基因克隆全过程

合集下载

4.植物基因克隆技术进展

4.植物基因克隆技术进展

1 功能克隆
功能克隆(Functional Cloning)就是从蛋白质的功 能着手进行基因克隆,是人类采用的第一个克隆 基因的策略。 其基本步骤为:根据已知的生化缺陷或特征确认 与该功能有关的蛋白质,分离纯化蛋白并测定出 部分氨基酸序列 – 根据遗传密码推测其可能的编码序列,设列 – 或者使用该蛋白质对选中的克隆测序,获得目的基 因的序列
1 功能克隆
关键技术: 用这一策略克隆基因的关键在于必须首先分离出一 个纯的蛋白,测定出其一部分氨基酸序列或选 • 例如与苯丙酮尿症相关的酪氨酸羟化酶基因, 与镰刀型细胞贫血症相关的珠蛋白基因,都是 用这种方法取得成功例子。
dna代表性差异分析dnarepresentatioaldifferenceanalysisdnarda抑制性消减杂交法suppressionsubtractivehybridizationsshcdnaaflp技术rna指纹技术等目前用这些方法已经相继克隆了许多基因6基因芯片技术genechips?基因芯片又称dna芯片dna微阵列dnamicroarray是指将许多特定的寡核苷酸片段或基因片段作为探针有规律地排列固定于支持物上然后与待测的标记样品的基因按碱基配对原理进行杂交再通过激光共聚焦荧光检测系统等对芯片进行扫描并配以计算机系统对每一探针上的荧光信号作出比较和检测从而迅速得出所要的信息
3 转座子标签法
• 随着农杆菌介导转座子导入目标植物系统建成后, 目前已在拟南芥、番茄、水稻中有广泛的运用。 • 同时,随着拟南芥、水稻等模式植物的基因组测 序完成,研究的热点转向功能基因组,转座子标 签技术己经成为构建植物突变体库,进行基因功 能研究的核心技术。
4 同源序列法
• 同源序列法是根据与待克隆基因同源的已知序列 进行基因克隆的方法。目前很多植物基因序列已 知,当要克隆类似基因时可先从Genbank 库中找 到有关基因序列,设计出特异引物;以植物基因 组DNA 或者cDNA为模板, 采取PCR 或RT-PCR 的方法来扩增目的基因;扩增的片段经纯化后, 连接到合适的载体上,进行序列分析、比较验证 并确认目的基因的克隆。 • 优点:利用PCR 技术,快速、简便。非常大的成 功 • 局限性:依赖于已知的序列

DNA分子克隆技术(也称基因克隆技术)

DNA分子克隆技术(也称基因克隆技术)

DNA分子克隆技术(也称基因克隆技术):在体外将DNA分子片段与载体DNA片段连接,转入细胞获得大量拷贝的过程中DNA分子克隆(或基因克隆)。

其基本步骤包括:制备目的基因→将目的基因与载体用限制性内切酶切割和连接,制成DNA重组→导入宿主细胞→筛选、鉴定→扩增和表达。

载体(vecors)在细胞内自我复制,并带动重组的分子片段共同增殖,从而产生大量的DNA分子片段。

主要目的是获得某一基因或NDA片段的大量拷贝,有了这些与亲本分子完全相同的分子克隆,就可以深入分析基因的结构与功能,随着引入的DNA片段不同,有两种DNA库,一种是基因组文库(genomic library),另一种是cDNA库。

载体所谓载体是指携带靶DNA片段进入宿主细胞进行扩增和表达的工具。

细菌质粒是一种细菌染色体外小型双链环状结构的DNA,分子大小为1-20kb,对细菌的某些代谢活动和抗药性表型具有一定的作用。

质粒载体是在天然质粒的基础上人工改造拼接而成。

最常用的质粒是pBR322。

基因库的建造含有某种生物体全部基历的随机片段的重组DNA克隆群体,其含有感光趣的基因片段的重组子,可以通过标记探针与基因库中的重组子杂交等方法而筛选出来,所得到的克隆经过纯化和扩增,可用于进一步的研。

其主步骤包括:(1)构建基因库迅速的载体;(2)DNA片段的制备;(3)DNA片段与载体DNA 的连接;(4)包装和接种。

cDNA库的建造是指克隆的DNA片段,是由逆转录酶自mRNA制备的cDNA。

cDNA库包括某特定细胞的全部cDNA克隆的文库,不含内含子。

特异基因的筛选常用的方法有:(1)克隆筛选即探针筛选法;(2)抗体检测法,检测其分泌蛋白质来筛选目的基因;(3)放射免疫筛选法,查出分泌特异抗原的基因;(4)免疫沉淀法,进行特异基因的筛选。

核酸序列测定DNA的碱基序列决定着基因的特性,DNA序列分析(测序,sequencing)是分子生物学重要的基本技术。

4重组表达质粒的构建——基因的克隆

4重组表达质粒的构建——基因的克隆

重组表达质粒的构建——基因的克隆长片段基因在大肠杆菌中表达往往比较困难,作为抗原使用的重组蛋白可以考虑选择抗原性好的区段原核表达,前文已作阐述。

对整个蛋白结构研究,必须全长表达该蛋白,此时最好考虑真核表达系统,特别是含有跨膜区的蛋白。

选定要克隆的区段,需先富集纯化之后才方便插入载体,常用的富集方法是PCR或者质粒繁殖复制。

为了防止在PCR扩增过程中引入碱基错误或者碱基缺失,PCR扩增基因时候必须使用高保真Taq酶。

为了满足科研工作者不同实验需求,福因德生物将高保真Taq酶优化为即用型Mix,使用时直接加引物和模板就可以扩增。

除此之外,福因德生物还开发出LA Taq、S-Taq Mix以及SYBR荧光定量PCR Mix(需要更高品质的可选用SYBR PCR SuperMix)。

原核重组表达常用克隆技术主要有以下几种:1)酶切连接这个是目前应用最为广泛的的克隆技术,主要优点是技术稳定;缺点是周期长、步骤多,任何一个环节产生的误差都会影响克隆构建的成败。

如用酶切连接的策略进行载体批量构建,不同载体和不同外源基因尽可能选用相同的上下游酶切位点,比如,批量克隆基因到某个载体上,可一次性大量双酶切将载体线性化后保存备用,每次构建载体只需酶切外源基因片段,载体可直接取用,不必每次都酶切,省时省力(此处需特别留意的是基因内部不能有与上述所用冲突的酶切位点)。

2)TA克隆TA克隆必须使用商业的线性化载体,线性载体3´末端有一个T碱基,与PCR扩增产物3´末端A正好匹配。

这种克隆策略最大的优点是载体使用方便,扩增产物可以直接克隆到载体上,不需要酶切位点等冗余序列;缺点是:必须依赖商业化载体,载体选择受限;扩增外源片段所使用的Taq酶也必须是可以在3´末端加A,这种Taq酶的保真度不高;外源片段插入之后还必须鉴定方向。

目前,这种构建表达载体的策略已经逐渐被淘汰。

3)TOPO克隆TOPO克隆载体利用DNA拓扑异构酶I识别序列中的CCCTT松弛双螺旋并重新连接,同时兼具限制性内切酶和连接酶的功能。

ta克隆方法

ta克隆方法

ta克隆方法(原创版3篇)目录(篇1)1.TA 克隆方法的概述2.TA 克隆方法的原理3.TA 克隆方法的步骤4.TA 克隆方法的应用5.TA 克隆方法的优缺点正文(篇1)一、TA 克隆方法的概述TA 克隆方法是一种分子生物学技术,主要用于获取目标 DNA 片段。

该方法操作简便,且具有较高的克隆效率,因此在基因工程、基因组学等领域得到了广泛应用。

二、TA 克隆方法的原理TA 克隆方法的原理是基于 PCR 技术的扩增与限制性内切酶的切割。

首先通过 PCR 技术扩增目标 DNA 片段,然后使用限制性内切酶对扩增产物进行切割,最后通过连接酶将目的基因与载体连接,形成重组子。

三、TA 克隆方法的步骤1.设计引物:根据目标 DNA 序列,设计一对特异性引物,用于 PCR 扩增。

2.PCR 扩增:利用设计的引物进行 PCR 扩增,得到目标 DNA 片段。

3.限制性内切酶切割:对 PCR 扩增产物进行限制性内切酶切割,暴露出黏性末端。

4.连接:利用连接酶将目的基因与载体连接,形成重组子。

5.转化:将重组子转化入受体细胞,进行表达或进一步研究。

四、TA 克隆方法的应用TA 克隆方法广泛应用于基因工程、基因组学、基因表达谱等领域。

例如,用于基因的克隆、突变体的筛选、基因表达水平的研究等。

五、TA 克隆方法的优缺点优点:操作简便,克隆效率较高,可获得较高的目标基因克隆数量。

目录(篇2)1.TA 克隆方法简介2.TA 克隆方法的步骤3.TA 克隆方法的应用4.TA 克隆方法的优势与局限性正文(篇2)一、TA 克隆方法简介TA 克隆(Targeted Amplification of Microsatellite DNA)方法,即微卫星 DNA 目标扩增方法,是一种基于 PCR 技术的分子生物学实验方法。

