SATWE参数选取原则第三版

合集下载

SATWE参数设置资料

SATWE参数设置资料

SATWE计算参数选择一、SATWE前处理——接PMCAD生成SATWE数据分析与设计参数定义总信息水平力与整体坐标夹角(度):通常不输入(0)初始值为0,satwe可以自动计算出这个最不利方向角,并在wzq.out中输出。

可根据把这个角度作为地震作用的方向角重新进行计算,以体现最不利地震作用的影响。

地震沿着不同的方向作用,结构地震反应的大小一般也不同。

结构地震反应是地震作用方向角的函数(逆时针为正)。

混凝土容重:(框架25.5或者26;剪力墙27)27kN/m2(在自重荷载有利的情况下,要取25kN/m2)。

钢材容重:78 kN/m2 (不用改)裙房层数:按实际情况。

高规及抗规规定:与主楼连为整体的裙楼的抗震等级不应低于主楼的抗震等级,主楼结构在裙房顶部上下各一层应适当加强抗震措施;因此该数必须给定。

转换层所在层号:按实际情况。

该指定只为程序决定底部加强部位及转换层上下刚度比的计算和内力调整提供信息,同时,当转换层号大于等于三层时,程序自动对落地剪力墙、框支柱抗震等级增加一级,对转换层梁、柱及该层的弹性板定义仍要人工指定。

(层号为计算层号)地下室层数:按实际情况。

1:程序据此信息决定底部加强区范围和内力调整。

2:当地下室局部层数不同时,以主楼地下室层数输入。

3:地下室一般与上部共同作用分析;4:地下室刚度大于上部层刚度的2倍,可不采用共同分析;5:地下室与上部共同分析时,程序中相对刚度一般为3,模拟约束作用。

当相对刚度为0,地下室考虑水平地震作用,不考虑风作用。

当相对刚度为负值,地下室完全嵌固6:根据程序编制专家的解释,填3大概为70%~80%的嵌固,填5就是完全嵌固,填在楼层数前加“-”,表示在所填楼层完全嵌固。

到底怎样的土填3或填5,完全取决于工程师的经验。

7、该参数为导风荷载荷形成嵌固约束信息服务。

墙元细分最大控制长度:(数值为1~5,5为粗略计算,1为精细计算,区别在于网格划分度,一般工程取隐含值2.0;重要工程取1,。

SATWE设计参数的合理选取

SATWE设计参数的合理选取

设计参数的合理选取1、抗震等级的确定:钢筋混凝土房屋应根烈度、结构类型和房屋高度的不同分别按〈抗规〉6.1.2条或〈高规〉4.8条确定本工程的抗震等级。

但需注意以下几点:(1)上述抗震等级是“丙”类建筑,如果是“甲”、“乙”、“丁”类建筑则需按规范要求对抗震等级进行调整。

(2)接近或等于分界高度时,应结合房屋不规则程度及场地、地基条件慎重确定抗震等级。

(3)当转换层〉=3及以上时,其框支柱、剪力墙底部加强部的抗震墙等级宜按〈抗规〉6.1.2条或〈高规〉4.8条查的抗震等级提高一级采用,已为特一级时可不调整。

(4)短肢剪力墙结构的抗震等级也应按〈抗规〉6.1.2条或〈高规〉4.8条查的抗震等级提高一级采用……但注意对多层短肢剪力墙结构可不提高。

(5)注意:钢结构、砌体结没有抗震等级。

计算时可选“5”,不考虑抗震构造措施。

2、振型组合数的选取:在计算地震力时,振型个数的选取应是振型参与质量要达到总质量90%以上所需要振型数。

但要注意以下几点:(1)振型个数不能超过结构固有的振型总数,因一个楼层最多只有三个有效动力自由度,所以一个楼层也就最多可选3个振型。

如果所选振型个数多于结构固有的振型总数,则会造成地震力计算异常。

(2)对于进行耦联计算的结构,所选振型数应大于9个,多塔结构应更多些,但要注意应是3的倍数。

(3)对于一个结构所选振型的多少,还必需满足有效质量系列化大于90%.在WDISP.OUT文件里查看。

3、主振型的判断;(1)对于刚度均匀的结构,在考虑扭转耦联计算时,一般来说前两个或前几个振型为其主振型。

(2)对于刚度不均匀的付杂结构,上述规律不一定存在,此时应注意查看SATWE文本文件“周期、振型、地震力”WZQ.OUT.程序输出结果中,给出了输出各振型的基底剪力总值,据此信息可以判断出那个振型是X向或Y向的主振型,同时可以了解没个振型对基底剪力的贡献大小。

SATWE参数设置

SATWE参数设置

SATWE参数设置SATWE参数设置一:总信息 1、水平力与整体坐标夹角(度):一般为缺省。

若地震作用最大的方向大于15度则回填。

2、混凝土容重(KN/m3):砖混结构25 KN/m3框架结构26KN/m3。

3、刚才容重(KN/m3):一般情况下为78.0 KN/m3(缺省值)。

4、裙房层数:程序不能自动识别裙房层数需要人工指定。

应从结构最底层起算(包括地下室)例如:地下室3层地上裙房4层时裙房层数应填入7。

5、转换层所在层号:应按PMCAD楼层组装中的自然层号填写例如:地下室3层转换层位于地上2层时转换层所在层号应填入5.程序不能自动识别转换层需要人工指定。

对于高位转换的判断转换层位置以嵌固端起算即以(转换层所在层号-嵌固端所在层号+1)进行判断是否为3层或3层以上转换。

6、嵌固端所在层号:无地下室时输入1有地下室时输入(地下室层数+1)。

7、地下室层数:根据实际情况输入。

8、墙元细分最大控制长度(m):一般为缺省值1。

9、转换层指定为薄弱层:SATWE中转换层缺省不作为薄弱层需要人工指定。

如需将转换层指定为薄弱层可将此项打勾则程序自动将转换层号添加到薄弱层号中如不打勾则需要用户手动添加。

此项打勾与在“调整信息”页“指定薄弱层号”中直接填写转换层层号的效果是完全一致的。

10、所有楼层强制采用刚性楼板假定:一般仅在计算位移比和周期比时建议选择。

在进行结构内力分析和配筋计算时不选择。

11、地下室强制采用刚性楼板假定:一般情况不选取按强制刚性板假定时保留弹性板面外刚度考虑。

特别是对于板柱结构定义了弹性板3、6情况。

但已选择对所有楼层墙肢采用刚性楼板假定的话此条无意义。

12、墙梁跨中节点作为刚性楼板从节点:一般为缺省勾选。

不勾选的话位移偏小。

13、计算墙倾覆力矩时只考虑腹板和有效翼缘:应勾选使得墙的无效翼缘部分内力计入框架部分实现框架短肢墙和普通强的倾覆力矩结果更合理。

14、弹性板与梁变形协调:相当于强制刚性板假定时保留弹性板面外刚度自动实现梁板边界变形协调计算结构符合实际受力情况应勾选。

SATWE部分参数的合理选取与有关计算原则说明(续)

