模煳数学变分法Matlab基础教程
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绪言
任何新生事物的产生和发展,都要经过一个由弱到强,逐步成长壮大的过程,一种新理论、一种新学科的问世,往往一开始会受到许多人的怀疑甚至否定。
模糊数学自1965年L.A.Zadeh教授开创以来所走过的道路,充分证实了这一点,然而,实践是检验真理的标准,模糊数学在理论和实际应用两方面同时取得的巨大成果,不仅消除了人们的疑虑,而且使模糊数学在科学领域中,占有了自己的一席之地。
经典数学是适应力学、天文、物理、化学这类学科的需要而发展起来的,不可能不带有这些学科固有的局限性。
这些学科考察的对象,都是无生命的机械系统,大都是界限分明的清晰事物,允许人们作出非此即彼的判断,进行精确的测量,因而适于用精确方法描述和处理。
而那些难以用经典数学实现定量化的学科,特别是有关生命现象、社会现象的学科,研究的对象大多是没有明确界限的模糊事物,不允许作出非此即彼的断言,不能进行精确的测量。
清晰事物的有关参量可以精确测定,能够建立起精确的数学模型。
模糊事物无法获得必要的精确数据,不能按精确方法建立数学模型。
实践证明,对于不同质的矛盾,只有用不同质的方法才能解决。
传统方法用于力学系统高度有效,但用于对人类行为起重要作用的系统,就显得太精确了,以致于很难达到甚至无法达到。
精确方法的逻辑基础是传统的二值逻辑,即要求符合非此即彼的排中律,这对于处理清晰事物是适用的。
但用于处理模糊性事物时,就会产生逻辑悖论。
如判断企业经济效益的好坏时,用“年利税在100万元以上者为经济效益好的企业”表达,否则,便是经济效益不好的企业。
根据常识,显而易见:“比经济效益好的企业年利税少1元的企业,仍是经济效益好的企业”,而不应被划为经济效益不好的企业。
这样,从上面的两个结论出发,反复运用经典的二值逻辑,我们最后就会得到,“年利税为0者仍为经济效益好的企业”的悖论。
类似的悖论有许多,历史上最著名的有“罗素悖论”。
它们都是在用二值逻辑来处理模糊性事物时产生的。
客观实际中存在众多的模糊性事物和现象,促使人们寻求建立一种适于描述模糊事物和现象的逻辑模式。
模糊集合理论便是在这种形势下应运而生的。
模糊方法的逻辑基础是连续值逻辑,它是建立在[0,1]上的。
如若我们把年利税在
100万元以上者的属于“经济效益好”的企业的隶属度规定为1,那末,相比之下,年利税少1元的企业,属于“经济效益好”的企业的隶属度就应相应减少一点,比如为0.99999,依此类推,企业的年利税每减少1元,它属于“经济效益好”的企业的隶属度就要相应减少一点。
这样下去,当企业的年利税为0时,它属于“经济效益好”的企业的隶属度也就为0了,显然,模糊方法的这种处理方式,是符合于人们的认识过程的,连续值逻辑是二值逻辑的合理推广。
现代科学发展的总趋势是,从以分析为主对确定性现象的研究,进到以综合为主对不确定性现象的研究。
各门科学在充分研究本领域中那些非此即彼的典型现象之后,正在扩大视域,转而研究那些亦此亦彼的非典型现象。
自然科学不同学科之间,社会科学不同学科之间,自然科学和社会科学之间,相互渗透的趋势日益加强,原来截然分明的学科界限一个个被打破,边缘科学大量涌现出来。
随着科学技术的综合化、整体化,边界不分明的对象,亦即模糊性对象,以多种多样的形式普遍地、经常地出现在科学的前沿。
模糊集合理论自诞生以来,获得了长足的发展,每年全世界发表的研究论文的数量,以指数级速度增长。
研究范围从开始时的模糊集合,发展为模糊数、模糊代数、模糊测度、模糊积分、模糊规划、模糊图论、模糊拓扑……等众多的分枝。
和模糊集合理论的发展速度相比,模糊技术的应用虽稍迟一步,但也取得了令人可喜的进展。
