历届数学高考中的试题精选空间向量与立体几何

合集下载

高考数学专题:空间向量与立体几何(含解析)

高考数学专题:空间向量与立体几何(含解析)

立体几何中的向量方法1.(2012 年高考(重庆理))设四面体的六条棱的长分别为1,1,1,1, 2 和a , 且长为a 的棱与长为 2 的棱异面, 则a的取值范围是()A.(0, 2) B.(0, 3) C.(1, 2) D.(1, 3)[ 解析] 以O为原点, 分别以OB、OC、OA所在直线为x、y、z 轴,则cos AOP A O PO2R242 2 1 3,A ( R,0, R), P ( R,R ,0)2 2 2 22AOP arccos ,4 AP R arccos242.(2012 年高考(陕西理))如图, 在空间直角坐标系中有直三棱柱ABC A B C , CA CC1 2CB , 则直线BC1 与直线AB1 夹角的余弦值为()1 1 1A.55B.53C.2 55D.35解析: 不妨设CA CC1 2CB 2 ,AB1 = (- 2,2,1), C1B = (0,- 2,1) ,AB ×C B (- 2)? 0 2? ( 2) + 1? 1 51 1cos < AB ,C B > = = = -1 19 5 5AB C B ′1 1 , 直线B C 与直线1AB 夹角为锐角, 所以余弦值为155, 选A.3.(2012 年高考(天津理))如图, 在四棱锥P ABCD 中, PA 丄平面ABCD , AC 丄AD , AB 丄BC, 0ABC =45 , PA=AD =2 , AC=1.( Ⅰ) 证明P C 丄AD ;( Ⅱ) 求二面角A PC D 的正弦值;( Ⅲ) 设E 为棱PA上的点, 满足异面直线BE与CD所成的角为030 , 求AE的长.P【命题意图】本小题主要考查空间两条直线的位置关系, 二面角、异面直线所成的角, 直线与平面垂直等基础知识, 考查用空间向量解决立体几何问题的方法, 考查空间想象能力、运算能力和推理论证能力.方法一: (1)以AD, AC, AP 为x, y, z正半轴方向,建立空间直角左边系 A xyz则1 1D (2,0,0), C(0,1,0), B( , ,0), P(0,0,2)2 2PC (0,1, 2), AD (2,0,0) PC AD 0 PC AD(2)PC (0,1, 2), CD (2, 1,0) ,设平面PCD 的法向量n (x, y, z)则n PC 0 y 2z 0 y 2z2x y 0 x zn CD 0取z 1 n (1,2,1)AD 是平面PAC 的法向量(2,0,0)AD n 6 30 cos AD,n sin AD, n6 6AD n得:二面角A PC D 的正弦值为30 6(3)设AE h [0,2] ;则AE (0,0, 2) ,(1,1,), (2, 1,0)BE h CD2 2BE CD 3 3 10 cos BE ,CD h22 10BE CD 10 20h 即AE1010方法二:(1) 证明, 由P A 平面ABCD , 可得PA AD, 又由AD AC, PA AC A, 故AD 平面PAC , 又PC 平面PAC , 所以PC AD .(2) 解: 如图, 作AH PC 于点H , 连接DH , 由PC AD ,PC AH , 可得PC 平面ADH . 因此, DH PC , 从而AHD 为二面角A PC D 的平面角.在Rt PAC 中,PA 2, AC 1 , 由此得2AH , 由(1) 知AD AH , 故在5R t D AH 中,2 2 2 30DH AD AH , 因此5sin AHDADDH306, 所以二面角A PC D 的正弦值为306 .14.(2012 年高考(新课标理))如图, 直三棱柱ABC A1B1C1 中, AC BC AA1 , D 是2 棱A A 的中点, DC1 BD1(1) 证明: DC BC1(2) 求二面角A1 BD C1 的大小.第一问省略第二问:如图建系:A(0,0,0 ), P(0,0, 2 6 ), M( 32 ,32,0),N( 3 ,0, 0), C( 3 ,3,0).设Q( x, y, z), 则CQ ( x 3,y 3,z),CP ( 3,3,2 6) .∵CQ CP ( 3 , 3 ,2 6 ) , ∴Q( 3 3 ,3 3 ,2 6 ) .由OQ CP OQ CP 0 , 得: 13. 即 :2 3 2 6Q( ,2,) .3 3对于平面AMN: 设其法向量为n (a,b,c).∵3 3AM ( ,,0),AN =( 3,0,0) .2 2则33a3 3AM n 0 a b 0 12 2 b3AN n 03a 0 c 0. ∴3 1n ( ,,0) .3 3同理对于平面AMN得其法向量为v ( 3,1,6) . 记所求二面角A—MN—Q的平面角大小为,则cosn vn v 10 5.∴所求二面角A—MN—Q的平面角的余弦值为105.5.(2011 年安徽)如图,ABCDEFG 为多面体,平面ABED 与平面AGFD 垂直,点O 在线段AD 上,OA 1,OD 2,△OAB ,,△OAC ,△O DE ,△O DF 都是正三角形。

【高二数学试题精选】空间向量与立体几何练习题(带答案)

【高二数学试题精选】空间向量与立体几何练习题(带答案)

空间向量与立体几何练习题(带答案)5 c一、选择题1.若空间向量a与b不相等,则a与b一定( )A.有不同的方向B.有不相等的模c.不可能是平行向量 D.不可能都是零向量【解析】若a=0,b=0,则a=b,这与已知矛盾,故选D.【答案】 D图2-1-72.如图2-1-7所示,已知平行六面体ABcD-A1B1c1D1,在下列选项中,cD→的相反向量是( )ABA→B.A1c1→cA1B1→ D.AA1→【解析】由相反向量的定义可知,A1B1→是cD→的相反向量.【答案】 c图2-1-83.在如图2-1-8所示的正三棱柱中,与〈AB→,Ac→〉相等的是( )A.〈AB→,Bc→〉B.〈Bc→,cA→〉c.〈c1B1→,Ac→〉D.〈Bc→,B1A1→〉【解析】∵B1A1→=BA→,∴〈BA→,Bc→〉=〈AB→,Ac→〉=〈Bc→,B1A1→〉=60°,故选D.【答案】 D4.在正三棱锥A BcD中,E、F分别为棱AB,cD的中点,设〈EF→,Ac→〉=α,〈EF→,BD→〉=β,则α+β等于( )Aπ6 B.π4cπ3 D.π2【解析】如图,取Bc的中点G,连接EG、FG,则EG∥Ac,FG∥BD,故∠FEG=α,∠EFG=β∵A-BcD是正三棱锥,∴Ac⊥BD.∴EG⊥FG,即∠EGF=π2∴α+β=∠FEG+∠EFG=π2【答案】 D5.如图2-1-9所示,正方体ABcD-A1B1c1D1中,以顶点为向量端点的所有向量中,直线AB的方向向量有( )图2-1-9A.8个 B.7个c.6个 D.5个【解析】与向量AB→平行的向量就是直线AB的方向向量,有AB→,BA→,A1B1→,B1A1→,c1D1→,D1c1→,cD→,Dc→,共8个,故选A【答案】 A二、填空题6.在正方体ABcD-A1B1c1D1中,若E为A1c1的中点,则向量cE→和BD→的夹角为________.【解析】∵BD→为平面Acc1A1的法向量,而cE在平面Acc1A1中,∴BD→⊥cE→∴〈BD→,cE→〉=90°【答案】90°7.下列命题正确的序号是________.①若a∥b,〈b,c〉=π4,则〈a,c〉=π4②若a,b是同一个平面的两个法向量,则a=B.③若空间向量a,b,c满足a∥b,b∥c,则a∥c【解析】①〈a,c〉=π4或3π4,①错;②a∥b;②错;③当c=0时,推不出a∥c,③错;④由于异面直线既不平行也不重合,所以它们的方向向量不共线,④对.【答案】④8.在棱长为1的正方体中,S表示所有顶点的集合,向量的集合P={a|a=P1P2→,P1,P2∈S},则在集合P中模为3的向量的个数为________.【解析】由棱长为1的正方体的四条体对角线长均为3知在集合P中模为3的向量的个数为8【答案】 8三、解答题图2-1-109.如图2-1-10所示,在长、宽、高分别为AB=3、AD=2、AA1=1的长方体ABcD-A1B1c1D1的八个顶点的两点为始点和终点的向量中,(1)单位向量共有多少个?(2)试写出模为5的所有向量;(3)试写出与AB→相等的所有向量.【解】 (1)由于长方体的高为1,所以长方体4条高所对应的AA1→,A1A→,BB1→,B1B→,cc1→,c1c→,DD1→,D1D→这8个向量都是单位向量,而其他向量的模均不为1,故单位向量共8个.(2)由于这个长方体的左右两侧的对角线长均为5,故模为5的向量有AD1→,D1A→,A1D→,DA1→,Bc1→,c1B→,B1c→,cB1→共8个.(3)与向量AB→相等的所有向量(除它自身之外)共有A1B1→,Dc→及D1c1→3个.图2-1-1110.如图2-1-11所示,正四棱锥S-ABcD中,为底面中心,求平面SBD的法向量与AD→的夹角.【解】∵正四棱锥底面为正方形,∴BD⊥Ac,S⊥Ac又∵BD∩S=∴Ac⊥平面SBD.∴Ac→为平面SBD的一个法向量.∴〈Ac→,AD→〉=45°图2-1-1211.如图2-1-12,四棱锥P—ABcD中,PD⊥平面ABcD,底面ABcD为正方形且PD=AD,E、F分别是Pc、PB的中点.(1)试以F为起点作直线DE的一个方向向量;(2)试以F为起点作平面PBc的一个法向量.【解】 (1)取AD的中点,连接F,连接EF,∵E、F分别是Pc、PB的中点,∴EF綊12Bc,又Bc綊AD,∴EF 綊12AD,则由EF綊D知四边形DEF是平行四边形,∴F∥DE,∴F→就是直线DE的一个方向向量.(2)∵PD⊥平面ABcD,∴PD⊥Bc,又Bc⊥cD,∴Bc⊥平面PcD,平面PcD,∴DE⊥Bc,又PD=cD,E为Pc中点,∴DE⊥Pc,从而DE⊥平面PBc,∴DE→是平面PBc的一个法向量,由(1)可知F→=ED→,∴F→就是平面PBc的一个法向量5 c。