SATWE部分参数的合理选取与有关计算原则说明(续)

5,周期折减系数TcTc主要用于框架,框剪或框架筒体结构。

由于框架有填充墙(指砖),在早期弹性阶段会有很大的刚度,因此会吸收很大的地震力,当地震力进一步加大时,填充墙首先破坏,则又回到计算的状态。

而在SATWE计算中,只计算了梁,柱,墙等构件的刚度,并由此刚度求得结构自振周期。

因此结构实际刚度远大于计算刚度,实际周期比计算周期小。

若以此计算周期按规范方法计算地震力,地震力会偏小,使结构分析偏于不安全,因此对地震力再放大些是必要的。

周期折减系数不改变结构的自振特性,只改变地震影响系数。

Tc的取值要视填充墙的多少而定,一般取0。

7—1。

0。

6,活荷质量调整系数Rmc该参数即为活荷载组合系数,可以按照《建筑抗震设计规范GB50011-2001》的表5。

13取值,该调整系数只改变楼层质量,不改变荷载总值,即对竖向荷载作用下的内力计算无影响。

7,0.2Q0调整系数对于框架剪力墙结构,一般剪力墙的刚度很大,剪力墙吸引了大量的地震力,而框架所承担的地震力很小。

对于框架部分,如果按这样的地震力进行设计,在剪力墙开裂后会很不安全。

所以需要框架承担20%的基底剪力,以增加框架的安全度。

在考虑是否调整时应注意:(1),对柱少剪力墙多的框架剪力墙结构,让框架梁柱承担20%的基底剪力会使放大系数过大,以致梁柱设计不下来。

所以0。

2Q0调整一般只用于主体结构,一旦结构内收则不往上调整:另外,若考虑调整后框架梁柱内力增大过大,可调整文件中的放大系数,程序按WVO2Q。

OUT中的系数调整。

(2),0,2Q0调整的放大系数只针对框架梁柱弯矩和剪力。

不调整轴力。

8,针对的调整系数Bk,Bt Bm Blz Tb(1)针对梁刚度的调整系数Bk,主要考虑现浇楼板对梁的作用。

楼板和梁共同按照T形截面梁工作。

而计算时梁截面取矩形。

因此可以考虑的刚度放大,取Bk=1。

0—2。

0,一般工程取1。

0。

对预制楼板结构,板柱体系的等代梁结构,该系数不能放大。

SATWE计算参数使用说明

SATWE计算参数使用说明

一、总信息
1、水平力与整体坐标的夹角
一般并不建议用户修改该参数,原因有三:①考虑该角度后, 输出结果的整个图形会旋转一个角度,会给识图带来不便; ②构件的配筋应按考虑该角度和不考虑该角度两次的计算 结果做包络设计;③旋转后的方向并不一定是用户所希望 的风荷载作用方向.综上所述,建议用户
将最不利地震作用方向角填到斜交抗侧力构件夹角栏,这样 程序可以自动按最不利工况进行包络设计.
一、总信息
11、结构材料信息
分为{钢筋混凝土结构}、{钢与砼混合结构}、{有填 充墙钢结构}和{无填充墙钢结构}共4个选项.选定结构 材料即确定结构设计的相关规范,如0.2Q砼结构或0.25Q 钢结构调整.型钢混凝土和钢管混凝土结构属于钢筋砼结构. 有填充墙钢结构}和{无填充墙钢结构}之分是为了计算 风荷载中的脉动系数ξ.根据荷规164页7.4.2-2式计算,这是 10版采用的方法.新版程序相应在风荷载信息增加了风载 作用下的阻尼比参数,其初始值由结构材料信息控制.
一、总信息
8、对所有楼层强制采用刚性楼板假定 位移比、周期比计算时选择该项
层刚度比计算,严格来说要采用刚性板假定. 对于有弹性楼板或板厚为0的工程,可计算两次, 第一次选择强制刚性楼板假定,确定薄弱层.第二次 将薄弱层号填入,按真实情况计算内力及配筋.如果 工程中无弹性楼板、无开洞、无越层错层,则默认 的楼板假定就是刚性楼板假定.
一、总信息
1、水平力与整体坐标的夹角
这个角度与结构的刚度与质量及其位置有关,对结构可能会 造成最不利的影响,在这个方向地震作用下,结构的变形及 部分结构构件内力可能会达到最大.
当用户输入一个非 0角度比如 25度后,结构沿顺时针方向 旋转相应角度即25度,但地震力、风荷载仍沿屏幕的X向和 Y向作用,竖向荷载不受影响