自1980年第一例应用模糊技术的产品问世以来,有关这方面的研究报告已逾7000多篇,制造出近千种模糊产品,如计算机、电饭煲、摄像机、微波炉、洗衣机、空调器等。
如日本松下公司研制的智能化家用空调器,可根据内置的传感器提供的室内空气温度数据,在室温高或低于25℃时,会自动地“稍稍”调节空调器的阀门,进行4608种不同状态设定选择,从而获得最佳开启状态和尽可能少的消耗。
而这种“稍稍”的程度,只有通过有经验的人的感觉来决定。
模糊技术方法不是对精确的摒弃,而是对精确更圆满的刻画。
它通过模糊控制规划,利用人类常识和智慧,理解词语的模糊内涵和外延,将各方面专家的思维互相补充。
虽然,目前要使模糊技术接近于人的思维,尚难以做到,但正如日本夏普公司电子专家日吉考庄所说:一个普遍应用模糊技术的时代,不久就会到来。
我国自70年代开始模糊数学研究以来,成就突出,已形成了2000至3000
人的世界最庞大的研究队伍,并在高速模糊推理研究等领域,居世界领先地位。
但同时在其它方面,也存在着一些差距,尤其突出的是实验室里的成果,还有许多未转化成经济效益。
需要在政府和工业界的支持和参与下,成立专门的开发实体,制定规划,并积极开展国际交流,为我国21世纪的技术发展和科学腾飞奠定基础。
第二章 模式识别
§2-1模式识别及识别的直接方法
在日常生活中生活中,经常需要进行各种判断、预测。
如图象文字识别、故障(疾病)的诊断、矿藏情况的判断等,其特点就是在已知各种标准类型前提下,判断识别对象属于哪个类型的问题。
这样的问题就是模式识别。
一、模糊模式识别的一般步骤
模式识别的问题,在模糊数学形成之前就已经存在,传统的作法主要用统计方法或语言的方法进行识别。
但在多数情况下,标准类型常可用模糊集表示,用模糊数学的方法进行识别是更为合理可行的,以模糊数学为基础的模式识别方法称为模糊模式识别。
模式识别主要包括三个步骤:
第一步:提取特征,首先需要从识别对象中提取与识别有关的特征,并度量这些特征,设n x x ,,1 分别为每个特征的度量值,于是每个识别对象x 就对应一个向量),,,(21n x x x ,这一步是识别的关键,特征提取不合理,会影响识别效果。
第二步:建立标准类型的隶属函数,标准类型通常是论域
{}),(1n x x U =的模糊集,i x 是识别对象的第i 个特征。
第三步:建立识别判决准则,确定某些归属原则,以判定识别对象属于哪一个标准类型。
常用的判决准则有最大隶属度原则(直接法)和择近原则(间接法)两种。
二、最大的隶属度原则
若标准类型是一些表示模糊概念的模糊集,待识别对象是论域中的某一元素(个体)时,往往由于识别对象不绝对地属于某类标准类型,因而隶属度不为1,这类问题人们常常是采用称为“最大隶属度原则”的方法
加以识别,这种方法(以及下面的“阈值原则”)是处理个体识别问题的,称为直接法。
最大隶属度原则:设)(,21U F A A A n ∈ 是n 个标准类型,U x ∈0,若
{}n k x A x A k i ≤≤-1 )( max )(00
则认为0x 相对隶属于i A 所代表的类型。
例 1 通货膨胀识别问题
通货膨胀状态可分成五个类型:通货稳定;轻度通货膨胀;中度通货膨胀;重度通货膨胀;恶性通货膨胀.以上五个类型依次用+R (非负实数域,下同)上的模糊集54321,,,,A A A A A 表示,其隶属函数分别为:
⎪⎩
⎪
⎨⎧≥--<≤=5 ],]35[exp[50 ,1)(2
1x x x x A ))510(exp()(2
2--=x x A
))720(exp()(2
3--=x x A
))9
30(exp()(2
4--=x x A
⎪⎩⎪⎨⎧≥<≤--=50 ,
1 50
0 ),)15
50(exp[)(25x x x x A
其中对0≥x ,表示物价上涨%x 。
问40,8=x 时,分别相对隶属于哪种类型?
