中考数学基础知识要点归纳
中考数学复习知识点归纳总结7篇
中考数学复习知识点归纳总结7篇篇1一、数与代数(一)数的认识1. 自然数的认识:自然数是指用以计量事物的件数或表示事物次序的数。
即用数码0,1,2,3,4……所表示的数。
中考中可能会涉及自然数的连续性及自然数的个数等问题。
复习时需要注意对自然数概念的理解及运用。
2. 整数的认识:整数包括正整数、零和负整数。
在中考复习中,需要掌握整数的性质、运算规则以及与分数的区别等知识点。
(二)代数式与方程1. 代数式的认识:代数式是由数字、字母和数学符号组成的一种数学表达式。
在中考复习中,需要掌握代数式的简化、代入计算等知识点。
同时还需要加强对代数式在实际问题中应用的能力培养。
如与面积计算、路程问题等结合出题的情况很常见。
例如“给出多边形的一条边长为a米,与其相邻的两边之差的代数式是:______________”。
因此类题目较为灵活,需要考生具备一定的数学思维和解题技巧。
(三)数的运算与性质篇2一、数与代数(一)数的认识1. 自然数的认识:自然数是指用以计量事物的件数或表示事物次序的数。
即用数码0,1,2,3,4……所表示的数。
2. 整数的认识:整数是自然数中的一部分,包括正整数和负整数。
它们在日常生活中的应用非常广泛。
3. 小数、分数与百分数的认识:熟练掌握小数、分数与百分数的概念及其相互转化,对于数学计算和应用题的解答至关重要。
(二)代数知识1. 代数式的认识与运算:掌握代数式的概念、性质及运算规则,能够熟练进行代数式的化简、求值等。
2. 方程与不等式的应用:掌握一元一次方程、不等式及其解法,能够灵活运用方程与不等式解决实际问题。
二、几何知识(一)平面几何1. 图形的认识:熟练掌握各种基本图形的性质、分类及相互之间的关系。
2. 图形的测量:掌握各种图形的周长、面积等测量方法,能够熟练计算图形的面积和周长。
3. 图形的变换:了解图形的平移、旋转、翻折等变换方式,掌握其性质和应用。
(二)立体几何1. 长方体与正方体的认识:掌握长方体与正方体的性质、体积和表面积的计算方法。
中考数学知识点总结(最新最全)
中考数学总复习资料代数部分第一章:实数基础知识点:一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成q p 的形式,其中p 、q 是互质的整数,这是有理数的重要特征。
2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如 1.101001000100001……;特定意义的数,如π、45sin °等。
3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。
二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。
(1)实数a 的相反数是 -a ; (2)a 和b 互为相反数⇔a+b=02、倒数:(1)实数a (a ≠0)的倒数是a1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数3、绝对值:(1)一个数a 的绝对值有以下三种情况:⎪⎩⎪⎨⎧-==0,0,00, a a a a a a(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。
(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。
4、n 次方根(1)平方根,算术平方根:设a ≥0,称a ±叫a 的平方根,a 叫a 的算术平方根。
(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。
(3)立方根:3a 叫实数a 的立方根。
(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。
三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。
原点、正方向、单位长度是数轴的三要素。
2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。
中考数学初中知识点归纳
中考数学初中知识点归纳中考数学是初中阶段学生的重要考试,它涵盖了初中三年所学的数学知识,主要包括代数、几何、统计与概率等部分。
以下是中考数学初中知识点的归纳:一、数与代数1. 数的认识:包括自然数、整数、有理数、无理数、实数等概念。
2. 数的运算:加减乘除、乘方、开方、绝对值等基本运算。
3. 代数式:整式、分式、多项式的加减乘除、因式分解等。
4. 方程与不等式:一元一次方程、一元二次方程、分式方程、不等式组的解法。
5. 函数:一次函数、二次函数、反比例函数的图象与性质。
二、几何1. 平面图形:线段、角、三角形、四边形、圆的性质和计算。
2. 立体图形:长方体、正方体、圆柱、圆锥、球的体积和表面积。
3. 图形的变换:平移、旋转、反射等。
4. 相似与全等:相似三角形、全等三角形的判定与性质。
5. 圆的性质:圆周角、切线、弧长、扇形面积等。
三、统计与概率1. 数据的收集与处理:数据的收集、整理、描述。
2. 统计图表:条形图、折线图、饼图的绘制与解读。
3. 平均数、中位数、众数:计算方法及意义。
4. 方差与标准差:衡量数据的离散程度。