SATWE程序参数选取及结果调整

SATWE程序参数选取及结果调整
的。 参考 文 献
『l 0 1- 0 1 筑 抗 震设 计规 范『1 l GB 5 0 2 0 . 1 建 S. 【】 J3 20 . 2J - 0 2高层 建 筑 混 凝 土 结构 技 术 规 程 . G
『S T . 3 A WE 多层及 高层建筑结构空间有限元分 ]
析 与 设 计软 件 .
整 :A WE程序 不 能实 现 。262 人 工 调 整 : ST . . 只
能通过人 工调整改变结构布置 , 加强墙、 柱等竖 向构件的刚度 。 上面提到的只是 S T A WE程序参数 中的一 部分 , 还有许 多参数会对计算结果产生影响 , 很 多地方需要人工干预。现在的设计或计算软件 远未达智 能化, 它只是一个设计或计算工具 。 不 管输入 的结构体 系和结 构布置是什么样 的 , 它 都能计算 , 判断正确与否还是要靠设计人员 。 在 设计过程 中切不可盲 目信赖计算机 ,而不重视 概念设计 ,那样是不可能作 出合格的结构设计
26 刚 重 比 .Fra bibliotek主要为控制结构的稳定性 ,避免结构在风 载或地震力的作用下整体失稳 。刚重 比不满足 要求 , 说明结构 的刚度相对于重力荷载过小 ; 但 刚重 比过分大,则说明结构的经济技术指标较 差, 宜适当减少墙 、 柱等竖向构 件的截面面积。 刚重比不满足时的调整方法 :. 1程序调 2. 6
度 ; 到 位 移 比满 足要 求 。 直 25 周 期 比 .
主要为控制结构扭转效应 ,减小扭转对结 构产生的不利影 响。 周期比不满足要求 , 明结 说 构 的扭转刚度相对于侧移冈 度较小 。结构扭转 0 效应过大 。
周期 比不满 足时的调 整方法 :2 .程序 .1 5 调整 :A WE程序不能实现 。2 . 人工调整 : ST .2 5 只能通过人工调 整改变结构布置 , 提高结构的 扭转刚度 ; 总的调整原则是加强结构外围墙 、 柱 或梁的刚度 , 当削弱结构中间墙 、 适 柱的刚度。

SATWE-参数的合理选取

SATWE-参数的合理选取

SATWE软件各种参数的合理选取一、总信息1.水平力与整体坐标夹角何意?如何选取?该参数为地震力、风荷载作用方向与整体坐标的夹角。

当结构与整体坐标系不正交,需按该方向重新计算地震力和风荷载时可填入此参数,程序自动按照设计人员输入的方向进行水平力的计算。

2.“对所有楼层采用刚性板假定”该如何选择?《建筑抗震设计规范》(GB 5001l~2010)(以下简称《抗震规范》)和《高规》均要求,在计算结构的位移比时,要采用刚性楼盖。

因此,设计人员在计算此项指标时应考虑“强制执行刚性板假定”。

结构的位移比是反映结构扭转效应的一项重要指标,为了避免由于局部振动的存在而影响结构位移比的正确计算,规范规定在刚性板假定下计算结构的位移比。

这里需要说明的是,在计算结构的内力和配筋时,则宜将此选项去掉。

3.如何选择“模拟施工加载l”、“模拟施工加载2”、“模拟施工加载3”和“一次性加载”?在目前的SATWE软件中,程序给出了四种模拟施工的计算方法,即施工模拟1、施工模拟2、施工模拟3和一次性加载。

以下介绍这四种计算方法的区别与联系。

(1)一次性加载这种计算方法的主要原理是先假定结构已经完成,然后将荷载一次性加载到工程中。

其计算结果的主要特点是结构各点的变形完全协调,并由此而产生的弯矩在各点都能保持内力平衡状态。

但是,由于竖向荷载是一次性加载到工程中的,造成结构竖向位移往往偏大。

这对于某些结构,比如框筒结构,因框架和剪力墙核心筒之间的刚度相差悬殊,使剪力墙核心筒较框架部分而言,承担较大的竖向荷载,从而使二者之间产生较大的竖向位移差。

由于这种沉降差异的存在,使框架柱产生向上的拉力,如果该拉力大于框架柱本身所分担的竖向荷载,就会形成拉柱或梁端没有负弯矩的情况,给设计造成困难。

(2)模拟施工1实际工程通常按如下顺序施工:先支本层模板,再进行钢筋绑扎和浇筑混凝土,待混凝土达到规定的强度要求后,拆除本层模板(相当于本层结构上全部荷载加到已建结构上),然后按此顺序逐层施工,直到主体工程结束。

Satwe参数的设置--绝对很详细_史上最全

Satwe参数的设置--绝对很详细_史上最全

最全Satwe参数设定1、总信息:水平力与整体坐标系夹角:0根据抗规(GB50011-2001)5.1.1条规定,“一般情况下,应允许在建筑结构的两个主轴方向分别计算水平地震作用并进行抗震验算,各方向的水平地震作用应由该方向的抗侧力构件承担;有斜交抗侧力构件的结构,当相交角度大于15度时,应分别计算各抗侧力构件方向的水平地震作用”。

当计算地震夹角大于15度时,给出水平力与整体坐标系的夹角(逆时针为正),程序改变整体坐标系,但不增加工况数。

同时,该参数不仅对地震作用起作用,对风荷载同样起作用。

通常情况下,当Satwe文本信息“周期、振型、地震力”中地震作用最大方向与设计假定大于15度(包括X、Y两个方向)时,应将此方向重新输入到该参数进行计算。

混凝土容重:26本参数用于程序近似考虑其没有自动计算的结构面层重量。

同时由于程序未自动扣除梁板重叠区域的结构荷载,因而该参数主要近似计算竖向构件的面层重量。

通常对于框架结构取25-26;框架-剪力墙结构取26;剪力墙结构,取26-27。

1.3钢容重:78一般情况下取78,当考虑饰面设计时可以适当增加。

1.4裙房层数:按实际填入混凝土高规(JGJ3-2002)第4.8.6条规定:与主楼连为整体的裙楼的抗震等级不应低于主楼的抗震等级,主楼结构在裙房顶部上下各一层应适当加强抗震措施。

同时抗规(GB50011-2001)6.1.10条条文说明要求:带有大底盘的高层抗震墙(筒体)结构,抗震墙的底部加强部位可取地下室顶板以上H/8,向下延伸一层,大底盘顶板以上至少包括一层。