解 3679.0)8(1=A ,
8521.0)8(2=A 0529.0)8(3=A ,0032.0)8(4=A 0000.0)8(5=A
0000.0)40(1=A ,0000.0)40(2=A 0003.0)40(3=A ,1299.0)40(4=A
6412.0)40(5=A
由最大隶属原则,8=x 应相对隶属于2A ,即当物价上涨%8时,应视
为轻度通货膨胀;40=x ,应相对隶属于5A ,即当物价上涨%40时,应视为恶性通货膨胀。
三、阈值原则
在使用最大隶属度原则进行识别中,还会出现以下两种情况,其一是有时待识别对象0x 关于模糊集n A A A 21,中每一个隶属程度都相对较低,这时说明模糊集合n A A A 21,对元素x 不能识别;其二是有时待识别对象x 关于模糊集n A A A 21,中若干个的隶属程度都相对较高,这时还可以缩小x 的识别范围,关于这两种情况有如下阈值原则。
阈值原则:)(,21U F A A A n ∈ 是n 个标准类型,]1,0(,0∈∈d U x 为一阈值(置信水平)令
{}n k x A k ≤≤=1)(max 0α
若
d <α则不能识别,应查找原因另作分析。
若α≥d 且有d x A i ≥)(01,d x A i ≥)(02…d x A m i ≥)(0 则判决0x 相对地属于m i i i A A A 21
例 2 三角形识别问题
我们把三角形分成等腰三角形I ,直角三角形R , 正三角形E ,非典型三角形T ,这四个标准类型,取定论域
{}C B A C B A C B A x x X ≥≥=++==,180),,,(
这里C B A ,,是三角形三个内角的度数,通过分析建立这四类三角形的隶属函数为:
)]()[(6011)(C B B A x I -∧--
=(2
1
)(=x A n
90901
1)(--=A x R
)(1801
1)(C A x E --= ]902,),(3),(3min[180
1
)(----=A C A C B B A x T
现给定,)45,50,85(),,(0==C B A x ,0x 对上述四个标准类型的隶属度为:
06.0)(7
.0)( 94.0)( 916.0)(0000====x T x E x R x I
由于0x 关于I ,R 的隶属程度都相对高,故采用阈值原则,取8.0=d ,因8.0916.0)(0≥=x I ,8.094.0)(0≥=x R ,按阈值原则,0x 相对属于I ∩R ,即0x 可识别为等腰直角三角形。
例 3 癌细胞识别
在癌细胞识别问题中细胞分成四个标准类型,即:癌细胞)(M ,重度核异质细胞)(N ,轻度核异质细胞)(R ,正常细胞。
)(T
选取表征细胞状况的七个特征:
.
:,
:,:,:,:,:,:7654221核内平均透光率核内平均光密度核内总光密度细胞周长细胞面积核周长核面积x x x x x x x
根据病理知识,反映细胞是否癌变的主要指标有以下六个,它们都是
{}),,,(:721x x x x x X == 上的模糊集:
1
23
2
46
1
21
2
25
1
2
672
741
2
1
3
1
2
52
12
12
1])4(1[)(,:])4(1[)(,
:])
lg (1[)(,:)1()(,:)1()(,
:)
( )1()(:-------+
=-+
=++=+
=+
=+=πβπβββββx x
x F F x x
x E E x x x x D D x x C C x x B B a x a x A A 细胞畸形核畸形核内染色质不匀核桨比例置核染色增深正常核面积核增大
上述621,,,βββ 是适当选取的常数
细胞识别中的几个标准类型分别定义为:
c
c c c c c
R N M T N M C B A R M C B A N F E D C B A M ====2
12
12
1)]([
上述定义中的模糊集2
1A 的隶属函数为2
1A 2
1))(()(x A x =。
另两个模糊集2
1B 、
2
1C 的隶属函数类似定义。
给定待识别细胞X x ∈0,设0x 的核面积等七个特征值为),,(0
70
20
1x x x 据此可算出
)(0x M 、)(0x N 、)(0x R 、)(0x T ,最后按最大隶属度原则识别。
例4 冬季降雪量预报
内蒙古丰镇地区流行三条谚语:(1)夏热冬雪大,(2)秋霜晚冬雪大,(3)秋分刮西北风冬雪大,现在根据三条谚语来预报丰镇地区冬季降雪量。
为描述“夏热”)(1A 、秋霜晚)(2A 、秋分刮西北风)(3A 等概念,在气象现象中提取以下特征:
1x :当年6~7月平均气温 2x :当年秋季初霜日期
3x :当年秋分日的风向与正西方向的夹角。
于是模糊集1A (夏热),2A (秋霜晚)、3A (秋分刮西北风)的隶属函数可分别定义为:
⎪⎪⎪⎩
⎪
⎪
⎪⎨⎧
-≤<<---≥= 2 0 2 )(211
1)(11111112112
