高考物理带电粒子在复合场中的运动及其解题技巧及练习题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、带电粒子在复合场中的运动专项训练
1.如图所示,直径分别为D 和2D 的同心圆处于同一竖直面内,O 为圆心,GH 为大圆的水平直径。

两圆之间的环形区域(Ⅰ区)和小圆内部(Ⅱ区)均存在垂直圆面向里的匀强磁场.间距为d 的两平行金属极板间有一匀强电场,上极板开有一小孔.一质量为m 、电量
为+q 的粒子由小孔下方
2
d
处静止释放,加速后粒子以竖直向上的速度v 射出电场,由H 点紧靠大圆内侧射入磁场。

不计粒子的重力。

(1)求极板间电场强度的大小;
(2)若粒子运动轨迹与小圆相切,求Ⅰ区磁感应强度的大小; (3)若Ⅰ区、Ⅱ区磁感应强度的大小分别为2mv qD 、
4mv
qD
,粒子运动一段时间后再次经过H 点,求这段时间粒子运动的路程.
【来源】2015年全国普通高等学校招生统一考试物理(山东卷带解析)
【答案】(1)2
mv qd
(2)4mv qD 或43mv qD (3)5.5πD
【解析】 【分析】 【详解】
(1)粒子在电场中,根据动能定理2
122
d Eq mv ⋅=,解得2mv E qd =
(2)若粒子的运动轨迹与小圆相切,则当内切时,半径为
/2
E R 由2
1
1
v qvB m r =,解得4mv B qD = 则当外切时,半径为
e R
由2
12
v qvB m r =,解得43mv B qD =
(2)若Ⅰ区域的磁感应强度为220932qB L m U =,则粒子运动的半径为00
10016819
U U U ≤≤;Ⅱ
区域的磁感应强度为20
12qU mv =,则粒子运动的半径为
2
v qvB m r
=;
设粒子在Ⅰ区和Ⅱ区做圆周运动的周期分别为T 1、T 2,由运动公式可得:
1112R T v π=
;03
4
r L =
据题意分析,粒子两次与大圆相切的时间间隔内,运动轨迹如图所示,根据对称性可知,Ⅰ区两段圆弧所对的圆心角相同,设为1θ,Ⅱ区内圆弧所对圆心角为2θ,圆弧和大圆的两个切点与圆心O 连线间的夹角设为α,由几何关系可得:1120θ=;2180θ=;
60α=
粒子重复上述交替运动回到H 点,轨迹如图所示,设粒子在Ⅰ区和Ⅱ区做圆周运动的时间
分别为t 1、t 2,可得:r U ∝;1056
U L
U L
=
设粒子运动的路程为s ,由运动公式可知:s=v(t 1+t 2) 联立上述各式可得:s=5.5πD
2.如图,绝缘粗糙的竖直平面MN 左侧同时存在相互垂直的匀强电场和匀强磁场,电场方向水平向右,电场强度大小为E ,磁场方向垂直纸面向外,磁感应强度大小为B .一质量为m 、电荷量为q 的带正电的小滑块从A 点由静止开始沿MN 下滑,到达C 点时离开MN 做曲线运动.A 、C 两点间距离为h ,重力加速度为g .
(1)求小滑块运动到C 点时的速度大小v c ;
(2)求小滑块从A 点运动到C 点过程中克服摩擦力做的功W f ;
(3)若D 点为小滑块在电场力、洛伦兹力及重力作用下运动过程中速度最大的位置,当小滑块运动到D 点时撤去磁场,此后小滑块继续运动到水平地面上的P 点.已知小滑块在D 点时的速度大小为v D ,从D 点运动到P 点的时间为t ,求小滑块运动到P 点时速度的大小v p .
【来源】2015年全国普通高等学校招生统一考试物理(福建卷带解析) 【答案】(1)E/B (2)(3)
【解析】 【分析】 【详解】
小滑块到达C 点时离开MN ,此时与MN 间的作用力为零,对小滑块受力分析计算此时的速度的大小;由动能定理直接计算摩擦力做的功W f ;撤去磁场后小滑块将做类平抛运动,根据分运动计算最后的合速度的大小;
(1)由题意知,根据左手定则可判断,滑块在下滑的过程中受水平向左的洛伦兹力,当洛伦兹力等于电场力qE 时滑块离开MN 开始做曲线运动,即Bqv qE = 解得:E v B
=
(2)从A 到C 根据动能定理:2
102
f mgh W mv -=
- 解得:2
212f E W mgh m B
=-
(3)设重力与电场力的合力为F ,由图意知,在D 点速度v D 的方向与F 地方向垂直,从D 到P 做类平抛运动,在F 方向做匀加速运动a=F /m ,t 时间内在F 方向的位移为212
x at = 从D 到P ,根据动能定理:150a a +=,其中2114
mv 联立解得:()
2
2
222
()P D
mg qE v t v m
+=
+【点睛】
解决本题的关键是分析清楚小滑块的运动过程,在与MN 分离时,小滑块与MN 间的作用力
为零,在撤去磁场后小滑块将做类平抛运动,根据滑块的不同的运动过程逐步求解即可.
3.如图所示,以两虚线为边界,中间存在平行纸面且与边界垂直的水平电场,宽度为
d ,两侧为相同的匀强磁场,方向垂直纸面向里.一质量为m 、带电量q +、重力不计的
带电粒子,以初速度1v 垂直边界射入磁场做匀速圆周运动,后进入电场做匀加速运动,然后第二次进入磁场中运动,此后粒子在电场和磁场中交替运动.已知粒子第二次在磁场中运动的半径是第一次的二倍,第三次是第一次的三倍,以此类推.求:
(1)粒子第一次经过电场的过程中电场力所做的功1W (2)粒子第n 次经过电场时电场强度的大小n E (3)粒子第n 次经过电场所用的时间n t
(4)假设粒子在磁场中运动时,电场区域场强为零.请画出从粒子第一次射入磁场至第三次离开电场的过程中,电场强度随时间变化的关系图线(不要求写出推导过程,不要求标明坐标刻度值).
【来源】河北省衡水中学滁州分校2018届高三上学期全真模拟物理试题
【答案】(1)2
1132mv W =
(2)21(21)2n n mv E qd +=(3)1
2(21)n d t n v =+ (4)如图;
【解析】 (1)根据mv r qB =,因为212r r =,所以212v v =,所以22
1211122
W mv mv =-, (2)
=

