光放大器的种类和比较
光放大器的概术,EDFA,SOA
工作波长为1550nm的铒(Er)掺杂光纤放大器(EDFA)
工作波长为1300nm的镨(Pr)掺杂光纤放大器(PDFA)
工作波长为1400nm的铥(Tm)掺杂光纤放大器(TDFA) 目前,EDFA最为成熟,是光纤通信系统必备器件。
掺铒光纤放大器给光纤通信领域带来的革命
EDFA解决了系统容量提高的最大的限制—— 光损耗
小信号增益G=30dB时,增益对输入光功率的典型 依存关系
输入光功率较小时,G是一常数,即输出光功率PS,OUT与输入光功率PS,IN 成正比例。G0光放大器的小信号增益。 G0 饱和输出功率:放大器增益降至小 信号增益一半时的输出功率。
3dB
Pout,sat
饱和区域
当PS,IN增大到一定值后, 光放大器的增益G开始下 降。增益饱和现象。
=1.3% =0.7%
芯层:5m 内包层: 50m 芯层(掺铒),传播信号层(SM) 内包层,传播泵浦光(MM)
用于制作大功率EDFA 的双包层光纤结构图
半导体光放大器SOA
SOA也是一种 重要的光放大 器,其结构类 似于普通的半 导体激光器。
R1
I
R2
半导体光放大器示意图
•半导体光放大器的放大特性主要决定于激光腔的反射特性与 有源层的介质特性。 •根据光放大器端面反射率和工作偏置条件,将半导体光放大 器分为:----法布里-珀罗放大器(FP-SOA) ----行波放大器(TW-SOA)
光放大器概述
光放大器的出现,可视为光纤通信发展史上 的重要里程碑。
光放大器出现之前,光纤通信的中继器采用 光-电-光(O-E-O)变换方式。
装置复杂、耗能多、不能同时放大多个波长信 道,在WDM系统中复杂性和成本倍增,可实 现1R、2R、3R中继
掺铒光纤放大器和拉曼光纤放大器分析和比较
掺铒光纤放大器和拉曼光纤放大器分析和比较摘要:光放大器技术是新一代光纤通信系统中一项必不可少的关键技术,目前几种主要的光放大器技术在工程应用中各有所长。
此文介绍了光放大器技术的基本原理,并对现有主要几种光放大器技术在性能、应用和发展方向上进行了比较。
关键词:掺铒光纤放大器;光纤拉曼放大器0、综述20世纪90年代以来,Internet的普及发展和各种信息(如语音、图像、数据等)业务的快速增长,人们对现代通信系统提出了更高的要求。
在市场需求的大力推动下,通信技术取得了长足的进步,其中光纤通信技术脱颖而出,以其高速优质的特点,一跃成为当今长距离、大容量传输干线的主流技术。
但由于光纤损耗和非线性的影响,无中继传输距离成为制约系统容量和速率的瓶颈,而中继放大技术成了光通信领域的关键技术之一。
传输系统中的光纤损耗使信号随传输距离呈指数衰减,极大地限制了通信传输跨距和网络的可扩展性,因此必须在通信线路上设置中继器对信号进行再生放大。
在光放大器没有出现之前,光纤传输系统普遍采用光-电-光(OEO)的混合中继器,但这种中继方式存在“电子瓶颈”现象,在很大程度上限制了传输速率的提高,而且价格昂贵、结构复杂。
20世纪80年代出现的光放大器技术具有对光信号进行实时、在线、宽带、高增益、低噪声、低功耗以及波长、速率和调制方式透明的直接放大功能,是新一代光纤通信系统中不可缺少的关键技术。
此技术既解决了衰减对光网络传输距离的限制,又开创了1550nm波段的波分复用,从而将使超高速、超大容量、超长距离的波分复用(WDM)、密集波分复用(DWDM)、全光传输、光孤子传输等成为现实,是光纤通信发展史上的一个划时代的里程碑(1)。
又由于此技术与调制形式和比特率无关,因而在光纤通信系统中得到了广泛应用。
1、光放大器分类及原理光放大器(OA)一般由增益介质、泵浦光和输入输出耦合结构组成,其作用就是对复用后的光信号进行光放大,以延长无中继系统或无再生系统的光缆传输距离。
几种常见的光放大器的比较
对几类放大器的认识在DWDM系统中,特别是超远距离的传输中,由于不可避免的存在光纤信号功率的损失和衰减,所以补偿是必要的。
现在常用的放大器有掺铒光纤放大器(EDFA),拉曼放大器(FRA),半导体激光放大器(SOA),光纤参量放大器(OPA)。
现就这几类放大器的工作原理和特殊情况做一下说明。
1)掺铒光纤放大器(EDFA)EDFA(Erbiur Doped Fiber Amplifer)是光纤放大器中具有代表性的一种。
由于EDFA 工作波长为1550nm,与光纤的低损耗波段一致且其技术已比较成熟,所以得到广泛应用。
掺铒光纤是EDFA的核心原件,它以石英光纤作基质材料,并在其纤芯中掺入一定比例的稀土原素铒离子(Er3+)。
当一定的泵浦光注入到掺铒光纤中时,Er3+从低能级被激发到高能级,由于Er3+在高能级上寿命很短,很快以非辐射跃迁形式到较高能级上,并在该能级和低能级间形成粒子数反转分布。
由于这两个能级之间的能量差正好等于1550nm光子的能量,所以只能发生1550nm光的受激辐射,也只能放大1550nm的光信号。
EDFA的组成:工作原理图:那么,EDFA的输出公路车是如何控制的呢?一般来说,EDFA的输出功率与输入信号光强度,铒纤的长度以及泵浦光的强度。
在EDFA使用的过程中,一般要控制好EDFA的平坦增益,那么不平坦的增益和平坦增益有什么区别呢?平坦的输出增益会使EDFA放大的输出功率得到一个稳定的信号增益。
如何控制增益?增益的控制室有2种选择的,一种是掺金属元素,另外一种是GFF定制,所谓的掺金属元素是值得是掺杂金属铝元素。
有上图可以知道,掺铝的金属元素的EDFA在增益的控制上明显要比不掺铝的EDFA平坦的多。
需要注意的是:EDFA在放大信号的同时也放大了噪声,而噪声主要来自EDFA的自身受激辐射,是主要的噪声源,也是系统OSNR劣化的主要原因。
放大器产生的自发辐射噪声功率为:PASE = -58 + NF + G (dBm)其中NF为光放大器噪声系数(dB)、G为光放大器的增益(dB)除了放大功率之外,还有几个量也是EDFA中比较重要的,了解他们,有助于在EDFA 故障中的维护定位:作电流:也称作偏置电流,其决定着放大板的输出光功率。
第六章 光放大器
一、光纤拉曼放大器
拉曼现象在1928年被发现。
90年代早期,EDFA取代它成为焦点,FRA受到冷遇。
随着光纤通信网容量的增加,对放大器提出新的要求, 传统的EDFA已很难满足,FRA再次成为研究的热点。
特别是高功率二极管泵浦激光器的迅猛发展,又为FRA 的实现奠定了坚实的基础。
人们对FRA的兴趣来源于这种放大器可以提供整个波长 波段的放大。通过适当改变泵浦激光波长,就可以达到 在任意波段进行宽带光放大,甚至可在1270~ 1670nm整个波段内提供放大。
光纤放大器分为掺稀土元素光纤放大器和非线性
光学放大器。
非线性光学放大器分为拉曼(SRA)和布里渊
(SBA)光纤放大器。
半导体光放大器SOA
SOA也是一种 重要的光放大 器,其结构类 似于普通的半 导体激光器。
R1
I
R2
半导体光放大器示意图