裙房与主楼相连时,加强部位也宜高出裙房一层。

本参数必须按实际填入,使程序根据规范自动调整抗震等级,裙房层数包括地下室层数。

1.5转换层所在层号:按实际填入该参数为程序决定底部加强部位及转换层上下刚度比的计算和内力调整提供信息。

输入转换层号后,程序可以自动判读框支柱、框支梁及落地剪力墙的抗震等级和相应的内力调整。

SATWE参数设置详解

SATWE参数设置详解

SATWE参数设置详解一、总信息⏹水平力与整体坐标夹角(度)《抗震规范》5.1.1条和《高规》4.3.2条规定“一般情况下,应至少在结构两个主轴方向分别计算水平地震作用;有斜交抗侧力构件的结构,当相交角度大于15°时,应分别计算各抗侧力构件方向的水平地震作用。

”该参数为地震作用方向或者风荷载作用方向与结构整体坐标的夹角,逆时针方向为正。

如地震沿着不同方向作用,结构地震反应的大小一般也不相同,那么必然存在某个角度使得结构地震反应最为剧烈,这个方向就称为最不利地震作用方向。

从严格意义上讲,规范中所讲的主轴是指地震沿该轴方向作用时,结构只发生沿该轴方向的侧移而不发生扭转位移的轴线。

当结构不规则时,地震作用主轴方向就不一定是0°和90°。

如最大地震方向与主轴夹角较大时,可以输入该角度考虑最不利作用方向的影响。

操作要点:设计人员事先很难估算结构的最不利地震作用方向,因此可以先取初始值0°,SATWE计算后在计算书WZQ.OUT中输出最不利方向角,如果这个角度与主轴角度大于±15°,应该将角度输入重新计算,以考虑最不利地震作用方向的影响。

注意事项:1、为避免填入该角度后图形旋转带来的不便,也可以将最不利地震作用方向在多方向水平地震参数中输入;2、本参数不是规范要求的,仅供设计人员选用;3、本参数也可以考虑最大风力作用的方向,但需要用户自行设定多个角度进行计算,比较多次计算结果取最不利值。

⏹混凝土容重主要用于求梁、柱、墙自重,初始值容重为25,适合于一般工程。

如果要考虑梁柱墙上的抹灰层、装修层等荷载时,可以采用加大容重的方法近似考虑,以避免繁琐的荷载导算,一般框架取25,框剪取26,剪力墙取27。

⏹钢材容重初始值为78,适合于一般工程情况,若要考虑构件表面装饰和防火涂层重量时,应按照实际情况修改此参数。

⏹裙房层数《高规》10.6.3条规定:“塔楼中与裙房相连的外围柱、剪力墙,从固定端至裙房屋面上一层的高度范围内,柱纵向钢筋的最小配筋率宜适当提高,剪力墙宜按本规程第7.2.15条的规定设置约束边缘构件,柱箍筋宜在裙楼屋面上、下层的范围内全高加密;当塔楼结构相对于底盘结构偏心收进时,应加强底盘周边竖向构件的配筋构造措施。

SATWE部分参数的合理选取与有关计算原则说明

SATWE部分参数的合理选取与有关计算原则说明

SATWE部分参数的合理选取与有关计算原则说明
1,当MVER=2时,程序按模拟施工荷载的方法求竖向力作用下的结构内力,这样可以避免一次性加荷带来的轴向变形过大的计算误差.在模拟施工荷载时,由于一次加荷造成柱,墙的轴向变形过大,层说较多时顶部几层的中间支座将出现较大沉降,与其相连的梁支座不出现负弯矩或负弯矩较小,常常不能正确的完成梁的支座配筋,所以对一般的多,高层建筑来说,应首先选择模拟施工荷载,即MVER=2或MVER=3.当MVER=1时,按一次性加载计算竖向,当MVER=0时不计算竖向荷载.
2,地震力计算标志Mear
对于不计算地震作用的结构,起抗震等级应按抗震规范要求填写,抗震等级共分为5个档次.分别记为1,2,3,4,5其中1,2,3,4分别代表《建筑抗震设计规范GB50011-2001》中的四个抗震等级,5表示不考虑抗震构造要求.
3地震力组合数Nmode
地震力组合系数应至少取3,由于程序按三个振型一页输出,所以振型最好为3的倍数,当考虑扭转耦联计算时,振型数要大于或等于9,振型数的大小与结构层数及结构形式有关,当结构层数较多或结构层数刚度突变较大时,振型数也应取得多些,如顶部有小塔楼的,转换层等结构形式.对于多塔结构Nmod e≥12,对于大于双塔的结构则应更多.
4,地震力,风力作用方向Arf
结构的参考坐标系建立后.所求得的地震力,风力都是沿着坐标轴方向作用的.所以当用户认为在所设坐标系下的地震力,风力不能控制结构的最大受力状态时.则可以改变坐标系,使得地震力,风力就会沿着新的方向作用了.而无须改动其它数据.改变Arf后,需要重新执行”生成SATWE数据文件”和”数据检查”这两项菜单.。

SATWE参数设置总结 (自己总结)

SATWE参数设置总结  (自己总结)

1、SATWE总信息(1)结构材料信息:按主体结构材料选择“钢筋混凝土结构”,如果是底框架结构要选择“砌体结构”。

(2)混凝土容重(KN/m3): Gc=27.00,一般框架取26~27,剪力墙取27~28,在这里输入的混凝土容重包含饰面材料。

(3)钢材容重(KN/m3):Gs=78.00,当考虑饰面材料重量时,应适当增加数值。

(4)水平力的夹角(Rad):ARF=0,一般取0度,地震力、风力作用方向反时针为正。

当结构分析所得的“地震作用最大的方向”>15度时,宜按照计算角度输入进行验算。

(5)地下室层数:MBASE=1,定义与上部结构整体分析的地下室层数,无则填0 。

(6)竖向荷载计算信息:“模拟施工加载 1 ”,多层建筑选择“一次性加载”;高层建筑选择“模拟施工加载1 ”,高层框剪结构在进行上部结构计算时选择“模拟施工加载1 ”,但在计算上部结构传递给基础的力时应选择“模拟施工加载2”。

