高中物理必修第3册 静电场及其应用试卷培优测试卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理必修第3册 静电场及其应用试卷培优测试卷
一、第九章 静电场及其应用选择题易错题培优(难)
1.如图,真空中x 轴上关于O 点对称的M 、N 两点分别固定两异种点电荷,其电荷量分别为1Q +、2Q -,且12Q Q >。
取无穷远处电势为零,则( )
A .只有MN 区间的电场方向向右
B .在N 点右侧附近存在电场强度为零的点
C .在ON 之间存在电势为零的点
D .MO 之间的电势差小于ON 之间的电势差 【答案】BC 【解析】 【分析】 【详解】
AB .1Q +在N 点右侧产生的场强水平向右,2Q -在N 点右侧产生的场强水平向左,又因为
12Q Q >,根据2Q
E k
r
=在N 点右侧附近存在电场强度为零的点,该点左右两侧场强方向相反,所以不仅只有MN 区间的电场方向向右,选项A 错误,B 正确;
C .1Q +、2Q -为两异种点电荷,在ON 之间存在电势为零的点,选项C 正确;
D .因为12Q Q >,MO 之间的电场强度大,所以MO 之间的电势差大于ON 之间的电势差,选项D 错误。
故选BC 。
2.如图所示,在圆心为O 、半径为R 的圆周上等间距分布着三个电荷量均为q 的点电荷
a 、
b 、
c ,其中a 、b 带正电,c 带负电。
已知静电力常量为k ,下列说法正确的是
( )
A .a 受到的库仑力大小为2233kq
R
B .c 23kq
C .a 、b 在O 点产生的场强为
2
R
,方向由O 指向c D .a 、b 、c 在O 点产生的场强为22kq
R
,方向由O 指向c 【答案】BD 【解析】 【分析】 【详解】
AB .根据几何关系得ab 间、bc 间、ac 间的距离
r =
根据库仑力的公式得a 、b 、c 间的库仑力大小
22
223q q F k k r R
==
a 受到的两个力夹角为120︒,所以a 受到的库仑力为
2
23a q F F k R
==
c 受到的两个力夹角为60︒,所以c 受到的库仑力为
2
2
3c F R
== 选项A 错误,B 正确;
C .a 、b 在O 点产生的场强大小相等,根据电场强度定义有
02
q E k
R = a 、b 带正电,故a 在O 点产生的场强方向是由a 指向O ,b 在O 点产生的场强方向是由
b 指向O ,由矢量合成得a 、b 在O 点产生的场强大小
2q E k R
=
方向由O →c ,选项C 错误;
D .同理c 在O 点产生的场强大小为
02q
E k R
=
方向由O →c
运用矢量合成法则得a 、b 、c 在O 点产生的场强
22q
E k R
'=
方向O →c 。
选项D 正确。
故选BD 。
3.质量分别为A m 和B m 的两小球带有同种电荷,电荷量分别为A q 和B q ,用绝缘细线悬挂在天花板上。
平衡时,两小球恰处于同一水平位置,细线与竖直方向间夹角分别为1θ与
()212θθθ>。
两小球突然失去各自所带电荷后开始摆动,最大速度分别为A v 和B v ,最大
动能分别为kA E 和kB E 。
则( )
A .A m 一定大于
B m B .A q 一定小于B q
C .A v 一定大于B v
D .kA
E 一定大于kB E
【答案】CD 【解析】 【分析】 【详解】
A .对小球A 受力分析,受重力、静电力、拉力,如图所示
根据平衡条件,有
1A tan F m g
θ=
故
A 1tan F
m g θ=
⋅
同理,有
B 2
tan F
m g θ=
⋅
由于12θθ>,故A B m m <,故A 错误;
B .两球间的库仑力是作用力与反作用力,一定相等,与两个球是否带电量相等无关,故B 错误;
C .设悬点到AB 的竖直高度为h ,则摆球A 到最低点时下降的高度
11
1
(1)
cos cos h h h h θθ∆=
-=- 小球摆动过程机械能守恒,有
2
12
mg h mv ∆=
解得
2v g h =⋅∆