•半导体光放大器的放大特性主要决定于激光腔的反射特性与 有源层的介质特性。 •根据光放大器端面反射率和工作偏置条件,将半导体光放大 器分为:----法布里-珀罗放大器(FP-SOA) ----行波放大器(TW-SOA)
均衡功能:针对点对点系统的增益均衡,针对全 光网的功率均衡; 监控管理功能:在线放大器,全光网路由改变;
动态响应特性; 其它波段的光纤放大器,如Raman放大器。 6.4 光纤拉源自放大器FRA拉曼放大器的简介
利用光纤非线性效应中的SRS原理进行光放大。 无需利用掺杂的光纤作为增益介质,直接使用传输 的光纤即可获得增益。 获得增益之波长约为泵浦源波长往长波长方向移位 100 nm,只要挑选对所需之泵浦源的波長,即可 放大光纤低损耗带宽內的任意波段信号。 利用多个不同波长的泵浦源组合可以获得超宽带、 增益平坦的放大器。
半导体光放大器(SOA)
半导体光放大器(SOA)SOA的放大原理与半导体激光器的工作原理相同,也是利用能级间受激跃迁而出现粒子数反转的现象进行光放大。
SOA有两种:一种是将通常的半导体激光器当作光放大器使用,称作F—P半导体激光放大器(FPA);另一种是在F—P激光器的两个端面上涂有抗反射膜,消除两端的反射,以获得宽频带、高输出、低噪声。
早在半导体激光器出现时,就开始了对SOA的研究,但由于初期的半导体材料激光放大器偏振灵敏度较高,使得SOA一度沉寂。
但近几年来应变量子阱材料的研制成功,克服了偏振敏感的缺点,性能也有许多改进。
半导体光放大器的增益可以达到30dB以上,而且在1310n m窗口和1550nm窗口上都能使用。
如能使其增益在相应使用波长范围保持平坦,那么它不仅可以作为光放大的一种有益的选择方案,还可促成l310nm窗口WDM系统的实现。
S OA的优点是:结构简单、体积小,可充分利用现有的半导体激光器技术,制作工艺成熟,成本低、寿命长、功耗小,且便于与其他光器件进行集成。
另外,其工作波段可覆盖l.3~1.6/μm波段,这是EDFA或PDFA所无法实现的。
但最大的弱点是与光纤的耦合损耗太大,噪声及串扰较大且易受环境温度影响,因此稳定性较差。
SOA除了可用于光放大外,还可以作为光开关和波长变换器。
ﻫ2.拉曼光纤放大器拉曼放大技术是采用受激拉曼散射(SRS)这种非线性效应来进行放大的。
石英光纤具有很宽的受激拉曼散射增益谱,并在13THz 附近有一较宽的主峰。
如果一个弱信号与一强泵浦光波同时在光纤中传输,并使弱信号波长置于泵浦光的拉曼增益带宽内,弱信号光即可得到放大,这种基于受激拉曼散射机制的光放大器即称为拉曼光纤放大器。
ﻫ(1)拉曼光纤放大器的类型拉曼光纤放大器有两种类型:一种是集总式拉曼光纤放大器;另一种是分布式拉曼放大器。
集总式拉曼光纤放大器所用的光纤增益介质比较短,一般在几km,泵浦功率要求很高,一般为几W左右,可产生40dB以上的高增益,可作为功率放大器,放大EDFA所无法放大的波段。
第6章 光放大器和光中继器
光纖
接收器
接收器
EDFA
發射器
Pre-Amplifier
接收器
第 6章
光放大器和光中继器
§6-6光中继器 光脉冲信号从光发射机输出,经光纤传输若干距 离后,由于光纤损耗和色散影响,将使光脉冲信号 的幅度受到衰减,波形出现失真,这样,就限制了
光纤中的长距离传输,为此,需在光波经过一定距
离传输后加上一个光中继器,经放大衰减的信号, 恢复失真的波形,使光脉冲得到再生。
外界激励源)的作用下,使工作物质的粒子处于反转 分布状态,具有了光放大作用,对于EDFA,其基本原
理相同。
简言之,在泵浦源的作用下,在掺铒光纤中出现 了粒子数反转分布,产生了受激辐射,从而使光信号 得到放大,由于EDFA具有细长的纤形结构,使得有源 区的能量密度很高,光与物质的作用区很长,这样, 可以降低对泵浦源功率的要求。
动端机面不改动线路。
第 6章
光放大器和光中继器
§6-2 EDFA的结构 一、构成
EDFA主要由掺铒光纤(EDF),泵浦光源,光
耦合器,光隔离器以及光波滤波器组成(如图6.1)。
第 6章
光放大器和光中继器
WDM 光纖耦合器 輸入光
摻鉺光纖
輸出光
1480或980 nm 激勵光源
光隔離器 光帶通 濾波器
第 6章
光放大器和光中继器
由于E2和E1有一定的宽度,使EDFA的放大效应具 有一定的波长范围,E=hf(h:普朗克常数),其典
型值为1530~1570nm,在这个范围内,EDFA都能提
供有用的增益和相对平坦特性,表明它们能对波分多 路(WDM)信号的每一路都提供放大作用,而相对平
坦增益带宽意味着,WDM各路光纤信号需采用特殊手
各种放大器及它们的特点
各种放大器及它们的特点1.通用型集成运算放大器通用型集成运算放大器是指它的技术参数比较适中,可满足大多数情况下的使用要求。
通用型集成运算放大器又分为Ⅰ型、Ⅱ型和Ⅲ型,其中Ⅰ型属低增益运算放大器,Ⅱ型属中增益运算放大器,Ⅲ型为高增益运算放大器。
Ⅰ型和Ⅱ型基本上是早期的产品,其输入失调电压在2mV左右,开环增益一般大于80dB。
2.高精度集成运算放大器高精度集成运算放大器是指那些失调电压小,温度漂移非常小,以及增益、共模抑制比非常高的运算放大器。
这类运算放大器的噪声也比较小。
其中单片高精度集成运算放大器的失调电压可小到几微伏,温度漂移小到几十微伏每摄氏度。
3.高速型集成运算放大器高速型集成运算放大器的输出电压转换速率很大,有的可达2~3kV/μS。
4.高输入阻抗集成运算放大器高输入阻抗集成运算放大器的输入阻抗十分大,输入电流非常小。
这类运算放大器的输入级往往采用MOS管。
5.低功耗集成运算放大器低功耗集成运算放大器工作时的电流非常小,电源电压也很低,整个运算放大器的功耗仅为几十微瓦。
这类集成运算放大器多用于便携式电子产品中。
6.宽频带集成运算放大器宽频带集成运算放大器的频带很宽,其单位增益带宽可达千兆赫以上,往往用于宽频带放大电路中。
7.高压型集成运算放大器一般集成运算放大器的供电电压在15V以下,而高压型集成运算放大器的供电电压可达数十伏。
8.功率型集成运算放大器功率型集成运算放大器的输出级,可向负载提供比较大的功率输出。
9.光纤放大器光纤放大器不但可对光信号进行直接放大,同时还具有实时、高增益、宽带、在线、低噪声、低损耗的全光放大功能,是新一代光纤通信系统中必不可少的关键器件;由于这项技术不仅解决了衰减对光网络传输速率与距离的限制,更重要的是它开创了1550nm频段的波分复用,从而将使超高速、超大容量、超长距离的波分复用(WDM)、密集波分复用(DWDM)、全光传输、光孤子传输等成为现实,是光纤通信发展史上的一个划时代的里程碑。
EDFA介绍
• 光耦合器有合波信号光与泵浦光的作用,也称光合波器和 波分复用器。是EDFA必不可少的组成部分,它将绝大多 数的信号光与泵浦光合路于EDF 中。主要有两种形式: 980nm/1550nm 或1480nm/1550nm,一般为光纤熔锥型。 要求在上述波长附近插入损耗都小,耦合效率高,耦合频 带具有一定的宽度且耦合效率平坦,对偏振不敏感稳定性 好!