不计算竖向力:它的作用主要用于对水平荷载效应的观察和对比等。

-----一次性加载计算:主要用于多层结构,而且多层结构最好采用这种加载计算法。

因为施工的层层找平对多层结构的竖向变位影响很小,所以不要采用模拟施工方法计算。

-----模拟施工方法1加载:就是按一般的模拟施工方法加载,对高层结构,一般都采用这种方法计算。

但是对于“框剪结构”,采用这种方法计算在导给基础的内力中剪力墙下的内力特别大,使得其下面的基础难于设计。

于是就有了下一种竖向荷载加载法。

------模拟施工方法2加载:这是在“模拟施工方法1”的基础上将竖向构件(柱、墙)的刚度增大10倍的情况下再进行结构的内力计算,也就是再按模拟施工方法1加载的情况下进行计算,主要适用于高层框-剪结构。

采用这种方法计算出的传给基础的力比较均匀合理,可以避免墙的轴力远远大于柱的轴力的不和理情况。

由于竖向构件的刚度放大,使得水平梁的两端的竖向位移差减少,从而其剪力减少,这样就削弱了楼面荷载因刚度不均而导致的内力重分配,所以这种方法更接近手工计算。

SATWE取值3

SATWE取值3

13Building Structure设计交流We learn we goSATWE 结构整体计算时设计参数的合理选取(三)姜学诗/中国建筑设计研究院审图所1 总信息中各项参数的合理选取(三) 1.8 特殊荷载计算信息 1.8.3温度荷载在正常使用条件下,由于大气温度变化在结构中引起的应力称为温度应力。

影响结构温度应力的大气温度变化主要是季节温度变化和太阳辐射等造成的结构温差(温度荷载)。

结构的这种温差一般分为两类:一类是外围构件自身内外表面的温差——局部温差;另一类是外围构件中面和室内构件中面的温差——整体温差。

由于建筑物的屋面和外表面通常都会有保温隔热措施,局部温差对结构的影响相对较小,一般不专门考虑。

目前国内的SATWE ,PMSAP 等软件只考虑整体温差计算。

关于设计温差,即室内外平均温度之差,工程界多采用建筑物所在地区夏季30年一遇的最高日平均温度和冬季30年一遇的最低日平均温度与建筑物温度伸缩缝封缝时的温度之差。

当计算使用阶段的温度应力时,室内空气温度夏季取空调设计温度,冬季取采暖设计温度,对于不采暖或不采用空调的地区,则取室内正常温度。

在大气温度变化范围内,由于温度变化引起的材料伸缩是线性的,因此温度应力引起的结构构件的初始轴力和弯矩可以用普通的线弹性分析方法来计算。

但对于钢筋混凝土结构,应考虑徐变应力松弛特性,根据文[5]的建议,可将按弹性计算获得的温度内力乘以徐变松弛系数0.3,作为实际温差内力标准值进行结构设计。

对于钢结构,由于不存在徐变应力松弛,温差内力不能折减。

在温度荷载作用下,还必须考虑构件界面裂缝的影响,因此应对梁、柱等钢筋混凝土构件截面的弹性刚度进行折减,根据文[5]的建议,该折减系数可取0.85;对于钢结构,其截面弹性刚度不折减。

温度荷载效应与重力荷载效应组合时,重力荷载效应分项系数取1.25,温度荷载效应分项系数一般取1.2,温度荷载效应组合值系数一般取0.8。

关于SATWE主要计算参数的选用

关于SATWE主要计算参数的选用

关于SATWE主要计算参数的选用一、总信息:1、水平力与整体坐标夹角根据SATWE计算结构输出文件〈周期、地震力与振型输出文件〉中的“地震作用最大的方向”,若该值超过±15度,则应按该数据进行二次计算。

《新规范版PKPM软件四轮结构计算法》(《新天地》200501):地震沿着不同的方向作用,结构地震反应的大小一般也不同,那么必然存在某个角度使得结构地震反应值最大。

2、混凝土容重需要考虑梁柱墙体上的抹灰装修,框架结构因程序计算时按梁柱节点计算,未考虑节点重合的影响,可取26;而剪力墙结构因抹灰面较大,可取27~28。

3、墙元细分最大控制长度对于一般结构可取2.0,对于框支剪力墙结构可取1.5或1.0。

《手册》:对分析精度略有影响但不敏感。

4、对所有楼层强制采用刚性楼板假定当计算结构位移比时应选取此项,但结构其他分析时不应选取。

《手册》5、墙元侧向节点信息多层、剪力墙较少可选“出口”,高层、剪力墙较多可选“内部”。

《手册》6、恒活荷载计算信息层数较少的结构按一次性加载,一般情况按模拟施工加载1,计算基础荷载按模拟施工加载2。

《手册》:模拟施工加载2使得柱和墙上分得的轴力比较均匀,接近手算结果,传给基础的荷载更为合理。

建筑层数较少时施工过程比较快,荷载形成比较迅速,应按一次性加载计算。

7、地震作用计算信息《抗规》,应计算竖向地震作用。

(8度跨度大于24米,悬挑2米以上;9度及9度以上跨度大于18米,悬挑1.5米以上)二、地震作用1、结构规则性信息《抗规》,大于该楼层两端弹性水平位移(或层间位移)平均值的1.2倍;2、凹凸不规则:结构平面凹进的一侧尺寸,大于相应投影方向总尺寸的30%;3、楼板局部不连续:楼板的尺寸和平面刚度急剧变化,例如,有效楼板宽度小于该层楼板典型宽度的50%,或开洞面积大于该层楼面面积的30%,或较大的楼层错层。

);竖向不规则(1、侧向刚度不规则:该层的侧向刚度小于相邻上一层的70%,或小于其上相邻三个楼层侧向刚度平均值的80%;除顶层外,局部收进的水平向尺寸大于相邻下一层的25%;2、竖向抗侧力构件(柱、抗震墙、抗震支撑)的内力由水平转换构件(梁、珩架等)向下传递;3、楼层承载力突变:抗侧力结构的层间受剪承载力小于上一楼层的80%)。