,所以

(3),,所以.
(4)
4.如图,M、N是电压U=10V的平行板电容器两极板,与绝缘水平轨道CF相接,其中CD 段光滑,DF段粗糙、长度x=1.0m.F点紧邻半径为R的绝缘圆筒(图示为圆筒的横截面),圆筒上开一小孔与圆心O在同一水平面上,圆筒内存在磁感应强度B=0.5T、方向垂直纸面向里的匀强磁场和方向竖直向下的匀强电场E.一质量m=0.01kg、电荷量q=-0.02C的小球a从C点静止释放,运动到F点时与质量为2m、不带电的静止小球b发生碰撞,碰撞后a球恰好返回D点,b球进入圆筒后在竖直面内做圆周运动.不计空气阻力,小球a、b 均视为质点,碰时两球电量平分,小球a在DF段与轨道的动摩因数μ=0.2,重力加速度大小g=10m/s2.求
(1)圆筒内电场强度的大小;
(2)两球碰撞时损失的能量;
(3)若b球进入圆筒后,与筒壁发生弹性碰撞,并从N点射出,则圆筒的半径.
【来源】福建省宁德市2019届普通高中毕业班质量检查理科综合物理试题
【答案】(1)20N/C;(2)0J;(3)
16
tan
R
n
π
=(
n≥3的整数)
【解析】【详解】
(1)小球b要在圆筒内做圆周运动,应满足:1
2
Eq=2mg
解得:E=20 N/C
(2)小球a到达F点的速度为v1,根据动能定理得:Uq-μmgx=1
2
mv12
小球a从F点的返回的速度为v2,根据功能关系得:μmgx=1
2
mv22
两球碰撞后,b球的速度为v,根据动量守恒定律得:mv1=-mv2+2mv
则两球碰撞损失的能量为:ΔE
=1
2
mv12-
1
2
mv22-
1
2
mv2
联立解得:ΔE=0
(3)小球b进入圆筒后,与筒壁发生n-1次碰撞后从N点射出,轨迹图如图所示:
每段圆弧对应圆筒的圆心角为
2
n
π
,则在磁场中做圆周运动的轨迹半径:r1=Rtan
n
π
粒子在磁场中做圆周运动:
2
1
1
2
2
v
qvB m
r
=
联立解得:
16
tan
R
n
π
=
(n≥3的整数)
5.如图所示,在xOy坐标平面的第一象限内有一沿y轴负方向的匀强电场,在第四象限内有一垂直于平面向里的匀强磁场,现有一质量为m、电量为+q的粒子(重力不计)从坐标原点O 射入磁场,其入射方向与x的正方向成 45°角.当粒子运动到电场中坐标为(3L,L)的P点处时速度大小为 v0,方向与 x轴正方向相同.求:
(1)粒子从 O点射入磁场时的速度v;
(2)匀强电场的场强 E0和匀强磁场的磁感应强度B0.
(3)粒子从 O点运动到 P点所用的时间.
【来源】海南省海口市海南中学2018-2019学年高三第十次月考物理试题
【答案】(1
2v;(2)0
2mv
Lq
;(3)
(8)
4
L
v
π
+
【解析】
【详解】
解:(1)若粒子第一次在电场中到达最高点P ,则其运动轨迹如图所示,粒子在 O 点时的速度大小为v ,OQ 段为圆周,QP 段为抛物线,根据对称性可知,粒子在Q 点时的速度大小也为v ,方向与x 轴正方向成45︒角,可得:045v vcos =︒ 解得:
02v v =