信 号 光 耦 合 器 光隔 离器 光隔 离器 光滤 波器 输 出 光
掺铒 光纤 泵 浦 光摘自图片掺铒光纤(EDF)(一)
EDF 是放大器的主体,纤芯中掺有铒元素(Er)。掺有Er3+的石英光纤 具有激光增益特性,铒光纤的光谱性质主要由铒离子和光纤基质决定,铒离 子起主导作用,掺Er3+浓度及在纤芯中的分布等对EDFA 的特性有很大影响。
EDFA的缺点
������ 掺铒光纤放大器的主要优点 • 1) 增益波长范围固定:Er离子的能级之间的能级差决定了EDFA的工作 波长范围是固定的,只能在1550nm窗口。这也是掺稀土离子光纤放大 器的局限性,又例如,掺镨光纤放大器只能工作在1310nm窗口。 • 2) 增益带宽不平坦:EDFA的增益带宽很宽,但EFDA本身的增益谱不 平坦。在WDM系统中应用时必须采取特殊的技术使其增益平坦。 • 3) 光浪涌问题:采用EDFA可使输入光功率迅速增大,但由于EDFA的 动态增益变化较慢,在输入信号能量跳变的瞬间,将产生光浪涌,即输 出光功率出现尖峰,尤其是当EDFA级联时,光浪涌现象更为明显。峰 值光功率可以达到几瓦,有可能造成O/E变换器和光连接器端面的损坏
光隔离器(ISO)(一)
• 光隔离器是一种单向光传输器件,对EDFA 工作稳定性至关重要。通 常光反射会干扰器件的正常输出,产生诸如强度涨落、频率漂移和噪 声增加等不利影响。提高EDFA 稳定性的最有效的方法是进行光隔离。 在输入端加光隔离器消除因放大的自发辐射反向传播可能引起的干扰, 输出端保护器件免受来自下段可能的逆向反射。同时输入和输出端插 入光隔离器也为了防止连接点上反射引起激光振荡,抑制光路中的反 射光返回光源侧,从而既保护了光源又使系统工作稳定。要求隔离度 在40dB 以上,插入损耗低,与偏振无关。
光放大器原理分类及特点
掺铒光纤(EDF)和高功率泵浦光源是关键器件;
2.3 EDFA结构和特性-结构
EDF的增益取决于Er3+的浓度、光纤长度和直径以及泵浦光功率等多种因素,通常由实验获得最佳增益。
波分复用器(WDM)把泵浦光与信号光耦合; 基本要求:采用插入损耗小,熔拉双锥光纤耦合器型波分复用器。
光隔离器置于两端防止光反射;保证系统稳定工作和减小噪声。
光滤波器是滤除放大器噪声,提高系统的信噪比。
对泵浦光源(波长通常为980 nm或1480 nm)的基本要求是大功率和长寿命。现在的研究表明波长为980 nm的泵浦效率最高,且噪声较低,是未来发展的方向。
2.3 EDFA结构和特性-结构
同向泵浦
因泵浦源所在的位置不同,分成同向、反向及双向泵浦方式。 1.同向泵浦:泵浦光与信号光从同一端注入掺铒光纤。输入泵浦光较强,故粒子反转激励也强,其增益系数大。其优点是构成简单,噪声指数较小;缺点是输出功率较低。
光隔离器
WDM
EDF
光隔离器
例:若EDFA输入信号为300uW,在1 nm带宽内的输入噪声功率是30 nw,输出信号功率是60 mW,在1 nm带宽内的输出噪声功率增大到20uW,计算光放大器的噪声指数。
01
解:光放大器的输入信噪比为: :
02
光放大器的输出信噪比为:
03
噪声指数为:
04
2.5 EDFA的系统应用
1. EDFA用作前置放大器
增益高,噪声低,输出功率大。增益达40dB。输出功率在单向泵浦14dBm,双向泵浦17dBm-20dBm,充分泵浦时,噪声系数可低至3-4dB,串话也很小。
几种光放大器比较
!"#$%&’(") %#")* +,-,&%. /$0’1%. 2#$.’3’,&
!;<1 =>?@ABC?D ( ;EF?DGH?D &FIJC ./ )CKLHMN &H7 ,KG ,;EF?DGH?D ;EF?DOBHE 23""44 , &B>?F) 24(0&%10 : 1PK>QFJ FRPJ>S>CM KCQB?HJHDT >A KBC H?C HS RHAK >RPHMKF?K NCT KCQB?>UECA >? ?CL DC?CMFK>H? HS HPK>QFJ QHRRE?>QFK>H? ATAKCR F?G KBC LHMN>?D PM>?Q>PJC7 VCMSHMRF?QC F?G FPPJ>QFK>H?A HS CMI>ER GHPCG S>ICM FRPJ>@ S>CM ,ACR>QH?GEQKHM HPK>QFJ FRPJ>S>CM F?G MFRF? S>ICM FRPJ>S>CM FMC >?KMHGEQCG,S>?FJJT KBC SEKEMC HS FRPJ>S>CMA FMC QHRPFMCG7 5,6 7"&8(: HPK>QFJ FRPJ>S>CM ( 1* ) ; CMI>ER GHPCG S>ICM FRPJ>S>CM ( -WX* ) ;ACR>@QH?GEQKHM HPK>QFJ FRPJ>S>CM ( 01*) ; MFRF? S>ICM FRPJ>S>CM ( XY*) ; ?H>AC S>DEMC 888888888888888888888888888888888888888888888888 5 5 综上所述, 传统的图像边缘检测算法对受到噪声 污染的图像效果很差。但是当采用小波变换法对图像 的边缘进行检测时, 由于小波函数的尺度函数二进变 化, 并且当尺度系数较大时, 能有效地抑制噪声, 当尺 度系数较小时, 对图像的细节提取能力强。所以, 如果 对带有噪声的图像采用二进小波多尺度变换, 并且用 ! 次 + 样条函数作为基本小波函数, 则对图像的边缘 进行检测时, 可以得到较好的效果。 参考文献: [3 ] 5 07 ZFJJFK7 [F\CJCK SHM \>A>H? [ =] 7 (--- , 3664 , 8#
光放大器1
1 2
2
g
ln 2 g0L ln
2
1
2
光纤放大器的洛仑兹谱和相应的放大器增益谱
二、增益饱和与饱和输出功率
•增益饱和:增益系数与光信号的功率有关,在P<<Ps时,为小 信号增益,这时可不计P对g(ω)的影响;当P增大至可与Ps比拟 时, g(ω)随P的增大而下降,放大器增益G(ω)也下降,这种现 象称为增益饱和。
L+ Band
1,450nm
1,490nm
1,530nm 1,550nm 1,570nm 1,580nm 1,610nm
1,650nm
40 nm
Fujitsu Proprietary
6.2 光放大器基本概念
6.2.1 光放大器一般工作特性
在泵浦能量(电或光)的作用下,实现粒子数反转(非线性光 纤放大器除外),然后通过受激辐射实现对入射光的放大。与 激光器不同之处在于光放大器没有反馈机制。
输出 信号光
(a) 半导体光放大器
输入 信号光
耦合器 掺杂光纤
耦合器
泵浦光
输出 信号光
(b)掺杂光纤放大器
输入 信号光
泵浦光
纯石英 光纤-----------------输--出 -----------信号光
泵浦光
(c)非线性光纤放大器
光放大器基本结构示意图
光放大器的类型和各自优缺点
放大器 类型
工作原 理
二、光放大器类型:掺杂光纤放大器(EDFA、PDFA、TDFA) 半导体光放大器(SOA) 非线性光纤放大器(FRA、FBA、FPA)
三、发展历程: 上世纪80年代中、后期SOA的研究为主;90年代EDFA获 得巨大成功,成为光纤通信系统必不可少的器件;2001年 FRA得到更广泛应用。
光放大器
第六章光放大器6.1 光放大器简介6.2 半导体光放大器6.3 掺铒光纤放大器(EDFA)任何光纤通信系统的传输距离都受到光纤损耗或色散的限制,因此,在长距离传输系统中,每隔一定距离就需设置一个中继器以保证信号的质量。
中继器是将传输中衰减的光信号转变为电信号,并放大、整形和定时处理,恢复信号的形状和幅度,然后再变换为光信号(光-电-光过程),再继续由光纤传输。