TA 克隆方法主要应用于扩增微卫星 DNA(Microsatellite DNA,简称 MS)区域,以研究遗传标记和基因定位。

基因组的复制

基因组的复制

复制的延伸
Elongation
1958年,Kornberg在E.coli中发现
引物的延伸阶段就是同时进行前导链和滞后链的合成。
复制起点解开后形成两个复制叉,即可进行双向复制。 前导链开始合成后通常都一直继续下去。先由引物合成 酶(DnaG蛋白)在起点处合成一段RNA引物,前导链 的引物一般比冈崎片段的引物略长一些,某些质粒和线 粒体的DNA由RNA聚合酶合成引物,其长度可以更长。 随后DNA聚合酶III即在引物上加入脱氧核糖核苷酸。 前导链的合成与复制叉的移动保持同步。滞后链的合成 是分段进行的,如何与前导链保持协调一致呢?
证实推论
• 1984 年 J.Shampg 等 构 建 了线性质粒,进行了有名 的加尾实验,结果表明端 粒复制的模板并不在端粒 上。那么模板在何处呢?
Pvu
pBR322
Bg1
Bam H1
TEL
Bam H1
TEL 四膜虫rDNA Bam H 1
ARS
Pvu
Bg1
连接 Pvu 转化酵母
Pvu
酵母DNA
半保留复制:
( Semi-conservative )
在DNA复制过程中,每 个子代分子的DNA两条 链中的一条链来自亲代 DNA,另一条则是新合 成的,这种方式称为半 保留复制。
图7.1三种不同的复制假设模型(引自S.Simmons 2003)
半不连续复制(Semi-discontinuous replication): 在复制叉向前移动时,一条模板链是3’-5’的走 向,在其上的DNA能以5’-3’方向连续合成;另 一条模板链是5’-3’的走向,在其上的DNA也只 能以5’-3’的方向合成,这样与复制叉移动的方 向正好相反,所以随着复制叉的移动形成许多 不连续的片段,因此成为半不连续复制。

PCR技术克隆目的基因全过程

PCR技术克隆目的基因全过程

PCR技术克隆目的基因全过程PCR(聚合酶链式反应)是一种体外的DNA合成技术,可以通过放大目的基因序列来克隆和检测DNA。

以下是PCR技术克隆目的基因全过程的详细解释。

1.设计引物:引物是用于扩增目的基因的短DNA片段。

引物分为前向引物和反向引物,其序列分别与目的基因的5’和3’末端相互匹配。

引物的设计应该尽量避免互相形成二聚体或发生引物间杂交。

一般情况下,前向引物和反向引物的长度约为18-30个碱基。

2.DNA模板的准备:DNA模板是PCR反应中的起始材料,可以是从细胞中提取的基因组DNA、cDNA或合成的DNA片段等。

DNA模板需要经过特定的处理步骤,如酶切或热变性,以解开DNA双链结构,使得引物能够与目的基因序列起始材料结合。

3.PCR反应体系的制备:PCR反应体系通常包含DNA模板、引物、dNTPs(脱氧核苷酸三磷酸盐)、聚合酶、缓冲液和稀释的镁离子。

这些成分需要以特定的量和浓度配制在一起。

在反应体系中加入适量的聚合酶,可以保证PCR反应能够进行。

4.PCR扩增条件设定:PCR反应需要经历一系列的温度变化,这些温度的设定旨在创造一个适宜扩增引物的环境。

PCR反应通常包含三个主要的步骤:变性、退火和延伸。

变性步骤中,DNA模板的双链结构被加热到95°C,使其变性为两条单链DNA。

退火步骤中,反应体系温度降至碱基互补序列的温度,使引物能够与DNA模板结合。

延伸步骤中,反应体系温度升至适合聚合酶的工作温度,引物被复制形成两条新的双链DNA。

这三个步骤的温度和时间根据目的基因的特性和引物的设计来设定。

5.PCR扩增循环:PCR反应通常包含20-40个循环,每个循环包括变性、退火和延伸三个步骤。

每个循环都会使目的DNA序列扩增一倍。

PCR反应的循环数取决于目的基因的起始材料的丰度和所需扩增的DNA数量。

6.PCR产物检测:PCR扩增产物可以通过凝胶电泳等方法进行检测。

凝胶电泳可以将PCR扩增产物按照大小分离。

分子生物学:基因克隆及克隆基因的表达

分子生物学:基因克隆及克隆基因的表达

Bam HⅠ GGATCC CCTAGG
Bg lⅡ AGATCT TCTAGA
互连后?
GCCTAG+
GATCC G
ATCTAG+GATCTA
Ⅱ型限制性内切酶具有一些共性和特性:
5. 不同的酶可以识别同一个序列 同工异源酶(isoschizomer)或同裂酶 能识别同一序列(切割位点可同或不同)但来源不同的两种酶。
6. 水浴槽
8. 电泳系统
分子克隆常用的有毒试剂
1. 溴化乙锭: (Ethidium bromide,EB)用来染DNA和RNA的染料, 是一种致癌物 质;它是DNA突变的诱变剂,可以嵌入DNA,使DNA发生突变,致癌。 有累积 效应,不要直接接触,但是要注意通过呼吸摄入,故此环境要通风。EB可以被 皮肤吸收。做实验的时候一定要带手套。但是,只要按照标准的操作使不会有问 题的。严禁随便丢弃。因为EB是强致癌性,而且易挥发,挥发至空气中,危害 很大。
2. DEPC:DEPC即二乙基焦碳酸酯(diethylprocarbonate),可灭活各种蛋白质, 是RNA酶的强抑制剂;DEPC是一种潜在的致癌物质,在操作中应尽量在通风的 条件下进行,并避免接触皮肤。DEPC毒性并不是很强,但吸入的毒性是最强的, 使用时戴口罩。不小心占到手上注意立即冲洗。
3.苯酚:苯酚又名酚或石碳酸,为高毒类原浆毒物,对人体危害严重。它的浓溶液 对皮肤有强烈的腐蚀性,苯酚所致的急性中毒常常造成死亡。 4. 氯仿:三氯甲烷,侵入途径:吸入、食入、经皮吸收。健康危害:主要作用 于中枢神经系统,具有麻醉作用,对心、肝、肾有损害。吸入或经皮肤吸收引起 急性中毒,初期有头痛、头晕、恶心、呕吐、兴奋、皮肤粘膜有刺激症状,以后 呈现精神紊乱、呼吸表浅、反向消失、昏迷等,重者发生呼吸麻痹、心室纤维性 颤动、并可有肝、肾损害。误服中毒时,胃有烧灼感、伴恶心、呕吐、腹痛、腹 泻以后出现麻醉症状。慢性中毒:主要引起肝脏损害,此外还有消化不良、乏力、 头痛、失眠等症状,少数有肾损害。 5. 十二烷基硫酸钠(SDS):提取质粒使用的溶液II中含有SDS,对粘膜和上呼 吸道有刺激作用,对眼和皮肤有刺激作用。可引起呼吸系统过敏性反应。。 6. 其它常用的试剂如强酸强碱都有很强的腐蚀性。