satwe前、后处理参数

satwe前、后处理参数

SATWE前处理参数总信息:结构材料信息:按主体结构材料选择,底框选择[砌体结构]。

此参数便于程序正确选择相关规范计算地震力和风荷载。

混凝土容重(kN/m3):框架宜取26kN/m ,剪力墙宜取28kN/m ,包含饰面材料的折算容重。

框-剪根据剪力墙数量取中间某值。

改变此参数也就改变了整个结构的砼容重,这时楼板砼重量宜采用手工输入。

见《荷规》附录A表A.1-6。

钢材容重(kN/m3):取78kN/m ,考虑饰面材料重量时,应填入适当值。

水平力的夹角(Rad):一般取0度,地震力、风力作用方向,逆时针为正。

当结构分析所得的[地震作用最大的方向]>15 度时,宜将其输入验算。

水平力夹角可在WZQ.OUT中查看。

地下室层数:与上部结构整体分析的地下室层数,无地下室填0。

定义此参数后,程序自动将风荷载的起算点上移至地下一层顶板处,并为上部结构的嵌固位置提供信息。

当地下一层因为墙体少,顶板大量降板、开大洞,是半地下层(地面部分高度大于层高的1/3)等原因,不能形成有效的约束时,应取地下一层底板以下地下室层数。

详见《国标图集05SG109-3》56页。

后面凡涉及地下室层数时,均以此参数范围为准。

竖向荷载计算信息:【一次性加载】仅适用于多、低层。

【模拟施工加载1】适用于多层、高层。

【模拟施工加载2】适用于框-剪、框-筒等高层基础。

【模拟施工加载3】适用于多层、高层,宜优先选用。

依据见《高规》5.1.9条及条文说明。

风荷载计算信息:计算X,Y两个方向的风荷载....始终选择[计算风荷载],程序会自动组合。

地震力计算信息:计算X,Y两个方向的地震力....[不计算地震作用]用于无抗震设防要求(<6度)时。

[计算水平地震作用]适用于抗震设防烈度≥6度时。

[计算水平和竖向地震作用]适用于8、9度的大跨和长悬臂结构及9度的高层结构,8度带转换层高层结构的转换构件,8度连体结构的连接体。

依据《抗规》1章(含强条)、3.1.3条(强条)、3.1.4条、5.1.1条(强条)、5.1.6条2款(强条),《高规》3.3.2条(强条)。

SATWE参数设置总结(精)

SATWE参数设置总结(精)

1、SATWE总信息(1)结构材料信息:按主体结构材料选择“钢筋混凝土结构”,如果是底框架结构要选择“砌体结构”。

(2)混凝土容重(KN/m3): Gc=27.00,一般框架取26~27,剪力墙取27~28,在这里输入的混凝土容重包含饰面材料。

(3)钢材容重(KN/m3):Gs=78.00,当考虑饰面材料重量时,应适当增加数值。

(4)水平力的夹角(Rad):ARF=0,一般取0度,地震力、风力作用方向反时针为正。

当结构分析所得的“地震作用最大的方向”>15度时,宜按照计算角度输入进行验算。

(5)地下室层数:MBASE=1,定义与上部结构整体分析的地下室层数,无则填0 。

(6)竖向荷载计算信息:“模拟施工加载 1 ”,多层建筑选择“一次性加载”;高层建筑选择“模拟施工加载1 ”,高层框剪结构在进行上部结构计算时选择“模拟施工加载1 ”,但在计算上部结构传递给基础的力时应选择“模拟施工加载2”。

不计算竖向力:它的作用主要用于对水平荷载效应的观察和对比等。

-----一次性加载计算:主要用于多层结构,而且多层结构最好采用这种加载计算法。

因为施工的层层找平对多层结构的竖向变位影响很小,所以不要采用模拟施工方法计算。

-----模拟施工方法1加载:就是按一般的模拟施工方法加载,对高层结构,一般都采用这种方法计算。

但是对于“框剪结构”,采用这种方法计算在导给基础的内力中剪力墙下的内力特别大,使得其下面的基础难于设计。

于是就有了下一种竖向荷载加载法。

------模拟施工方法2加载:这是在“模拟施工方法1”的基础上将竖向构件(柱、墙)的刚度增大10倍的情况下再进行结构的内力计算,也就是再按模拟施工方法1加载的情况下进行计算,主要适用于高层框-剪结构。

采用这种方法计算出的传给基础的力比较均匀合理,可以避免墙的轴力远远大于柱的轴力的不和理情况。

由于竖向构件的刚度放大,使得水平梁的两端的竖向位移差减少,从而其剪力减少,这样就削弱了楼面荷载因刚度不均而导致的内力重分配,所以这种方法更接近手工计算。

SATWE计算控制参数的选择方法

SATWE计算控制参数的选择方法

SATWE计算控制参数的选择方法层刚度比计算:a)【剪切刚度】是按《高层建筑混凝土结构技术规程》附录E.0.1建议的方法计算,适用于计算“转换层位于底部1层结构”的层刚度比及“地下室与上部首层”的层刚度比;不适用于带梁式托柱转换层或桁架式转换层结构的层刚度比计算。

b)【剪弯刚度】是按《高层建筑混凝土结构技术规程》附录E.0.2建议的方法计算,适用于计算“转换层位于底部2层及2层以上结构”的层刚度比。

当转换层设置在3层及3层以上时,除了采用【剪弯刚度】算法外,还应采用【地震剪力与地震层间位移的比值】算法再计算一次层刚度,从而进行转换层本层侧向刚度不应小于相邻上一层楼层侧向刚度的60%的下限控制。

c)【地震剪力与地震层间位移的比值】是按《建筑抗震设计规范》3.4.2和3.4.3条文说明中建议的方法计算,适用于没有转换结构的大多数常规建筑,也可用于地下室嵌固部位的刚度比计算,这是程序默认的层刚度比计算方法。

