沅陵一中2013自招数学问卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年4月沅陵一中初三第三次调研考试试题
数 学
一、选择题(每小题3分,共24分)
1、 已知m 是方程022=--x x 的一个根,则m m -2的值是( ) .
A. 0
B. 1
C. 2
D. -2
2、某展览厅内要用相同的正方体木块搭成一个三视图如下的展台,则此展台共需这样的正方体( )
A .3块
B .4块
C .5块
D .6块
3、若平行四边形相邻两边的长分别为10和15,它们的夹角为60°,则平行四边形的面积 是( ) A .150 B .375 C .9 D .7
4、当二次三项式02542
=++kx x 是完全平方式时,k 的值是……( ) (A )20 (B ) 10 (C )-20 (D )绝对值是20的数
5、已知⊙O 的半径为10cm,弦AB ∥CD,AB=12cm,CD=16cm,则AB 和CD 的距离为( )
A.2cm
B.14cm
C.2cm 或14cm
D.10cm 或20cm
6、圆锥的母线长5cm,底面半径长3cm,那么它的侧面展开图的圆心角是( ) A.180° B.200° C.225° D.216°
7、下图所表示的不等式组的解集为( )
A 、3>x
B 、32<<-x
C 、 2->x
D 、32>>-x
8、下列关于二次函数的说法错误的是( )
A.抛物线1322
++-=x x y 的对称轴是直线4
3=
x ; B.点)0,3(A 不在抛物线322
--=x x y 的图象上;
-2
3 4
2 1 0 -1
俯视图左视图
主视图
C.二次函数2)2(2-+=x y 的顶点坐标是)2,2(--;
D.函数3422-+=x x y 的图象的最低点在)5,1(--; 二、填空题(每小题3分,共24分)
9、口袋里有红、绿、黄三种颜色的球,其中红球4个,绿球5个,任意摸出一个绿球的概率是
3
1
,则摸出一个黄球的概率是__ ______;
10、已知α为锐角,sin(α-090)=0.625,则cos α= ;
11、若1+x +
3-y =0,则(x -1)2+(y +3)2=____ ________;
12、已知M=1
21
2,12122014201320132012++=++N ,那么M ,N 的大小关系是____ ______;
13、已知:如图,三个半圆彼此相外切,它们的圆心都在x 轴的正半轴上,并与直线y x 相切,设半圆C 1、半圆C 2、半圆C 3的半径分别是r 1、r 2、r 3,则当r 1=1时,r 3= ;
14、某食品连续两次涨价10%后价格是a 元,那么原价是_______ ___;
15、函数132
++-=x ax ax y 的图象与x 轴有且只有一个交点,那么a 的值为 ;
16、如图,AB 是半圆的直径,C 为BA 延长线上的一点,
CD 切半圆于点E ,已知1=OA ,CD BD ⊥,BD 交
半圆于F ,设x DF =,y AC =,则y 关于x 的函数解
析式是_____________。

三、解答题(共72分)
17、(本小题6分)若不等式组⎩⎨⎧>-<+n
m x n m x 的解集是53<<-x ,求不等式0<-n mx 的
解集;
18、(本小题6分)已知c b a ,,是三角形的三边,求证:.2<+++++b
a c
a c
b
c b a
19、(本小题8分)已知x =2323-+,y =2
32
3+-,求3
2234232y x y x y x xy x ++-的值.
20、(本小题10分)如图10,四边形ABCD 、
DEFG 都是正方形,连接AE 、CG ,AE 与CG 相交于点M ,CG 与AD 相交于点N ; 求证:(1)CG AE =;
(2).MN CN DN AN ∙=∙
21、(本小题10分)如图,一次函数b kx y +=的图象与反比例数x
m
y =
的图象交于)1,3(-A 、),2(n B 两点. (1)求上述反比例函数和一次函数的解析式; (2)求AOB ∆的面积.
22、(本小题10分)如图,AC 是某市环城路的一段,AE ,BF ,CD 都是南北方向的街道,其与环城路AC 的交
叉路口分别是A ,B ,C .经测量花卉世界D 位于点A 的北偏东45°方向、点B 的北偏东 30°方向上,AB =2km ,∠DAC=15°。

(1)求B 、D 之间的距离; (2)求C 、D 之间的距离。

300
150
450环城路
和平路
文化路中山路
F
B
E
D
C
A
23、(本小题10分)如图,在Rt △ABC 中,∠ACB =90°,BC>AC ,以斜边AB 所在直线为x 轴,以斜边AB 上的高所在直线为y 轴,建立直角坐标系,若OA 2+OB 2=17,且线段OA 、OB 的长度是关于x 的一元二次方程x 2-mx +2(m -3)=0的两个根。

(1)求C 点的坐标;
(2)以斜边AB 为直径作圆与y 轴交于另一点E ,求过A 、B 、
E 三点的抛物线的解析式
24、(本小题12分)如图2-4-37,在直角坐标系中,O 是原点,A 、B 、C 三点的坐标分别为A (18,0)、B (18,6)、C (8,6),四边形OABC 是梯形.点P 、Q 同时从原点出发,分别作匀速运动,其中点P 沿OA 向终点A 运动,速度为每秒1个单位,点Q 沿OC 、CB 向终点B 运动,当这两点有一点到达自己的终点时,另一点也停止运动.
(1)求出直线OC 的解析式.
(2)设从出发起运动了t 秒,如果点Q 的速度为每秒2个单位,试写出点Q 的坐标,并写出此时t 的取值范围.
(3)设从出发起运动了t 秒,当P 、Q 两点运动的路程之和恰好等于梯形OABC 的周长的一半时,直线PQ 能否把梯形的面积也分成相等的两部分?如有可能,请求出t 的值;如不可能,请说明理由.
图10。

相关文档
最新文档