植物基因克隆的方法

植物基因克隆的方法

阳性克些候选基因,再进行别离,时空表达
特点,同源性比较等分析确定目的基因。
1. 序列克隆 利用目标基因的近等基因系或别离群体分组分析法〔BSA〕进行连锁分析,筛选目标基因所在局部区域的分子标记。
4、目的区域的精细作图 的标记和通过转座子在染色体上
植物基因克隆的方法
基因:为RNA或蛋白质编码的核苷酸序 列。
基因克隆:利用体外重组技术,将特定 基因
体中。
和其它DNA顺序插入到载
克隆目标:识别、别离特异基因并获得 基因
的完整全序列,确定染色
植物基因克隆的方法
能的mRNA序列,据此合成寡核苷酸探针从文
抑制性扣除杂交〔suppression subtractive
人工合成并克隆基因
方法:根据的氨基酸或核苷酸序列,采 用植物偏爱的密码子,人工合成并
克 隆该基因。〔可对基因进行改造〕
例子:根据蜘蛛毒素的氨基酸序列,人பைடு நூலகம் 合
成并克隆了此肽的基因。
表 型 克 隆〔phonetypical cloning〕
方法:利用植物的表型差异或组织器官特 异 表达产生的差异来克隆植物基因。此方法 试图把表型与基因结构或基因表达联系起 来,从而别离特定表型相关基因。不必事 先知道基因的生化功能或图谱定位,根据 基因的表达效应就直接别离该基因。
3、构建目的基因区域跨叠克隆〔contig〕
测所测序列或氨基酸序列与序列是否同 定位克隆的优点和局限性
通过转座子上的标记基因〔如抗药性等〕就可以检测出突变基因的位置和克隆出突变基因来。
源→发 不必事先知道基因的生化功能或图谱定位,根据基因的表达效应就直接别离
方法二: 利用Velculescu等建立的基因 表达

基因克隆

基因克隆

基因克隆的方法基因克隆是指在体外将含有目的基因或其它有意义DNA段同能够自我复制的载DNA连接,然后将其转入宿主细胞或受体生物进行表达或进一步研究的分子操作的过程,因此基因克隆又称分子克隆,基因操作或重组DNA 技术。

根据这个定义,于是选择和使用不同的方法,最后得到含有目的基因片段的菌株。

针对目的基因的来源不同,可以选择多种克隆方法,但并没有放之四海而皆准的方法,要针对自己的目的基因的特点采取相应的且合适准确的方法来获得目的基因的克隆。

1当目的基因的序列完全已知时。

则可以根据文献上所查到的基因的注册序列号到相应的网上数据库去查找该基因的全序列结构信息,例如最常用的美国NCBI网站上的Genbank数据库。

然后查找到相应的目的基因的核苷酸序列信息和其来源。

然后使用生物信息学软件对基因的序列进行分析,设计通过PCR反应来扩增目的基因的核苷酸引物,并将设计的引物序列发给生物技术公司合成,最后得到引物核苷酸并用纯水进行合理的稀释。

接下来将采集含有目的基因的生物标本材料,使用合理的方法提取生物标本的基因组并进核酸浓度与纯度的测定,由于生物体的核酸从化学性质上来讲主要分为DNA和RNA两种,所以提取基因组后针对基因组的选择要尽可能去除另一种核酸的干扰与污染。

然后根据基因组的质量,浓度,PCR扩增设计引物的结构,目的基因的长度等因素设计PCR反应的条件,反复试验以找到能够通过PCR方法来准确扩增目的基因的最佳反应条件。

在目前的PCR反应中所采用工具酶为Taq DNA聚合酶,通常所用的Taq DNA聚合酶具有一个生物反应特性,在其扩增的PCR产物上,其3’末端总是会带有一个非模板依赖性的突出碱基,而且这个碱基几乎总是A( dATP), 因为Taq DNA聚合酶对dATP具有优先聚合活性,故可以针对这一点采取两种克隆策略。

其一,可以采取TdT末端加同聚尾的方法与载体拼接;其二,可直接与一些T载体(切口处含有一个突出T碱基的克隆载体)连接并克隆。

基因克隆实验流程

基因克隆实验流程

基因克隆实验流程基因克隆技术,又称重组 DNA 技术,是将目的基因与具有自主复制能力的载体DNA 进行体外重组,获得新的重组DNA后导入受体细胞中表达相应蛋白,以研究蛋白结构与功能及其与其他分子的相互作用。

一、获取目的基因目的基因就是需要研究的特定基因或DNA片段。

获取目的基因的主要方法: 1、用限制性内切酶解染色体DNA,构建基因组文库,再从基因组文库中筛选目的基因。

该法的优点是获得的目的基因的组织结构与天然基因完全相同,在结构基因中也含有内含子序列,但是也正因为这一点构成了该法最大缺点,即含有内含子的基因在原核细胞中不能表达。

原因是原核细胞不能识别并剪切插入顺序(内含子),因而也不能表达出正确的基因产物。

2、分离纯化细胞中的mRNA,以mRNA为模板,在反转录酶作用下生成cDNA第一链,再以cDNA第一链为模板在DNA聚合酶作用下生成双链cDNA,构建cDNA文库,从中筛选所需的目的基因。

此法仅用于筛选为蛋白质编码的结构基因。

因成熟的mRNA分子中已经切除了内含子序列,具有完整的阅读框架,可在原核细胞中正确表达。

3、人工体外合成基因:由于当前人工体外合成DNA的长度有限,此法仅用于制备小分子生物活性多肽基因和小分子量蛋白基因。

在基因较大情况下,常需先合成多个DNA片段,然后拼接成完整的基因,此法还要求目的基因的全部碱基顺序已被阐明。

4、PCR法扩增基因:PCR(聚合酶链式反应)技术的出现和发展,为目的基因的寻找提供了有力技术工具。

用PCR法可选择性扩增基因组中所要研究的个别基因或DNA片段,或用反向PCR技术,先将特定mRNA反转录为cDNA第一链,然后再进行扩增。

用PCR法筛选基因,需要对目的基因的DNA序列至少有部分了解。

二、选择适当的载体按上述方法制备的目的基因如果没有合适的载体协助,很难进入受体细胞,即使能进入,往往也不能进行复制和表达,因为这些外源性DNA一般不带有复制调控系统。

为了保证目的基因或外源DNA片段能在细胞内克隆,必须将它们与适当的载体连接。

基因克隆的原理

基因克隆的原理

基因克隆的原理
基因克隆是指通过重组DNA分子来复制或复制特定基因的过程。

它的原理涉及利用DNA重组技术从一个生物体中提取目
标基因,并将其插入到另一个宿主生物体的基因组中。

以下是基因克隆的基本原理和步骤:
1. 提取目标基因:从一个生物体的DNA中提取目标基因。


可以通过多种方法实现,如聚合酶链式反应(PCR)或酶切和连接技术。

2. 槽融合:使用合适的酶将目标基因与质粒DNA或其他载体DNA相连接。

这些质粒DNA通常是经过改造的DNA分子,
包含有关目标基因的所需信息,如启动子、激活子和选择性标记。

3. 转化宿主细胞:将重组质粒DNA导入到宿主细胞中。

这可
以通过多种方法实现,如电穿孔、化学转化或基因枪。

宿主细胞通常是细菌或酵母等单细胞生物。

4. 选择性筛选:使用特定的标记或抗生素等方法筛选出已经成功转化的宿主细胞。

这有助于确保目标基因已经被插入到宿主细胞的基因组中。

5. 复制和表达:将含有目标基因的宿主细胞进行培养和繁殖,以实现大规模的基因复制。

通过适当的培养条件和诱导剂等方法,目标基因可以被表达出来,并产生所需的功能蛋白或产物。

总的来说,基因克隆基于DNA重组技术,利用质粒DNA或其他载体DNA将目标基因导入宿主细胞的基因组中。

这种方法使得科学家能够通过修改和复制基因,研究基因功能、制备蛋白质或生产其他有用的化合物。

基因克隆原核表达

基因克隆原核表达
平末端连接:室温(低于30℃) • DNA量:载体分子数/目的基因分子数
=1:1-3 • 酶量:平端连接时需加大酶量
26
(三)转化—Cacl2法、电击法
(四)重组子的筛选及鉴定
1、筛选:平板法(抗生素、蓝白斑)
原位杂交
2、鉴定:
• 长度鉴定:酶切、PCR
• 方向鉴定:联合酶切
• 测序
27
原核基因表达系统
57
主要元件:强启动子 SD: ATG:第一个密码子
58
非融合型表达载体----pPL-Lamda
PL启动子---温度 诱导 插入位点--HpaI
59
(三)分泌型表达载体: 1、主要元件: 启动子和SD序列 信号肽序列 :SD下游,编码信号肽, 可引导蛋白跨膜 2、优点:分泌表达,避免降解。
60
分泌型表达载体----pINIII-ompA1
61
分泌型融合表达载体----pEZZ18
62
五.提高表达水平的手段 1、选择合适载体 • 强启动子----提高转录水平 • 核糖体结合位点(ATG---SD) • 避免产物降解 :分泌/融合表达
细菌蛋白酶抑制剂
63
2、选择合适宿主 Lac 启动子----LacI菌 PL/PR -------- CI857 溶源菌
➢基因克隆(gene clonging) ➢基因表达(gene expression)
-原核基因表达 -真核基因表达
1
基因克 隆 Gene Cloning
2
➢概述 ➢克隆载体 ➢受体细胞 ➢体外重组的策略 ➢基因克隆工作流程
3
一、概 述
4
1973年Cohen完成第一个基因工程实验 经体外重组获得杂合DNA 杂合子转化入大肠杆菌