由于12θθ>,A 球摆到最低点过程,下降的高度A B h h ∆>∆,故A 球的速度较大,故C 正确;
D .小球摆动过程机械能守恒,有
k mg h E ∆=
故
k (1cos )(1cos )tan FL
E mg h mgL θθθ
=∆=-=
- 其中cos L θ相同,根据数学中的半角公式,得到
k 1cos (1cos )cos ()cos tan tan sin 2
FL E FL FL θθ
θθθθθ-=
-==⋅ 其中cos FL θ相同,故θ越大,动能越大,故kA E 一定大于kB E ,故D 正确。
故选CD 。
4.如图所示,两个带电小球A 、B 分别处于光滑绝缘的竖直墙面和斜面上,且在同一竖直平面内,用水平向左的推力F 作用于B 球,两球在图示位置静止,现将B 球沿斜面向下移动一小段距离,发现A 球随之向上移动少许,两球在新位置重新平衡,重新平衡后与移动前相比,下列说法正确的是( )
A .推力F 变小
B .斜面对B 的弹力不变
C .墙面对A 的弹力不变
D .两球之间的距离减小
【答案】AB 【解析】
【详解】
CD .先对小球A 受力分析,受重力、支持力、静电力,如图所示:
根据共点力平衡条件,有:
mg
F cos =
库α
,N F mgtan =α 由于α减小,可知墙面对A 的弹力变小,库仑力减小,故两球间距增加,选项CD 错误; AB .对AB 整体受力分析,受重力、斜面支持力N 、墙壁支持力F N 、推力F ,如图所示:
根据共点力平衡条件,有
N Nsin F F Ncos m M g
+==+()ββ
解得
()F mgtan m M gtan M m g
N cos =-++=
()αββ
由于α减小,β不变,所以推力F 减小,斜面对B 的弹力N 不变,选项AB 正确。
故选AB 。
5.如图所示,a 、b 、c 、d 四个质量均为m 的带电小球恰好构成“三星拱月”之形,其中a 、b 、c 三个完全相同的带电小球在光滑绝缘水平面内的同一圆周上绕O 点做半径为R 的匀速圆周运动,三小球所在位置恰好将圆周等分.小球d 位于O 点正上方h 处,且在外力F 作用下恰处于静止状态,已知a 、b 、c 三小球的电荷量均为q ,d 球的电荷量为6q ,2h R =
.重力加速度为g ,静电力常量为k ,则( )
A .小球d 一定带正电
B.小球b
C.小球c
的加速度大小为
2
2
3mR
D.外力F
竖直向上,大小等于mg+
【答案】CD
【解析】
【详解】
A.a、b、c三小球所带电荷量相同,要使三个做匀速圆周运动,d球与a、b、c三小球一定是异种电荷,由于a球的电性未知,所以d球不一定带正电,故A错误。
BC.设db连线与水平方向的夹角为α,则
cosα==
sinα==
对b球,根据牛顿第二定律和向心力得:
()
22
2
222
64
cos2cos30
2cos30
q q q
k k m R ma
h R T
R
π
α︒
︒
⋅
-==
+
解得:
T=
a=
则小球c
B错误,C正确。
D.对d球,由平衡条件得:
2
222
6
3sin
qq
F k mg mg
h R R
α
=+=+
+
故D正确。
6.如图所示,带电小球a由绝缘细线PM和PN悬挂而处于静止状态,其中PM水平,地面上固定一绝缘且内壁光滑的圆弧细管道GH,圆心P与a球位置重合,管道底端H与水平地面相切,一质量为m可视为质点的带电小球b从G端口由静止释放,当小球b运动到H端时对管道壁恰好无弹力,重力加速度为g。
在小球b由G滑到H过程中,下列说法中正确的是()
A .小球b 机械能保持不变
B .小球b 所受库仑力大小始终为2mg
C .细线PM 的拉力先增大后减小
D .小球b 加速度大小一直变大 【答案】ACD 【解析】 【详解】
A .小球b 所受库仑力和管道的弹力始终与速度垂直,即只有重力做功,所以小球b 机械能守恒,故A 正确;
B .小球b 机械能守恒,从G 滑到H 过程中,有:
212
mgR mv =
H 处有:
2
-库m F mg =R
v
则有:
F 库=3mg