高考数学一轮复习《空间向量与立体几何》练习题(含答案)

高考数学一轮复习《空间向量与立体几何》练习题(含答案)

高考数学一轮复习《空间向量与立体几何》练习题(含答案)一、单选题1.已知空间向量()3,4,5AB =-,则AB =( ) A .5B .6C .7D .522.设直线1l 、2l 的方向向量分别为a ,b ,能得到12l l ⊥的是( ) A .(1,2,2)a =-,(2,4,4)b =- B .(2,2,1)a =-,(3,2,10)b =- C .(1,0,0)a =,(3,0,0)b =-D .(2,3,5)a =-,(2,3,5)b =3.已知正四面体ABCD ,M 为BC 中点,N 为AD 中点,则直线BN 与直线DM 所成角的余弦值为( ) A .16B .23C .2121D .421214.已知四棱锥P ABCD -的底面ABCD 为平行四边形,M ,N 分别为棱BC ,PD 上的点,12CM BM =,N 是PD 的中点,向量MN AB x AD y AP =-++,则( )A .13x =,12y =-B .16x =-,12y =C .13x,12y =D .16x =,12y =-5.有以下命题:①一个平面的单位法向量是唯一的②一条直线的方向向量和一个平面的法向量平行,则这条直线和这个平面平行 ③若两个平面的法向量不平行,则这两个平面相交④若一条直线的方向向量垂直于一个平面内两条直线的方向向量,则直线和平面垂直 其中真命题的个数有( ) A .1个B .2个C .3个D .4个6.已知(2,2,3)a =--,(2,0,4)=b ,则cos ,a b 〈〉=( ) A .48585B .48585-C .0D .17.如图,在正方体1111ABCD A B C D -中,点,E F 分别是棱1111,C D A D 上的动点.给出下面四个命题①直线EF 与直线AC 平行;②若直线AF 与直线CE 共面,则直线AF 与直线CE 相交; ③直线EF 到平面ABCD 的距离为定值; ④直线AF 与直线CE 所成角的最大值是3π.其中,真命题的个数是( ) A .1B .2C .3D .48.在以下命题中:①三个非零向量a ,b ,c 不能构成空间的一个基底,则a ,b ,c 共面;②若两个非零向量a ,b 与任何一个向量都不能构成空间的一个基底,则a ,b 共线; ③对空间任意一点O 和不共线的三点A ,B ,C ,若222OP OA OB OC =--,则P ,A ,B ,C 四点共面④若a ,b 是两个不共线的向量,且(,,,0)c a b R λμλμλμ=+∈≠,则{},,a b c 构成空间的一个基底⑤若{},,a b c 为空间的一个基底,则{},,a b b c c a +++构成空间的另一个基底; 其中真命题的个数是( ) A .0B .1C .2D .39.已知向量(4,2,4),(6,3,2)a b =--=-,则下列结论正确的是( ) A .(10,5,2)a b +=- B .(2,1,6)a b -=-C .(24,6,8)a b ⋅=-D .||6a =10.如图,已知正方体1111ABCD A B C D -的棱长为2,M ,N 分别为1BB ,CD 的中点.有下列结论:①三棱锥11A MND -在平面11D DCC 上的正投影图为等腰三角形; ②直线//MN 平面11A DC ;③在棱BC 上存在一点E ,使得平面1AEB ⊥平面MNB ;④若F 为棱AB 的中点,且三棱锥M NFB -的各顶点均在同一求面上,则该球的体积为6π. 其中正确结论的个数是( ) A .0B .1C .2D .311.如图,某圆锥SO 的轴截面SAC ,其中5SA AO =,点B 是底面圆周上的一点,且2cos 3BOC ∠=,点M 是线段SA 的中点,则异面直线SB 与CM 所成角的余弦值是( )A 235B 665C 13D 312.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,90BAD ∠=︒,112PA AB BC AD ====,//BC AD ,已知Q 是四边形ABCD 内部一点(包括边界),且二面角Q PD A --的平面角大小为30,则ADQ △面积的取值范围是( )A .2150,15⎛⎤ ⎥ ⎝⎦B .250,5⎛⎤⎥ ⎝⎦C .2100,15⎛⎤ ⎥ ⎝⎦D .3100,5⎛⎤ ⎥ ⎝⎦二、填空题13.已知a =(3,2,-1),b = (2,1,2),则()()2a b a b -⋅+=___________. 14.若空间中有三点()()()1,0,1,0,1,1,1,2,0A B C - ,则点()1,2,3P 到平面ABC 的距离为______.15.正四棱柱1111ABCD A B C D -中,14AA =,3AB =,点N 为侧面11BCC B 上一动点(不含边界),且满足1D N CN ⊥.记直线1D N 与平面11BCC B 所成的角为θ,则tan θ的取值范围为_________.16.如图所示,在平行六面体1111ABCD A B C D -中,1111AC B D F =,若1AF xAB yAD zAA =++,则x y z ++=___________.三、解答题17.如图1,在ABC 中,90C ∠=︒,3BC =3AC =,E 是AB 的中点,D 在AC 上,DE AB ⊥.沿着DE 将ADE 折起,得到几何体A BCDE -,如图2(1)证明:平面ABE ⊥平面BCDE ;(2)若二面角A DE B --的大小为60︒,求直线AD 与平面ABC 所成角的正弦值.18.已知正方体1111ABCD A B C D -中,棱长为2a ,M 是棱1DD 的中点.求证:1DB ∥平面11A MC .19.四棱锥P ABCD -中,//AB CD ,90PDA BAD ∠=∠=︒,12PD DA AB CD ===,S 为PC中点,BS CD ⊥.(1)证明:PD ⊥平面ABCD ;(2)平面SAD 交PB 于Q ,求CQ 与平面PCD 所成角的正弦值.20.如图,在多面体ABCDEF 中,AD ⊥平面ABF ,AD ∥BC ∥4EF AD =,,3,2BC AB BF EF ====,120ABF ︒∠=.(1)证明:AC DE ⊥;(2)求直线AE 与平面CDE 所成角的大小.21.如图(1),在直角梯形ABCD 中,AB CD ∥,AB BC ⊥,22CD AB BC ==,过A 点作AE CD ⊥,垂足为E ,现将ADE ∆沿AE 折叠,使得DE EC ⊥,如图(2).(1)求证:平面DAB ⊥平面DAE ; (2)求二面角D AB E --的大小.22.如图,在四棱锥P ABCD -中,底面ABCD 为等腰梯形,//AB CD ,24CD AB ==,2AD =,PAB 为等腰直角三角形,PA PB =,平面PAB ⊥底面ABCD ,E 为PD 的中点.(1)求证://AE 平面PBC ; (2)求二面角A EB C --的余弦值.23.如图所示,边长为2的正方形ABFC 和高为2的直角梯形ADEF 所在的平面互相垂直且2DE =,//ED AF 且90DAF ∠=︒.(1)求BD 和面BEF 所成的角的正弦; (2)求点C 到直线BD 的距离;(3)线段EF 上是否存在点P 使过P 、A 、C 三点的平面和直线DB 垂直,若存在,求EP 与PF 的比值:若不存在,说明理由.24.如图,在三棱锥A BCD -中,ABD △是等边三角形,2AC =,2BC CD ==,BC CD ⊥,E 为空间内一点,且CDE 为以CD 为斜边的等腰直角三角形.(1)证明:平面ABD ⊥平面BCD ;(2)若2BE =,试求平面ABD 与平面ECD 所成锐二面角的余弦值参考答案1.D2.B3.B4.B5.A6.B7.B8.D9.D10.D11.B12.A 13.21415.13,22⎫⎛⎫+∞⎪ ⎪⎪ ⎪⎝⎭⎝⎭16.2 17.(1)证明:因为在图1中DE AB ⊥,沿着DE 将ADE 折起, 所以在图2中有DE AE ⊥,DE BE ⊥, 又AEBE E =,所以DE ⊥平面ABE , 又因为DE ⊂平面BCDE , 所以平面ABE ⊥平面BCDE ; (2)解:由(1)知,DE AE ⊥,DE BE ⊥, 所以AEB ∠是二面角A DE B --的平面角, 所以60AEB ∠=︒, 又因为AE BE =, 所以ABE 是等边三角形, 连接CE ,在图1中,因为90C ∠=︒,BC =,3AC = 所以60EBC ∠=︒,AB =因为E 是AB 的中点,所以BE BC == 所以BCE 是等边三角形. 取BE 的中点O ,连接AO ,CO , 则AO BE ⊥,CO BE ⊥,因为平面ABE ⊥平面BCDE ,平面ABE ⋂平面BCDE BE =,所以AO ⊥平面BCDE , 所以OB ,OC ,OA 两两垂直,以O 为原点,OB ,OC ,OA 为x ,y ,z 轴建系,如图所示.30,0,2A ⎛⎫ ⎪⎝⎭,3B ⎫⎪⎪⎝⎭,30,,02C ⎛⎫ ⎪⎝⎭,3D ⎛⎫ ⎪ ⎪⎝⎭ 所以3322AB ⎛⎫=- ⎪ ⎪⎝⎭,330,,22AC ⎛⎫=- ⎪⎝⎭,332AD ⎛⎫=-- ⎪ ⎪⎝⎭设平面ABC 的法向量为(),,n x y z =,则0,0,n AB n AC ⎧⋅=⎨⋅=⎩即330,2330.22z y z ⎧-=⎪⎪⎨⎪-=⎪⎩取1z =,得平面ABC 的一个法向量为()3,1,1n =,所以33311125cos ,52n AD AD n n AD ⎛⎛⎫⨯+-⨯ ⎪⋅⎝⎭===⨯设直线AD 与平面ABC 所成角为θ,则5sin θ=. 18.以点D 为原点,分别以DA 、DC 与1DD 的方向为x 、y 与z 轴的正方向,建立空间直角坐标系.则()0,0,0D 、()2,0,0A a 、()0,2,0C a 、()2,2,0B a a 、()10,0,2D a 、()12,0,2A a a 、()10,2,2C a a 、()12,2,2B a a a ,M 是棱1DD 的中点得()0,0,M a ,()12,2,2DB a a a =.设面11A MC的一个法向量为(),,n x y z =,()12,0,MA a a =,()10,2,MC a a =,则1120,0,20,0,ax az n MA ay az n MC ⎧+=⋅=⎧⎪⇒⎨⎨+=⋅=⎪⎩⎩令1y =,则()1,1,2n =-.又110DB n DB n ⋅=⇒⊥,因为1DB ⊄平面11A MC ,所以1DB ∥平面11A MC .19.(1)取CD 中点为M ,则DM AB =且//DM AB , 所以四边形ABMD 为平行四边形,可得//BM AD , 所以BM CD ⊥,又由BS CD ⊥,BM BS B ⋂=,所以CD ⊥平面BSM ,又因为SM ⊂平面BSM ,所以CD SM ⊥, 又由//SM PD ,所以CD PD ⊥,AD PD ⊥,CDAD D =,所以PD ⊥平面ABCD .(2)延长CB ,DA 交于N ,连SN 与PB 交点即为Q ,因为B 为CN 中点,S 为PC 中点,故Q 为PNC △的重心,故2PQ QB =,以D 为原点,,,DA DC DP 方向为,,x y z 轴的正方向,建立空间直角坐标系O xyz -,不妨设1AB =,则()1,1,0B ,()0,0.1P ,设(),,Q x y z 且2PQ QB =,可得()()()212112x x y y z z ⎧=-⎪=-⎨⎪-=-⎩,所以221,,333x y z ===,可得241,,333CQ ⎛⎫=- ⎪⎝⎭,因为AD PD ⊥,AD CD ⊥且PD CD D ⋂=,所以AD ⊥平面PCD . 平面PCD 的法向量为()1,0,0DA =,可得2cos ,211CQ DA CQ DA CQ DA⋅===⋅⋅.即CQ 与平面PCD20.(1)因为AD∥BC∥EF,AD⊥平面ABF,所以BC⊥平面ABF,EF⊥平面ABF,所以四边形ABCD与四边形BCEF都是直角梯形,以B为坐标原点,BA BC所在直线分别为x轴、y轴,过点B且垂直于平面ABCD的直线为z轴,建立如图所示的空间直角坐标系,则(2,0,0),(1,0,3),(1,2,3),(0,3,0),(2,4,0)A F E C D--,所以(2,3,0),(3,2,3)AC DE=-=--,所以6600AC DE⋅=-+=,所以AC DE⊥.(2)由(1)知,(3)AE=-,(2,1,0)CD=,(3,23)DE=--,,设平面CDE的法向量为(,,)n x y z=,则CD nDE n⎧⋅=⎨⋅=⎩,即203230x yx y z+=⎧⎪⎨--=⎪⎩,取=1x -,则32,3y z ==,所以31,2,3n ⎛⎫=- ⎪ ⎪⎝⎭为平面CDE 的一个法向量, 设直线AE 与平面CDE 所成的角为0,2πθθ⎛⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭, 则|||341|3sin |cos ,|2||||4343AE n AE n AE n θ⋅++=〈〉===⋅⨯,所以3πθ=, 所以直线AE 与平面CDE 所成角的大小为3π. 21.证明:(1) AE CD ⊥,AB CD ∥,∴ AE AB ⊥DE EC ⊥,AB EC ∥, ∴DE AB ⊥又AE DE E =,故:AB ⊥平面DAE ,AB ⊂平面DAB ,故:平面DAB ⊥平面DAE .(2)以E 为原点,EA 为x 轴,EC 为y 轴,ED 为z 轴,建立空间直角坐标系,如图:设2DE EC ED ===,∴ ()2,0,0A ,()0,0,2D ,()0,0,0E ,()2,2,0B ,可得:()2,0,2AD =-,()0,2,0AB =,设平面DAB 的法向量(),,n x y z =,则22020n AD x z n AB y ⎧⋅=-+=⎨⋅==⎩,取1x =,得()1,0,1n =, 平面ABE 的法向量()0,0,1m =,设二面角D AB E --的大小为θ,则12cos 22m n m n θ⋅===⋅, ∴ 45θ=︒,∴二面角D AB E --的大小为45︒.22.(1)如图,取PC 的中点F ,连接EF ,BF ,∵PE DE =,PF CF =,∴//EF CD ,2CD EF =,∵//AB CD ,2CD AB =,∴//AB EF ,且EF AB =.∴四边形ABFE 为平行四边形,∴//AE BF .∵BF ⊂平面PBC ,AE ⊄平面PBC ,故//AE 平面PBC .(2)取AB 中点O ,CD 中点M ,以O 为原点,OM 为x 轴,AB 为y 轴,OP 为z 轴,建立空间直角坐标系:则()0,1,0A -,()0,1,0B ,()1,2,0C ,()0,0,1P ,()1,2,0D -,11,1,22E ⎛⎫- ⎪⎝⎭,则11,2,22BE ⎛⎫=- ⎪⎝⎭,()0,2,0AB =,()1,1,0BC =, 设平面ABE 的一个法向量为()111,,m x y z =,平面CBE 的一个法向量为()222,,n x y z =, 则111120112022m AB y m BE x y z ⎧⋅==⎪⎨⋅=-+=⎪⎩,令11x =,则()1,0,1m =-, 222220112022n BC x y n BE x y z ⎧⋅=+=⎪⎨⋅=-+=⎪⎩,21x =,则()1,1,5n =--, 设m 与n 的夹角为θ,则66cos 3233m n m n θ⋅===⋅,由二面角A EB C --为钝角,则余弦值为63-.23.(1)解:(1)因为AC 、AD 、AB 两两垂直,建立如图坐标系,则()2,0,0B ,()0,0,2D ,()1,1,2E ,()2,2,0F ,()0,2,0C ,则(2,0,2),(1,1,2),(0,2,0)DB BE BF =-=-=设平面BEF 的法向量(,,)n x y z =,则200n BE x y z n BF y ⎧⋅=-++=⎨⋅==⎩令1z =,则2x =,0y =,所以(2,0,1)n =, ∴向量DB 和()2,0,1n =所成角的余弦为2222220210212(2)DB nDB n ⋅+-=⋅++-.即BD 和面BEF 10 (2)解:因为()2,0,2DB =-,()2,2,0BC =-,所以()()2202024DB BC ⋅=⨯-+⨯+⨯-=-,22DB =,22BC =C 到直线BD 的距离()2222422622DB BC d BC DB ⎛⎫⋅-⎛⎫ ⎪=-=- ⎪ ⎪⎝⎭⎝⎭(3)解:假设线段EF 上存在点P 使过P 、A 、C 三点的平面和直线DB 垂直,不妨设EP 与PF 的比值为m ,即EP mPF =,设(),,P x y z ,即()()1,1,22,2,x y z m x y z ---=---,所以()()12122x m x y m y z mz ⎧-=-⎪-=-⎨⎪-=-⎩,解得12112121m x m m y m z m +⎧=⎪+⎪+⎪=⎨+⎪⎪=⎪+⎩集P 点坐标为12122(,,)111m m m m m +++++, 则向量12122(,,)111m m AP m m m++=+++,向量1212(,,)111m CP m m m +=-+++, 因为()2,0,2DB =-所以()()12122202011112122020111m m m m m m m m m ++⎧⨯+⨯+-⨯=⎪⎪+++⎨+-⎪⨯+⨯+-⨯=⎪+++⎩,解得12m =. 所以存在p ,求EP 与PF 的比值1224.解:(1)取BD 的中点O ,连接OC ,OA ,因为ABD △是等边三角形,2BD =,所以AO BD ⊥,且3AO =,又因为2BC CD ==,所以OC BD ⊥112CO BD ==,又2AC = 222AO OC AC AO OC ∴+=∴⊥又AO BD ⊥,因为CO BD O ⋂=,二面角A BD C --的平面角AOC ∠是直角,∴平面ABD ⊥平面BCD ;(2)由(1)以O 为原点,OC 为x 轴,OD 为y 轴,OA 为z 轴建立空间直角坐标系, 不妨令E 在平面BCD 上方取CD 的中点F ,连接OF ,EF ,则,OF CD EF CD ⊥⊥.OF EF F ⋂=,,OF EF ⊂平面EOF ,∴CD ⊥平面EOF ,CD ⊂平面OCD ,∴平面EOF ⊥平面OCD ,OF =,EF =, 设EFO πθ∠=-,则(0,0,0)O ,(1,0,0)C ,(0,1,0)D,A ,(0,1,0)B -11111113cos ,cos ,cos ,cos 22222222E BE θθθθθθ⎛⎫⎛⎫++=++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,13322,cos ,sin ,244BE E θθ⎛==∴=∴=∴ ⎝⎭所以(1,1,0)CD =-,13,44CE ⎛=- ⎝⎭,设平面ECD 的一个法向量为(,,)n x y z =,则00CD n CE n ⎧⋅=⎨⋅=⎩,013044x y x y z -+=⎧⎪∴⎨-+=⎪⎩, 令1x =,则1,1,n ⎛=- ⎝⎭因为平面ABD 的一个法向量为(1,0,0)OC =,所以1|cos ,|4OC n〈〉==,即平面ABD 与平面ECD。