分子生物学 基因克隆及克隆基因的表达

分子生物学   基因克隆及克隆基因的表达

Bam HⅠ GGATCC CCTAGG
Bg lⅡ AGATCT TCTAGA
互连后?
GCCTAG+
GATCC G
A
+GATCT
TCTAG
ALOGO
Ⅱ型限制性内切酶具有一些共性和特性:
5. 不同的酶可以识别同一个序列 同工异源酶(isoschizomer)或同裂酶 能识别同一序列(切割位点可同或不同)但来源不同的两种酶。
LOGO
聚合酶链式反应
Polymerase Chain Reaction, PCR
体外高效特异性的扩增目的DNA片段
LOGO
LOGO
LOGO
LOGO
LOGO
PCR的基本原理
• PCR反应条件 • PCR过程 • PCR的特点
1
2
3
高温变性 低温退火 适温延伸
94

度 72
(℃)
55
22
DNA 2
3’
3’
5’
上游引物、5’ 引物、Sense primer
PCR反应扩增的就是一对引物之间的DNA片段,PCR反应 成功扩增的关键在于引物的正确设计。
引物设计的总原则——提高引物与模板结合的特异性。
LOGO
PCR引物设计的基本原则: 1.引物与模板的序列要紧密互补。 2.引物自身、引物之间不应存在互补序列。 3.引物不能在模板的非目的位点引发PCR。
LOGO
分子生物学关键的技术突破: DNA重组技术
1972年, 世界上第一个重组DNA分子诞生
1980年, 获诺贝尔化学奖
猿猴病毒DNA
噬菌体DNA
限制性内切酶
限制性内切酶
DNA连接酶 重组DNA分子

基因克隆原理及实验介绍

基因克隆原理及实验介绍
859bp
859bp
859bp
336bp
336bp
336bp
2700bp 2700bp 2700bp
1485bp
339bp 339bp 339bp
498bp 498bp 498bp
质粒载体 pcDNA3.1+3flag pcDNA3.1+3flag pcDNA3.1+3flag
pcDNA3.1+3flag
T4 DNA Ligase Total
• 混匀,4℃过夜或常温条件下反应4h
用量 13-15μl 2-4μl
2μl 1μl 20μl
整理课件
23
引物设计
pCR
回收纯化
双酶切
连接
转化
挑菌
提质粒
测序
将连接产物通过转化转入到感受态大肠杆菌中,从而使连接产物(重组质粒)在大肠杆菌中大量复制
LB培养基配制
2μl
enzyme 1
2μl
enzyme 2
2μl
enzyme 2
2μl
dd H2O
补至50μl
dd H2O
补至50μl
*根据质粒浓度(如pcDNA3.1+3flag浓度为455ng/μl,4000bp,反应体积约为9μl)
• 混匀,37℃孵育4-6h(6h以上更佳)整理课件
22
引物设计
pCR
回收纯化
双酶切
连接
转化
挑菌
提质粒
测序
通过凝胶电泳验证目的DNA、质粒是否酶切成功,并通过胶回收DNA及质粒(切去 的片段除外)最终回收体积为30μl
通过连接使目的DNA导入质粒中,为下一步转染准备
Procedure