故B 错误;
C .设PN 与竖直方向成α角,对球a 受力分析,将其分解: 竖直方向上有:
F PN cos α=mg +F 库sin θ
水平方向上有:
F 库cos θ+F PN sin α=F PM 。
解得:
(3)
PM mgcos F mgtan cos θααα
-=+
下滑时θ从0增大90°,细线PM 的拉力先增大后减小,故C 正确;
D .设b 与a 的连线与水平方向成θ角,则有:任意位置加速度为向心加速度和切向加速度合成,即为:
()22
2
221
2
()5322
v cos a a a gcos g R θθ-=+=+=
可知小球的加速度一直变大,故D 正确。
故选ACD 。
7.在雷雨云下沿竖直方向的电场强度为410V/m ,已知一半径为1mm 的雨滴在此电场中不会下落,取重力加速度大小为10m/2s ,水的密度为310kg/3m .这雨滴携带的电荷量的最小值约为 A .2⨯910-C B .4⨯910-C
C .6⨯910-C
D .8⨯910-C
【答案】B 【解析】 【详解】
带电雨滴在电场力和重力作用下保持静止,根据平衡条件电场力和重力必然等大反向
mg qE = m V ρ=
34
3
V r π=
解得:
9410q C -⨯=
ACD 、与计算不符,ACD 错误; B 、与计算结果相符,B 正确 【点睛】
本题关键在于电场力和重力平衡,要求熟悉电场力公式和二力平衡条件;要使雨滴不下落,电场力最小要等于重力.
8.如图所示,MON 是固定的光滑绝缘直角杆,MO 沿水平方向,NO 沿竖直方向,
A B 、为两个套在此杆上的带有同种电荷的小球,用水平向右的力F 作用在A 球上,使两球均处于静止状态,已知A B 、两球连线与水平方向成θ角。
下列说法正确的是( )
A .杆MO 对A 球的弹力大小为tan F θ
B .杆NO 对B 球的弹力大小为sin F θ
C .B 球的重力大小为tan F θ
D.A B、两球间的库仑力大小为cos
Fθ
【答案】C
【解析】
【详解】
对A球受力分析,设A的质量为m、拉力F、支持力N1,两球间的库仑力大小为F1,如图,根据平衡条件,有
x方向
F=F1cosθ①
y方向
N1=mg+F1sinθ②
再对B球受力分析,受重力Mg、静电力F1、杆对其向左的支持力,如图,根据平衡条件,有
x方向
F1cosθ=N2③
y方向
F1sinθ=M g ④
有上述四式得到
Mg=F tanθ
1F
F
cosθ
=
N1=mg+Mg
N2=F
可知由于不知道A的质量,所以不能求出A受到的弹力N1。
故ABD错误,C正确;
故选C。
9.一个带电量为+Q的点电荷固定在空间某一位置,有一个质量为m的带电小球(重力不
能忽略)在+Q周围作匀速圆周运动,半径为R 3g
(g为重力加速
度)。
关于带电小球带电情况,下列说法正确的是:
A .小球带正电,电荷量大小为
2
83mgR
B .小球带正电,电荷量大小为2
3mgR
C .小球带负电,电荷量大小为 2
833mgR kQ
D .小球带负电,电荷量大小为2
33mgR kQ
【答案】C 【解析】 【详解】
由题意可知小球做匀速圆周运动,合力提供向心力,因中心电荷为+Q ,做出运动图像如图所示:
可知要让小球做匀速圆周运动,即小球所受库仑力和重力的合力提供向心力,所以小球带负电;
由向心力公式可知:
33
F ma mg ==
向 设小球与点电荷连线与竖直方向夹角为θ,则有:
333tan =3
F mg mg θ==
向所以θ=30°,根据几何关系有:
cos30mg
F =库 sin 30R L
=
根据库仑定律有:
2
qQ F k
L =库
联立可得:
2
83mgR q =
故C 正确,ABD 错误。
10.如图所示,16个电荷量均为+q(q>0)的小球(可视为点电荷),均匀分布在半径为R 的圆周上若将圆周上P 点的一个小球的电荷量换成-2q ,则圆心 0点处的电场强度为
A .22kq
R
,方向沿半径向左 B .22kq
R
,方向沿半径向右 C .23kq
R
,方向沿半径向左 D .