11111σσσx x x x x x x x x x A 其中1x 是丰镇地区若干年6、7月份气温的平均值,1σ为方差,实际预报时取
x =2,19c 2
1
σ=0.98
⎪⎪⎪⎩
⎪⎪
⎪⎨⎧
≤<<--≥=22222222
22222 0 1)(a x x x a a x a x x x x A
其中2x 是若干年秋季初霜日的平均值,2a 是经验参数,实际预报时取2x =17(即9月17日),2a =10(即9月10日)。
⎪⎪⎩⎪⎪⎨
⎧︒<<︒︒≤≤︒︒<<︒︒≤≤︒=900
cosx 18090
0270081 sinx -360270
1)(33333
333x x x x x A 取论域{}),,(|321x x x x x X ==,“冬雪大”可以表示为论域X 上的模糊集
C ,其隶属函数为:
)()(11x A x C =∧)((22x A ∨))(33x A
采用阈值原则,取阈值8.0=d ,测定当年气候因子),,(321x x x x =。
计算)(x C ,若8.0)(≥x C 则预报当年冬季“多雪”,否则预报“少雪”。
用这一方法对丰镇1959~1970年间隔12年作了预报,除1965年以外均报对,历史拟合率为11/12。
§2-2 贴近度与模式识别的间接方法
一、贴近度
表示两个模糊集接近程度的数量指标,称为贴近度,其严格的数学定义如下:
定义1 设映射
N : ]1,0[)()(→⨯U F U F 满足下列条件:
(1) )(U F A ∈∀,1),(=A A N (2) )(,U F B A ∈∀,),(),(A B N B A N =
(3) 若)(,,U F C B A ∈满足
)()()()(x B x A x C x A -≥- )(U x ∈∀
有) () (B A N C A N ≤
则称映射N 为)(U F 上的贴近度,称) (B A N 为A 与B 的贴近度。
贴近度的具体形式较多,以下介绍几种常见的贴近度公式 (1) H a mmin g 贴近度
∑=--=n
i i i H x B x A n B A N 1
)()(11), (
或 ⎰---
=b a
H dx x B x A a b B A N )()()(1
1), ( (2)E uc lid 贴近度
∑=--
=n
i i
i
E x B x A n
B A N 1
2
))
()((1
1), (
或 ⎰
---
=b
a
i i E dx x B x A a
b B A N 2))()((1
1), (
(3)格贴近度 定义7 映射
]1,0[)()(:→⨯U F U F N g
A B A B A N B A g ()(),(),(∧=→ ⊙c B ),
(或=A B A ([2
1+ ⊙])c
B ) 称为格贴近度,称),(B A N g 为A 与B 格贴近度。
其中,
{}U x x B x A B A ∈∧∨=)()( (称为A 与B 的内积) A ⊙{}U x x B x A B ∈∨∧=)()( (称为A 与B 的外积)
若{}n x x x U ,,,21 =,则
{})((1
i i n
i x B x A B A ∧∨==
A ⊙{})((1
i i n
i x B x A B ∨∧==
值得注意的是,这里的格贴近度是通过定义来规定的,事实上,格贴近度不满足定义
1
中(1),即
1)(≠A A N g ,但是,当
U A su A U F A ≠=∈∀pp ,),(1φ时,格贴近度满足定义1的(1)-(3)。
另外格贴
近度的计算很方便,且用于表示相同类型模糊度的贴近度比较有效,所以在实际应用中也常选用格贴近度来反映模糊集接近程度。
还有许多贴近度,这里不在一一介绍。
贴近度主要用于模糊识别等具体问题,以上介绍的贴近度表示式各有优劣,具体应用时,应根据问题的实际情况,选用合适的贴近度。
二、模式识别的间接方法——择近原则
在模式识别问题中,各标准类型(模式)一般是某个论域X 上的模糊集,用模式识别的直接方法(最大隶属度原则、阈值原则)解决问题时,其识别对象是论域X 中的元素。
另有一类识别问题,其识别对象也是X 上的模糊集,这类问题可以用下面的择近原则来识别判决。
择近原则:已知n 个标准类型1A 、2A 、…、)(X F A n ∈,)(X F B ∈为待识别的对象,)(X F N 为上的贴近度,若
{}n k B A N B A N k i ,2,1 |),(m ax ),(==
则认为B 与i A 最贴近,判定B 属于i A 一类。
例5 岩石类型识别
岩石按抗压强度可以分成五个标准类型:很差(1A )、差(2A )、较好(3A )、好(4A )、很好(5A )。
它们都是),0[+∞=X 上的模糊集,其隶属函数如下(图2-1)
)
/(2cm kg
图 2-1
⎪
⎩⎪⎨⎧≥<<--≤≤=200
0200100 )200(1001
100x 0 1)(1x x x x A
⎪⎪⎩⎪⎪⎨⎧<≤<--
≤<≤≤=x x x x x x
x A 600 0600400 )600(200