对于《高层建筑混凝土结构技术规程》附录E.0.2 中“当转换层设置在3层及3层以上时,其楼层侧向刚度不应小于相邻上部楼层侧向刚度的60%”的要求,也可采用此算法进行控制,但需要将【X、Y 向回填土刚度值】参数取为0。

d)不计算地震作用时,对于多层结构可以选择“剪切刚度”;对于高层结构可选择“剪弯刚度”。

e)当选用“地震剪力与地震层间位移的比值”时,如果结构平面中的洞口较多,会造成楼层平均位移的计算误差增加,此时应选择“强制刚性楼板假定”来计算层刚度。

当选用“剪切刚度”或“剪弯刚度”时,程序默认楼层为刚性楼板。

地震作用分析方法:【侧刚】是一种简化计算方法,只适用于采用楼板平面内无限刚假定的普通建筑和采用楼板分块平面内无限刚假定的多塔建筑。

【侧刚】的优点是分析效率高,计算速度快。

对于定义有较大范围的弹性楼板、有较多不与楼板相连的构件(如错层结构、空旷的工业厂房、体育馆所等)或有较多错层构件的结构,则应采用【总刚】。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SATWE参数选取原则(第三版)SATWE 2010版(2013年10月版本)一、总信息:1. 水平力与整体坐标夹角:取0度;(如周期计算结果中显示最大地震力方向与主坐标夹角大于15°,应在斜交抗侧力构件中输入角度,此处不必改动)2. 混凝土容重:框架、框架-剪力墙取26;剪力墙及框筒结构取27;计算地下室底板配筋时取0;3. 钢材容重:78;4. 裙房层数:按实际计算层数输入(应计入地下室的层数);5. 转换层所在层号:此参数为针对“部分框支剪力墙结构”及“底层带托柱转换层的筒体”而设置。

对于部分构件的局部转换,只需要在特殊构件定义中设置转换构件即可,不必在此设置转换层号;此层号为PMCAD中的自然层号,包括地下室;(转换层自动默认为薄弱层).6. 嵌固端层号:若嵌固端在基础上就为“1”,若嵌固端为地下室顶板则为“地下室层数+1”。

7. 地下室层数:除了对风荷载作用、地震作用及内力调整有关系外,该参数对高位转换的判别影响很大,应准确输入该参数(应注意地下室层数的判断);8. 对所有楼层采用刚性楼板假定:除内力及配筋计算以外,均勾选“是”;注:进行内力和配筋计算时,部分特殊的结构应在特殊构件定义中修改弹性板的类型,如板柱结构应定义弹性板6、厚板结构应定义弹性板3、楼面开大洞时应定义弹性膜。

9. 地下室强制采用刚性楼板假定;地下室有跃层构件或开大洞时,可取消勾选;10.墙梁跨中节点作为刚性楼板从节点:一般勾选,若连梁抗剪超限,可不勾选进行计算;11.计算墙倾覆力矩时只考虑腹板和有效翼缘:一般应勾选;(砼规中9.4.3条有相关承载力计算内容,程序参照此条考虑到倾覆力矩上,此条对倾覆力矩比有轻微影响)12.弹性板与梁变性协调:替代上个版本的“强制刚性楼板假定时保留楼板平面外刚度”,应勾选;13.结构材料信息:按实际类型填写;14.结构体系:按实际填写;仅设置少量剪力墙的框架结构应按框架结构填写,底层带托柱转换层的筒体仍按框筒或筒中筒结构输入,选砌体结构和底框结构无效;15.恒活荷载计算信息:一般采用模拟施工加载3,如遇到有转换层、跃层柱、长悬挑或吊柱等情况时,应注意修改加载的次序和层数。

有吊柱的结构、钢结构及体育场馆等应采用模拟施工加载1。

计算基础时,尤其是框剪、框筒结构时,采用模拟施工加载2;(如有特殊结构,勾选“自定义施工顺序”进行人工排序)16.风荷载计算信息:一般结构选择“计算水平风荷载”即可,对于一些空旷建筑、体育馆及轻钢屋面等结构选择“计算特殊风荷载”;17.地震作用计算信息:一般建筑“计算水平地震作用”即可。

对于规范规定的需要考虑竖向地震的建筑按以下原则选择:多层建筑选择“计算水平和规范简化方法竖向地震”,高层建筑选择“计算水平和反应谱方法竖向地震”;18.特征值求解方式:在选择“计算水平和反应谱方法竖向地震”时此项方可激活,一般情况不需考虑。

“整体求解”考虑三向振动的耦联,但有效质量系数不易达到90%,应增加振型数;“独立求解”不能体现耦联关系,但易满足有效质量系数的要求;19.“规定水平力”的确定方式:一般工程均选择“楼层剪力差方法”;结构所在地区:按项目所在地区填写,分为全国、上海和广东;20.二、风荷载信息:1. 地面粗糙度:根据项目的具体地点选择,一般城市市区选C,郊区选B,湖边、海边取A,慎选D;2. 修正后的基本风压:一般按《建筑结构荷载规范》GB50009-2012附表E.5中50年一遇的风压取值。

如表中无相关数据,应与甲方了解当地的取值。

对于山区、远海海面和海岛的建筑应依据荷载规范8.2条采用相应的修正系数,门式刚架也应乘以1.05的修正系数后填入;3. X向、Y向结构基本周期:先按照“0.1x层数”输入初始值,待SATWE计算出准确的结构自振周期后,将新的周期值代入重新计算;4. 风荷载作用下的结构阻尼比:此项与“结构材料信息”关联,一般混凝土结构取0.05,无填充墙的钢结构取0.01,有填充墙的钢结构取0.02,混合结构为0.02~0.04(高度越高阻尼比越小);5. 承载力设计时风荷载效应放大系数:一般取1.0,60米以上的的高层或高耸建筑及其他。

1.1对风荷载敏感的高层建筑取.6. 用于舒适度验算的风压:同基本风压值;(舒适度验算范围:高层钢结构及150米以上的高层混凝土建筑)7. 用于舒适度验算的阻尼比:混凝土结构取0.02,混合结构及高层钢结构取0.01~0.02;(高度较高的建筑取小值)8. 考虑顺风向风振影响:根据荷载规范GB50009-2012第8.4条确定是否考虑顺风向风振影响;(注意:此处的大跨度屋盖是指跨度36米以上的柔性屋盖)9.考虑横风向风振的影响:按照GB50009-2012第8.5条建筑高度超过150米或高宽比大于5的高层建筑宜考虑横向风振的影响;10.考虑扭转风振的影响:建筑物超过150米并符合一定条件时方需考虑(见荷载规范8.5.4条的条文说明),一般不选;10.水平风体型系数:依据荷载规范和高规4.2.3条,并根据建筑的体型,分段填入适当的系数,不要简单地使用程序的默认值;(不考虑地下室)11.设缝多塔背风面体型系数:此系数对多塔时结构缝处的遮挡面进行风荷载折减,填入折减系数,不折减时取“0”;(遮挡面在多塔补充定义中指定)12.特殊风体型系数:仅在计算特殊风荷载时方有效,平时应用较少;三、地震信息:1. 规则性信息:该参数无论如何选择均对计算无影响,一般选不规则;2. 设防地震分组:按《抗规》附录A选用;(部分城市不同区域的设防分组也有所不同,应注意区分)3. 设防烈度:按《抗规》附录A选用;(部分城市不同区域的设防烈度也有所不同,应注意区分;甲类建筑应提高一级)4. 场地类别:按照抗规分为Ⅰ0、Ⅰ1、Ⅱ、Ⅲ、Ⅳ共五类,依据地质报告的结论选择;(上海地区只能选Ⅲ、Ⅳ类)5. 抗震等级:此处填入适合全楼的抗震等级(应注意,甲、乙类建筑的抗震等级应有所提高)。