23kq
R ,方向沿半径向右 【答案】D 【解析】
该点场强可以看成是与P 对称的那个电荷+q 和P 点的电荷-2q 在该点场强的叠加,根据点电荷的场强公式得+q 的点电荷在圆心O 点处的电场强度大小为2q
k R
,方向向右,点电荷-2q 在圆心O 点处的电场强度大小为22q k R ,方向向右,所以叠加来是2
3q
k R
,方向沿半径向右.故选择D.
【点睛】该题考查了场强叠加原理,还有对对称性的认识.由于成圆周对称性,所以如果没改变电荷之前肯定圆心处场强为0,而该点场强是所有电荷在该点场强的叠加,可以把这些电荷归为两类:一种是要移去的电荷,另一种是其他电荷.不管怎样,总之这两种电荷产生的合场强为0,所以只要算出改变的电荷在该点的场强和与它对称的电荷的场强即可得到.
11.如图所示,一倾角为30︒的粗糙绝缘斜面固定在水平面上,在斜面的底端A 和顶端B 分别固定等量的同种负电荷。
质量为m 、带电荷量为−q 的物块从斜面上的P 点由静止释放,物块向下运动的过程中经过斜面中点O 时速度达到最大值v m ,运动的最低点为Q (图中没有标出),则下列说法正确的是( )
A .P 、Q 两点场强相同
B .U PO = U OQ
C .P 到Q 的过程中,物体先做加速度减小的加速,再做加速度增加的减速运动
D .物块和斜面间的动摩擦因数12
μ= 【答案】C 【解析】 【分析】 【详解】
ABD .物块在斜面上运动到O 点时的速度最大,加速度为零,又电场强度为零,所以有
sin30cos300mg mg μ︒-︒=
所以物块和斜面间的动摩擦因数为
3tan μθ==
由于运动过程中
sin30cos300mg mg μ︒-︒=
所以物块从P 点运动到Q 点的过程中受到的合外力为电场力,因此最低点Q 与释放点P 关于O 点对称,根据等量的异种点电荷周围电势的对称性可知,P 、Q 两点的电势相等,则有U OP = U OQ ,根据等量的异种点电荷产生的电场特征可知,P 、Q 两点的场强大小相等,方向相反,故ABD 错误;
C .根据点电荷的电场特点和电场的叠加原理可知,沿斜面从B 到A 电场强度先减小后增大,中点O 的电场强度为零。
设物块下滑过程中的加速度为a ,根据牛顿第二定律有
qE ma =
物块下滑的过程中电场力qE 先方向沿斜面向下逐渐减少后沿斜面向上逐渐增加,所以物块的加速度大小先减小后增大,所以P 到O 电荷先做加速度减小的加速运动,O 到Q 电荷做加速度增加的减速运动,故C 正确。
故选C 。
12.如图所示,真空中有三个带等电荷量的点电荷a 、b 和c ,分别固定在水平面内正三角形的顶点上,其中a 、b 带正电,c 带负电。
O 为三角形中心,A 、B 、C 为三条边的中点。
设无穷远处电势为零。
则( )
A.B、C两点电势相同
B.B、C两点场强相同
C.电子在O点电势能为零
D.在O点自由释放电子(不计重力),将沿OA方向一直运动
【答案】A
【解析】
【分析】
【详解】
A.B、C两点分别都是等量正负电荷连线的中点,由对称性知电势为零,剩下的正电荷产生了相等的电势,则B、C两点电势相同,故A正确;
B.电场强度是矢量,场强的合成满足平行四边形定则,通过矢量的合成可得,B、C点的场强大小相同,但方向不同,故B错误;
C.两等量异种电荷在O点产生的总电势为零,但剩下的正电荷在O点产生的电势为正,则O点的总电势为正,故电子在O点的电势能不为零,故C错误;
D.ab两个点电荷在OA线段上的合场强方向向下,过了A点后,ab两个点电荷在OA直线上向上;点电荷c在OA线段上的场强方向向下,过了A点后,场强方向向下也向下,故在O点自由释放电子(不计重力),会沿直线做加速运动,后做减速运动,直到静止,故D错误。
故选A。
13.如图所示,A、B、C、D是立方体的四个顶点,在A、B、D三个点各放一点电荷,使C 点处的电场强度为零。