高考数学资料——5年高考题、3年模拟题分类汇编专题_空间向量在立体几何中的应用

高考数学资料——5年高考题、3年模拟题分类汇编专题_空间向量在立体几何中的应用

第三节空间向量在立体几何中的应用一、填空题1. 若等边的边长为,平面内一点知足,则_________2.在空间直角坐标系中,已知点 A( 1,0, 2), B(1 , -3 , 1) ,点 M在 y 轴上,且 M到 A 与到 B 的距离相等,则 M的坐标是 ________。

【分析】设由可得故【答案】 (0,-1 , 0)二、解答题3.(本小题满分 12 分)如图,在五面体ABCDEF中, FA 平面 ABCD, AD(II )证明:,(I II )又由题设,平面的一个法向量为4.(此题满分15 分)如图,平面平面,是认为斜边的等腰直角三角形,分别为,,的中点,,.(I )设是的中点,证明:平面;(II )证明:在内存在一点,使平面,并求点到,的距离.证明:( I )如图,连结 OP,以 O为坐标原点,分别以 OB、 OC、 OP所在直线为轴,轴,轴,成立空间直角坐标系 O,则,由题意得,因,所以平面BOE的法向量为,得,又直线不在平面内,所以有平面6.(本小题满分 12 分)如图,已知两个正方行ABCD 和 DCEF不在同一平面内,M, N 分别为 AB, DF的中点。