1
400200 12000
200)(2
⎪⎪⎩⎪⎪⎨⎧≤<--
≤<≤≤-=其它 01100900 )1100(200
1
900600 1600040
)400(2001
)(3x x x x x x A
⎪⎪
⎩⎪⎪⎨⎧≤<--≤<≤≤-=其它
022000081 )2200(400
1
18000011 11100090
)900(2001
)(4x x x x x x A
⎪
⎩⎪⎨⎧<≤<-<=x x x x x A 2002
122001800 )1800(4001
1800
0)(5
今有某种岩体,经实测得出其抗压强度为X 上的模糊集B ,隶属函数为(图2-3)。
图 2-3
⎪⎪⎩⎪⎪⎨⎧≤<--≤<≤≤-=其它
011201000 )1120(120
1
1000800 1800712
)712(881
)(x x x x x x B
试问岩体B 应属于哪一类。
计算B 与)5~1(=i A i 的格贴近度,得:
),( ,68.0),( 1),( ,0),( ,0),(54321=====B A N B A N B A N B A N B A N g g g g g
按择近原则,B 应属于3A 类,即B 属于“较好”类(3A 类)的岩石。
例6 小麦亲本识别
在小麦杂交育种过程中,亲本选择是关键。
现有五种类型的小麦亲本,它们是:
1A :早熟型,2A :矮杆型,3A :大粒型, 4A :高肥丰产型,5A :中肥丰产型。
判断小麦亲本类型的主要依据是以下五种性状特征:
1x :抽穗期,2x :株高,3x :有效穗数, 4x :主穗粒数,5x :百粒重。
第i 种类型亲本的第j 个特征,是模糊集ij A ,这些模糊集除11A (早熟型的抽穗期)与
22A (矮杆型的株高)外,其余都是中间型的正态分布模糊集。
为简单计,将正态分布函数
展开,取前两项作它的近似值,则有
22
2)()(2112
2a x e
a x --
≈--
σσ
于是ij A 的隶属函数可表示为:
⎪⎪⎪⎩
⎪⎪
⎪⎨⎧+<<--≤≤<<---=其它 ,02 ,)(211
,12 ,)(211)(22
2
2
ij
ij ij ij ij ij ij ij ij ij ij ij
ij a b x b b x b x a a x a a x x A σσσ
而11A ,22A 的隶属函数取为偏小值型:
⎪⎩⎪
⎨⎧>--≤=ii ii ii
ii b x b x b x x A )(211 1)(22
σ )2,1(=i
为确定隶属函数中的参数值,在熟知的标准类型中,每类型选出k 个新本为样本,分别计算各样本的第j 个特征的均值ijl x 及方差),,2,1(k l ijl =σ,取
{}{}∑======k l ijl
ij ijl
ij
ijl ij k k l x b k l x a 1
2
1,2,1:max ,2,1:min σσ
以上参数值见表(2-1)
现有一待识对象B ,它的第j 个特征j B 是中间型正态分布模糊集,隶属函数可近似表示为:
⎪⎪⎩
⎪
⎪⎨
⎧+<<---=其它
022,2)(1)(2
2
j
j j j j j j x x x x x x B σσσ )5,4,3,2,1(=j 。
式中参数值见表(2-2)
计算识别对象B 的第j 个特征与第i 种标准类型对应特征ij A 的格贴近度
)5,4,3,2,1(),(=i B A j ij 并定义第i 种标准类型i A 与识别对象B 的贴近度为:
),(),(5
1
j ij j i B A B A =∧=
计算结果列于表(2-3)
表(2-3)的最后一行为B 与各标准类型的贴近度。
由于B 与5A 的贴近度最高(0.96),故判定识别对象B 为5A 代表的类型,即B 为中肥丰产类型的亲本。
例7 遥感土地复盖类型分类
遥感是根据不同的地物对电磁波谱有不同的响应这一原理,来识别土地复盖的类型。
空间遥感的一个象元相当于地面0.45公倾地物的综合。
遥感图象识别分类中,要涉及不少模糊概念,例如,“以红松为主的针叶林”就是一个没有明确界线的模糊概念。
这是遥感本身的特性决定的。
因此用模糊数学的方法对遥感图象进行识别分类应该是行之有效的方法。
美国爱达荷大学R.C.Heller 教授指出,国际上当以水体、沙地、森林、城镇、作物、干草作为分类单位(即标准类型)时,空间遥感的分类精度可达83.93%甚至更高。
但当分类单位深入到更小的土地复盖单元时,精度就不理想了。
现在将分类单位细分阶段为以下五种标准类型:
1A :公路,2A :村庄农田,3A :红松为主的针叶林, 4A :阔、针混交林,5A :白桦林。
对于多波段遥感技术,假设采用p 个波段,则每一地物对应一个p 维数据向量),,,(21p x x x x =。
1975年1月22日美国发射La n d S a t -2,提供了
M S S -4,5,6,7这四个波段的数据,故有4=p 。
取论域