PCR技术克隆目的基因全过程

PCR技术克隆目的基因全过程

实验:目的基因克隆PCR技术课前预习PCR polymerase chain reaction 反应的基本原理;目的要求1.学习和掌握PCR 反应的基本原理与实验技术方法;2.认真完成每一步实验操作,详细记录实验现象和结果并加以分析和总结;基本原理类似于DNA 的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物;PCR 由变性--退火--延伸三个基本反应步骤构成:①模板DNA的变性:模板DNA 经加热至93℃左右一定时间后,使模板DNA双链或经PCR 扩增形成的双链DNA 解离,使之成为单链,以便它与引物结合,为下轮反应作准备;②模板DNA 与引物的退火复性:模板DNA 经加热变性成单链后,温度降至55℃左右,引物与模板DNA 单链的互补序列配对结合;③引物的延伸:DNA 模板--引物结合物在TaqDNA 聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链重复循环变性--退火--延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板;每完成一个循环需2~4 分钟,2~3 小时就能将待扩目的基因扩增放大几百万倍;到达平台期Plateau所需循环次数取决于样品中模板的拷贝;实验用品1.材料:重组质粒DNA作为模板2.器材和仪器:移液器及吸头,硅烷化的PCR 小管,DNA扩增仪PE 公司,琼脂糖凝胶电泳所需设备电泳槽及电泳仪,台式高速离心机3.试剂:①10×PCR 反应缓冲液:500mmol/L KCl, 100mmol/L Tris·Cl, 在25℃下, , %Triton X-100;②MgCl2 :25mmol/L;③ 4 种dNTP 混合物:每种L;④Taq DNA聚合酶5U/μl;⑤T4 DNA连接酶及连接缓冲液:方法步骤一PCR反应1. 依次混匀下列试剂35μl H2 O 5μl 10×PCR反应缓冲液4μl 25mmol/L MgCl2 4μl 4种dNTP μl 上游引物引物1μl 下游引物引物2μl 模板DNA约1ng 混匀后离心5秒;2. 将混合物在94℃下加热5分钟后冰冷,迅速离心数秒, 使管壁上液滴沉至管底,加入Taq DNA聚合酶μl约,混匀后稍离心,加入一滴矿物油覆盖于反应混合物上;3. 用94℃变性1分钟,45℃退火1分钟, 72℃延伸2分钟, 循环35轮,进行PCR;最后一轮循环结束后, 于72℃下保温10分钟,使反应产物扩增充分;4 电泳按前所述,取10μl扩增产物用1%琼脂糖凝胶进行电泳分析,检查反应产物及长度; 注意1. PCR非常灵敏, 操作应尽可能在无菌操作台中进行;2. 吸头、离心管应高压灭菌, 每次吸头用毕应更换, 不要互相污染试剂;3. 加试剂前, 应短促离心10秒钟, 然后再打开管盖, 以防手套污染试剂及管壁上的试剂污染吸头侧面;4. 应设含除模板DNA所有其它成分的负对照;实验结果注意事项微量操作、PCR 反应体系的设计、引物设计、扩增条件的优化思考题1. 降低退火温度对反应有何影响2. 延长变性时间对反应有何影响3. 循环次数是否越多越好为何4. PCR有哪些用途举例说明;附:PCR知识供参考一PCR 反应体系与反应条件标准的PCR 反应体系:10×扩增缓冲液10ul4 种dNTP 混合物各200umol/L引物各10~100pmol模板DNA ~2ugTaq DNA聚合酶Mg2+ L加双或三蒸水至100ulPCR 反应五要素:参加PCR 反应的物质主要有五种即引物、酶、dNTP、模板和Mg2+引物:引物是PCR 特异性反应的关键,PCR 产物的特异性取决于引物与模板DNA互补的程度;理论上,只要知道任何一段模板DNA序列,就能按其设计互补的寡核苷酸链做引物,利用PCR 就可将模板DNA在体外大量扩增;设计引物应遵循以下原则:①引物长度:15-30bp,常用为20bp左右;②引物扩增跨度:以200-500bp为宜,特定条件下可扩增长至10kb 的片段;③引物碱基:G+C 含量以40-60%为宜,G+C 太少扩增效果不佳,G+C 过多易出现非特异条带;ATGC最好随机分布,避免5 个以上的嘌呤或嘧啶核苷酸的成串排列;④避免引物内部出现二级结构,避免两条引物间互补,特别是3’端的互补,否则会形成引物二聚体,产生非特异的扩增条带;⑤引物3’端的碱基,特别是最末及倒数第二个碱基,应严格要求配对,以避免因末端碱基不配对而导致PCR 失败;⑥引物中有或能加上合适的酶切位点,被扩增的靶序列最好有适宜的酶切位点,这对酶切分析或分子克隆很有好处;⑦引物的特异性:引物应与核酸序列数据库的其它序列无明显同源性;引物量:每条引物的浓度~1umol 或10~100pmol,以最低引物量产生所需要的结果为好,引物浓度偏高会引起错配和非特异性扩增,且可增加引物之间形成二聚体的机会;酶及其浓度:目前有两种Taq DNA聚合酶供应, 一种是从栖热水生杆菌中提纯的天然酶,另一种为大肠菌合成的基因工程酶;催化一典型的PCR 反应约需酶量指总反应体积为100ul 时,浓度过高可引起非特异性扩增,浓度过低则合成产物量减少;dNTP 的质量与浓度:dNTP 的质量与浓度和PCR 扩增效率有密切关系,dNTP 粉呈颗粒状,如保存不当易变性失去生物学活性;dNTP 溶液呈酸性,使用时应配成高浓度后,以1M NaOH 或1M Tris;HCl的缓冲液将其PH调节到~,小量分装,-20℃冰冻保存;多次冻融会使dNTP 降解;在PCR 反应中,dNTP 应为50~200umol/L, 尤其是注意 4 种dNTP 的浓度要相等等摩尔配制, 如其中任何一种浓度不同于其它几种时偏高或偏低,就会引起错配;浓度过低又会降低PCR 产物的产量;dNTP 能与Mg2+结合,使游离的Mg2+浓度降低;模板靶基因核酸:模板核酸的量与纯化程度,是PCR 成败与否的关键环节之一,传统的DNA 纯化方法通常采用SDS 和蛋白酶K 来消化处理标本;SDS 的主要功能是:溶解细胞膜上的脂类与蛋白质,因而溶解膜蛋白而破坏细胞膜,并解离细胞中的核蛋白,SDS 还能与蛋白质结合而沉淀;蛋白酶K 能水解消化蛋白质,特别是与DNA 结合的组蛋白,再用有机溶剂酚与氯仿抽提掉蛋白质和其它细胞组份,用乙醇或异丙醇沉淀核酸;提取的核酸即可作为模板用于PCR 反应;一般临床检测标本,可采用快速简便的方法溶解细胞,裂解病原体,消化除去染色体的蛋白质使靶基因游离,直接用于PCR 扩增;RNA 模板提取一般采用异硫氰酸胍或蛋白酶K 法,要防止RNase降解RNA;Mg2+浓度:Mg2+对PCR 扩增的特异性和产量有显著的影响,在一般的PCR 反应中,各种dNTP 浓度为200umol/L时,Mg2+浓度为~L为宜;Mg2+浓度过高,反应特异性降低,出现非特异扩增,浓度过低会降低Taq DNA聚合酶的活性,使反应产物减少;PCR 反应条件的选择PCR 反应条件为温度、时间和循环次数;温度与时间的设置:基于PCR 原理三步骤而设置变性-退火-延伸三个温度点;在标准反应中采用三温度点法,双链DNA 在90~95℃变性,再迅速冷却至40 ~60℃,引物退火并结合到靶序列上,然后快速升温至70~75℃,在Taq DNA 聚合酶的作用下,使引物链沿模板延伸;对于较短靶基因长度为100~300bp 时可采用二温度点法, 除变性温度外、退火与延伸温度可合二为一,一般采用94℃变性,65℃左右退火与延伸此温度Taq DNA酶仍有较高的催化活性;①变性温度与时间:变性温度低,解链不完全是导致PCR 失败的最主要原因;一般情况下,93℃~94℃lmin足以使模板DNA变性,若低于93℃则需延长时间,但温度不能过高,因为高温环境对酶的活性有影响;此步若不能使靶基因模板或PCR 产物完全变性,就会导致PCR 失败;②退火复性温度与时间:退火温度是影响PCR 特异性的较重要因素;变性后温度快速冷却至40℃~60℃,可使引物和模板发生结合;由于模板DNA 比引物复杂得多,引物和模板之间的碰撞结合机会远远高于模板互补链之间的碰撞;退火温度与时间,取决于引物的长度、碱基组成及其浓度,还有靶基序列的长度;对于20 个核苷酸,G+C 含量约50%的引物,55℃为选择最适退火温度的起点较为理想;引物的复性温度可通过以下公式帮助选择合适的温度:Tm值解链温度=4G+C+2A+T复性温度=Tm值-5~10℃在Tm值允许范围内, 选择较高的复性温度可大大减少引物和模板间的非特异性结合,提高PCR 反应的特异性;复性时间一般为30~60sec,足以使引物与模板之间完全结合;③延伸温度与时间:Taq DNA聚合酶的生物学活性:70~80℃150核苷酸/S/酶分子70℃60 核苷酸/S/酶分子55℃24 核苷酸/S/酶分子高于90℃时, DNA合成几乎不能进行;PCR 反应的延伸温度一般选择在70~75℃之间,常用温度为72℃,过高的延伸温度不利于引物和模板的结合;PCR 延伸反应的时间,可根据待扩增片段的长度而定,一般1Kb以内的DNA片段,延伸时间1min是足够的;3~4kb 的靶序列需3~4min;扩增10Kb 需延伸至15min;延伸进间过长会导致非特异性扩增带的出现;对低浓度模板的扩增,延伸时间要稍长些;循环次数:循环次数决定PCR 扩增程度;PCR 循环次数主要取决于模板DNA的浓度;一般的循环次数选在30~40 次之间,循环次数越多,非特异性产物的量亦随之增多;PCR 反应特点特异性强PCR 反应的特异性决定因素为:①引物与模板DNA 特异正确的结合;②碱基配对原则;③Taq DNA 聚合酶合成反应的忠实性;④靶基因的特异性与保守性;其中引物与模板的正确结合是关键;引物与模板的结合及引物链的延伸是遵循碱基配对原则的;聚合酶合成反应的忠实性及Taq DNA 聚合酶耐高温性,使反应中模板与引物的结合复性可以在较高的温度下进行,结合的特异性大大增加,被扩增的靶基因片段也就能保持很高的正确度;再通过选择特异性和保守性高的靶基因区,其特异性程度就更高;灵敏度高PCR 产物的生成量是以指数方式增加的,能将皮克pg=10 -12 g量级的起始待测模板扩增到微克ug=10 -6 g水平;能从100 万个细胞中检出一个靶细胞;在病毒的检测中,PCR 的灵敏度可达3 个RFU空斑形成单位;在细菌学中最小检出率为3 个细菌;简便、快速PCR 反应用耐高温的Taq DNA 聚合酶,一次性地将反应液加好后,即在DNA 扩增液和水浴锅上进行变性-退火-延伸反应,一般在2~4 小时完成扩增反应;扩增产物一般用电泳分析,不一定要用同位素,无放射性污染、易推广;对标本的纯度要求低不需要分离病毒或细菌及培养细胞,DNA 粗制品及总RNA均可作为扩增模板;可直接用临床标本如血液、体腔液、洗嗽液、毛发、细胞、活组织等粗制的DNA 扩增检测;PCR 扩增产物分析PCR 