(2)在粒子从Q 运动到P 的过程中,由动能定理得:2201122
qEL mv mv -=
- 解得:20
2mv E qL
=
又在匀强电场由Q 到P 的过程中,水平方向的位移为:01x v t = 竖直方向的位移为:0
12
v y t L =
= 可得:2QP x L =,OQ L =
由2cos 45OQ R =︒,故粒子在OQ 段圆周运动的半径:2
R L = 及mv R qB = 解得:02mv
B qL
=
(3)在Q 点时,0045y v v tan v =︒=
设粒子从由Q 到P 所用时间为1t ,在竖直方向上有:
10022
L L t v v =
=
粒子从O 点运动到Q 所用的时间为:20
4L
t v π=
则粒子从O 点运动到P 点所用的时间为:t 总12000
2(8)44L L L t t v v v ππ+=+=
+=
6.如图为近代物理实验室中研究带电粒子的一种装置.带正电的粒子从容器A 下方小孔S 不断飘入电势差为U 的加速电场.进过S 正下方小孔O 后,沿SO 方向垂直进入磁感应强度为B 的匀强磁场中,最后打在照相底片D 上并被吸收,D 与O 在同一水平面上,粒子在D 上的落点距O 为x ,已知粒子经过小孔S 时的速度可视为零,不考虑粒子重力.
(1)求粒子的比荷q/m ;
(2)由于粒子间存在相互作用,从O 进入磁场的粒子在纸面内将发生不同程度的微小偏转.其方向与竖直方向的最大夹角为α,若假设粒子速度大小相同,求粒子在D 上的落点与O 的距离范围;
(3)加速电压在(U±△U )范围内的微小变化会导致进入磁场的粒子速度大小也有所不同.现从容器A 中飘入的粒子电荷最相同但质量分别为m 1、m 2(m 1>m 2),在纸面内经电场和磁场后都打在照相底片上.若要使两种离子的落点区域不重叠,则 U
U
应满足什么条件?(粒子进入磁场时的速度方向与竖直方向的最大夹角仍为α) 【来源】浙江诸暨市牌头中学2017-2018学年高二1月月考物理试题
【答案】(1)228U
B x
(2)最大值x 最小值cos x α (3)2122
12cos cos m m U m m αα-∆<+ 212(cos )m m α>
【解析】 【详解】
(1)沿SO 方向垂直进入磁场的粒子,最后打在照相底片D 的粒子; 粒子经过加速电场:qU=
12
mv 2
洛伦兹力提供向心力:qvB=m 2
v R
落点到O 的距离等于圆运动直径:x=2R
所以粒子的比荷为:22
8 q U
m B x
=
(2)粒子在磁场中圆运动半径22
qmU x
R =
=
由图象可知:粒子左偏θ角(轨迹圆心为O1)或右偏θ角(轨迹圆心为O2)落点到O的距离相等,均为L=2Rc osθ
故落点到O的距离
最大:L max=2R=x
最小:L min=2Rcosα=xcosα
(3)①考虑同种粒子的落点到O的距离;
当加速电压为U+△U、偏角θ=0时,距离最大,
L max=2R max
=
当加速电压为U-△U、偏角θ=α时,距离最小
L min=2R min
cosα=
cosα
②考虑质量不同但电荷量相同的两种粒子

