,422==b a∴ 椭圆的方程是13422=+y x 19. 解:直线l 的方程为1=+bya x ,即 .0=-+ab ay bx 由点到直线的距离公式,且1>a ,得到点(1,0)到直线l 的距离 221)1(ba ab d +-=,同理得到点(-1,0)到直线l 的距离222)1(ba ab d ++=.222221cabb a ab d d s =+=+= 由,542,54c c ab c s ≥≥得 即 .25222c a c a ≥- 于是得 .025254,2152422≤+-≥-e e e e 即解不等式,得.5452≤≤e 由于,01>>e 所以e 的取值范围是 .525≤≤e 20、(I)解:设点A 的坐标为(1(,)x b ,点B 的坐标为2(,)x b ,由2214x y +=,解得1,2x =±所以22121||2112S b x x b b =-=≤+-=当且仅当2b =.S 取到最大值1. (Ⅱ)解:由2214y kx b x y =+⎧⎪⎨+=⎪⎩得222(41)8440k x kbx b +++-=2216(41)k b ∆=-+ ①|AB12|2x x -== ② 又因为O 到AB的距离21||Sd AB === 所以221b k =+ ③ ③代入②并整理,得424410k k -+= 解得,2213,22k b ==,代入①式检验,△>0 故直线AB 的方程是22y x =+或22y x =-或y x =+y x = 21.【解】(1) 解方程组y=21x得 X 1=-4, x 2=8 y=81x 2-4y 1=-2, y 2=4即A(-4,-2),B(8,4), 从而AB 的中点为M(2,1). 由k AB ==21,直线AB 的垂直平分线方程y -1=21(x -2). 令y=-5, 得x=5, ∴Q(5,-5) (2) 直线OQ 的方程为x+y=0, 设P(x,81x 2-4). ∵点P 到直线OQ 的距离d=24812-+x x =3282812-+x x ,25=OQ ,∴S ΔOPQ =21d OQ =3281652-+x x . ∵P 为抛物线上位于线段AB 下方的点, 且P 不在直线OQ 上, ∴-4≤x<43-4或43-4<x≤8.∵函数y=x 2+8x -32在区间[-4,8] 上单调递增,∴当x=8时, ΔOPQ 的面积取到最大值30.22.解:(1)设A (x 1,y 1),B (x 2,y 2),AB 的方程为y-1=k(x-2) 即y=kx+1-2k ①∵离心率e=22∴椭圆方程可化为122222=+by b x ②将①代入②得(1+2k 2)x 2+4(1-2k)·kx+2(1-2k)2-2b 2=0 ∵x 1+x 2=421)12(42=+-k kk∴k=-1 ∴x 1x 2=2232621218b b -=+- 又3202⋅=AB ∴32021121=-+x x 即340)(221=-x x ∴b 2=8 ∴181622=+y x(2)设n NF m MF ==,(不妨设m<n )则由第二定义知)(21n m e m e n +⋅=- 即7249122122-=+-=n m 或7249+=n m ∴7249+=NF MF或7249-=NF MF。