这种方式的中继器结构复杂,价格昂贵,尤其对DWDM 系统,若采用光-电-光混合中继方式,则首先要对光信号进行解复用,然后对每一信道信号进行中继再生,再将各信道信号复用到光纤中进行传输,这样将需要大量中继设备,成本很高。
宽带宽的的各放大器可以对多信道信号同时放大而不需进行解复用,光放大器的问世推动了DWDM技术的快速发展。
•放大器带宽:放大器增益(放大倍数)降至最大放大倍数一半处的全宽度(FWHM )⎟⎟⎠⎞⎜⎜⎝⎛−∆=∆2ln 2ln 0L g g A νν0ωω=()ωG ()ωg 当 时, 和均达到最大值。
由图可知,放大器带宽比介质带宽窄得多。
右图为归一化增益和 随归一化失谐变化的曲线。
R τωω)(0−()ωG ()ωg Rτωω)(0−0G G 0g g 其实,只考虑了单纵模的情形。
(见下文后,回头再来理解。
)2. 增益饱和与饱和输出功率增益饱和是对放大器放大能力的一种限制。
由上式知,放大系数 在接近 时显著减小。
s P 当增大至可与 相比拟时,放大系数 随信号功率增加而降低,这种现象称为增益饱和。
P )(ωG 在前述讨论的基础上,设输入光信号频率位于增益峰值( )处,可推得(见马军山《光纤通信原理与技术》):0ωω=⎟⎟⎠⎞⎜⎜⎝⎛⋅−−=s out P P G G G G 1exp 0s P out P G 饱和输出功率:放大器增益降至最大小信号增益值一半时的输出功率。
20G G =令 得到饱和输出功率为:s s out P G G P 22ln 00−=例 G 0>>2(如:增益为30dB, G 0=1000), P s out ≈0.69Ps, 表明放大器的饱和输出功率比增益介质的饱和功率低约3030%.%.三. 光放大器的类型光放大器主要有三类:(1)半导体光放大器(SOA, Semiconductor Optical Amplifier)注:有文献也把半导体光放大器写为SLA(Semiconductor Laser Amplifier)(2)掺稀土元素(铒Er、铥Tm、镨Pr、钕Nd等)的光纤光放大器,主要是掺铒光纤放大器(EDFA,Erbium-Doped Fiber Amplifier)。
光放大器概述
• 光放大器概述 • *横向均匀激励连续激光放大器
增益系数、最大输出光强、增益谱宽
• *纵向激励连续激光放大器-掺铒光纤放大 器
小信号增益、大信号增益、饱和输出功率
• 脉冲行波放大器输运方程
反转粒子数、光子数密度输运方程
第六章 激光放大特性 光放大器概述
发展光放大技术的意义 1.获得高质量的大能量、高功率激光束(固体激光器)
三能级系统脉冲行 波放大器输运方程
nz,
t
t
2
21nz,
t
J
z,
t
(6.4.2)
J
z,
t
t
v
J z,
z
t
v
21nz,
t
J
z,
t
vJ z,t
(6.4.3)
边界条件 J 0,t J 0 t; nz,t 0 n0 0 z l
入射光脉冲波形
信号入射前的n空间分布(均匀)
二、脉冲激光放大器输出能量及能量增益 I0(t)
ts
阈值泵浦光强
I p z
I pth
dI p z
dz
I
p
z
I z1 1 I
z
1
p
I
p
z
(6.3.12)
dI p z 0 泵浦光沿光纤
dz
分子上
IP z
I Pth
1
I
p
z
I
pth
dI z
dz
0
光信号放大
I
p
z
I
pth
dI z
dz
0
光信号衰减
n12
p n13 p
几种光纤放大器的比较
几种光放大器的比较一、引言光纤放大器的研制成功是光纤通信史上的一个重要里程碑,是新一代光纤通信系统中不可缺少的关键技术,它解决了衰减对光网络传输距离的限制,又开创了1550nm波段的波分复用系统。
从而将使超高速、超大容量、超长距离的波分复用(WDM)、密集波分复用(DWDM)、全光网络传输等成为现实,自从1987年第一台EDFA光纤放大器开发成功以来,光纤放大器在光通信系统中应用越来越广泛。
目前光纤放大器要有三类:掺稀土类光放大器(如EDFA,PDFA,TDFA等)、半导体光纤放大器(SOA、非线性效应光放大器(如喇曼光纤放大器.布里渊光纤放大器等)。
二、掺铒光纤放大器(EDFA)掺铒光纤放大器(EDFA)是目前应用最为广泛的光纤放大器,主要由掺饵光纤(EDF)、泵浦光源、光耦合器、光隔离器.光滤波器等组成,如图1所示。
掺铒为增益介质,光耦合器的作用是把输入光信号和泵浦光耦合进掺铒光纤,通过掺铒光纤的作用把泵浦光的能量转移到输入光信号中,实现光信号的能量放大。
光隔离器的作用是抑制反射光,保证光放大器工作稳定。
光滤波器的作用是滤除铒离子由于自发辐射产生的噪声(ASE)。
光信号图一EDFA的基本组成光信号信号输出图二、双级EDFA结构其工作原理是利用波长为980nm或1480nm的泵浦光源,使饵离子Er3+粒子数反转,信号光入射使亚稳态Er3+粒子受激辐射,产生信号放大。
EDFA的结构现已发展成很多类型,由单级结构发展到双级和多级结构(如图二为双级结构),多级结构主要应用于中级接入,目的是实现监控、OADM、DCM等功能。
EDFA的优点是:1)通常工作在1530—l565nm光纤损耗最低的窗口;2)增益高,通常为10―35dB;且在较宽的波段内提供较为平坦的增益,3)噪声系数较低,980nm泵浦为3.2—3.4 dB,接近3 dB的量子极限,1480nm泵浦, 噪声系数通常为4-8 dB,各个信道间的串扰极小,可级联多个放大器;4)与线路耦合损耗小(小于1dB );5)具有透明性,放大特性与系统比特率、信号格式和编码无关;6)成本低,与再生电路相比,EDFA具有较大的成本优势。
光放大器的分类,特性和应用
光放大器的分类,特性和应用2000年9月第3期现代有线传输一光放大器的分类,特性和应用李永武/7(信息产业部北京邮屯鼋北京100035)●【摘要】本文对目前处于商用阶段和宴验室阶段的光放大器的分类进行说明并简要丹绍各种光放大器的特性和应用.关键词:光放大器分类1概述近年来,掺铒光纤放大器(EDFA)技术迅速成熟.带动了多种新型的光纤放大器走向市场化.同时也刺激了多种光纤或非光纤型的光放大器在实验室中的研制开发.ITUT,IEC等国际标准组织正在对各种光放大器(OA)的特性和应用等进行标准化,ITUTSG15已经制定了关于oA的G.661,G662,G663建议,但主要是关于EDFA的建议.随着各种OA技术的成熟和市场的需求.还将制定一些新的建议或对已有的建议进行补充修改.本文将介绍对商用的和仍处于实验室阶段的光放大器的科学的分类,便于区分各种光放大器的特点同时对各种光放大器的特性进行简要的描述,重点介绍其属性,性能和应用.通常.光纤放大器可以按其荧光搀杂物和光纤主体来进行分类.本文介绍的是根据搀杂物来分类的方法.例如:目前市场上使用最多的是掺铒光纤放大器(EDFA),同时铒也可以搀杂在其他光纤主体中,氟和碲也可搀杂或联合搀杂在硅光纤中.随着铒通带的传输容量迅速饱和,人们更热哀于寻找其他类型的光纤主体,可以提供铒通带外的光增益.这些新型的光纤放大器与EDFA共同使用,将提供l50 nm到200nm范围内的低损耗通带,以利于未来的高速大容量的传输系统.收稿日期t2000—08~2z—-20——所有的光纤放大器都需要用泵浦源使光子受激辐射,但半导体光放大器是采用电流注入到不同注人方式的半导体复合物中而使光子受激辐射.其他非基于光纤主体的光放大器.例如掺硅的平坦波导和搀杂聚合物的平坦波导也已经取得了很好的进展,达到了实用的水平基于上述技术的新产品已经开始出现,并使用了诸如POW A,PWOA,和EDWA等缩写词,在本文的光放大器分类表中将列出这些新的缩写词.