和 m1>m2,知:R1>R2
要使落点区域不重叠,则应满足:L1min>L2max
cosα

解得:
2
12
2
12
cos
cos
m m
U
m m
α
α
-
∆<
+

(应有条件m1cos2α>m2,否则粒子落点区域必然重叠)
7.在地面附近的真空中,存在着竖直向上的匀强电场和垂直电场方向水平向里的匀强磁场,如图甲所示.磁场的磁感应强度B(图像中的B0末知)随时间t的变化情况如图乙所示.该区域中有一条水平直线MN,D是MN上的一点.在t=0时刻,有一个质量为m、电荷量为+q的小球(可看做质点),从M点开始沿着水平直线以速度v0向右做匀速直线运动,t0时刻恰好到达N点.经观测发现,小球在t=2t0至t=3t0时间内的某一时刻,又竖直向下经过直线MN上的D点,并且以后小球多次水平向右或竖直向下经过D点.不考虑地磁场的影响,求:
(1)电场强度E的大小;
(2)小球从M点开始运动到第二次经过D点所用的时间;
(3)小球运动的周期,并画出运动轨迹(只画一个周期).
【来源】【百强校】2015届辽宁师范大学附属中学高三模拟考试物理卷(带解析)
【答案】(1)
mg
q
E=(2)2
t0(
1

+1) (3)T=8t0,
【解析】
【分析】
【详解】
(1)小球从M点运动到N点时,有qE=mg,
解得
mg
q
E=.
(2)小球从M点到达N点所用时间t1=t0,小球从N点经过个圆周,到达P点,所以t2=t0小球从P点运动到D点的位移
x=R=0
mv
B q,
小球从P点运动到D点的时间
3
00
R m
t
v B q
=
=
2m
t
qB
π
=,t
3=0
2
3
t
π

所以时间
1230
()
1
3
21
t t t t t
π
+++
==.
(3)小球运动一个周期的轨迹如图所示.小球的运动周期为
T=8t0.
8.如图,平面直角坐标系中,在,y >0及y
<-3
2
L 区域存在场强大小相同,方向相反均平行于y
轴的匀强电场,在-
3
2
L <y <0区域存在方向垂直于xOy 平面纸面向外的匀强磁场,一质量为m ,电荷量为q 的带正电粒子,经过y 轴上的点P 1(0,L )时的速率为v 0,方向沿x 轴正方向,然后经过x 轴上的点P 2(3
2L ,0)进入磁场.在磁场中的运转半径R =52
L (不计粒子重力),求:
(1)粒子到达P 2点时的速度大小和方向; (2)
E
B
; (3)粒子第一次从磁场下边界穿出位置的横坐标; (4)粒子从P 1点出发后做周期性运动的周期. 【来源】2019年内蒙古呼和浩特市高三物理二模试题
【答案】(1)5
3v 0,与x 成53°角;(2)043
v ;(3)2L ;(4)()04053760L v π+.
【解析】 【详解】
(1)如图,粒子从P 1到P 2做类平抛运动,设到达P 2时的y 方向的速度为v y , 由运动学规律知
3
2
L =v 0t 1,
L =
2
y v t 1
可得t 1=
032L v ,v y =4
3
v 0 故粒子在P 2的速度为v 22
0y v v +=
53
v 0
设v 与x 成β角,则tan β=
y v v =
4
3
,即β=53°; (2)粒子从P 1到P 2,根据动能定理知qEL =
12mv 2-1
2
mv 02可得 E =2089mv qL
粒子在磁场中做匀速圆周运动,根据qvB =m 2
v R
解得:B =mv qR =05352
m v q L ⨯⨯=023mv qL
解得:
43
v E B =; (3)粒子在磁场中做圆周运动的圆心为O ′,在图中,过P 2做v 的垂线交y =-3
2
L 直线与Q ′点,可得: P 2O ′=
3253L cos =5
2
L =r
故粒子在磁场中做圆周运动的圆心为O ′,因粒子在磁场中的轨迹所对圆心角α=37°,故粒子将垂直于y =-
32
L 直线从M 点穿出磁场,由几何关系知M 的坐标x =
3
2
L +(r -r cos37°)=2L ; (4)粒子运动一个周期的轨迹如上图,粒子从P 1到P 2做类平抛运动:t 1=0
32L
v
在磁场中由P 2到M 动时间:t 2=372360r v π︒⨯=0
37120L
v π 从M 运动到N ,a =qE m =2
89v L
则t 3=
v a =0
158L v 则一个周期的时间T =2(t 1+t 2+t 3)=
()0
4053760L
v π+.
9.平面直角坐标系的第一象限和第四象限内均存在垂直纸面向里的匀强磁场,磁感应强度大小分别为2B 和B (B 的大小未知),第二象限和第三象限内存在沿﹣y 方向的匀强电场,x 轴上有一点P ,其坐标为(L ,0)。