已知A点处放的是电荷量为Q的正点电荷,则关于B、D两点处的点电荷,下列说法正确的是()
A.B点处的点电荷带正电B.D点处的点电荷带正电
C.B 26
D.D点处的点电荷的电荷量为
1
3
Q
【答案】C 【解析】
【详解】
A .A 点处放的是电荷量为Q 的正点电荷,若
B 点处的点电荷带正电,根据场强叠加可知,在D 点无论是放正电还是负电,
C 点的场强都不可能为零,选项A 错误; B .若
D 点处的点电荷带正电,则根据场强叠加可知,在B 点无论是放正电还是负电,C 点的场强都不可能为零,选项B 错误;
CD .设正方体边长为a ,BC 与AC 夹角为θ,由叠加原理可知,在BD 两点只能都带负电时,C 点的合场强才可能为零,则
22
cos 32B Q Q
k
k a a θ= 22
sin 3D Q Q
k
k a a θ= 其中2cos 3
θ=,sin 3θ=
解得
26
B Q Q = 3D Q Q =
选项C 正确,D 错误。
故选C 。
14.两个等量异种电荷A 、B 固定在绝缘的水平面上,电荷量分别为+Q 和-Q ,俯视图如图所示。
一固定在水平桌面的足够长的光滑绝缘管道与A 、B 的连线垂直,且到A 的距离小于到B 的距离,管道内放一个带负电小球P(可视为试探电荷),现将电荷从图示C 点静止释放,C 、D 两点关于O 点(管道与A 、B 连线的交点)对称。
小球P 从C 点开始到D 点的运动过程中,下列说法正确的是( )
A .先做减速运动,后做加速运动
B .经过O 点的速度最大,加速度也最大
C .O 点的电势能最小,C 、
D 两点的电势相同 D .C 、D 两点受到的电场力相同 【答案】C 【解析】
【详解】
A .根据电场分布和力与运动的关系可知带电小球先做加速运动,后做减速运动,选项A 错误;
B .经过O 点的速度最大,沿着光滑绝缘管道方向上的加速度为零,选项B 错误;
C .带电小球P 在O 点的电势能最小,C 、
D 两点的电势相同,选项C 正确; D .C 、D 两点受到的电场力方向不同,故电场力不同,选项D 错误。
故选C 。
15.如图所示,按A 、B 、C 、D 四种方式在一个正方形的四个顶点分别放置一个点电荷,所带电量已在图中标出,其中正方形中心场强最大的是( )
A .
B .
C .
D .
【答案】A 【解析】 【分析】
先分析各点电荷在中心处的场强大小和方向,再根据矢量合成法则,即可求出中心处的场强。
【详解】
A .根据点电荷电场强度公式2kQ
E r
=
,结合矢量合成法则,正方形对角线异种电荷的电场强度,为各自点电荷在中心处相加,因此中心处的合电场强度大小为2
22
kQ E r =; B .两个负电荷在正方形中心处场强为零,两个正点电荷在中心处电场强度为零,因此中心处的合电场强度大小为0;
C .同理,正方形对角线的两负电荷的电场强度在中心处相互抵消,而正点电荷在中心处,叠加后电场强度大小为2
kQ E r =
; D .同理,在中心处的电场强度大小2
2
kQ E r = 综上比较,正方形中心场强最大的是A ,所以A 正确。
故选A 。
考察点电荷在某点场强的矢量合成。
二、第九章 静电场及其应用解答题易错题培优(难)
16.如图所示,ABCD 竖直放置的光滑绝缘细管道,其中AB 部分是半径为R 的1/4圆弧形管道,BCD 部分是固定的水平管道,两部分管道恰好相切于B .水平面内的M 、N 、B 三点连线构成边长为L 等边三角形,MN 连线过C 点且垂直于BCD .两个带等量异种电荷的点电荷分别固定在M 、N 两点,电荷量分别为+Q 和-Q.现把质量为m 、电荷量为+q 的小球(小球直径略小于管道内径,小球可视为点电荷),由管道的A 处静止释放,已知静电力常量为k,重力加速度为g.求:
(1)小球运动到B 处时受到电场力的大小; (2)小球运动到C 处时的速度大小;
(3)小球运动到圆弧最低点B 处时,小球对管道压力的大小.