毫无疑问,今后将有其他新型的光放大器和新的缩写词出现在分类表的清单里.2光放大器的分类和缩写r—OFA()^——一L-0WGA一+EI)FAL+EYDFA一一PDFAL?1DFAS()AL,EDWA—DSFA———...L—一I~)FFAL—ED1FAEYDSF^PDFFA1uFF^第3期李永武:光放大器的分类,特性和应用其中:OA(OpticalAmplifier):光放大器0FA(OpticalFibreAmplifier):光纤放大器EDFA(ErbiumDopedFibreAmplifier):掺铒光纤放大器EDSFA(ErbiumDopedSilicaFibre Amplifier):掺铒硅基光纤放大器(就是通常的EDFA)EDFFA(ErbiumDopedFluorideFibre Amplifier):掺铒氟基光纤放大器EDTFA(ErbiumDopedTelluriteFibre Amplifier):掺铒碲基光纤放大器EYDFA(ErbiumYtterbiumDopedFibre Amplifier):掺铒镱光纤放大器EYDSFA(ErbiumYtterbiumDopedSilicaFibreAmplifier):掺铒镱硅基光纤放大器PDFA(PraseodymiumDopedFibreAmplifier):掺镨光纤放大器PDFFA(PraseodymiumDopedFluorideFibre Amplifier):掺错氟基光纤放大器(就是通常的PDFA)TDFA(ThuliumDopedFibreAmplifier):掺铥光纤放大器TDFFA(ThuliumDopedFluorideFibreAmplifier(alsoknownasTDFA)):掺铥氟基光纤放大器(就是通常的TDFA)FRA(FibreRamanAmplifier):拉曼放大器OWGA(Optica1WaveGuideAmplifier):光波导放大器SOA(SemiconductorOptiea1Amplifier):半导体光放大器EDW A(ErbiumDopedWaveguideAmplifier):掺铒波导放大器(也称POWA)3光放大器的工作频段市场上首先使用的是掺铒光纤放大器(EDFA),工作在硅光纤的1550nm低损耗传输窗口.虽然EDFA在l528~l563nm段有近35nm的光通带,但在通带内增益不是根平坦早期的放大器是窄带单波长放大器,使用其l533nm到1557 nm增益窗口的增益峰值.随着WDM的发展. EDFA在1540nm至1563nm的固有平坦增益区域更适用于多通道的应用.这个平坦增益区域称为红带,一般是指18到23nm的带宽.而EDFFA的研究,更注重于较EDFA的红带更为平坦的增益特性,这将使EDFFA适用于更多的WDM通道.随着增益平坦滤波器技术的引入. 可以使EDFA的增益峰值更为平滑,特别是在1533nm附近,将使EDFA具有与EDFFA相同的平坦增益,因而EDFA同样适用于多通道的wDM EDFA加滤波器的解决方案是目前产品中较为通用的方案.C波段放大器适用于常规波段,C波段内1528nm到1540nm这一区域也称为蓝带.红带和蓝带的精确界限一般由制造商界定通常其边界在铒通带的中心即1545nm近年来,利用高功率,低成本的泵浦技术,铒通带的长波长区也可投入实际的应用中,从而开发了一个新的使用窗口.这个窗口位于1570nm到1620tim频带内.因为位于较C波段更长的波段内.因而称之为L波段.通常也日E波段,即扩展波段的意思.而C波段和L波段统称为铒通带使用新型材料的EDTFA可以给出从1530nm到1620tim的带宽内连续平坦增益的工作窗口.同样包括了EDFA所能提供的c波段和I,波段. TDFFA与EDTFA类似,都是采用新型材料的光纤放大器,不同的是,TDFFA开发了从l450tim到1480tim的工作窗VI,这个频段通常称之为s波段.最近的研究结果表明,使用新型材料也可以获得从1480nm到1528nm的工作窗口,这个窗口一般称之为增益位移的s波段.一些资料中也称从1450nm到1520nm这段为s波段.而包层中含有铽离子的掺铥光纤可获得超出L波段即l650tim区域的增益效果.在l550nm传输窗口之外,PDFFA可以提供l310nm传输窗口的光增益,如同拉曼放大器和半导体光放大器一样SOA和简易的单泵源的拉曼放大器,都可以提供约30tim的增益频段对于SOA而言,增益窗口的中心波长受半导体材料特性限制.对于拉曼放大一2】一现代有线传输器,则受限于泵源的波长和光纤的斯托克位移(Stokeshiltofthefiber).有资料显示,多泵源的拉曼放大器可以获得高达100nFll的增益带宽.原理上两种放大器都可提供任意硅光纤传输窗口的增益,目前的数据仅限于1550nm和l310nm窗口.下图说明光放大器的工作窗口和波段.《蜷要}ll可以工作在I3I和I55微米窗口的FRA可工作在l3I和I55微米窗口的SOA4掺铒光纤放大器4.1掺铒硅基光纤放大器(EDFA或EDSFA)41.1概述EDFA的概念于1985年第一次提出.当时传统的无中继系统已接近了其性能的顶峰南安普顿大学的一个研究小组研究发现.某种光纤可以在1550 nm波长附近获得光增益.这些特殊的光纤掺有稀土元素,可由低功率的可见光激励形成粒子数反转.由于操作的便利性.特别是在低损耗及应用于l550nm这个电信应用的窗口附近,使EDFA倍受光纤通信领域注视4.1.2EDFA基本特性通常EDFA可以由多个波长的泵源来激励,一般多用980llln和1480nlTl波长的泵源.可一22一以获得从l520nF1).到l625nm波长范围内的光增益,虽然长波长部分尚未由各种实体最终实现.一个典型的掺铒光纤放大器由单模掺铒光纤,泵浦源,用于混合信号和泵浦功率的WDM器件,输人输出端的隔离器等组成.铒原子有很多能量级别.但是只有一小部分能量级用于通信系统的光放大作用.包括基态和亚稳态.高能级的变化体现为可见的和紫外的光谱区域. 无助于EDFA的应用.下图a为简略的EDFA能量级图.图b为EDFA使用的主要能量级.EDFA的光增益与偏振无关,可以抑制通道间的串音.同时具有高饱和的输出功率及很低量级的噪音EDFA可以同时放大其工作波长区域内的小信号,其工作波长区域根据其设计结构不同而变化.EDFA工作的l550nF1).区域正好是硅光纤的最低损耗区域.而EDFA只引人了dB级的噪音系数.因此可以支持更高的通道数.EDFA极大地提高了光传输系统的容量.同时降低了系统的成本.今后的发展方向是探索各种主体材料,搀杂物和光纤设计,以达到更优化的放大器特性.例如泵浦效率和光谱带宽特性.4.1.3EDFA特性EDFA可以提供约50dB或更高的增益和dB数量级的噪音系数,输出功率大于30dBm,在l4nm的带宽范围内增益变化小于0.2dB.增益,噪音系数,输出功率,功率转换效率以及工作频段内的增益变化是描述EDFA特性主要的光学参数.上述的参数只有在不同的工作条件下才能达到理想中的最优化.1l530.1560nFfl【.咖第3期李永武:光放大嚣的分类,特性和应用对于高饱和的放大器,较好的噪音性能需要很高的反转均值,而较低的反转水平才能提供最好的功率转换效率一些增益平坦技术也会降低噪音性能和功率转换效率.在商用系统里.通常需要较好的性能参数,同样也需要各种参数的折中选取.任何放大器的设计都需要综台考虑各种参数的利害关系. 根据应用的系统情况来选取台适的参数.掺铒光纤是EDFA的核心.EDFA的各种特性参数都与其光谱特性有直接的关系.4.1.4EDFA应用EDFA对光通信领域,特别是在长途光通信系统中有极其重要的作用.一般用做发送机的功率提升,在线放大以及接收机预放大.随着EDFA技术的成熟,将提供更好的性能和更新的功能,包括加强增益平坦程度,双向迢信功能,光分插及光交换功能等等.