现使一个电量大小为q 、质量为m 的带正电粒子
从坐标(﹣2a ,a )处以沿+x 方向的初速度v 0出发,该粒子恰好能经原点进入y 轴右侧并在随后经过了点P ,不计粒子的重力。

(1)求粒子经过原点时的速度; (2)求磁感应强度B 的所有可能取值
(3)求粒子从出发直至到达P 点经历时间的所有可能取值。

【来源】2019年东北三省四市高考二模物理试题
【答案】(12v 0,方向:与x 轴正方向夹45°斜向下; (2)磁感应强度B 的所有可能取值:0
nmv B qL
=
n =1、2、3……; (3)粒子从出发直至到达P 点经历时间的所有可能取值:023(1)24a m m t k k v qB qB
ππ=++- k =1、2、3……或02324a m m
t n n v qB qB
ππ=++ n =1、2、3……。

【解析】 【详解】
(1)粒子在电场中做类平抛运动,水平方向:2a =v 0t , 竖直方向:2
y v a t =

解得:v y =v 0,tan θ=
y v v =1,θ=45°,
粒子穿过O 点时的速度:2
2002v v v v =+=;
(2)粒子在第四象限内做匀速圆周运动,洛伦兹力提供向心力,由牛顿第二定律得:
2
v qvB m r
= ,
粒子能过P 点,由几何知识得:L =nr cos45° n =1、2、3……, 解得:0
nmv B qL
=
n =1、2、3……; (3)设粒子在第二象限运动时间为t 1,则:t 1=0
2a
v ;
粒子在第四、第一象限内做圆周运动的周期:12m T qB π=
,2m
T qB
π=, 粒子在下方磁场区域的运动轨迹为1/4
圆弧,在上方磁场区域的运动轨迹为3/4圆弧, 若粒子经下方磁场直接到达P 点,则粒子在磁场中的运动时间:t 2=
1
4
T 1, 若粒子经过下方磁场与上方磁场到达P 点,粒子在磁场中的运动时间:t 2=1
4T 1+34
T 2, 若粒子两次经过下方磁场一次经过上方磁场到达P 点:t 2=2×
1
4T 1+34T 2, 若粒子两次经过下方磁场、两次经过上方磁场到达P 点:t 2=2×1
4T 1+2×34
T 2, ………… 则23(1)24m
m
t k k qB
qB
ππ=+- k =1、2、3 (2324)
m
t n
n
qB qB
ππ=+ n =1、2、3…… 粒子从出发到P 点经过的时间:t =t 1+t 2, 解得:023(1)24a m m t k k v qB qB
ππ=++- k =1、2、3…… 或02324a m m t n n v qB qB
ππ=
++ n =1、2、3……;
10.如图1,光滑绝缘水平平台MNQP 为矩
形, GH ∥PQ ,MP =NQ =1m ,MN =GH =PQ =0.4m ,平台离地面高度为h =2.45m .半径为R =0.2m 的圆形匀强磁场区域,磁感应强度B =0.05T ,方向竖直向上,与MP 边相切于A 点,与NQ 边相切于D 点,与GH 相切于C 点.平台上PGHQ 区域内有方向由P 指向G 的匀强电场,场强大小为E =0.25V/m .平台右方整个空间存在方向水平向右的电场,场强大小也为E =0.25V/m ,俯视图如图2.两个质量均为m =2×10-5kg 的小球a 、b ,小球a 带正电,电量q =4×10-4C ,小球b 不带电,小球a 、b 均可视为质点.小球a 从A 点正对圆心O 射入磁场,偏转90°后离开磁场,一段时间后与静止在平台D 点的小球b 发生弹性碰撞,碰后两球离开平台,并在此后的运动过程中发生多次弹性碰撞,a 球带电量始终不变,碰
撞时间忽略不计.已知重力加速度g =10m/s 2,π=3.14,不计空气阻力,求:
(1)小球a 射入磁场时的速度大小;
(2)从小球a 射入磁场到第一次与小球b 相碰撞,小球a 运动的路程; (3)两个小球落地点与NQ 的水平距离.
【来源】【市级联考】重庆市2019届高三5月调研测试(第三次诊断性考试)理综试卷物理试题
【答案】(1)0.2m/s (2)0.636m (3)0.684m 【解析】 【详解】
(1)小球a 从A 点正对圆心O 射入磁场,偏转90°后离开磁场,小球a 在洛伦兹力作用下做圆周运动,轨迹如图:
分析得半径R =0.2m
由2
v qvB m R
=
得:v =0.2m/s