【答案】(1)2qQ k L (22gR (32
2229qQ k m g L ⎛⎫+ ⎪⎝⎭
【解析】 【分析】 【详解】
(1)设小球在圆弧形管道最低点B 处分别受到+Q 和-Q 的库仑力分别为F 1和F 2.则
122
qQ F F k
L ==① 小球沿水平方向受到的电场力为F 1和F 2的合力F ,由平行四边形定则得F=2F 1cos60° ② 联立①②得2
qQ
F k
L =③ (2)管道所在的竖直平面是+Q 和-Q 形成的合电场的一个等势面,小球在管道中运动时,小球受到的电场力和管道对它的弹力都不做功,只有重力对小球做功,小球的机械能守恒,有mgR =
1
2
mv C 2−0 ④ 解得2C v gR =
(3)设在B 点管道对小球沿竖直方向的压力的分力为N By ,在竖直方向对小球应用牛顿第
二定律得2
B By v N mg m R
-=⑥ v B =v C ⑦
联立⑤⑥⑦
解得N By =3mg⑧
设在B 点管道对小球在水平方向的压力的分力为N Bx ,则2Bx qQ
N F k
L
==⑨ 圆弧形管道最低点B 处对小球的压力大小为22
222
2
9()?B Bx BY qQ N N N m g k
L
++==.⑩ 由牛顿第三定律可得小球对圆弧管道最低点B 的压力大小为
222
2
9()?B B qQ N N m g k
L '+==
17.如图所示,在光滑绝缘水平面上,质量为m 的均匀绝缘棒AB 长为L 、带有正电,电量为Q 且均匀分布.在水平面上O 点右侧有匀强电场,场强大小为E ,其方向为水平向左,BO 距离为x 0,若棒在水平向右的大小为QE/4的恒力作用下由静止开始运动.求:
(1)棒的B 端进入电场L /8时的加速度大小和方向; (2)棒在运动过程中的最大动能.
(3)棒的最大电势能.(设O 点处电势为零) 【答案】(1)/8qE m ,向右(2)0()48qE L
x + (3)0(2)6
qE x L + 【解析】 【分析】 【详解】
(1)根据牛顿第二定律,得
48QE L QE ma L -⋅=解得 8QE a m
=,方向向右. (2)设当棒进入电场x 时,其动能达到最大,则此时棒受力平衡,有
4QE QE
x L ⋅= 解得1
4
x L = 由动能定理得:
()00044()()4
2442448
K o QE QE
L
QE
QE L QE L E W x x x x x ==
==+
⨯∑+-+-+⨯
(3)棒减速到零时,棒可能全部进入电场,也可能不能全部进入电场,设恰能全部进入电场, 则有:()0
042
QE QE
x L L +-=,
得 x 0=L ;()42
QE QEL
L L ε+=
=
当x 0<L ,棒不能全部进入电场,设进入电场x
根据动能定理得()00 004
2
xQE
QE L x x x +
+-
-= 解之得:20
8L L Lx x ++=
则2
008 ()4F L L Lx QE W x ε+++==
当x 0>L ,棒能全部进入电场,设进入电场x ()()0
042
QE QE
x x L QE x L +---= 得:023
x L
x += 则()()000242 4436
QE x L x L QE QE x x ε+++⋅=
==
18.如图所示,固定于同一条竖直线上的A 、B 是两个带等量异种电荷的点电荷,电荷量分别为+Q 和-Q ,A 、B 相距为2d 。
MN 是竖直放置的光滑绝缘细杆,另有一个穿过细杆的带电小球p ,质量为m 、电荷量为+q (可视为点电荷,不影响电场的分布。
),现将小球p 从与点电荷A 等高的C 处由静止开始释放,小球p 向下运动到距C 点距离为d 的O 点时,速度为v 。
已知MN 与AB 之间的距离为d ,静电力常量为k ,重力加速度为g 。
求: (1)C 、O 间的电势差U CO ;
(2)O 点处的电场强度E 的大小及小球p 经过O 点时的加速度;
【答案】(1) 222mv mgd q - (22kQ ; 2kQq
g + 【解析】 【详解】
(1)小球p 由C 运动到O 的过程,由动能定理得
2
102
CO mgd qU mv +=
-
所以
222CO
m mgd U q
v -=
(2)小球p 经过O 点时受力如图
由库仑定律得
122
(2)F F d ==
它们的合力为
F =F 1cos 45°+F 2cos 45°=Eq
所以O 点处的电场强度
2
2=
2k Q
E d
由牛顿第二定律得:
mg+qE =ma
所以
2
22k Qq
a g md
=+
19.如图所示在粗糙绝缘的水平面,上有两个带同种正电荷小球M 和N ,N 被绝缘座固定在水平面上,M 在离N 点r 0处由静止释放,开始运动瞬间的加速度大小恰好为μg 。
已知静电常量为k ,M 和地面间的动摩擦因数为μ,两电荷均可看成点电荷,且N 的带电量为Q ,M 带电量为q ,不计空气阻力。
则: (1)M 运动速度最大时离N 的距离;
(2)已知M 在上述运动过程中的最大位移为r 0,如果M 带电量改变为3
2
q ,仍从离N 点r 0处静止释放时,则运动的位移为r 0时速度和加速度各为多大?