放大器的使用,将使光通信网络从点到点的应用向复杂光阿络的应用转变.4.2掺铒氟基光纤放大器(EDFFAs)4.2.1概述常规的EDFA在全波段wDM系统中受到严重的限制,主要是因为EDFA光谱增益的不均匀性.由于氟化材料中铒离子不同的光学作用.氟化光纤放大器较常规EDFA有更好的增益平坦特性.4.2.2EDFFA基本特性1975年第一次实现了氟锫酸盐玻璃的研制,由此在1981年产生了ZrF一BaF2IaF3一A1FNaF; (ZBLAN)系统的定义.之后大量的实验工作表明, 这种材料可以应用于传输系统中不同波长的光放大.光纤主体环境和光子能量引起了受激光光谱特性的变化,这是基于硅光纤和基于氟光纤的放大器的主要差别因而EDFFA较EDFA具有更宽更平坦的增益谱线.在ZBLAN玻璃中的光子能量,比在普通硅玻璃中的光子能量要低得多.由于泵源受激状态吸收(ESA)的影响,在ZBIAN中能量级I,:的寿命很长,不足以产生有效的980nm波长的泵浦作用但就1480nm附近的泵浦作用而言,EDFFA与EDSFA可以获得相同的增益,输出功率和噪音性能.除了光纤接头外,EDFFA与EDFA的结构相当类似.这是因为ZBIAN与硅光纤是不能接在一起的,第一,硅光纤的熔接温度需2300K,而ZrF的蒸发温度只有900K.第二,两种材料的扩张系数差别很大,因此,采用机械接头的方法,才能将搀杂光纤与具有较高的数值孔径(NA)的硅光纤接续在一起.从而获得近似的模场直径,高数值孔径的硅光纤与普通硅光纤依次通过热熔接接在一起.42.3EDFFA应用EDFFA可以用做功率放大器,在线放大器和预放大器,同样适用于单通道系统和多通道系统应用多通道适用时要优化输入功率,增益平坦度及输出光谱.与EDSFA相比.在多通道系统中,EDFFA 可以获得较平坦的增益而不需其他附加设备.其突出的优点是可以开发更宽的波段,包括C波段和I 波段,更适用于大容量的WDM系统有材科表明.在传统单模光纤上采用7个EDFFA,可以在24am带内传输16×10Gb/s(中心波长1636.61ilm~1560.61nm)系统531公里而采用两级放大,增益平坦的混合EDFFA【硅/氟化光纤),使用DCF技术.可以在25am带内实现32×10Gb/s500公里以上的传输.4.3掺铒碲基光纤放大器(EDTFAs)43.1概述碲化玻璃是一种折射率高达2的氧化材料EDTFA具有比EDSFA和EDFFA更大的放大频带此外,EDTFA具备其他光纤放大器的特性.诸如偏振无关,低噪音系数和高饱和功率等等.4.3.2EDTFA基本特性EDTFA的放大机制与EDFA类似.是基于铒离子从I,级到I级的受激辐射.光特性方面,掺铒的碲化破璃的特殊性在于:2左右的高折射率,允许比常规硅玻璃更大的受澈辐射断面.在15304l580nm波长区域的横断面是常规硅玻璃的1.3 倍,在1600nm附近更高达2倍.根据理论, EDTFA的长波长区要比EDFA和EDFFA分别向外延伸7ilm和9nrrl.掺铒碲光纤是用特殊方法制造的,其1200Dill波长区域的背景衰耗小于30dB/km.接续碲光纤和硅光纤时,要采用倾斜的v型槽技术,可以获得较低的插入损耗和反射,典型值分别为0.3dB和小于一0dB一23现代有线传精2000正43.3EDTFA特性EDTFA的泵浦涟长可使用980nm和14gOnm,使用前者可以轻松获得较低的噪音特性在l530nm~l610nm宽带使用时,EDTFA在l560nm附近有一个高增益峰值EDTFA与EDFA的增益曲线在1580nm附近略有不同但在长波长一侧,EDTFA有稍宽的增益窗口,在156O~1610nm问50nm的通带内,EDTFA的增益变化为l0,而EDFA要达到这样的增益变化,其通带仅为38nm.因此,EDTFA适用于多级放大结构中,在中间辅以增益均衡技术,以获得高效的宽带放大应用.4.3.4EDTFA应用EDTFA的应用同EDFA.EDTFD可以在波长区域为l530nm至1620nm范围的模拟和数字光链路中使用.EDTFA同样可以用做功率放大器,在线放大器和预放大器.资料显示.一套3Tb/s(160Gb/s×19)的WDM传输系统已使用EDTFA作为BA,采用1580nm工作通带EDTFA的10Gb/s系统进行了无误码实验4.4掺铒镱硅光纤放大器(EYDFA)EYDFA使用联合搀杂技术,可以达到相当高的输出功率,同时具有较低的噪音系数.EYDFA主要用做功率放大器,但由于工作通带的限制.多用于CA TV系统中.5非掺铒光纤放大器5.1掺镨光纤放大器(PDFFAs)PDFFA是应用在1300nm波长范围的光纤放大器.同其他类型的光纤放大器相比,PDFFA的主要特点是高的饱和输出功率,以及与偏振无关的光增益,低失真.低噪音系数等等,主要应用于l300 nm的传输系统例如CATV等5.2掺铥光纤放大器(TDFFAs)TDFFA是一种146Onm和1650nm双波长区域的光纤放大器,主要特点是高的饱和输出功率,光增益与偏振无关,低噪音系数等等.TDFFA的应用与EDFA相同,适用于1450—24一~lTD.到1500nlJ1区域的光模拟和数字链路中,可以用做BA,LA和PA.目前已有采用TDFFA和EDFA进行3波段光传输的使用经验.6拉曼放大器(FRAs)6.1概述1928年,C.V.Raman发现了自发拉曼教应.但直到1972年RH.Stolen才第一次报道了硅光纤中的受激拉曼散射.之后由于FRA的低噪音特性被广泛深入的研究,最初拉曼放大器需要较高的泵浦功率,只有高功率的脉冲泵源才能获得足够的功率去泵浦拉曼放大器.固EDFA的出现.曾一度放橙了对FRA的研究.最近由于带宽的需求,FRA的优势又显现出来.拉曼放大器不依糊于原子荧光,只要具备高功率的泵源,能适用于任意的波长范围高功率连续渡二极管激光器的发展,又刺激了FRA 在铒通带以外范围的光增益功能另外一个原因是使用拉曼放大器可以延伸传输系统中EDFA之问的距离.6.2FRA基本特性FRA与EDFA的放大机制是不同的,EDFA依靠铒原子的荧光,FRA利用较弱的非线性散射获取增益.6.3FRA应用同EDFA相比.FRA虽然有诸多的缺点,但FRA技术的发展很快.由于带宽的需求增长很快,适用于任意波长的FRA将起到越来越重要的作用.已有在2.5Gb/s速率,1.3gm,1.4gm和1.5~1.6m窗口使用不连续的拉曼放大器的经验不连续的FRA可以提供超过[00nm带宽区域的光增益,采用多个泵源可以获得20dB以上的增益.此外拉曼增益还可以作为色散补偿模块使用.7半导体光放大器(SOAs)近些年来.SOA技术已足够成熟,已经可以生产大规模的可靠产品.其低噪音,高功率,增益与偏振无关的特性使SOA成为现代通信系统中的组成第3期李水武:光放太器的分类特性和应用部分SOA虽然技术发展很快,但目前仅作为OFA的一种*bYg.SOA主要适用于性能要求不高,成本很低的光链路中,例如城域阿或接入网.8掺铒波导放大器(EDWAs)子实现光放大.其主要特点是小型化和低成本目前已进入商用阶段.由于其中等的增益和有限的饱和功率,限制了EDW A在高性能需求范围的应用但它低廉的成本同样具有竞争力参考文献1ITUTSG15TD-022(WP4,15)Agri[2000EDW A基于集成光波导技术,搀杂稀土元素离2韦乐平光同步数字传送网?jE京:^民邮电出版社?.一一_-一…_-●.hh_●,一'L●_L●__Lh__L''._h____^一h一hh_hh_^hh_h'__'h_''h''{_h__hhh(上接第12页)导率应不大于100~s/'cm}c)发烟浓度:光缆燃烧时产生的烟雾应使透光率不小于j0在本文的第4节中,已论述了对于室内光缆阻燃性能的试验方法有单根燃烧试验(包括垂直燃烧,水平燃烧和倾斜燃烧,其中垂直燃烧比水平燃烧和倾斜燃烧更严格)和成柬燃烧试验.显然,成束燃烧的试验条件是最严格,最苛刻的,根据经验,如果成束燃烧试验合格则单根燃烧试验也一定合格.