{}),,,(|4321x x x x x x X ==
其中4321,,,x x x x 分别为象元对应于MSS-4,5,6,7各波段的光谱强度。
于是五种标准类型)5~1(=i A i 可表为X 上的模糊集。
由于各波段光谱强度是正态分布模糊集,故第i 个标准类型的(j +3)波段光谱强度的隶属函数为:
⎪⎭
⎪
⎬⎫⎪⎩⎪⎨⎧--=2)(exp )(ij ij j j ij a x x A σ )4,3,2,1(=j
定义第i 种标准类型i A 为:
4321i i i i i A A A A A =
因而
⎪⎭
⎪
⎬⎫⎪⎩⎪⎨⎧--==≤≤≤≤24141)(max exp )(min )(ij ij j j j ij j i a x x A x A σ
其中ij a 为若干个第i 种类型第(j +3)个波段光谱强度的均值,ij σ为方差,东北凉水林场的这些参数值见表(2-4)
设B 为识别对象,定义i A 与B 的贴近度为:
),(),(4
1
j ij g j i B A N B A N =∧= (1)
其中 ),(j ij g B A N =
ij j ij A B A ()[((2
1
+ ⊙])c j B (2)
表 2-5
按{}
X x x B x A B A c ∈∧-∧=⋅)()((1)(及A (⊙c
c
c
B A B =)
]1[2
1
),(2
)(
j
ij j
ij a a j ij g e
B A N σσ+--+= (3-2
6)
(这里j a 与j σ是j B 的均值与方差)。
现有东北凉水林场空间遥感象元(待识别对象)五个,按(1)与(2)计算它们与五个标准类型的贴近度,计算结果在表(2-5)按择近原则进行识别判决,准确率100%。
例8 雷达识别
现有n 个雷达类,每个雷达类可用发射频率、脉冲重复频率、脉冲宽度等特征来刻画,假设共有j 个特征,第i 类雷达的第j 个特征可以取ij n 个值。
由于保密的需要及信号环境的日益复杂,这些特征及其取值都带有一定的模糊性。
设第i 类)~1(n i =雷达的k 个特征为
i A A A ik i i ,,,21 类雷达的第j 个特征)~1(k j =取值为),2,1(ij m
ij n m A =,
其隶属函数为中间型柯西分布,即
12])(
1[)(--+=m ij
m
ij m
ij
a u u A σ
设X 为待识别对象,它的k 个特征为X X X X k ,,,21 的第j 个特征j X 的隶属函数也取中间型柯西分布:
),1,2,(j ])(
1[)(12k x u u X j
j
j =-+=-σ
采用格贴近度,令
{}
ij m
ij
ij j m ij m ij n m d d X A d ~1|max )
,(===
则ij d 为识别对象X 的第j 个特征与i 类雷达第j 个特征贴近程度的度量。
一般情况可令
∑==k
j ij j i d a d 1
(i d 是各ij d 的加权平均值,权系数j a 表示j 个特征的重要性程度)i d 可作为识别对象X 与第i 类雷达总贴近的度量。
根据i d 的大小可判定X 属于何类雷达,但是,由于权系数j a 的确定有一定的模糊性,m
ij A 及j X 的隶属函数的确定带有一定的主观性,从而导致贴近度m
ij d 有一定的模糊性。
因此对j a 及ij d 进行模糊化处理,设
R L ij ij ij ij R L j j j j w w d D c c a A --==),;( ),;(
这里j A ,ij D 都是R L -模糊数(见第五章),取R L =。
令
∑==-∧=-∧=m
j ij
i i ij ij ij j j j D A D d d w a a c 1
)
1(),1(
i D 的隶属函数为
)]()([sup )(11
ij ij j j m
j d a d i i u D u A d D k j ij
j i ∧∧∑====
则i D 为识别对象X 与第i 类雷达的贴近程度的模糊测度。
为得到X 所属雷达类别的确切判决,类似于阈值法则,给定水平值α,令
{}{}
αα)(|inf )(|sup i i i i i i i i D d d d D d d d ∈=∈=
若 {}
n i d d i i ≤≤=1:ma x 0且0i 唯一,则判定X 为0i 类雷达; 若 {}
n i d d d i i i ≤≤==1:ma x 21且21i i d d >,则判定X 为1i 类雷达。
用上述方法(将权系数及贴近度模糊化),经上千次仿真试验,比传统的贴近度及线性加弘平均法,误判率有所下降。
第三章 模糊规划
§3-1 模糊极值
一、有界函数的模糊极值
设 R X f →: (R 为实数集)
)(x f y x =→
是有界函数,求函数)(x f 的普通极值问题是求*
x 使
{}X x x f x f ∈=*)(max )(
满足上式的*
x 为)(x f 在X 上的最大值点,)(*
x f 为最大值,最大值点不一
定唯一.