产物是否为特异性扩增,其结果是否准确可靠,必须对其进行严格的分析与鉴定,才能得出正确的结论;PCR产物的分析,可依据研究对象和目的不同而采用不同的分析方法;凝胶电泳分析:PCR产物电泳,EB 溴乙锭染色紫外仪下观察,初步判断产物的特异性;PCR产物片段的大小应与预计的一致,特别是多重PCR,应用多对引物,其产物片断都应符合预讦的大小,这是起码条件;琼脂糖凝胶电泳:通常应用1~2%的琼脂糖凝胶,供检测用;聚丙烯酰胺凝胶电泳:6~10%聚丙烯酰胺凝胶电泳分离效果比琼脂糖好,条带比较集中,可用于科研及检测分析;酶切分析:根据PCR 产物中限制性内切酶的位点,用相应的酶切、电泳分离后,获得符合理论的片段,此法既能进行产物的鉴定,又能对靶基因分型,还能进行变异性研究;分子杂交:分子杂交是检测PCR 产物特异性的有力证据,也是检测PCR 产物碱基突变的有效方法;Southern 印迹杂交:在两引物之间另合成一条寡核苷酸链内部寡核苷酸标记后做探针,与PCR 产物杂交;此法既可作特异性鉴定,又可以提高检测PCR 产物的灵敏度,还可知其分子量及条带形状,主要用于科研;斑点杂交:将PCR 产物点在硝酸纤维素膜或尼膜薄膜上,再用内部寡核苷酸探针杂交,观察有无着色斑点,主要用于PCR 产物特异性鉴定及变异分析;核酸序列分析:是检测PCR 产物特异性的最可靠方法;PCR 常见问题总结PCR 产物的电泳检测时间一般为48h 以内,有些最好于当日电泳检测,大于48h 后带型不规则甚致消失;假阴性,不出现扩增条带PCR 反应的关键环节有①模板核酸的制备,②引物的质量与特异性,③酶的质量及活性④PCR循环条件;寻找原因亦应针对上述环节进行分析研究;模板:①模板中含有杂蛋白质,②模板中含有Taq 酶抑制剂,③模板中蛋白质没有消化除净,特别是染色体中的组蛋白,④在提取制备模板时丢失过多,或吸入酚;⑤模板核酸变性不彻底;在酶和引物质量好时,不出现扩增带,极有可能是标本的消化处理,模板核酸提取过程出了毛病,因而要配制有效而稳定的消化处理液,其程序亦应固定不宜随意更改;酶失活:需更换新酶,或新旧两种酶同时使用,以分析是否因酶的活性丧失或不够而导致假阴性;需注意的是有时忘加Taq 酶或溴乙锭;引物:引物质量、引物的浓度、两条引物的浓度是否对称,是PCR 失败或扩增条带不理想、容易弥散的常见原因;有些批号的引物合成质量有问题,两条引物一条浓度高,一条浓度低,造成低效率的不对称扩增,对策为:①选定一个好的引物合成单位;②引物的浓度不仅要看OD值,更要注重引物原液做琼脂糖凝胶电泳,一定要有引物条带出现,而且两引物带的亮度应大体一致,如一条引物有条带,一条引物无条带,此时做PCR 有可能失败,应和引物合成单位协商解决;如一条引物亮度高,一条亮度低,在稀释引物时要平衡其浓度;③引物应高浓度小量分装保存,防止多次冻融或长期放冰箱冷藏部分,导致引物变质降解失效;④引物设计不合理,如引物长度不够,引物之间形成二聚体等;Mg2+浓度:Mg2+离子浓度对PCR 扩增效率影响很大,浓度过高可降低PCR扩增的特异性,浓度过低则影响PCR 扩增产量甚至使PCR扩增失败而不出扩增条带;反应体积的改变:通常进行PCR 扩增采用的体积为20ul、30ul、50ul;或100ul,应用多大体积进行PCR 扩增,是根据科研和临床检测不同目的而设定,在做小体积如20ul 后,再做大体积时,一定要模索条件,否则容易失败;物理原因:变性对PCR 扩增来说相当重要,如变性温度低,变性时间短,极有可能出现假阴性;退火温度过低,可致非特异性扩增而降低特异性扩增效率退火温度过高影响引物与模板的结合而降低PCR扩增效率;有时还有必要用标准的温度计,检测一下扩增仪或水溶锅内的变性、退火和延伸温度,这也是PCR失败的原因之一;靶序列变异:如靶序列发生突变或缺失,影响引物与模板特异性结合,或因靶序列某段缺失使引物与模板失去互补序列,其PCR 扩增是不会成功的;假阳性出现的PCR 扩增条带与目的靶序列条带一致,有时其条带更整齐,亮度更高;引物设计不合适:选择的扩增序列与非目的扩增序列有同源性, 因而在进行PCR 扩增时, 扩增出的PCR产物为非目的性的序列;靶序列太短或引物太短,容易出现假阳性;需重新设计引物;靶序列或扩增产物的交叉污染:这种污染有两种原因:一是整个基因组或大片段的交叉污染,导致假阳性;这种假阳性可用以下方法解决:①操作时应小心轻柔,防止将靶序列吸入加样枪内或溅出离心管外;②除酶及不能耐高温的物质外,所有试剂或器材均应高压消毒;所用离心管及样进枪头等均应一次性使用;③必要时,在加标本前,反应管和试剂用紫外线照射,以破坏存在的核酸;二是空气中的小片段核酸污染,这些小片段比靶序列短,但有一定的同源性;可互相拼接,与引物互补后,可扩增出PCR产物,而导致假阳性的产生,可用巢式PCR 方法来减轻或消除;出现非特异性扩增带PCR 扩增后出现的条带与预计的大小不一致,或大或小,或者同时出现特异性扩增带与非特异性扩增带;非特异性条带的出现,其原因:一是引物与靶序列不完全互补、或引物聚合形成二聚体;二是Mg2+离子浓度过高、退火温度过低,及PCR 循环次数过多有关;其次是酶的质和量,往往一些来源的酶易出现非特异条带而另一来源的酶则不出现,酶量过多有时也会出现非特异性扩增;其对策有:①必要时重新设计引物;②减低酶量或调换另一来源的酶;③降低引物量,适当增加模板量,减少循环次数;④适当提高退火温度或采用二温度点法93℃变性,65℃左右退火与延伸;出现片状拖带或涂抹带PCR 扩增有时出现涂抹带或片状带或地毯样带;其原因往往由于酶量过多或酶的质量差,dNTP浓度过高,Mg2+浓度过高,退火温度过低,循环次数过多引起;其对策有:①减少酶量,或调换另一来源的酶;②减少dNTP的浓度;③适当降低Mg2+浓度;④增加模板量,减少循环次数;PCR 污染与对策PCR 反应的最大特点是具有较大扩增能力与极高的灵敏性,但令人头痛的问题是易污染,极其微量的污染即可造成假阳性的产生;污染原因一标本间交叉污染:标本污染主要有收集标本的容器被污染,或标本放置时,由于密封不严溢于容器外,或容器外粘有标本而造成相互间交叉污染;标本核酸模板在提取过程中,由于吸样枪污染导致标本间污染;有些微生物标本尤其是病毒可随气溶胶或形成气溶胶而扩散,导致彼此间的污染;二PCR 试剂的污染:主要是由于在PCR 试剂配制过程中,由于加样枪、容器、双蒸水及其它溶液被PCR核酸模板污染.三PCR扩增产物污染:这是PCR反应中最主要最常见的污染问题, 因为PCR产物拷贝量大一般为1013拷贝/ml,远远高于PCR 检测数个拷贝的极限,所以极微量的PCR 产物污染,就可造成假阳就可形成假阳性;还有一种容易忽视,最可能造成PCR 产物污染的形式是气溶胶污染;在空气与液体面摩擦时就可形成气溶胶,在操作时比较剧烈地摇动反应管,开盖时、吸样时及污染进样枪的反复吸样都可形成气溶胶而污染;据计算一个气溶胶颗粒可含48000 拷贝,因而由其造成的污染是一个值得特别重视的问题;四实验室中克隆质粒的污染:在分子生物学实验室及某些用克隆质粒做阳性对照的检验室,这个问题也比较常见;因为克隆质粒在单位容积内含量相当高,另外在纯化过程中需用较多的用具及试剂,而且在活细胞内的质粒,由于活细胞的生长繁殖的简便性及具有很强的生命力,其污染可能性也很大;污染的监测一个好的实验室,要时刻注意污染的监测,考虑有无污染是什么原因造成的污染,以便采取措施,防止和消除污染;对照试验1. 阳性对照:在建立PCR 反应实验室及一般的检验单位都应设有PCR 阳性对照,它是PCR 反应是否成功、产物条带位置及大小是否合乎理论要求的一个重要的参考标志;阳性对照要选择扩增度中等、重复性好,经各种鉴定是该产物的标本,如以重组质粒为阳性对照,其含量宜低不宜高100 个拷贝以下,但阳性对照尤其是重组质粒及高浓度阳性标本,其对检测或扩增样品污染的可能性很大;因而当某一PCR 试剂经自己使用稳定,检验人员心中有数时,在以后的实验中可免设阳性对照;2. 阴性对照:每次PCR 实验务必做阴性对照;它包括①标本对照:被检的标本是血清就用鉴定后的正常血清作对照;被检的标本是组织细胞就用相应的组织细胞作对照;②试剂对照:在PCR 试剂中不加模板DNA或RNA,进行PCR 扩增,以监测试剂是否污染;3. 重复性试验4. 选择不同区域的引物进行PCR 扩增防止污染的方法一合理分隔实验室:将样品的处理、配制PCR 反应液、PCR 循环扩增及PCR产物的鉴定等步骤分区或分室进行,特别注意样本处理及PCR产物的鉴定应与其它步骤严格分开;最好能划分①标本处理区;②PCR 反应液制备区;③PCR 循环扩增区;④PCR 产物鉴定区;其实验用品及吸样枪应专用,实验前应将实验室用紫外线消毒以破坏残留的DNA 或RNA;二吸样枪:吸样枪污染是一个值得注意的问题;由于操作时不慎将样品或模板核酸吸入枪内或粘上枪头是一个严重的污染源,因而加样或吸取模板核酸时要十分小心,吸样要慢,吸样时尽量一次性完成,忌多次抽吸,以免交叉污染或产生气溶胶污染;三预混和分装PCR试剂:所有的PCR 试剂都应小量分装,如有可能,PCR 反应液应预先配制好,然后小量分装,-20℃保存;以减少重复加样次数,避免污染机会;另外,PCR 试剂,PCR 反应液应与样品及PCR产物分开保存,不应放于同一冰盒或同一冰箱;四防止操作人员污染,使用一次性手套、吸头、小离心管应一次性使用;五设立适当的阳性对照和阴性对照,阳性对照以能出现扩增条带的最低量的标准病原体核酸为宜,并注意交叉污染的可能性,每次反应都应有一管不加模板的试剂对照及相应不含有被扩增核酸的样品作阴性对照;六减少PCR 循环次数,只要PCR 产物达到检测水平就适可而止;七选择质量好的Eppendorf管,以避免样本外溢及外来核酸的进入,打开离心管前应先离心,将管壁及管盖上的液体甩至管底部;开管动作要轻,以防管内液体溅出;参考文献一、主要教学参考书:1.基因工程原理第二版.吴乃虎编著,科学出版社2.分子克隆实验指南第三版.黄培堂等译,科学出版社3.基因克隆和DNA分析.魏群等译,高等教育出版社4.最新分子生物学实验技术梁国栋主编,科学出版5分子生物学实验指导主编:魏群高等教育出版社施普林格出版社二、主要参考文献:, SN, ACY Chang and L Hsu, 1972, Sci. 69:2110., HC and J Doly. 1979.,Nucleic Acids Res. 7:1513., C and P Borst, 1972.,Biochim. Biophys. Acta 269:192.F, RL Rodriguez, PJ Greene, MC Betlach, HL Heyneker, HW Boyer, JH Crosa, and S Falkow, 1977b,,Gene 2:95.K, F Faloona, S Scharf, R Saiki, G Horn and H Erlich, 1986.,Cold Spring Harbor Symp. Quant. Biol. 51:263.。