依据我们对室内光缆阻燃性能的研究,认为室内光缆燃烧性能宜是阻燃级.即宜采用成柬燃烧试验进行验证;但是对于室内光缆中的软线室内光缆因其在大多数情况下是单根使用的,故也可以是不延燃级即采用单根垂直燃烧试验进行验证即可.(上接第19页)参考文献1CFLamandE.Y aⅡ10…LtchMULT【WAVELENGTH OPTICALCODED1VIS1ONMULTIPLEXING2曹志刚.钰亚生现代通信原理北京:清华大学出版社3CedricFLam?RutgeTVrijen—dennisTKTong.Experimenta[ DemonstrationofpeetraIlyEncoded4张宝富.朱勇李王枉光纤扩频通信系统中光编码器的研究通信199875薛采网.非景韶.光纤码分多址技术研究.上海盘大学撤.199611 6CedricFLain—MingCWu.DennisTKTongExperimental Demom~lrationofBipolarOptiea[CDMASystemUsing日BalancedTransmitterandComplementarySpectra[Encoded7扬卫先,林须端编码密码学北京人民邮电出版牡.1g92128胡健栋帮朝晖等码分多址与十人通信北京:^民邮电出版社此外,燃烧试验与实际火灾情况是有差异的,并不能完全反映实际火灾中的情况.这些试验仅仅是在特定试验条件下进行的,它们只不过准确地模拟了在实际中几乎不存在的情况,它们反映的是在特定试验条件下室内光缆的燃烧性能.为了更接近实际火灾的情况,我们还需进一步地探讨室内光缆的燃烧试验方法及其燃烧性能要求.参考文献1GB12666.1~12666.790电线电缆燃烧试验方法2YD,"T898—1997单芯光缆3胡先志,邹林森刺有信等光缆及工程应用第2版北京:^民邮电出版社.19988:12O~1214YD/TXX××-200×.室内光纤带光缆L征求意见稿)l9§6109段洪玺全光阿络把码分复用通信关键技术的研究中山大学博士学位论文1998年4月1cKBenLettaief+Theper[ormanceofOptiealFibreDirectS,equeneeSpread—SpectrumMuhip[eAccessCommunications Syst㈣IEEETransactions0nCommunications.V0l_43NO11November1995111W.BandDGMCruiekshanklmprovlngthec日padtyof CDMAsystemsusingeonvolutionalcodingandinterference canceliadanIEEEProcCommunV o1.145.N033une109812JawadASalehi—MernberrIEEECodeDivisionMuLtipleAccess TeehniquesinOFtica]FibreNetworks—PartI_Fundamenta[ PrinciplesIEEETransactions0ncommunicationsV ol37Na8 August1989i3JawadA.SalehiMember.IEEEandCharlesABrackett. MemberIEEE.CodeDivisionMuLtIple—AccessTeehniquesin OpticalFibieNetworks-PartII.PerformanceAnatysis.]EEETra~acdonsoncommunieationsV o[37No.8August198925。
光放大技术
2、光纤放大器:用光纤做成的放大器 (1)掺杂光纤放大器(掺稀土元素光纤放大器) a.1550nm光纤放大器,如:掺铒光纤放大器(EDFA) b.1310nm光纤放大器,如:掺镨光纤放大器(PDFA) (2)非线性光纤放大器 a.拉曼光纤放大器(SRA) b.布里渊光纤放大器(SBA)
二、各类放大器的性能比较
4、噪声 (1)噪声来源:自发Raman散射、瑞利散射 (2)噪声特点:比EDFA噪声小得多;FRA的噪声对泵浦 功率的依赖性不强 (3)噪声系数:NF=SNRin/SNRout 集中式FRA的NF=3dB 噪声小是FRA的另一个显著特点
三、DRA的应用 主要作线路放大和预放 1、作线路放大时,对线路中光纤传输损耗进行分布式补 偿放大。当增益补偿损耗时,实现净增益为零的无损 耗透明传输。 2、作预放,使接收端光功率增加,信噪比有明显的改善。
αP为光纤对泵浦光的衰减系数
图为典型长光纤拉曼放大器的增益曲线: λp=1443nm,PP=100mW和200mW。
由曲线得到: (1)在单泵浦光条件下,在一个较宽的波长范围内均有 增益。不同的信号有不同的增益。最大增益出现在比 泵浦光频率低13.2THz处,即信号光波长比泵浦光波长 长100nm处 (2)GA随PP增大而增大,曲线形状不变 (3)泵浦光波长变化,最大增益波长λsmax变化。 λsmax-λp=60~100nm, λp增加,GAmax略小。
2、带宽定义:在增益波长曲线上取得最大 值的一半所对应的波长间隔,即半极大 值全宽(FWHM) 3、实用值:1530 〜 1565nm
三、饱和输出功率 Pmax-表征EDFA最大输出光功率的能力 1、定义:在EDFA增益-输出功率曲线上,放大器最大增益 下降3dB(最大放大倍数的一半)时对应的输出光功率 2、实用值:15dBm 〜 20dBm
情境4-3 光放大器
1480 nm 光子
1550 nm I15/2 1550 nm
1550 nm
受激辐射
③
④
⑤
⑥
1550 nm 基态能带
基态, 能量最低
当泵浦(Pump, 抽运) 光激励,铒离子吸收泵浦 光,基态跃迁到激发态。 激发态不稳定,Er3+ 很快返回到亚稳态。 亚稳态粒子数积累,
平均寿命 1s 平均寿命
激发态
掺杂光纤放大器。在光纤原材料中掺入其它元素,形成掺杂
光纤。掺杂光纤放大器是利用稀土金属离子作为激光工作物 质的一种放大器
传输光纤放大器。它是根据光纤中的非线性效应制成的光放
大器。
4. 光放大器的原理 基本原理:通过受激辐射或受激散射原理实现对入射光信号的 放大的,其机理与激光器完全相同,但没有反馈机制,因而可以放 大信号但不能产生相干光输出。 基本结构:光放大器要结构上是一个没有反馈或反馈较小的激 光器。
掺Er3+光纤
构造与单模光纤的构造一样。铒离子位于纤芯中央地带, 将铒离子放在这里有利于其最大地吸收泵浦和信号能量,从 而产生好的放大效果。
折射率较低的玻 璃包层完善波导结 构,提供抗机械强 度的特性。 涂覆层将光纤总 直径增大到 250μm 。
掺铒 高密度 带 (10 0 ~ 2 00 0 p pm) 直径 3~6 m 掺锗 的纤芯
泵浦光与信号光从同一端注入掺铒光纤。输入泵浦光较强, 故粒子反转激励也强,其增益系数大。 优点:构成简单,噪声指数较小 缺点:输出功率较低。
光隔离器 输入信号
WDM EDF
光隔离器
光滤波器
泵浦激光器
输出信号
反向泵浦结构EDFA
泵浦光与信号光从不同的方向输入掺铒光纤,两者在掺
什么是光的光学放大和光学放大器
什么是光的光学放大和光学放大器?光的光学放大是指利用物质的非线性光学效应,将光波的强度增大的过程。
光学放大器则是利用光学放大原理制造出来的光学器件。
光学放大器可以分为有源放大器和无源放大器两种类型。
有源光学放大器是利用激光器原理将电能转化为光能,通过在物质中激发出更多的光子,使光波的强度得以增强。
有源放大器通常由激光器、放大介质和光学系统组成。
激光器产生一束窄带宽、高亮度、相干性好的光束,将其注入放大介质中,利用物质中的非线性光学效应,将光波的强度进行增强。