(I)若平面 ABCD ⊥平面 DCEF,求直线 MN与平面 DCEF所成角的正当弦;(I I )用反证法证明:直线 ME 与 BN 是两条异面直线。

设正方形ABCD,DCEF的边长为2,以 D 为坐标原点,分别以射线DC,DF,DA为 x,y,z轴正半轴成立空间直角坐标系如图.则 M( 1,0,2 ) ,N(0,1,0),可得=(-1,1,2).又 =( 0, 0, 2)为平面DCEF的法向量,可得cos(,)=·DCEF所成角的正弦值为所以MN与平面cos · 6 分( Ⅱ ) 假定直线ME与 BN共面,8 分则 AB平面 MBEN,且平面 MBEN与平面 DCEF交于 EN由已知,两正方形不共面,故AB平面 DCEF。

高二数学空间向量与立体几何测试题

高二数学空间向量与立体几何测试题

高二数学 空间向量与立体几何测试题第Ⅰ卷(选择题,共50分)一、选择题:(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为p =x a +y b +z c .其中正确命题的个数为 ( ) A .0 B.1 C. 2 D. 3 2.在平行六面体ABCD -A 1B 1C 1D 1中,向量1D A 、1D C 、11C A 是 ( )A .有相同起点的向量B .等长向量C .共面向量D .不共面向量3.若向量λμλμλ且向量和垂直向量R b a n b a m ∈+=,(,、则)0≠μ ( ) A .//B .⊥C .也不垂直于不平行于,D .以上三种情况都可能4.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共面,则实数λ等于( ) A.627 B. 637 C. 647 D. 6575.直三棱柱ABC —A 1B 1C 1中,若CA =a ,CB =b ,1CC =c , 则1A B = ( )A.+-a b cB. -+a b cC. -++a b cD. -+-a b c6.已知a +b +c =0,|a |=2,|b |=3,|c |=19,则向量a 与b 之间的夹角><b a ,为( )A .30°B .45°C .60°D .以上都不对7.若a 、b 均为非零向量,则||||⋅=a b a b 是a 与b 共线的 ( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件8.已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的 中线长为( )A .2B .3C .4D .59.已知的数量积等于与则35,2,23+-=-+=( )EM GDCBA10.已知(1,2,3)OA =,(2,1,2)OB =,(1,1,2)OP =,点Q 在直线OP 上运动,则当QA QB ⋅ 取得最小值时,点Q 的坐标为( )A .131(,,)243B .123(,,)234C .448(,,)333D .447(,,)333第Ⅱ卷(非选择题,共100分)二、填空题(本大题共6小题,每小题5分,共30分) 11.若A(m +1,n -1,3),B(2m ,n ,m -2n ),C(m +3,n -3,9)三点共线,则m +n = .12.12、若向量 ()()1,,2,2,1,2a b λ==-,,a b 夹角的余弦值为89,则λ等于__________.13.在空间四边形ABCD 中,AC 和BD 为对角线,G 为△ABC 的重心,E 是BD 上一点,BE =3ED ,以{AB ,AC ,AD }为基底,则GE = .14.已知a,b,c 是空间两两垂直且长度相等的基底,m=a+b,n=b-c ,则m,n 的夹角为 。