部分抗震等级需提高的楼层或构件应在特殊构件定义中进行修改;6. 抗震构造措施的抗震等级:按照抗规3.3.2条、3.3.3条和6.1.3条,抗震构造措施的抗震等级可能与上面所填的抗震等级不同,此时应根据项目的情况填入适当的抗震构造措施的抗震等级;7. 中震(或大震)设计:此为抗震性能设计的选项。

依据性能设计的要求,可选“不屈服”和“弹性”,此时应在右侧的地震影响系数最大值一栏中填入中震(或大震)的对应值;8. 按主振型确定地震内力符号:一般不勾选;9. 考虑偶然偏心:一般均勾选,按程序默认的偏心值进行计算;10.考虑双向地震:规定水平力作用下,结构层间位移比≥1.2时,应计入双向地震;11.计算振型个数:一般取3的倍数,且不超过“层数x3”。

多层计算振型数可取9个,高层结构计算振型数可取15个,多塔结构不少于12个,且应满足有效质量系数≥90%的规范要求。

如有效质量系数不满足规范要求,应增加计算振型到满足规范为止(注意:当底层为架空层时,底层输入的层高较小,易导致质量计算上部结构时振型参与系数达不到90%,此时应按两个模型输入,即:○1进行基础计算时计入架空层荷载但不考虑技术指标)不计入架空层;○;212.活荷重力荷载代表值组合系数:依据抗规5.1.3条取值,一般取0.5;13.周期折减系数:一般框架结构取0.7,框剪结构、框筒结构取0.8,剪力墙结构取0.9;14.结构阻尼比:多遇地震下的阻尼比,混凝土结构取0.05,高层钢结构取0.02,多层钢结构取0.04,混合结构取0.04;罕遇地震下的阻尼比均取0.05;15.特征周期:此项取值与场地类别关联,其中上海地区的取值和其他地区不同,设计时应注意核对。

部分项目的地质报告会采用插值法计算出场地特征周期,此时应将地质报告中的数值代入替换缺省值。

计算罕遇地震时,特征周期应增加0.05;16.地震影响系数最大值:依据高规4.3.7条确定此项取值,常规计算时取多遇地震影响系数最大值,计算中震(或大震)时,应填入中震(或大震)对应的数值。

上海地区罕遇地震影响系数最大值取0.45;按罕遇地震影响系数最大值取值,层以下框架薄弱层验算的地震影响系数最大值:12用于17.上海地区罕遇地震影响系数最大值取0.45;18.竖向地震作用振型参与数:当总信息中选择了“水平振型和竖向振型独立求解方式”时此项方打开,在此处填入竖向地震参与振型数,用于竖向地震作用计算,且计算结果应满足有效质量系数≥90%的规范要求;19.竖向地震作用系数底线值:选择“计算水平和反应谱法竖向地震”时此项打开,取值依据高规4.3.15条及表4.3.15确定,程序自动选定;20.斜交抗侧力构件方向附加地震数以及角度:当地震作用最大方向或构件与主坐标夹角大于15度时应考虑此项,输入的角度以逆时针为正,异形柱结构应增加45度夹角进行计算。

附加地震数为0~5之间,无斜交抗侧力构件的结构,该项附加地震数填为0;(当考虑最不利地震作用方向时,附加地震数不应大于4)四、活荷信息:墙、柱设计时活荷载折减:一般建筑不折减;1.梁楼面活荷载折减设置:一般建筑不折减;折,(1)项的房屋类别选择“折减”2. 基础的活荷载折减系数:除荷载规范表4.1.1中第1.当房屋楼层为错层减系数一般可按程序中的默认值采用(但必须注意的是:,结构计算层比屋面以下的实际层数多出许多层设计时或其他特殊情况时,应采, ,基础设计偏于不安全若按程序中折减系数默认值对活荷载进行折减用屋面以下的实际层数所对应的折减系数输入电算;当主楼与周边裙楼一起计算时,主楼与裙楼应分别采用与之层数所对应的活荷载折减系数进行计算,取用与之相对应的基础设计荷载,不易取值时可不折减);对于汽车通道及停车库的客车:单向板楼盖折减系数取0.5,双向板楼盖和无梁楼盖折减系数取0.8;其他类型的房屋均选择“不折减”;3. 梁活荷不利布置的层数:应考虑活荷载不利布置,从第1到n层(n为基础至大屋面的总计算层数)4.考虑结构使用年限的活荷载调整系数:使用年限为50年的取1.0,使用年限为100年的取1.1;五、调整信息:1. 该版本已取消剪力墙底部加强部位起算层号:剪力墙底部加强部位默认从地下室顶板开始计算,因此地下室层数应准确输入;2. 梁端负弯矩调幅系数:一般结构取0.85,但对于有防水要求的地下室顶板、地下室底板计算时应取1.0;3. 梁活载内力放大系数:若以考虑活荷载不利布置,取1.0,若未考虑活荷载不利布置,宜取1.1;4. 梁扭矩折减系数:一般取0.4;5. 托墙梁刚度放大系数:本版本考虑框支梁与上部的剪力墙协同工作(仅考虑上部剪力墙与框支梁重叠部分),一般取1~100。

设计时一般不调整。

相关文档
最新文档