转录组序列基因克隆

转录组序列基因克隆

转录组序列基因克隆
转录组序列基因克隆是一种用于从转录组数据中克隆基因的方法。

以下是一般的步骤:
1. 获得转录组数据:通常通过 RNA 测序(RNA-seq)技术获得转录组数据。

这些数据提供了有关细胞或组织中表达的所有 RNA 分子的信息。

2. 筛选目标基因:根据研究的目的,从转录组数据中筛选出感兴趣的目标基因。

这可以基于特定的表达模式、功能注释或其他相关的生物信息学分析。

3. 设计引物:针对目标基因的序列,设计特异性的引物用于 PCR 扩增。

4. PCR 扩增:使用设计的引物,从转录组数据对应的 cDNA 文库中进行 PCR 扩增。

这将产生目标基因的特定片段。

5. 克隆和测序:将 PCR 扩增的产物克隆到适当的载体中,并进行测序以确认所克隆的序列的准确性。

6. 功能分析:对克隆的基因进行进一步的功能分析,例如表达分析、蛋白质表达和功能研究等。

需要注意的是,转录组序列基因克隆的成功与否取决于许多因素,包括转录组数据的质量、引物的设计、PCR 条件等。

在进行该方法之前,建议对相关技术和实验步骤有一定的了解,并根据具体情况进行优化和调整。

整个基因克隆实验流程完整

整个基因克隆实验流程完整

一、组织总R N A的提取有关试剂: Trizol ;氯仿;苯酚;异丙醇;75%乙醇; RNase-free水有关仪器:制冰机;液氮 & 研钵 /生物样品研磨仪;高速离心计;移液器(1ml、200μl、100μl/50 μl);涡旋振荡仪;恒温金属浴。

有关耗材:解剖工具,冰盒,离心管,离心管架,吸头(1ml, 200μl/300 μl),一次性手套,实验手套。

实验步骤1. 取暂养草鱼,冰上搁置一段时间,而后解剖,剪取肠道 50~100mg,放入研钵中,加入液氮快速研磨,而后加入 1ml 预冷 TRIzol 试剂,充足研磨至无颗粒物存在。

2.转移到离心管中,室温搁置 5min,使细胞充足裂解;3.按 1ml Trizol 加入 200μl 氯仿,盖上盖子,快速充足摇匀15s,而后室温搁置 3min ;4.4℃, ,12000g 离心 15min;RNA 存在此时混淆物分为三层,基层红色的苯酚氯仿层,中间层和上层无色水相;于无色水相中;5.当心汲取上清液,千万不要汲取中间界面,不然有 DNA 污染;转移至一个新的离心管,加入等体积的异丙醇,轻轻混匀;6.室温搁置 10min; 4℃, ,12000g 离心 10min;7.弃上清,加入 1ml 75%乙醇清洗;涡旋,悬浮积淀; 4℃, ,12000g 离心 5min;8.弃上清;能够再次用 75%乙醇清洗积淀;9.弃上清;用移液器轻轻汲取管壁或管底的剩余乙醇,注意不要汲取积淀;室温搁置5min 晾干积淀;( RNA 样品不要过于干燥,不然极难溶解)10.积淀中加入 30μlRNase-free 水,轻弹管壁,使 RNA 溶解。

RNA 质量检测有关试剂:溴酚蓝,TEB/TAE 电泳缓冲液,溴乙锭( EB)有关仪器:(超微量分光光度计,移液器(μl 或 2μl 规格, 10μl 规格),电子天平,电泳仪,电泳槽,凝胶成像仪,微波炉,制冰机)有关耗材:(无菌无绒纸,吸头,离心管架, PCR 管, PCR 管架,锥形瓶,烧杯,一次性手套,实验手套,冰盒)(1) RNA 纯度的检测:测定其 OD260和 OD280的值,依据其 OD260/ OD280的比值,当其比值在 ~之间,说明提取的总 RNA 纯度比较高,没有蛋白质和基因组的污染。

基因克隆实验报告

基因克隆实验报告

实验单元6:基因克隆学号No.:姓名Name:日期Date:2014,04,26摘要:基因克隆是在体外将目的基因(或其它有意义的DNA片段)同能够自我复制的载体DNA连接,然后将其转入宿主细胞或受体生物进行表达或进一步研究。

通过PCR法扩增目的基因片断的过程中,由于往往不清楚目的基因的DNA序列,获得的目的片断通常需要通过TA克隆的方法,重组到T-载体中,通过序列测定清楚DNA序列。

本实验应用RT-PCR技术从团头鲂肝脏RNA中扩增β-actin基因cDNA片段,并克隆到质粒载体pMD18-T,鉴定测序。

结果显示:只有少数组别成功克隆出目的基因片段。

关键词:基因克隆;T-A克隆;团头鲂;β-actin基因一、前言对PCR产物进行克隆是分子生物领域以及基因工程领域中常用的方法,随着PCR方法应用的多元化,PCR产物的克隆显得尤为重要。

以前对PCR产物进行克隆实验,采用的方案大概有以下几种:一是用Klenow酶或单链核酸酶(如S1核酸酶或绿豆核酸酶)将PCR产物的两端切成平末端,然后克隆到也切成平端的质粒载体上,或在PCR产物的两端加上人工接头(Linker),经过限制性内切酶处理以后,再克隆到用相应限制性内切酶酶切产生的载体上;二是在设计PCR产物时,在引物的)!端引入特异性的内切酶识别序列,在PCR反应结束后,将PCR产物用相应的限制性内切酶进行处理,使之两端产生粘性末端,以便于克隆到载体的相应酶切位点上[1]。