高考数学空间向量与立体几何选择题

高考数学空间向量与立体几何选择题

高考数学空间向量与立体几何选择题1. 题目:已知向量\(\vec{a}\)和\(\vec{b}\)满足\(\vec{a}\cdot\vec{b}=0\),则下列哪个向量不可能与\(\vec{a}\)和\(\vec{b}\)共线?A. \(\vec{a}\)B. \(\vec{b}\)C. \(-\vec{a}\)D. \(-\vec{b}\)2. 题目:若两个向量\(\vec{a}\)和\(\vec{b}\)的夹角为120°,则\(\vec{a}\cdot\vec{b}\)的值是多少?A. \(3\)B. \(-3\)C. \(1\)D. \(-1\)3. 题目:已知向量\(\vec{a}\)和\(\vec{b}\)满足\(\vec{a}\cdot\vec{b}=-2\),且向量\(\vec{c}\)与\(\vec{a}\)和\(\vec{b}\)的夹角分别为30°和60°,则\(\vec{c}\cdot\vec{a}\)的值是多少?A. \(1\)B. \(-1\)C. \(2\)D. \(-2\)4. 题目:若向量\(\vec{a}\)和\(\vec{b}\)满足\(\vec{a}\cdot\vec{b}=0\),则下列哪个向量不可能与\(\vec{a}\)和\(\vec{b}\)共线?A. \(\vec{a}\)B. \(\vec{b}\)C. \(-\vec{a}\)D. \(-\vec{b}\)5. 题目:若两个向量\(\vec{a}\)和\(\vec{b}\)的夹角为120°,则\(\vec{a}\cdot\vec{b}\)的值是多少?A. \(3\)B. \(-3\)C. \(1\)D. \(-1\)6. 题目:已知向量\(\vec{a}\)和\(\vec{b}\)满足\(\vec{a}\cdot\vec{b}=-2\),且向量\(\vec{c}\)与\(\vec{a}\)和\(\vec{b}\)的夹角分别为30°和60°,则\(\vec{c}\cdot\vec{a}\)的值是多少?A. \(1\)B. \(-1\)C. \(2\)D. \(-2\)7. 题目:若向量\(\vec{a}\)和\(\vec{b}\)满足\(\vec{a}\cdot\vec{b}=0\),则下列哪个向量不可能与\(\vec{a}\)和\(\vec{b}\)共线?A. \(\vec{a}\)B. \(\vec{b}\)C. \(-\vec{a}\)D. \(-\vec{b}\)8. 题目:若两个向量\(\vec{a}\)和\(\vec{b}\)的夹角为120°,则\(\vec{a}\cdot\vec{b}\)的值是多少?A. \(3\)B. \(-3\)C. \(1\)D. \(-1\)9. 题目:已知向量\(\vec{a}\)和\(\vec{b}\)满足\(\vec{a}\cdot\vec{b}=-2\),且向量\(\vec{c}\)与\(\vec{a}\)和\(\vec{b}\)的夹角分别为30°和60°,则\(\vec{c}\cdot\vec{a}\)的值是多少?A. \(1\)B. \(-1\)C. \(2\)D. \(-2\)10. 题目:若向量\(\vec{a}\)和\(\vec{b}\)满足\(\vec{a}\cdot\vec{b}=0\),则下列哪个向量不可能与\(\vec{a}\)和\(\vec{b}\)共线?A. \(\vec{a}\)B. \(\vec{b}\)C. \(-\vec{a}\)D. \(-\vec{b}\)11. 题目:若两个向量\(\vec{a}\)和\(\vec{b}\)的夹角为120°,则\(\vec{a}\cdot\vec{b}\)的值是多少?A. \(3\)B. \(-3\)C. \(1\)D. \(-1\)12. 题目:已知向量\(\vec{a}\)和\(\vec{b}\)满足\(\vec{a}\cdot\vec{b}=-2\),且向量\(\vec{c}\)与\(\vec{a}\)和\(\vec{b}\)的夹角分别为30°和60°,则\(\vec{c}\cdot\vec{a}\)的值是多少?A. \(1\)B. \(-1\)C. \(2\)D. \(-2\)13. 题目:若向量\(\vec{a}\)和\(\vec{b}\)满足\(\vec{a}\cdot\vec{b}=0\),则下列哪个向量不可能与\(\vec{a}\)和\(\vec{b}\)共线?A. \(\vec{a}\)B. \(\vec{b}\)C. \(-\vec{a}\)D. \(-\vec{b}\)14. 题目:若两个向量\(\vec{a}\)和\(\vec{b}\)的夹角为120°,则\(\vec{a}\cdot\vec{b}\)的值是多少?A. \(3\)B. \(-3\)D. \(-1\)15. 题目:已知向量\(\vec{a}\)和\(\vec{b}\)满足\(\vec{a}\cdot\vec{b}=-2\),且向量\(\vec{c}\)与\(\vec{a}\)和\(\vec{b}\)的夹角分别为30°和60°,则\(\vec{c}\cdot\vec{a}\)的值是多少?A. \(1\)B. \(-1\)C. \(2\)D. \(-2\)16. 题目:若向量\(\vec{a}\)和\(\vec{b}\)满足\(\vec{a}\cdot\vec{b}=0\),则下列哪个向量不可能与\(\vec{a}\)和\(\vec{b}\)共线?A. \(\vec{a}\)B. \(\vec{b}\)C. \(-\vec{a}\)D. \(-\vec{b}\)17. 题目:若两个向量\(\vec{a}\)和\(\vec{b}\)的夹角为120°,则\(\vec{a}\cdot\vec{b}\)的值是多少?B. \(-3\)C. \(1\)D. \(-1\)18. 题目:已知向量\(\vec{a}\)和\(\vec{b}\)满足\(\vec{a}\cdot\vec{b}=-2\),且向量\(\vec{c}\)与\(\vec{a}\)和\(\vec{b}\)的夹角分别为30°和60°,则\(\vec{c}\cdot\vec{a}\)的值是多少?A. \(1\)B. \(-1\)C. \(2\)D. \(-2\)19. 题目:若向量\(\vec{a}\)和\(\vec{b}\)满足\(\vec{a}\cdot\vec{b}=0\),则下列哪个向量不可能与\(\vec{a}\)和\(\vec{b}\)共线?A. \(\vec{a}\)B. \(\vec{b}\)C. \(-\vec{a}\)D. \(-\vec{b}\)20. 题目:若两个向量\(\vec{a}\)和\(\vec{b}\)的夹角为120°,则\(\vec{a}\cdot\vec{b}\)的值是多少?A. \(3\)B. \(-3\)C. \(1\)D. \(-1\)21. 题目:已知向量\(\vec{a}\)和\(\vec{b}\)满足\(\vec{a}\cdot\vec{b}=-2\),且向量\(\vec{c}\)与\(\vec{a}\)和\(\vec{b}\)的夹角分别为30°和60°,则\(\vec{c}\cdot\vec{a}\)的值是多少?A. \(1\)B. \(-1\)C. \(2\)D. \(-2\)22. 题目:若向量\(\vec{a}\)和\(\vec{b}\)满足\(\vec{a}\cdot\vec{b}=0\),则下列哪个向量不可能与\(\vec{a}\)和\(\vec{b}\)共线?A. \(\vec{a}\)B. \(\vec{b}\)C. \(-\vec{a}\)23. 题目:若两个向量\(\vec{a}\)和\(\vec{b}\)的夹角为120°,则\(\vec{a}\cdot\vec{b}\)的值是多少?A. \(3\)B. \(-3\)C. \(1\)D. \(-1\)24. 题目:已知向量\(\vec{a}\)和\(\vec{b}\)满足\(\vec{a}\cdot\vec{b}=-2\),且向量\(\vec{c}\)与\(\vec{a}\)和\(\vec{b}\)的夹角分别为30°和60°,则\(\vec{c}\cdot\vec{a}\)的值是多少?A. \(1\)B. \(-1\)C. \(2\)D. \(-2\)25. 题目:若向量\(\vec{a}\)和\(\vec{b}\)满足\(\vec{a}\cdot\vec{b}=0\),则下列哪个向量不可能与\(\vec{a}\)和\(\vec{b}\)共线?A. \(\vec{a}\)C. \(-\vec{a}\)D. \(-\vec{b}\)26. 题目:若两个向量\(\vec{a}\)和\(\vec{b}\)的夹角为120°,则\(\vec{a}\cdot\vec{b}\)的值是多少?A. \(3\)B. \(-3\)C. \(1\)D. \(-1\)27. 题目:已知向量\(\vec{a}\)和\(\vec{b}\)满足\(\vec{a}\cdot\vec{b}=-2\),且向量\(\vec{c}\)与\(\vec{a}\)和\(\vec{b}\)的夹角分别为30°和60°,则\(\vec{c}\cdot\vec{a}\)的值是多少?A. \(1\)B. \(-1\)C. \(2\)D. \(-2\)28. 题目:若向量\(\vec{a}\)和\(\vec{b}\)满足\(\vec{a}\cdot\vec{b}=0\),则下列哪个向量不可能与\(\vec{a}\)和\(\vec{b}\)共线?A. \(\vec{a}\)B. \(\vec{b}\)C. \(-\vec{a}\)D. \(-\vec{b}\)29. 题目:若两个向量\(\vec{a}\)和\(\vec{b}\)的夹角为120°,则\(\vec{a}\cdot\vec{b}\)的值是多少?A. \(3\)B. \(-3\)C. \(1\)D. \(-1\)30. 题目:已知向量\(\vec{a}\)和\(\vec{b}\)满足\(\vec{a}\cdot\vec{b}=-2\),且向量\(\vec{c}\)与\(\vec{a}\)和\(\vec{b}\)的夹角分别为30°和60°,则\(\vec{c}\cdot\vec{a}\)的值是多少?A. \(1\)B. \(-1\)C. \(2\)D. \(-2\)31. 题目:若向量\(\vec{a}\)和\(\vec{b}\)满足\(\vec{a}\cdot\vec{b}=0\),则下列哪个向量不可能与\(\vec{a}\)和\(\vec{b}\)共线?A. \(\vec{a}\)B. \(\vec{b}\)C. \(-\vec{a}\)D. \(-\vec{b}\)32. 题目:若两个向量\(\vec{a}\)和\(\vec{b}\)的夹角为120°,则\(\vec{a}\cdot\vec{b}\)的值是多少?A. \(3\)B. \(-3\)C. \(1\)D. \(-1\)33. 题目:已知向量\(\vec{a}\)和\(\vec{b}\)满足\(\vec{a}\cdot\vec{b}=-2\),且向量\(\vec{c}\)与\(\vec{a}\)和\(\vec{b}\)的夹角分别为30°和60°,则\(\vec{c}\cdot\vec{a}\)的值是多少?A. \(1\)B. \(-1\)C. \(2\)34. 题目:若向量\(\vec{a}\)和\(\vec{b}\)满足\(\vec{a}\cdot\vec{b}=0\),则下列哪个向量不可能与\(\vec{a}\)和\(\vec{b}\)共线?A. \(\vec{a}\)B. \(\vec{b}\)C. \(-\vec{a}\)D. \(-\vec{b}\)35. 题目:若两个向量\(\vec{a}\)和\(\vec{b}\)的夹角为120°,则\(\vec{a}\cdot\vec{b}\)的值是多少?A. \(3\)B. \(-3\)C. \(1\)D. \(-1\)36. 题目:已知向量\(\vec{a}\)和\(\vec{b}\)满足\(\vec{a}\cdot\vec{b}=-2\),且向量\(\vec{c}\)与\(\vec{a}\)和\(\vec{b}\)的夹角分别为30°和60°,则\(\vec{c}\cdot\vec{a}\)的值是多少?A. \(1\)C. \(2\)D. \(-2\)37. 题目:若向量\(\vec{a}\)和\(\vec{b}\)满足\(\vec{a}\cdot\vec{b}=0\),则下列哪个向量不可能与\(\vec{a}\)和\(\vec{b}\)共线?A. \(\vec{a}\)B. \(\vec{b}\)C. \(-\vec{a}\)D. \(-\vec{b}\)38. 题目:若两个向量\(\vec{a}\)和\(\vec{b}\)的夹角为120°,则\(\vec{a}\cdot\vec{b}\)的值是多少?A. \(3\)B. \(-3\)C. \(1\)D. \(-1\)39. 题目:已知向量\(\vec{a}\)和\(\vec{b}\)满足\(\vec{a}\cdot\vec{b}=-2\),且向量\(\vec{c}\)与\(\vec{a}\)和\(\vec{b}\)的夹角分别为30°和60°,则\(\vec{c}\cdot\vec{a}\)的值是多少?A. \(1\)B. \(-1\)C. \(2\)D. \(-2\)40. 题目:若向量\(\vec{a}\)和\(\vec{b}\)满足\(\vec{a}\cdot\vec{b}=0\),则下列哪个向量不可能与\(\vec{a}\)和\(\vec{b}\)共线?A. \(\vec{a}\)B. \(\vec{b}\)C. \(-\vec{a}\)D. \(-\vec{b}\)41. 题目:若两个向量\(\vec{a}\)和\(\vec{b}\)的夹角为120°,则\(\vec{a}\cdot\vec{b}\)的值是多少?A. \(3\)B. \(-3\)C. \(1\)D. \(-1\)42. 题目:已知向量\(\vec{a}\)和\(\vec{b}\)满足\(\vec{a}\cdot\vec{b}=-2\),且向量\(\vec{c}\)与\(\vec{a}\)和\(\vec{b}\)的夹角分别为30°和60°,则\(\vec{c}\cdot\vec{a}\)的值是多少?A. \(1\)B. \(-1\)C. \(2\)D. \(-2\)43. 题目:若向量\(\vec{a}\)和\(\vec{b}\)满足\(\vec{a}\cdot\vec{b}=0\),则下列哪个向量不可能与\(\vec{a}\)和\(\vec{b}\)共线?A. \(\vec{a}\)B. \(\vec{b}\)C. \(-\vec{a}\)D. \(-\vec{b}\)44. 题目:若两个向量\(\vec{a}\)和\(\vec{b}\)的夹角为120°,则\(\vec{a}\cdot\vec{b}\)的值是多少?A. \(3\)B. \(-3\)C. \(1\)D. \(-1\)45. 题目:已知向量\(\vec{a}\)和\(\vec{b}\)满足\(\vec{a}\cdot\vec{b}=-2\),且向量\(\vec{c}\)与\(\vec{a}\)和\(\vec{b}\)的夹角分别为30°和60°,则\(\vec{c}\cdot\vec{a}\)的值是多少?A. \(1\)B. \(-1\)C. \(2\)D. \(-2\)46. 题目:若向量\(\vec{a}\)和\(\vec{b}\)满足\(\vec{a}\cdot\vec{b}=0\),则下列哪个向量不可能与\(\vec{a}\)和\(\vec{b}\)共线?A. \(\vec{a}\)B. \(\vec{b}\)C. \(-\vec{a}\)D. \(-\vec{b}\)47. 题目:若两个向量\(\vec{a}\)和\(\vec{b}\)的夹角为120°,则\(\vec{a}\cdot\vec{b}\)的值是多少?A. \(3\)B. \(-3\)D. \(-1\)48. 题目:已知向量\(\vec{a}\)和\(\vec{b}\)满足\(\vec{a}\cdot\vec{b}=-2\),且向量\(\vec{c}\)与\(\vec{a}\)和\(\vec{b}\)的夹角分别为30°和60°,则\(\vec{c}\cdot\vec{a}\)的值是多少?A. \(1\)B. \(-1\)C. \(2\)D. \(-2\)49. 题目:若向量\(\vec{a}\)和\(\vec{b}\)满足\(\vec{a}\cdot\vec{b}=0\),则下列哪个向量不可能与\(\vec{a}\)和\(\vec{b}\)共线?A. \(\vec{a}\)B. \(\vec{b}\)C. \(-\vec{a}\)D. \(-\vec{b}\)50. 题目:若两个向量\(\vec{a}\)和\(\vec{b}\)的夹角为120°,则\(\vec{a}\cdot\vec{b}\)的值是多少?B. \(-3\)C. \(1\)D. \(-1\)。