【答案】(1
)0l =(2
)v =4
g
a μ=
,方向水平向左
【解析】 【详解】
(1)以小球为研究对象,分析小球的受力情况,小球受到重力、支持力、摩擦力和库仑力作用。
开始运动瞬间,两小球间的库仑力为:
F 库0 =
2
0kQq
r 由牛顿第二定律可知,开始瞬间
F 库0-μmg=ma
可得:
02F ng μ=库
因M 做加速度减小的加速运动,所以当F ng μ'=库速度最大,即:
0212kQq
F F l
'=
=库库 所以
0l =
(2)小球q 运动距离r 0过程中由动能定理的得:
000W mgr μ'
-=-电场力
金属球
3
2
q 运动距离r 0过程中由动能定理的得: 201
02
w mgr mv μ'
-=
-电场力 其中W Uq =电场力,3()2
W U q '=电场力 (U 为电荷移动过程中的电势差) 联立以上两式解得:
v =由牛顿第二定律可知:
()
20322kQ q
mg ma r μ⨯-= 由02F mg μ=,解得:
4
g
a μ=
方向水平向左。
20.如图,真空中xOy 平面直角坐标系上的ABC 三点构成等边三角形,边长L =2.0m 。
若将
电荷量均为q =+2.0×10-6C 的两点电荷分别固定在A 、B 点,已知静电力常量
k =9.0×109N·m 2/C 2。
求:
(1)两点电荷间的库仑力大小;
(2)C 点的电场强度的大小和方向。
【答案】(1)F =9.0×10-3N ;(2)37.810N /C E =⨯,方向沿y 轴正方向
【解析】
【分析】
【详解】
(1)根据库仑定律,A 、B 间的库仑力大小为
2
2q F k L
= 代入数据得
F =9.0×10-3N
(2)A 、B 两点电荷在C 点产生的场强大小相等,均为
12q E k L = A 、B 两点电荷形成的电场在C 点的合场强大小为
12cos 30E E ︒=
代入数据得
339310N/C 7.810N/C 2
E =
≈⨯ 方向沿y 轴正方向。
21.如图所示,有一水平向左的匀强电场,场强为41.2510N/C E =⨯,一根长1.5m L =、与水平方向的夹角为37θ=︒的光滑绝缘细直杆MN 固定在电场中,杆的下端M 固定一个带电小球A ,电荷量64.510C Q -=+⨯;另一带电小球B 穿在杆上可自由滑动,电荷量61.010C q -=+⨯,质量2
1.010kg m -=⨯。
现将小球B 从杆的上端N 静止释放,小球B 开始运动。
(静电力常量9229.010N m /C k =⨯⋅,取210m/s g =,sin370.6︒=,cos370.8︒=)求:
(1)小球B 开始运动时的加速度为多大?
(2)小球B 的速度最大时,与M 端的距离r 为多大?
【答案】(1)a =3.2 m/s 2;(2)r =0.9 m
【解析】
【分析】
【详解】
(1)开始运动时小球B 受重力、库仑力、杆的弹力和电场力,沿杆方向运动,由牛顿第二定律得
2
sin cos kQq mg qE ma L -
-=θθ 解得 22cos sin 3.2m/s kQq qE a g mL m
=-
-=θθ (2)小球B 速度最大时合力为零,即 2sin cos 0kQq mg qE r -
-=θθ 解得
0.9m sin cos kQq r mg qE ==-θθ。