常见的有源放大器包括半导体光放大器、光纤放大器和固体激光器等。
无源光学放大器是利用物质的线性光学效应,将光波的能量传输到另一个位置时,利用光纤中光波的自发辐射和受激辐射效应,使得光波的强度得以增强。
无源放大器通常由光纤、光纤耦合器和光学系统组成。
光波通过光纤传输时,通过光纤中的自发辐射和受激辐射效应,使得光波的强度得以增强。
常见的无源放大器包括光纤放大器和半导体光放大器等。
光学放大器的性能可以通过增益、噪声系数、带宽和饱和功率等指标来描述。
增益是指光波在放大器中的强度增加倍数。
噪声系数是指放大器在增益过程中引入的噪声水平。
带宽是指放大器能够放大的光波频率范围。
饱和功率是指放大器输出光波强度达到极限时的输入光功率。
光学放大器在通信、传感、激光器和光学成像等领域有着广泛的应用。
在光通信中,光学放大器可以用于增强光信号的强度,延长信号传输距离。
在光学成像中,光学放大器可以用于增强图像信号的强度,提高图像质量。
在激光器中,光学放大器可以用于增强激光器的输出功率,扩大应用范围。
在光学传感中,光学放大器可以用于提高传感器的灵敏度和测量精度。
总结起来,光的光学放大是利用物质的非线性光学效应,将光波的强度增大的过程。
光学放大器是利用光学放大原理制造出来的光学器件。
光学放大器可以分为有源放大器和无源放大器两种类型。
有源放大器通常由激光器、放大介质和光学系统组成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
半导体放大器 光纤放大器
非线性光放大器 EDFA
要点
2、EDFA的结构与分类
泵浦光源 掺铒光纤 光隔离器 波分复用器 光滤波器
同向泵浦结构EDFA 反向泵浦结构EDFA 双向泵浦结构EDFA
要点
3、EDFA的工作原理
在泵浦光的照射下,掺铒光纤处于粒子数反转 的状态,接收到光子后产生受激辐射,实现了 对光的放大。
光纤网的关键器件。
4.3 系统接收机预放
•
如果用光滤波器,EDFA的低噪声将极大改善直接检测式接收机灵敏
度,可改善约10dB,接近或超过相干光接收机的最好水平。
96亿美圆
7.5亿美圆 2亿美圆
EDFA
FRA SOA
美国CIBC worrld market公司对2004年光放大器市场预测
要点
1、光放大器的分类
1.3.1 掺铒光纤放大器原理图
泵浦光
掺铒光纤
耦合器 输入信号 980/1550nm WDM
光隔离器 输出信号
1.3.2 EDFA
• EDFA工作在波长1550nm,与光纤的低损耗波段一致,是最具吸引力的和最成 熟的光纤放大器。
• EDFA优点:
EDFA优点
• 1. • 2. • 3. • 4. • 5.
2 EDFA的结构和部件
• 一台实用的EDFA由光路和辅助电路组成。 • 光路部分:
掺铒光纤、泵浦光源、合波器、光隔离器、光滤波器等;
• 辅助电路: 电源、微处理自动控制和告警及保护电路
2.1 EDFA的泵浦源和泵浦方式
• EDFA的另一核心是泵浦源,它为信号放大提供足够的能量,使物质达到粒子 数反转分布的必要条件。
O/E
E/O
缺点:1、设备复杂。 2、稳定性可靠性不够。 3、不利于波分复用。 4、光电转换限制通信的容量。
未来全光网络(AON)的发展趋势:光复用、光交换、光 路由,所以必须在光传输上实现全光化。
光放大器:直接在光域进行放大。
发展历程:
80年代中、后期SOA的研究为主;
90年代EDFA获得巨大成功,成为光纤通信系统必不可少的器件。
4.1 发射机末级光功率放大器
• 可直接接在激光二极管后,将信号放大到10dBm上,而不恶化信号。 • 图示:
4.2 系统线路放大器
• 直接接入光传输链路线路中,作为在线放大器,或光中继器取代光-电-光中 继器,实现光-光放大。
• 结构如图示 • 这种线路放大器是全光通信系统和全光网络的关键器件,也是长距离和CATV
Erbium-doped fiber amplifier (EDFA)
0.2 放大器的形式
• 利用光纤非线性效应制作的常规光纤放大器,如:喇曼放大器; • 利用半导体制作的半导体放大器; • 利用稀土掺杂的光纤放大器
0.3 几种类型放大器的比较
0.4
常用光放大器及其工作波段
1、半导体放大器(SOA) 2、光纤拉曼放大器(FRA) 3、掺铒光纤放大器(EDFA) 4、掺镨光纤放大器(PDFA)
损耗
1310nm
1550nm
波长
PDFA
EDFA
SOA
FRA
1.1 常规光纤放大器
• 所谓常规光纤放大器:用传输光纤制作的放大器,这种光纤放大器是利用光 纤的非线性光学效应产生增益机制从而对光信号放大。
• 特点:传输线路和放大线路同为一体 (都是光纤)
不足:单位长度的增益系数很低,需要很高的泵浦功率,不利于在高速大容 量光纤通信系统中使用。
EDFA的三种结构方式3、双向泵源自方式合波器光隔离器
泵浦光源
光隔离器
光滤 波器
泵浦光源
3 EDFA工作原理
• 在泵浦光的照射下,掺铒光纤处于粒子数反转的状态,接收到光子后产生受 激辐射,实现了对光的放大。
4 EDFA在光纤通信中的应用形式
• EDFA主要有三种应用方式: • 发射机末级光功率放大; • 线路(在线)放大器; • 接收机预放。
第八讲
光放大器
2004.10.26
λ1
光发送
λ
O 光发送2 M
U
λX
光发送Ν
后置放大
DWDM工作原理
λ1,λλ2……λΝ
2
OA
λ2
λ1
光接收
O λ2
D
光接收
M
U X
λΝ
光接收
DWDM光纤传输系统
前置放大
内容提要
• 1、光放大器的形式(分类) • 2、EDFA的结构与部件 • 3、EDFA的工作原理 • 4、EDFA在光纤通信中的应用形式
0.1 序
• 光放大器的出现,可视为光纤通信发展史上的重要的里程碑。 • 在光纤放大器出现之前,光纤通信的中继器无一例外的采用光/电/光变换的
方式,导致通信系统的复杂化,进而系统效率降低 • 因此人们一直致力于全光型中继器的研制,出现了很多种光放大器。
0.1 传统放大技术的缺陷
放大 整形 判决再生
四、缺点: 1、与光纤耦合困难。 2、对光的偏振特性敏感。 3、 噪声及串扰大。
1.3 稀土掺杂光纤放大器
• 利用光纤中稀土掺杂物质引起的增益机制实现光放大。
• 典型代表:
• 工作波长为:
•
1550nm的铒[Er]掺杂光纤放大器EDFA
•
1300nm的镨[Pr]掺杂光纤放大器PDFA
•
1400nm的铥[ T ]掺杂光纤放大器TDFA
• 1.已经商用化的是EDFA,其大量用于通信系统;
• 2.PDFA的放大波段在1300nm与G-652光纤的零点色散相吻合,在已建立的 1.3um通信系统中有着巨大的应用市场;但因掺镨光纤的机械强度和与普通 光纤熔接困难等因素,目前尚未获得广泛商业应用。
• 3.工作在1.4um的掺铥光纤放大器(TDFA)为传输开辟了新的波长段资源, 它和EDFA组合可以实现超宽带合波传输。
• 泵浦源直接决定EDFA的性能,所以要求泵浦工作必须稳定可靠、寿命长;
2.2 EDFA的三种结构方式
1、 同向泵浦方式
合波器
光隔离器
泵浦光源
优点:噪声小 缺点: 输出光功率不大
光隔离器
滤波器
EDFA的三种结构方式
2、反向泵浦方式
合波器
光隔离器
优点:输出光功率大 缺点:噪声大
光隔离器
光滤波 器
泵浦光源
常规光纤放大器原理图
耦合 器件
光输入 信号
激活物质
泵浦 源
耦合 器件
放大光 信号
1.2 半导体光放大器
一、工作原理:
在电泵浦源的作用下,半导体材料发生粒子数反转,当遇到 外来光子激励时,产生受激辐射,对光的能量进行放大 。
二、放大波段:
1300nm-1600nm
三、 优点: 1、 覆盖1310nm和1550nm 的窗口范围。 2、充分利用激光器技术,工艺成熟,便于集成。