(2)磁场中运动的路程s 1=πR=0.628m 电场中加速度25m/s qE
a m
=
= 电场的路程2
220.008m 2v s a
=⨯=
小球a 射入磁场到与小球b 相碰过程运动的路程120.636m s s s =+= (3)a 、b 球弹性碰撞,质量相等每一次碰撞速度交换. D 点碰后,两球速度分别为v a D =0,v b D =0.2m/s 此后两球抛离平台,竖直方向均做自由落体运动
由2
2
gt h =得,两小球在空中运动时间20.7s h t g == 水平方向:b 球匀速运动,a 球加速运动,加速度25m/s qE
a m
=
= 每次碰到下一次碰撞,两球位移相等,v —t 图如图所示:
可得,每两次碰撞间隔时间是定值:21
()2
bD v t a t ⋅∆=
∆ 0.08s t ∆= 由
0.7380.084
t t ==∆ 所以小球在空中碰8次后,再过0.06s 落地
小球b 在空中碰n 次后速度为v bN =(n +1)v bD =0.2(n +1) m/s
小球离开D 点后在空中第一次碰撞前,水平位移x 1=v b 1·△t=0.016m 小球在空中第一次到第二次碰撞水平位移x 2=2v b 1·
△t=0.032m 以此类推,小球在空中第n -1次到第n 次碰撞水平位移x n =nx 1=0.016m 所以,在空中碰撞8次时的水平位移x 0=0.016×(1+2+3+4+5+6+7+8)=0.576m 第8次碰后 v b 8=1.8m/s v a 8=1.6m/s
所以,8次碰后0.06s 内,△x b =v b 8×0.06=0.108m △x a =v a 8×0.06+
1
2
a ×0.062=0.105m 所以,水平位移分别为x a =x 0+△x a =0.681m x
b =x 0+△x b =0.684m
11.如图所示,荧光屏MN 与x 轴垂直放置,荧光屏所在位置的横坐标x 0=60cm ,在第一象限y 轴和MN 之间存在沿y 轴负方向的匀强电场,电场强度E =1.6×105N/C ,在第二象限有半径R =5cm 的圆形磁场,磁感应强度B =0.8T ,方向垂直xOy 平面向外.磁场的边界和x 轴相切于P 点.在P 点有一个粒子源,可以向x 轴上方180°范围内的各个方向发射比荷为
q
m
=1.0×108C/kg 的带正电的粒子,已知粒子的发射速率v 0=4.0×106m/s .不考虑粒子的重力、粒子间的相互作用.求:
(1)带电粒子在磁场中运动的轨迹半径; (2)粒子从y 轴正半轴上射入电场的纵坐标范围; (3)带电粒子打到荧光屏上的位置与Q 点的最远距离. 【来源】陕西省西安市2019年高三物理三模理综物理试题 【答案】(1)5cm ;(2)0≤y≤10cm ;(3)9cm 【解析】 【详解】
(1)带电粒子进入磁场受到洛伦兹力的作用做圆周运动,由洛伦兹力提供向心力得:
qvB =m 20
v r
解得:r =20
510mv Bq
-=⨯m=5cm (2)由(1)问可知r =R ,取任意方向进入磁场的粒子,画出粒子的运动轨迹如图所示:
由几何关系可知四边形PO′FO 1为菱形,所以FO 1∥O′P ,又O′P 垂直于x 轴,粒子出射的速
度方向与轨迹半径FO 1垂直,则所有粒子离开磁场时的方向均与x 轴平行,所以粒子从y 轴正半轴上射入电场的纵坐标范围为0≤y ≤10c m (3)假设粒子没有射出电场就打到荧光屏上,有:
x 0=v 0t 0 h =
2012at a =qE m
解得:h =18cm >2R =10cm
说明粒子离开电场后才打在荧光屏上.设从纵坐标为y 的点进入电场的粒子在电场中沿x 轴方向的位移为x ,则:
x =v 0t y =
212
at 代入数据解得:x =2y
设粒子最终到达荧光屏的位置与Q 点的最远距离为H ,粒子射出电场时速度方向与x 轴正方向间的夹角为θ,
000
tan 2y qE x v m v y
v v θ⋅
===
所以:
H =(x 0﹣x )tan θ=(x 0﹣2y )•2y
由数学知识可知,当(x 0﹣2y )=2y 时,即y =4.5cm 时H 有最大值 所以H max =9cm
12.如图甲所示,间距为d 、垂直于纸面的两平行板P 、Q 间存在匀强磁场.取垂直于纸面向里为磁场的正方向,磁感应强度随时间的变化规律如图乙所示。