高考数学-向量与立体几何试题及详解

高考数学-向量与立体几何试题及详解

1.1~1.3 习题课1.【多选题】下列命题中,是真命题的是( )A .同平面向量一样,任意两个空间向量都不能比较大小B .两个相等的向量,若起点相同,则终点也相同C .只有零向量的模等于0D .共线的单位向量都相等 答案 ABC解析 对于A ,向量是有向线段,不能比较大小,故A 为真命题;对于B ,两向量相等说明它们的方向相同,模长相等,若起点相同,则终点也相同,故B 为真命题;对于C ,零向量为模长为0的向量,故C 为真命题;对于D ,共线的单位向量是相等向量或相反向量,故D 为假命题.2.若a =e 1+e 2+e 3,b =e 1-e 2-e 3,c =e 1+e 2,d =e 1+2e 2+3e 3({e 1,e 2,e 3}为空间的一个基底)且d =x a +y b +z c ,则x ,y ,z 的值分别为( ) A.52,-12,-1 B.52,12,1 C .-52,12,1 D.52,-12,1答案 A解析 d =x a +y b +z c =(x +y +z )e 1+(x -y +z )e 2+(x -y )e 3.又因为d =e 1+2e 2+3e 3,所以⎩⎪⎨⎪⎧x +y +z =1,x -y +z =2,x -y =3,解得⎩⎨⎧x =52,y =-12,z =-1.3.设x ,y ∈R ,向量a =(x ,1,1),b =(1,y ,1),c =(2,-4,2),且a ⊥b ,b ∥c ,则|a +b |=( ) A .2 2 B.10 C .3 D .4 答案 C解析 因为b ∥c ,所以2y =-4×1,所以y =-2,所以b =(1,-2,1).因为a ⊥b ,所以a ·b =x +1×(-2)+1=0,所以x =1,所以a =(1,1,1),a +b =(2,-1,2).所以|a +b |=22+(-1)2+22=3.4.在四面体ABCD 中,AB ,BC ,BD 两两垂直,且AB =BC =1,点E 是AC 的中点,异面直线AD 与BE 所成角为θ,且cos θ=1010,则该四面体的体积为( )A.13B.23C.43D.83 答案 A5.【多选题】已知向量AB →=(1,1,1),AC →=(1,2,-1),AD →=(3,y ,1),下列结论正确的是( )A .若A ,B ,C ,D 四点共面,则∃λ,μ∈R ,使得AD →=λAB →+μAC →,λ=2B .若A ,B ,C ,D 四点共面,则∃λ,μ∈R ,使得AD →=λAB →+μAC →,μ=2 C .若A ,B ,C ,D 四点共面,则y =4 D .当AD ⊥AC 时,y =1 答案 AC解析 由A ,B ,C ,D 四点共面,得∃λ,μ∈R ,使得AD →=λAB →+μAC →,所以λ(1,1,1)+μ(1,2,-1)=(3,y ,1),所以⎩⎪⎨⎪⎧λ+μ=3,λ+2μ=y ,λ-μ=1,解得⎩⎪⎨⎪⎧λ=2,μ=1,y =4,故A 、C 正确,B 不正确.由AD ⊥AC ,得AD →⊥AC →,所以AD →·AC →=0.所以3+2y -1=0,解得y =-1,D 不正确.6.【多选题】如图,已知空间四边形ABCD 的各边和对角线的长都为a ,点M ,N ,E ,F 分别是AB ,CD ,BC ,AD 的中点,则( )A .MN ⊥AB B .MN ⊥CDC .向量AN →与CM →所成角的余弦值为23D .四边形MENF 为正方形 答案 ABD解析 设AB →=p ,AC →=q ,AD →=r .由题意可知,|p |=|q |=|r |=a ,且p ,q ,r 三个向量两两夹角均为60°.MN →=AN →-AM →=12(AC →+AD →)-12AB →=12(q +r -p ),所以MN →·AB →=12(q +r -p )·p =12(q ·p +r ·p -p 2)=12(a 2cos 60°+a 2cos 60°-a 2)=0.所以MN →⊥AB →,即MN ⊥AB .同理可证MN ⊥CD ,A 、B 正确.设向量AN →与MC →的夹角为θ,因为AN →=12(AC →+AD →)=12(q +r ),MC →=AC →-AM →=q -12p ,所以AN →·MC →=12(q +r )·⎝⎛⎭⎫q -12p =12(q 2-12q ·p +r ·q -12r ·p )=12(a 2-12a 2cos 60°+a 2cos 60°-12a 2cos 60°)=12⎝⎛⎭⎫a 2-a 24+a 22-a 24=a 22.又因为|AN →|=|MC →|=32a ,所以AN →·MC →=|AN →||MC →|cos θ=32a ×32a ×cos θ=a 22.所以cos θ=23.从而向量AN →与CM →所成角的余弦值为-23,C 错误.因为ME →=12AC →,FN →=12AC →,所以ME →=FN →.所以四边形MENF 为平行四边形.因为EN →=12BD →=12(AD →-AB →),所以EN →·ME →=12(AD →-AB →)·12AC →=0.所以EN →⊥ME →,|EN →|=|ME →|=12a .所以四边形MENF 为正方形.D 正确.7.从点P (1,2,3)出发,沿着向量v =(-4,-1,8)的方向取点Q ,使|PQ |=18,则Q 点的坐标为( )A .(-1,-2,3)B .(9,4,-13)C .(-7,0,19)D .(1,-2,-3) 答案 C8.【多选题】如图,在三棱锥P -ABC 中,△ABC 为等边三角形,△P AC 为等腰直角三角形,P A =PC =4,平面P AC ⊥平面ABC ,D 为AB 的中点,则( )A .AP ⊥BCB .异面直线AC 与PD 所成角的余弦值为24 C .异面直线PC 与AB 所成角的余弦值为24D .三棱锥P -ABC 的体积为1663答案 BCD解析 取AC 的中点O ,连接OP ,OB .因为P A =PC ,所以AC ⊥OP ,因为平面P AC ⊥平面ABC ,平面P AC ∩平面ABC =AC ,所以OP ⊥平面ABC ,又因为AB =BC ,所以AC ⊥OB .以O 为坐标原点,建立如图所示的空间直角坐标系.因为△P AC 是等腰直角三角形,P A =PC =4,△ABC 为等边三角形,所以A (0,-22,0),B (26,0,0),C (0,22,0),P (0,0,22),D (6,-2,0),所以AP →=(0,22,22),BC →=(-26,22,0),AP →·BC →=8≠0,A 不正确;因为AC →=(0,42,0),PD →=(6,-2,-22),所以cos 〈AC →,PD →〉=AC →·PD →|AC →||PD →|=-842×4=-24,则异面直线AC 与PD 所成角的余弦值为24,B 正确;因为PC →=(0,22,-22),AB →=(26,22,0),所以cos 〈PC →,AB →〉=PC →·AB →|PC →||AB →|=84×42=24,所以异面直线PC 与AB 所成角的余弦值为24,C 正确;三棱锥P -ABC 的体积V P -ABC =13S △ABC ·PO =13×34×(42)2×22=1663,D 正确. 9.在四面体OABC 中,棱OA ,OB ,OC 两两垂直,且OA =1,OB =2,OC =3,G 为△ABC的重心,则OG →·(OA →+OB →+OC →)=________.答案 14310.已知e 1,e 2是空间单位向量,e 1·e 2=12,若空间向量b 满足b ·e 1=2,b ·e 2=52,且对于任意x ,y ∈R ,有|b -(x e 1+y e 2)|≥|b -(x 0e 1+y 0e 2)|=1,x 0,y 0∈R ,则|b |=________. 答案 2 2解析 问题等价于|b -(x e 1+y e 2)|当且仅当x =x 0,y =y 0时取到最小值1,平方即|b |2+x 2+y 2-2b ·e 1x -2b ·e 2y +2e 1·e 2xy =|b |2+x 2+y 2-4x -5y +xy .已知上式在x =x 0,y =y 0时取到最小值1,x 2+y 2+(y -4)x -5y +|b |2=⎝⎛⎭⎪⎫x +y -422+34(y -2)2-7+|b |2,所以⎩⎨⎧x 0+y 0-42=0,y 0-2=0,-7+|b |2=1.解得⎩⎪⎨⎪⎧x 0=1,y 0=2,|b |=2 2.11.如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,M ,E ,F 分别为PQ ,AB ,BC 的中点,则异面直线EM 与AF 所成角的余弦值是________.答案303012.如图,已知棱长为a 的正方体ABCD -A 1B 1C 1D 1中,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,过点B 作BM ⊥AC 1于点M ,则点M 的坐标为________.答案 ⎝⎛⎭⎫2a 3,a 3,a 3解析 由题意,知A (a ,0,0),B (a ,a ,0),C 1(0,a ,a ),设M (x ,y ,z ), 则AC 1→=(-a ,a ,a ),AM →=(x -a ,y ,z ),BM →=(x -a ,y -a ,z ).因为BM →⊥AC 1→,所以BM →·AC 1→=0. 所以-a (x -a )+a (y -a )+az =0,即x -y -z =0.①因为AC 1→∥AM →,所以设AM →=λAC 1→,则x -a =-λa ,y =λa ,z =λa (λ∈R ),即x =a -λa ,y =λa ,z =λa .②由①②,得x =2a 3,y =a 3,z =a3.所以点M 的坐标为⎝⎛⎭⎫2a 3,a 3,a 3. 13.如图,已知ABCD -A 1B 1C 1D 1是四棱柱,底面ABCD 是正方形,AA 1=3,AB =2,且∠C 1CB=∠C 1CD =60°,设CD →=a ,CB →=b ,CC 1→=c .(1)试用a ,b ,c 表示A 1C →;(2)已知O 为对角线A 1C 的中点,求CO 的长.解析 (1)A 1C →=A 1A →+AD →+DC →=-AA 1→+BC →-CD →=-CC 1→-CB →-CD →=-c -b -a =-a -b -c .(2)由题意知|a |=2,|b |=2,|c |=3,a ·b =0,a ·c =2×3×12=3,b ·c =2×3×12=3,∵CO →=12CA 1→=12(a +b +c ),∴|CO →|=14(a +b +c )2=14(a 2+b 2+c 2+2a ·b +2a ·c +2b ·c )=14×(22+22+32+0+2×3+2×3)=294=292.14.已知空间三点A (0,2,3),B (-2,1,6),C (1,-1,5).(1)若点D 在直线AC 上,且BD →⊥AC →,求点D 的坐标; (2)求以BA ,BC 为邻边的平行四边形的面积.解析 (1)由题意知,AC →=(1,-3,2),点D 在直线AC 上, 设AD →=λAC →=λ(1,-3,2)=(λ,-3λ,2λ), ∴D (λ,2-3λ,2λ+3), BD →=(λ,2-3λ,3+2λ)-(-2,1,6) =(λ+2,1-3λ,2λ-3), ∵BD →⊥AC →, ∴AC →·BD →=(1,-3,2)·(λ+2,1-3λ,2λ-3)=λ+2-3+9λ+4λ-6=14λ-7=0,∴λ=12,∴D ⎝⎛⎭⎫12,12,4. (2)∵BA →=(2,1,-3),BC →=(3,-2,-1), ∴|BA →|=22+12+(-3)2=14, |BC →|=32+(-2)2+(-1)2=14, ∴BA →·BC →=2×3+1×(-2)+(-3)×(-1)=7,∴cos B =cos 〈BA →,BC →〉=BA →·BC →|BA →||BC →|=714×14=12,∴sin B =32,∴S =14×14×32=73,∴以BA ,BC 为邻边的平行四边形的面积为7 3.15.正方体ABCD -A 1B 1C 1D 1的棱长为1,以D 为原点,DA →,DC →,DD 1→所在直线为x ,y ,z 轴建立直角坐标系Dxyz ,点M 在线段AB 1上,点N 在线段BC 1上,且MN ⊥AB 1,MN ⊥BC 1.求:(1)〈AB 1→,BC 1→〉; (2)MN →的坐标.解析 (1)由题意可知D (0,0,0),A (1,0,0),B (1,1,0),B 1(1,1,1),C 1(0,1,1),所以AB 1→=(0,1,1),BC 1→=(-1,0,1), AB 1→·BC 1→=0×(-1)+1×0+1×1=1, |AB 1→|=02+12+12=2, |BC 1→|=(-1)2+02+12=2,所以cos 〈AB 1→,BC 1→〉=AB 1→·BC 1→|AB 1→||BC 1→|=12×2=12.所以〈AB 1→,BC 1→〉=π3.(2)设点M (1,x ,x ),N (y ,1,1-y ), 则MN →=(y -1,1-x ,1-x -y ).因为MN →·AB 1→=0,MN →·BC 1→=0,即⎩⎪⎨⎪⎧(y -1,1-x ,1-x -y )·(0,1,1)=0,(y -1,1-x ,1-x -y )·(-1,0,1)=0,化简得⎩⎪⎨⎪⎧2-2x -y =0,2-x -2y =0,解得⎩⎨⎧x =23,y =23,所以MN →的坐标为⎝⎛⎭⎫-13,13,-13.1.【多选题】已知向量a =(1,1,0),则与a 共线的单位向量e 等于( ) A.⎝⎛⎭⎫-22,-22,0B .(0,1,0) C.⎝⎛⎭⎫22,22,0D .(1,1,1)答案 AC 2.在四面体OABC 中,空间的一点M 满足OM →=14OA →+16OB →+λOC →,若M ,A ,B ,C 四点共面,则λ等于( ) A.712 B.13 C.512 D.12 答案 A3.在正四面体ABCD 中,E 是BC 的中点,那么( ) A.AE →·BC →<AE →·CD → B.AE →·BC →=AE →·CD → C.AE →·BC →>AE →·CD → D.AE →·BC →与AE →·CD →不能比较大小 答案 C解析 因为AE →·BC →=12(AB →+AC →)·(AC →-AB →)=12(|AC →|2-|AB →|2)=0,AE →·CD →=(AB →+BE →)·CD →=AB →·(BD →-BC →)+12BC →·CD →=|AB →|·|BD →|·cos 120°-|AB →|·|BC →|·cos 120°+12|BC →|·|CD →|cos 120°<0.所以AE →·BC →>AE →·CD →.4.已知a =(1,-2,3),b =(-1,1,-4),c =(1,-3,m ),则“m =1”是“{a ,b ,c }构成空间的一个基底”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 答案 A解析 当m =1时,c =(1,-3,1),易得a ,b ,c 不共面,即{a ,b ,c }能构成空间的一个基底,即“m =1”是“{a ,b ,c }构成空间的一个基底”的充分条件;当{a ,b ,c }能构成空间的一个基底时,则a ,b ,c 不共面,设a ,b ,c 共面,即c =x a +y b ,解得⎩⎪⎨⎪⎧x -y =1,y -2x =-3,3x -4y =m ,即⎩⎪⎨⎪⎧x =2,y =1,m =2,即当{a ,b ,c }能构成空间的一个基底时,m ≠2,即当{a ,b ,c }能构成空间的一个基底时,不能推出m =1,即“m =1”是“{a ,b ,c }构成空间的一个基底”的不必要条件.综上所述,“m =1”是“{a ,b ,c }构成空间的一个基底”的充分不必要条件.5.已知P (3cos α,3sin α,1)和Q (2cos β,2sin β,1),则|PQ →|的取值范围是( ) A .[0,5] B .[1,25] C .[1,5] D .(1,5) 答案 C6.在四面体O -ABC 中,G 是底面△ABC 的重心,且OG →=xOA →+yOB →+zOC →,则log 3|xyz |等于________. 答案 -37.已知空间三点A (2,1,0),B (2,2,1),C (0,1,2).(1)求AB →·AC →的值;(2)若(AB →+kAC →)⊥(AB →+AC →),求k 的值.解析 (1)因为A (2,1,0),B (2,2,1),所以AB →=(0,1,1).又C (0,1,2),所以AC →=(-2,0,2),所以AB →·AC →=0×(-2)+1×0+1×2=2.(2)由(1)可知AB →=(0,1,1),AC →=(-2,0,2),所以AB →+kAC →=(-2k ,1,2k +1),AB →+AC →=(-2,1,3).因为(AB →+kAC →)⊥(AB →+AC →),所以4k +1+3(2k +1)=0,解得k =-25.8.如图所示,在四棱锥P -ABCD 中,底面ABCD 为矩形,侧棱P A ⊥底面ABCD ,AB =3,BC =1,P A =2,E 为PD 的中点.(1)求AC 与PB 所成角的余弦值;(2)在侧面P AB 内找一点N ,使NE ⊥平面P AC ,求N 点的坐标. 解析 (1)由题意,建立如图所示的空间直角坐标系,则A (0,0,0),B (3,0,0),C (3,1,0),D (0,1,0),P (0,0,2),E ⎝⎛⎭⎫0,12,1, 从而AC →=(3,1,0),PB →=(3,0,-2). 设AC 与PB 的夹角为θ,则cos θ=|AC →·PB →||AC →|·|PB →|=327=3714.∴AC 与PB 所成角的余弦值为3714.(2)由于N 点在侧面P AB 内,故可设N 点坐标为(x ,0,z ),则NE →=⎝⎛⎭⎫-x ,12,1-z , 由NE ⊥平面P AC 可得,⎩⎪⎨⎪⎧NE →·AP →=0,NE →·AC →=0,即⎩⎨⎧⎝⎛⎭⎫-x ,12,1-z ·(0,0,2)=0,⎝⎛⎭⎫-x ,12,1-z ·(3,1,0)=0,化简得⎩⎪⎨⎪⎧z -1=0,-3x +12=0,∴⎩⎪⎨⎪⎧x =36,z =1,即N 点的坐标为⎝⎛⎭⎫36,0,1时,NE ⊥平面P AC .。