这两种方法都很烦琐,而且,第一种方法的克隆效率很低,第二种方法在进行酶切处理时,如果PCR产物本身含有相应的酶切位点时,则有可能切断PCR产物。

近年来发展了几种PCR产物的直接克隆方法,一种是T4 DNA 聚合酶补平,另一种是T-A克隆法。

其中,T-A克隆法不仅操作简便,而且大大提高了克隆效率,已经成为克隆PCR产物的主要方法之一。

但是,在采用T-A克隆法时,随着插入片段长度的增加,克隆效率明显下降,尤其是当PCR产物长度大于3000bp时,其克隆效率甚至会低于平末端的克隆效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Agarose Gel DNA Purification Kit Ver.2.0(50 次量)
割胶回收操作流程:
全套操作约需 30 分钟,详细说明如下。

1. 使用TBE 缓冲液制作琼脂糖凝胶,然后对目的 DNA 进行琼脂糖凝胶电泳。

2. 在紫外灯下切出含有目的 DNA 的琼脂糖凝胶,此时应注意尽量切除不含目的 DNA 部分的凝胶,尽量减小凝胶体积,提高 DNA 回收率。

注)切胶时请注意不要将 DNA 长时间暴露于紫外灯下,以防止 DNA 损伤。

3. 切碎胶块。

胶块切碎后可以加快操作步骤 6 的胶块融化时间,提高 DNA 的回收率。

4. 称量胶块重量,计算胶块体积。

计算胶块体积时,以 1 mg=1 μl 进行计算。

5. 向胶块中加入胶块融化液 DR-I Buffer,DR-I Buffer 的加量如下表:
均匀混合后 75℃加热融化胶块(低熔点琼脂糖凝胶只需在 45℃加热)。

此时应间断振荡混合,使胶块充分融化(约 6~10 分钟)。

注)胶块一定要充分融化,否则将会严重影响 DNA的回收率。

7. 向上述胶块融化液中加入DR-I Buffer量的1/2体积量的 DR-II Buffer,均匀混合。

当分离小于 400 bp的 DNA 片段时,应在此溶液中再加入终浓度为 20%的异丙醇。

8. 将试剂盒中的 Spin Column 安臵于 Collection Tube 上。

9. 将上述操作 7 的溶液转移至 Spin Column 中,12,000 rpm 离心 1 分钟,弃滤液。

注)如将滤液再加入 Spin Column 中离心一次,可以提高 DNA 的回收率。

10. 将500 μl的Rinse A加入Spin Column中,12,000 rpm 离心 30 秒钟,弃滤液。

11. 将700 μl的Rinse B加入Spin Column中,12,000 rpm 离心 30 秒钟,弃滤液。

注)请确认 Rinse B 中已经加入了指定体积的 100%乙醇。

12. 重复操作步骤 11。

13. 将 Spin Column 安臵于 Collection Tube 上,12,000 rpm 离心 1 分钟。

14. 将 Spin Column 安臵于新的 1.5 ml 的离心管上,在 Spin Column 膜的中央处加入 25 μl 的灭菌蒸馏水或 Elution Buffer,室温静臵 1 分钟。

注)把灭菌蒸馏水或 Elution Buffer 加热至 60℃使用时有利于提高洗脱效率。

15. 12,000 rpm 离心 1 分钟洗脱 DNA。

●注意事项
1. 纯化的 DNA 用于 DNA 序列分析时,最好使用灭菌蒸馏水洗脱 DNA。

2. DNA 需长期保存时,建议在 Elution Buffer 中保存。

DNA 片段的连接
1)在微量离心管中配制下列 DNA 溶液,全量为10 μl。

试剂使用量
Solution I 5 μl
Insert DNA*3 4.5 μl
pMD ® 19-T Vector*1 0.5 μl
3) 16℃反应 3小时。

注)①室温(25℃)也能正常进行连接反应,但反应效率稍微降低。

② 5 分钟也能正常进行连接反应,但反应效率稍微降低。

质粒 DNA 的转化方法*
1. 把感受态细胞臵于冰中融化。

2. 加入用于转化的 DNA(10ul),冰中放臵 30 分钟。

3. 42℃热击 45~60 秒。

4. 冰中放臵 5分钟。

5. 加入 37℃预温好的 LB液体培养基(890 ul),使终体积为 1 ml。

6. 37℃振荡培养 1 小时(160~225 rpm)。

7. 取适量涂布琼脂平板培养基。

8. 37℃过夜培养。

LB培养基配制:
LB液体培养基:
Tryptone 1g
yeast extract 0.5g
NaCl 1g
ddH2O 100ul
LB固体培养基:
在液体培养基中再加入1.5g琼脂,倒平板之前要加Amp溶液(50mg/ml)(每100ul培养基加50 ul Amp溶液)
MiniBEST Plasmid Purification Kit Ver.2.0(50 次量)
●操作方法
第一次使用本试剂盒时,请将 RNase A1 混浊液全部加入到SolutionⅠ中,均匀混合后 4℃保存。

实验操作前请将 Solution Ⅲ臵于 4℃(或冰上)预冷后使用。

操作流程见图 1,全套操作约需 1 小时,详细说明如下。

1. 大肠杆菌的培养。

从平板培养基上挑选单菌落接种至 1~4 ml 的含有抗生素的液体培养基中,37℃过夜培养。

注)培养液不宜过量,培养液过量时,会因菌量太大而溶菌不充分,纯化时会影响质粒的纯度。

2. 取 1~4 ml 的过夜培养菌液,12,000 rpm 离心 2 分钟,弃上清。

3. 用 250 μl 的 Solution Ⅰ(含 RNase A1)充分悬浮细菌沉淀。

注)注意不要残留细小菌块,可以使用振荡器(Vortex)等剧烈振荡使菌体充分悬浮。

4. 加入 250 μl 的 Solution Ⅱ轻轻地上下翻转混合 5~6次,使菌体充分裂解,形成透明溶液。

注)此步骤不宜超过 5 分钟。

5. 加入 400 μl的 4℃预冷的Solution Ⅲ,轻轻上下翻转混合 5~6 次,直至形成紧实凝集块,然后室温静臵 2分钟。

6. 室温 12,000 rpm 离心 10 分钟,取上清。

注)此时 4℃离心不利于沉淀沉降。

7. 将试剂盒中的 Spin Column 安臵于 Collection Tube 上。

8. 将上述操作 6 的上清液转移至 Spin Column 中,12,000rpm 离心 1 分钟,弃滤液。

9. 将 500 μl 的 Rinse A 加入 Spin Column 中,12,000 rpm 离心 30 秒钟,弃滤液。

10. 将 700 μl 的 Rinse B 加入 Spin Column 中,12,000 rpm 离心 30 秒钟,弃滤液。

注)请确认 Rinse B 中已经加入了指定体积的 100%乙醇。

11. 重复操作步骤 10。

12. 将 Spin Column 安臵于 Collection Tube 上,12,000 rpm 离心 1 分钟。

13. 将 Spin Column 安臵于新的 1.5 ml 的离心管上,在Spin Column 膜的中央处加入 60 μl 的灭菌蒸馏水或Elution Buffer,室温静臵 1 分钟。

注)把灭菌蒸馏水或 Elution Buffer 加热至 60℃使用时有利于提高洗脱效率。

14. 12,000 rpm 离心 1 分钟洗脱 DNA。

●注意事项
1. 每次起始的菌液量应控制在 1~4 ml,菌量太大影响溶菌及质粒 DNA 的释放,纯化时会影响质粒 DNA 的纯度。

2. 加入 Solution Ⅱ和 Solution Ⅲ后,不要剧烈混合(Vortex 等),剧烈混合会导致基因组 DNA 的污染。

3. 加入 Solution Ⅲ后,应充分混合使蛋白质、基因组 DNA 等形成白色沉淀,离心后沉降于离心管底部。

若离心后沉淀仍悬浮于溶液中时,请将离心管上下翻转混合数次后高速离心 3~5 分钟。

4. 纯化的质粒 DNA 用于 DNA 序列分析时,最好使用灭菌蒸馏水洗脱质粒 DNA。

5. 质粒 DNA 需长期保存时,建议在 Elution Buffer 中保存。

目的片段的验证:
将提取的质粒进行PCR扩增
反应体系如下:
dd H2O 175ul
10×PCR buffer 25ul
dNTP 20ul
M13 FP 4ul
M13 RP 4ul
Taq酶 2 ul
合计 230 ul
分装10管,每管加23 ul,再分别加2 ul质粒DNA,
PCR反应体系25 ul,反应程序:
95℃ 5min
95℃ 1min
58℃ 40s 35cycles
72℃ 1min
72℃ 5min。

相关文档
最新文档