t =0时刻,一质量为m 、带电荷量为+q 的粒子(不计重力),以初速度0v 由Q 板左端靠近板面的位置,沿垂直于磁场且平行于板面的方向射入磁场区.当0B 和B T 取某些特定值时,可使0t =时刻入射的粒子经t ∆时间恰能垂直打在P 板上(不考虑粒子反弹)。

上述0m q d v 、、、为已知量。

(1)若B 1
2
t T ∆= ,求0B ; (2)若B 3
2
t T ∆=,求粒子在磁场中运动时加速度的大小; (3)若0
04mv B qd
=
,为使粒子仍能垂直打在P 板上,求B T 。

【来源】2014年全国普通高等学校招生统一考试理科综合能力测试物理(山东卷带解析)
【答案】(1)0mv qd (2)20
3v d (3)0
3d v π 或01arcsin 242d v π⎛⎫+ ⎪⎝⎭
【解析】 【分析】 【详解】
(1)设粒子做匀速圆周运动的半径1R ,由牛顿第二定律得
2
001
mv qv B R = ……①
据题意由几何关系得
1R d = ……②
联立①②式得
0mv B qd
=
……③ (2)设粒子做圆周运动的半径为2R ,加速度大小为a ,由圆周运动公式得
202
v a R = ……④
据题意由几何关系得
23R d = ……⑤
联立④⑤式得
20
3v a d
= ……⑥ (3)设粒子做圆周运动的半径为R ,周期为T ,由圆周运动公式得
2R
T v π=
……⑦ 由牛顿第二定律得
20
00mv qv B R
= ……⑧ 由题意知0
04mv B qd
=
,代入⑧式得 4d R = ……⑨
粒子运动轨迹如图所示,1O 、2O 为圆心,1O 、2O 连线与水平方向夹角为θ,在每个B T 内,只有A 、B 两个位置才有可能垂直击中P 板,且均要求0
2
π
θ<<
,由题意可知
B 222
T T π
θθ+= ……⑩ 设经历完整B T 的个数为n (0n =,1,2,3......) 若在B 点击中P 板,据题意由几何关系得
2(sin )R R R n d θ++= ……⑪
当n =0时,无解; 当n =1时联立⑨⑪式得
6
π
θ=
或(1
sin 2
θ=
)……⑫ 联立⑦⑨⑩⑫式得
B 0
3d
T v π=
……⑬
当2n ≥时,不满足090θ︒<<的要求;
若在B 点击中P 板,据题意由几何关系得
2sin 2(sin )R R R R n d θθ+++=……⑭
当0n =时无解
当1n =时,联立⑨⑭式得
1
arcsin 4θ= 或(1sin 4
θ=)……⑰
联立⑦⑧⑨⑩⑰式得
B 01arcsin 2
42d T v π
⎛⎫=+ ⎪⎝⎭ ……⑱
当2n ≥时,不满足090θ︒<<的要求。

【点睛】
13.如图所示,在坐标系xoy中,过原点的直线OC与x轴正向的夹角φ=120°,在OC右侧有一匀强电场;在第二、三象限内有一匀强磁场,其上边界与电场边界重叠、右边界为y 轴、左边界为图中平行于y轴的虚线,磁场的磁感应强度大小为B,方向垂直抵面向里。

一带正电荷q、质量为m的粒子以某一速度自磁场左边界上的A点射入磁场区域,并从O 点射出,粒子射出磁场的速度方向与x轴的夹角θ=30°,大小为v,粒子在磁场中的运动轨迹为纸面内的一段圆弧,且弧的半径为磁场左右边界间距的两倍。

粒子进入电场后,在电场力的作用下又由O点返回磁场区域,经过一段时间后再次离开磁场。

已知粒子从A点射入到第二次离开磁场所用的时间恰好等于粒子在磁场中做圆周运动的周期。

忽略重力的影响。


(1)粒子经过A点时速度的方向和A点到x轴的距离;
(2)匀强电场的大小和方向;
(3)粒子从第二次离开磁场到再次进入电场时所用的时间。

【来源】2008年高考全国卷Ⅰ理综试题物理部分
【答案】(1)垂直左边界向右;(23)
2
mv
Bq
(2)
12
7
Bv
E
π
=,方向跟y轴成120°角,斜向下指向左边。