十年(2013-2022)高考数学真题分类汇编解析12 立体几何与空间向量(大题)

十年(2013-2022)高考数学真题分类汇编解析12 立体几何与空间向量(大题)

由(1)得 则 则
,所以 ,
设平面 的一个法向量
可取

设平面 的一个法向量

,所以

,所以 的中点

,
,则

,则

6 / 56
可取 则
, ,
所以二面角
的正弦值为
.
4.【2022 年新高考 2 卷 20】如图, 是三棱锥
的高,

,E
是 的中点.
(1)证明: 平面 ;
(2)若


,求二面角
【答案】(1)证明见解析
(1)证明:平面 (2)求二面角
平面

的平面角的余弦值.
【答案】(1)证明见解析;(2) .
(1)取 的中点为 ,连接
.
因为

,则


,故
.
在正方形
中,因为
,故
,故

因为
,故
,故
为直角三角形且

14 / 56
因为
,故 平面

因为 平面 ,故平面
平面
.
(2)在平面
内,过 作
,交 于 ,则

结合(1)中的 平面
(2)作 EF⊥BD 于 F, 作 FM⊥BC 于 M,连 FM
因为 AO⊥平面 BCD,所以 AO⊥BD, AO⊥CD
所以 EF⊥BD, EF⊥CD,
,因此 EF⊥平面 BCD,即 EF⊥BC
11 / 56
因为 FM⊥BC,
,所以 BC⊥平面 EFM,即 BC⊥MF

为二面角 E-BC-D 的平面角,
,所以
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间向量与立体几何1.(2008海南、宁夏理)如图,已知点P 在正方体ABC D -A 1B 1C 1D 1的对角线BD 1上,∠PDA=60°。

(1)求DP 与CC 1所成角的大小;(2)求DP 与平面AA 1D 1D2.(2008安徽文)如图,在四棱锥O ABCD -中,底面ABCD 四边长为1的 菱形,4ABC π∠=,OA ABCD ⊥底面, 2OA =,M 为OA 的中点。

(Ⅰ)求异面直线AB 与MD 所成角的大小; (Ⅱ)求点B 到平面OCD 的距离。

1A3.(2005湖南文、理)如图1,已知ABCD 是上、下底边长分别为2和6,高为3的等腰梯形,将它沿对称轴OO 1折成直二面角,如图2。

(Ⅰ)证明:AC ⊥BO 1;(Ⅱ)求二面角O -AC -O 1的大小。

4.(2007安徽文、理)如图,在六面体1111D C B A ABCD -中,四边形ABCD 是边长为2的正方形,四边形1111D C B A 是边长为1的正方形,⊥1DD 平面1111D C B A ,⊥1DD 平面ABCD ,DD 1=2。

(Ⅰ)求证:11C A 与AC 共面,11D B 与BD 共面. (Ⅱ)求证:平面;1111BDD B ACC A 平面⊥ (Ⅲ)求二面角C BB A --1的大小.A BC D O O 1 A B O C O 1 D5.(2007海南、宁夏理)如图,在三棱锥S ABC -中,侧面SAB 与侧面SAC 均为等边三角形,90BAC ∠=°,O 为BC 中点. (Ⅰ)证明:SO ⊥平面ABC ; (Ⅱ)求二面角A SC B --的余弦值.6.(2007四川理)如图,PCBM 是直角梯形,∠PCB =90°,PM ∥BC ,PM =1,BC =2,又AC =1,∠ACB =120°,AB ⊥PC ,直线AM 与直线PC 所成的角为60°. (Ⅰ)求证:平面PAC ⊥平面ABC ; (Ⅱ)求二面角B AC M --的大小; (Ⅲ)求三棱锥MAC P -的体积.OS B AC7.(2006全国Ⅰ卷文、理)如图,1l 、2l 是互相垂直的异面直线,MN 是它们的公垂线段.点A 、B 在1l 上,C 在2l 上,AM MB MN ==。

(Ⅰ)证明AC ⊥NB ;(Ⅱ)若60OACB ∠=,求NB 与平面ABC 所成角的余弦值。

8.(2006福建文、理)如图,四面体ABCD 中,O 、E 分别是BD 、BC的中点,2,CA CB CD BD AB AD ====== (I )求证:AO ⊥平面BCD ;(II )求异面直线AB 与CD(III )求点E 到平面ACD 的距离。