设)(x f 的一切最大值点的集合为
{}
X x x f x f x M f ∈==**),(max )(
称f M 为)(x f 的优越集.当f M x ∈时,函数在x 处取到最大值)(x f ,x 使)(x f 达到最优.当f M x ∉时,)(x f 虽不是最大值,但对不同的x ,)(x f 与最大值的差异有所不同,也就是说,对于不属于f M 的x ,它们的“优越性”程度有所不同,为了反映X 中各点不同的优越程度,将优越集f M 模糊化,并利用它将极值模糊化.
定义1设R X f →:是有界函数,定义f M 的隶属函数为 {}
{}{}
X x x f X x x f X x x f x f x M f ∈-∈∈-=
)(min )(max )(min )()( (X x ∈∀)
称f M 为f 的无条件模糊优越集称)(f M f 的f 的无条件模糊极大值.这里
)()(R F M f f ∈,它的求属函数按扩张原理为
{}y x f x M y M f f f =∨=)()())(( (约定0=∨φ)
注 (1)当1x x =为)(x f 的极大点,即{}
X x x f x f ∈=)(max )(1时1)(1=x M f ,
当2x x =为)(x f 的极小点,即{}
X x x f x f ∈=)(min )2(时
0)(2=x M f ,)()(21x f x f ≤充分必要条件是
)()(21x M x M f f ≤ ()X x x ∈∀21
(2)当{}X x x f y ∈=)(max 1时,∨=))((1y M f f {}
1)()(y x f x M f =
当{}
X x x f y ∈=)(min 2时,∨=))((2y M f f {}
2)()(y x f x M f = 当R X f y ⊆∉)(时,
{}0)()()())((=∨=∈=∨=φx f y y x f x M y M f f f
因此,))((y M f f 反映了在模糊意义下,y 对f 的模糊数大值的求属程度.
例1
设{}54321,,,,x x x x x X =,R X f →:,
定义0)(1=x f , 3)(2=x f , 1)(3-=x f 1)(4=x f , 1)(5=x f ,则
3)(max =x f 1)(min -=x f , 并且)5,4,3,2,1(4
)
1)(()(=+=
i x f x M i f
于是)5.0,5.0,1,0,25.0(=f M
又 {}
25.0)(0)()()0)((1===∨=x M x f x M M f f f f 1)()3)((2==x M M f f f
0)()1)((3==-x M M f f f
{}
5.0)()(1)()()1)((54=∨==∨=x M x M x f x M M f f f f f
故 1/5.03/11/10/25.0)(++-+=f M f
f 的无条件模糊极小集f m 定义为f -的无条件极大集,显然有 {}{}{}
X x x f X x x f x f X x x f x m f ∈-∈-∈=
)(min )(max )
()(max )( )(X x ∈∀
且有,)(1)(x M x m f f -=,所有极小集f m 是极大集f M 的余集.
二、模糊约束下有界函数的模糊极值
设:R X f →:是有界函数,)(X F C ∈,考虑f 在C 约束下的最大值问题,这是一个模糊规划问题,求解这个问题意味着既要最大限度地满足约束,又要最大限度地达到理想目标,为此定义如下:
定义2 设目标函数R X f →:是有界函数,)(X F C ∈是模糊约束,令
f M C D =
这里的f M 是定义1中f 的无条件模糊优越集,称D 为f 在C 约束下的条件模糊优越集,称)(D f 为f 在C 约束下的条件模糊极大值.它们的求属函数分别为:
{}
{}{}
X x x f X x x f X x x f x f x M f ∈-∈∈-=
)(min )(max )(min )()(
)()()(x M x C x D f ∧=
{}y x f x M x C x D y D f f =∧=∨=)())()(()())((
求解目标函数)(x f 在模糊约束C 下的条件极大值有如下三个步骤: (1)求无条件模糊优越集f M (2)求条件模糊优越集f M C D = (3)求条件最佳决策,即选择*
x ,使
{}X x x D x D ∈=*)(max )(
*x 就是所求的条件极大点,)(*x f 就是在模糊约束C 下的条件极大值.
例2采区巷道布置是矿井开拓中的重要内容,其目的就是建立完善的矿井生产系统,实现采区合理集中生产,改善技术经济指标.因此,合理地选择最优巷道布置方案,对于矿井生产具有十分重要的意义.根据煤矿开采的特点和采区在矿井生产的作用,在选择最优巷道布置方案时,要求达到下列标准:
(1)生产集中程度高; (2)采煤机械化程度高; (3)采区生产系统十分完善; (4)安全生产可靠性好; (5)煤炭损失率低; (6)巷道掘进费用尽可能低.
上述问题,实际上就是一个模糊约束下的条件极值问题,我们可以把(1)~(5)作为模糊约束,而把(6)作为目标函数.