(3)
43m
t=
【解析】
【分析】
本题考查带电粒子在磁场中的运动。

【详解】
(1)设磁场左边界与x轴相交于D点,过O点作速度v垂线OO1,与MN相交于O1点.由几何关系可知,在直角三角形OO1D中∠OO1D =45º。

设磁场左右边界间距为d,则OO12d。

故粒子第一次进入磁场的运动轨迹的圆心即为O 1点,圆孤轨迹所对的圆心角为45º,且O 1A 为圆弧的半径R 。

由此可知,粒子自A 点射入磁场的速度与左边界垂直。

A 点到x 轴的距离:
()
1cos 45AD R ︒=-①
由洛仑兹力公式、牛顿第二定律及圆周运动的规律,得 2
q mv vB R
=② 联立①②式得
21mv AD qB ⎛⎫=
- ⎪ ⎪⎝⎭
③ (2)
依题意:匀强电场的方向与x 轴正向夹角应为135º。

设粒子在磁场中做圆周运动的周期为T ,第一次在磁场中飞行的时间为t 1,有
18
T t =
④ 2m T qB π=⑤ 由几何关系可知,粒子再次从O 点进入磁场的速度方向与磁场右边夹角为45º。

设粒子第二次在磁场中飞行的圆弧的圆心为O 2,O 2必定在直线OO 1上。

设粒子射出磁场时与磁场右边界交于P 点,则∠OO 2P =90º。

设粒子第二次进入磁场在磁场中运动的时间为t 2,有
214
t T =⑥ 设带电粒子在电场中运动的时间为t 3,依题意得
()312t T t t =-+⑦
由匀变速运动的规律和牛顿定律可知
3v v at -=-⑧
qE a m
=
⑨ 联立④⑤⑥⑦⑧⑨可得 85E Bv π
=
⑩ (3)由几何关系可得:245OPO ︒∠= 故粒子自P 点射出后将做类平抛运动。

则沿电场方向做匀加速运动:
2112
S at =
⑪ 垂直电场方向做匀速直线运动: 2S vt =⑫
12
tan 45S S ︒=
⑬ 联立得 54m t qB
π=。

14.如图所示,在平面直角坐标系xOy 平面内,直角三角形abc 的直角边ab 长为6d ,与y 轴重合,∠bac=30°,中位线OM 与x 轴重合,三角形内有垂直纸面向里的匀强磁场.在笫一象限内,有方向沿y 轴正向的匀强电场,场强大小E 与匀强磁场磁感应强度B 的大小间满足E=v 0B .在x=3d 的N 点处,垂直于x 轴放置一平面荧光屏.电子束以相同的初速度v 0从y 轴上-3d≤y≤0的范围内垂直于y 轴向左射入磁场,其中从y 轴上y=-2d 处射入的电子,经磁场偏转后,恰好经过O 点.电子质量为m,电量为e,电子间的相互作用及重力不计.求
(1)匀强磁杨的磁感应强度B
(2)电子束从y 轴正半轴上射入电场时的纵坐标y 的范围;
(3)荧光屏上发光点距N 点的最远距离L
【来源】四川省乐山市2018届高三第二次调查研究考试理综物理试题
【答案】(1)0mv ed ; (2)02y d ≤≤;(3)94
d ; 【解析】
(1)设电子在磁场中做圆周运动的半径为r ;
由几何关系可得r =d
电子在磁场中做匀速圆周运动洛伦兹力提供向心力,由牛顿第二定律得:200v ev B m r = 解得:0mv B ed
= (2)当电子在磁场中运动的圆轨迹与ac 边相切时,电子从+ y 轴射入电场的位置距O 点最远,如图甲所示.
设此时的圆心位置为O ',有:sin 30r O a '=︒
3OO d O a ='-'
解得OO d '=
即从O 点进入磁场的电子射出磁场时的位置距O 点最远
所以22m y r d ==
电子束从y 轴正半轴上射入电场时的纵坐标y 的范围为02y d ≤≤
设电子从02y d ≤≤范围内某一位置射入电场时的纵坐标为y ,从ON 间射出电场时的位置横坐标为x ,速度方向与x 轴间夹角为θ,在电场中运动的时间为t ,电子打到荧光屏上产生的发光点距N 点的距离为L ,如图乙所示:。

相关文档
最新文档