A BM NCl 2l 1 H历届高考中的“空间向量与立体几何”试题选讲(参考答案)1.解:如图,以D 为原点,DA 为单位长建立空间直角坐标系D xyz -.则(100)DA =,,,(001)CC '=,,.连结BD ,B D ''. 在平面BB D D ''中,延长DP 交B D ''于H .设(1)(0)DH m mm =>,,, 由已知60DH DA <>=,,由cos DA DH DA DH DA DH =<>, 可得2m =2m =,所以222DH ⎛= ⎝,(Ⅰ)因为0011cos 2DH CC +⨯'<>==,所以45DH CC '<>=,.即DP 与CC '所成的角为45. (Ⅱ)平面AA D D ''的一个法向量是(010)DC =,,. 因为01101cos 2DH DC ⨯+⨯+⨯<>==,, 所以60DH DC <>=,. 可得DP 与平面AA D D ''所成的角为30.2.解:作AP CD ⊥于点P ,如图,分别以AB,AP ,AO 所在直线为,,x y z 轴建立坐标系(0,0,0),(1,0,0),(0,,0),((0,0,2),(0,0,1)222A B P D O M -, (1)设AB 与MD 所成的角为θ, (1,0,0),(1)22AB MD ==--∵ 1cos ,23AB MDAB MD πθθ===⋅∴∴ ,∴AB 与MD 所成角的大小为3π (2)22(0,,2),(2)OP OD =-=--∵ ∴设平面OCD 的法向量为(,,)n x y z =,则0,0n OP n OD ==即 20220y z x y z -=⎪⎪⎨⎪+-=⎪⎩取z =解得(0,n =设点B 到平面OCD 的距离为d ,则d 为OB 在向量(0,n =上的投影的绝对值, (1,0,2)OB =-∵, 23OB n d n⋅==∴.所以点B 到平面OCD 的距离为233.解:(I )证明由题设知OA ⊥OO 1,OB ⊥OO 1. 所以∠AOB 是所折成的直二面角的平面角, 即OA ⊥OB. 故可以O 为原点,OA 、OB 、OO 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系, 如图3,则相关各点的坐标是A (3,0,0),B (0,3,0),C (0,1,3),O 1(0,0,3). 从而)3,3,0(),3,1,3(1-=-=BO AC ,.03331=⋅+-=⋅BO AC 所以AC ⊥BO 1.(II )解:因为,03331=⋅+-=⋅OC BO 所以BO 1⊥OC ,由(I )AC ⊥BO 1,所以BO 1⊥平面OAC ,1BO 是平面OAC 的一个法向量. 设),,(z y x n =是0平面O 1AC 的一个法向量, 由,3.0,033001=⎩⎨⎧==++-⇒⎪⎩⎪⎨⎧=⋅=⋅z y z y x C O n AC n 取得)3,0,1(=n .设二面角O —AC —O 1的大小为θ,由n 、1BO 的方向可知=<θn ,1BO >,所以cos <=cos θn ,1BO >=.43||||11=⋅BO n4.解(向量法):以D 为原点,以DA ,DC ,1DD 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系xyz D -如图,则有A (2,0,0),B (2,2,0),C (0,2,0),).2,0,0(),2,1,0(),2,1,1(),2,0,1(1111D C B A (Ⅰ)证明:),0,2,2(),0,1,1(11-=-=AC C A ),0,2,2(),0,1,1(11==DB B D.2,21111B D DB C A AC ==∴平行,与平行,与1111B D DB C A AC ∴ 于是11C A 与AC 共面,11D B 与BD 共面.(Ⅱ)证明:,)=,,(),,=(00222001-••AC DD ,)=,,(),,=(0022022-••AC DB.1AC DB AC DD ⊥⊥∴,,是平面与111BDD B DB DD 内的两条相交直线, .11BDD B AC 平面⊥∴又平面,过AC ACC A 11.1111BDD B ACC A 平面平面⊥∴(Ⅲ)解:.210211201111),,=(),,,=(),,,=(----CC BB AA 设的法向量,为平面11111),,(ABB A z y x n =,02,021111111==--=•=+-=•z y x BB n z x AA n于是).1,0,2(,2,1,0111====n z z y 则取 设的法向量,为平面11222),,(BCC B z y x m =.02,022212221=+-=•=+--=•z y CC m z y x BB m于是).1,2,0(,2,1,0222====m y z x 则取.51,cos =•=n m n m n m .511---∴的余弦为二面角C BB A5.证明:(Ⅰ)由题设AB AC SB SC ====SA ,连结,ABC △为等腰直角三角形,所以22OA OB OC SA ===,且AO BC ⊥,又SBC △为等腰三角形,故SO BC ⊥,且22SO SA =, 从而222SA SO OA =+.所以SOA △为直角三角形,SO AO ⊥.又AO BO O =.所以SO ⊥平面ABC .(Ⅱ)解:以O 为坐标原点,射线OB OA ,分别为x 轴、y 轴的正半轴,建立如图的空间直角坐标系O xyz -.设(100)B ,,,则(100)(010)(001)C A S -,,,,,,,,.SC 的中点11022M ⎛⎫- ⎪⎝⎭,,,111101(101)2222MO MA SC ⎛⎫⎛⎫=-=-=-- ⎪ ⎪⎝⎭⎝⎭,,,,,,,,. 00MO SC MA SC ==,∴··.故,MO SC MA SC MO MA ⊥⊥>,,<等于二面角A SC B --的平面角.3cos 3MO MA MO MA MO MA<>==,··, 所以二面角A SC B --的余弦值为33.6.解:(Ⅰ)∵,,PC AB PC BC ABBC B ⊥⊥=∴PC ABC ⊥平面, 又∵PC PAC ⊂平面 ∴PAC ABC ⊥平面平面(Ⅱ)在平面ABC 内,过C 作CD CB ⊥,建立空间直角坐标系C xyz -(如图)由题意有31,02A ⎫-⎪⎪⎝⎭,设()()000,0,0P z z >, 则()()000310,1,,,,,0,0,2M z AM z CP z ⎛⎫=-= ⎪ ⎪⎝⎭由直线AM 与直线PC 所成的解为060,得0cos60AM CP AM CP ⋅=⋅⋅,即2200032z z z π=+,解得01z =O SB C OSBA Mx zy∴()310,0,1,,02CM CA ⎛⎫==- ⎪ ⎪⎝⎭,设平面MAC 的一个法向量为{}111,,n x y z =,则11110102y z y z +=⎧-=,取11x =,得{1,3,n = 平面ABC 的法向量取为()0,0,1m =设m 与n 所成的角为θ,则3cos 7m n m nθ⋅-==⋅显然,二面角M AC B --的平面角为锐角, 故二面角M AC B --的平面角大小为arccos 7(Ⅲ)解法一:由(Ⅱ)知,PCMN 为正方形 ∴011sin12032P MAC A PCM A MNC M ACN V V V V AC CN MN ----====⨯⋅⋅⋅=(Ⅲ)解法二:取平面PCM 的法向量取为()11,0,0n =,则点A 到平面PCM 的距离113CA n h n ⋅== ∵1,1PCPM ==, ∴11111326P MAC A PCM V V PC PM h --===⨯⋅⋅=⨯⨯=7.解: 如图,建立空间直角坐标系M -xyz.令MN=1, 则有A(-1,0,0),B(1,0,0),N(0,1,0),(Ⅰ)∵MN 是 l 1、l 2的公垂线, l 1⊥l 2, ∴l 2⊥平面ABN. l 2平行于z 轴.故可设C(0,1,m).于是 AC →=(1,1,m), NB →=(1,-1,0). ∴AC →·NB →=1+(-1)+0=0 ∴AC ⊥NB.(Ⅱ)∵AC → =(1,1,m), BC →=(-1,1,m), ∴|AC →|=|BC →|, 又已知∠ACB=60°,∴△ABC 为正三角形,AC=BC=AB=2. 在Rt △CNB 中,NB=2, 可得NC=2,故C(0,1,2). 连结MC,作NH ⊥MC 于H,设H(0,λ,2λ) (λ>0). ∴HN →=(0,1-λ,-2λ),MC →=(0,1,2). HN →·MC →= 1-λ-2λ=0, ∴λ= 13 ,∴H(0,13, 23), 可得HN →=(0,23, - 23), 连结BH,则BH →=(-1,13, 23),∵HN →·BH →=0+29 - 29 =0, ∴HN →⊥BH →, 又MC ∩BH=H,∴HN ⊥平面ABC,∠NBH 为NB 与平面ABC 所成的角.又BN →=(-1,1,0),∴cos ∠NBH= BH →·BN →|BH →|·|BN →|= 4323×2= 63l 18. (1)证明:连结OC.∵BO=DO,AB=AD, ∴AO ⊥BD. ∵BO=DO,BC=CD,∴CO ⊥BD.在△AOC 中,由已知可得AO=1,CO=3.而AC=2, ∴AO 2+CO 2=AC 2,∴∠AOC=90°,即AO ⊥OC. ,0=OC BD∴AO ⊥平面BCD .(Ⅱ)解:以O 为原点,如图建立空间直角坐标系,则B (1,0,0),D (-1,0,0),C (0,3,0),A (0,0,1),E (21,23,0), ).0,3,1(),1,0,1(--=-=CD BA∴,42,cos =•=CD BA CD BA CD BA∴异面直线AB 与CD 所成角的大小为.42arccos(Ⅲ)解法一:设平面ACD 的法向量为n =(x,y,z ),则⎪⎩⎪⎨⎧=-•=•=--•=•,0)1,3,0(),,(,0)1,0,1(),,(z y x AC n z y x AD n ∴⎩⎨⎧=-=+.03,0z y z x 令y=1,得n=(-3,1,3)是平面ACD 的一个法向量.又),0,23,21(-=EC ∴点E 到平面ACD 的距离h=.72173|||·|==n n EC (Ⅲ)解法二:设点E 到平面ACD 的距离为h .CDE A ACD A V V --- ,∴h 31·S △ACD =31·AO ·S △CDE . 在△ACD 中,CA =CD =2,AD =2,∴S △ACD =,2722222132=⎪⎪⎭⎫ ⎝⎛-⨯⨯而AO =1, S △CDE =,23243212=⨯⨯ ∴h =,72127231=⨯=•∆∆ACD CDE S S AO ∴点E 到平面ACD 的距离为721.。

相关文档
最新文档