设某矿井的采区巷道布置有六种方案可供选择,即X ={1x (方案Ⅰ),
2x (方案Ⅱ), 3x (方案Ⅲ), 4x (方案Ⅳ), 5x (方案Ⅴ), 6x (方案Ⅵ)}.
经过对六种方案进行审议,评价后,将其结果列于表 1
将表
1
中的语言真值(评价结果)转化为各模糊约束集
)(X F C i ∈,)5,4,3,2,1(=i 的隶属度转化的对应关系如下:
对1C , 2C , 3C , 4C 而言,对应关系为:
对 5C 而言,对应关系为
将表1中的巷道掘进费用目标函数f 用公式
f
f x f f x m i f min max )
(max )(--=
计算出,因此得表 2
其值语言与隶属函数转换表 2
计算模糊判决集D 为
54321C C C C C m D f = (按列求最小) 654321/34.0/4.0/6.0/0/2.0/2.0x x x x x x +++++= 由)(6.0)(max 4x D x D i X
x i ==∈
根据最大求属度原则,方案四最优
例 3 在某种食品中投放某种调味剂,每公斤食品中的含量设为x 克,对顾客爱好作调查统计,得爱好函数为
⎪⎩
⎪⎨
⎧>≤≤=-.100,0,1000,2)()
10/1(x x e
x x f x 对于使爱好函数值越大的x 值,所制产品越畅销,因而收益越大,但
是由于成本核算等等原因,对x 值需要进行限制,这种限制集合的边界是模糊的,即x 的约束条件为一模糊集A ,其隶属函数为
⎪⎪⎩⎪
⎪⎨⎧
>-+≤≤=.1 ,)
1(11.10 ,1)(2x x x x A
试确定合理的剂量*
x ,使得在接受约束的条件下,获得最优收益. 解 这是一个规划问题,分三步进行.
(1) 求无条件模糊优越集f M ,由于
)
10/1()10/1(20
21)(x x e
x e x f ---=
', 令0)(='x f ,得10=x .又当10<x 时,0)(>'x f ,10>x 时,
0)(<'x f ,因而5)10()(sup ==f x f ,0)0()(inf ==f x f .因此
⎪⎩
⎪⎨⎧>≤≤=-100 , 0100 ,10)()
10/1(x x e
x x M x f
(2) 求条件模糊优越集f A
⎪⎪⎪⎩
⎪⎪
⎪⎨⎧>≤<-+≤≤=∧=*
*-100 , 0 100 ,)1(11,0 ,10)()()(2
100
/1(x x x x x x e
x x M x A x A x f f 其中*
x 满足方程
2
)10/1()1(1110-+=-x e x x (3) 选择*
x ,使
4593.0)1(11
)(2
≈-+=
**x x A f ,
即A 对目标f 的可能度为45.93%,而要实现这种可能性,应选择调味剂的最佳剂量为 2.085克.
μX
需要说明的是,在本例中如果将约束条件确切化,以A 的核[0,1]为约束,这是一个普通规划问题,所得结论是选择最佳剂量为1克.从约束条件看,已是100%遵守,但所能达到的最高目标相对整个目标函数来说是很低的,由246.0)1(=f M ,说明相对整个目标来说,其优越程度仅达24.6%.如果把条件放松为模糊约束条件A ,且适当降低)(x A 的水平,却可以获得较好的目标值.如例中的结果,当085.2=*
x 时,从接受约束条件来看虽仅达45.9%,但目标函数的优越程度也升到了45.9%,从而提高了整体优化水平.由于在实际问题中,约束条件往往不是绝对的,有一定的伸缩性,模糊规划的思想就是利用这点灵活性,兼顾目标函数与约束条件综合地选择最优方案.
例 4 植物的种植密度与产量有密切的关系.已知某种杉树的种植密度
ρ与产量V 的关系如下:
)1000(,10)(6
≥=
=ρρ
ρf V
这里
ρ表示每公顷土地上种植的棵数,V 表示每公顷土地产出木材的体积.
现有一片杉树森林,其密度不均匀,估计ρ“大约是三千”.试估计该森
林每公顷木材最高产量.
解 设C 表示“大约是三千”这一模糊,C 的隶属函数为
)( ,)(1000000
)3000(2
R e
x C ∈=--
ρρ
估计木材产量的问题,就是求在C 的约束下函数f 的模糊条件极大值.为此先求有界函数f 的无条件模糊优越集.因500)(sup 1000
=≥ρρf ,0)(inf 1000
=≥ρρf ,所
以
ρ
ρρρ3
10)(500105000)()(==--=f f M f
f 在约束条件C 下的条件模糊优越集为:
)()()(,ρρρf f f f M C C M C C ∧==。