5. 概率:事件的概率计算,包括古典概型和几何概型。
四、解题技巧与策略1. 审题:仔细阅读题目,理解题目要求。
2. 画图:在几何题中,画出图形有助于理解问题。
3. 列方程:在代数题中,列出方程是解决问题的关键。
4. 分类讨论:对于复杂问题,进行分类讨论可以简化问题。
5. 检查:解题后,检查答案是否符合所有条件。
结束语:中考数学的知识点广泛,但只要掌握好基础知识,理解每个知识点的内涵和联系,结合适当的解题技巧,就能在考试中取得优异的成绩。
希望以上的归纳能够帮助同学们更好地复习和准备中考数学,祝大家考试顺利!。
初三数学中考知识点总结【优秀10篇】
初三数学中考知识点总结【优秀10篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、计划大全、策划方案、报告大全、心得体会、演讲致辞、条据文书、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of classic sample essays for everyone, such as work summaries, plan summaries, planning plans, report summaries, insights, speeches, written documents, essay summaries, lesson plan materials, and other sample essays. If you want to learn about different formats and writing methods of sample essays, please stay tuned!初三数学中考知识点总结【优秀10篇】面对着中考,对于数学要想拿高分离不开平时的刻苦,以及大量的试题训练,当然也少不了一些备考的技巧。
中考数学考点总结归纳
中考数学考点总结归纳初三中考数学知识点总结1.同角或等角的余角相等。
2.过一点有且只有一条直线和已知直线垂直。
3.过两点有且只有一条直线。
4.两点之间线段最短。
5.同角或等角的补角相等。
6.边角边公理:有两边和它们的夹角对应相等的两个三角形全等。
7.角边角公理:有两角和它们的夹边对应相等的两个三角形全等。
8.推论:有两角和其中一角的对边对应相等的两个三角形全等。
9.边边边公理:有三边对应相等的两个三角形全等。
10.斜边、直角边公理:有斜边和一条直角边对应相等的两个直角三角形全等。
11.在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半。
12.直角三角形斜边上的中线等于斜边上的一半。
13.定理:线段垂直平分线上的点和这条线段两个端点的距离相等。
14.逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
15.勾股定理:直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c。
16.勾股定理的逆定理:如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形初中几何公式:四边形。
中考数学怎么快速提分中考数学复习课牵扯到一个系统化、完善化的关键环节,这个环节既关系到学生巩固、消化、归纳数学基础知识,提炼分析、解决问题的能力,又关系到学生对所学知识的实际运用,更是对学习基础较差的学生起到查漏补缺的作用。
中考数学复习课的教学一般具有“基础+提高+综合”的特点,不仅要完成教学任务,更要看重“教学有效性”。
因此,初三复习一般都要经历这么三轮复习:在中考复习阶段很多学生在初一、初二时期的单元考等中成绩都是比较优秀,但在初三综合模拟考中往往成绩却不佳。
究其原因一个是因为初一初二单元考等的范围小、内容少,而模拟考或中考试卷考查的范围大、知识面广、易混淆的知识点更多。
中考数学复习,时间紧迫,更需要我们看重教学有效性,如进行系统的复习,打好每一位学生的基础,使每个学生对初中数学知识尽量达到“理解”和“掌握”的要求;在熟练应用基础知识的同时进行提高、拓展和综合。
中考数学必考知识点归纳
中考数学必考知识点归纳一、数与代数。
1. 有理数。
- 有理数的概念:整数和分数统称为有理数。
整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。
- 数轴:规定了原点、正方向和单位长度的直线叫做数轴。
数轴上的点与有理数一一对应。
- 相反数:只有符号不同的两个数叫做互为相反数,0的相反数是0。
若a与b互为相反数,则a + b=0。
- 绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
即| a|=a(a≥0) -a(a<0)。
- 有理数的运算:- 加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0,绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数。
- 减法法则:减去一个数等于加上这个数的相反数。
- 乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。
- 除法法则:除以一个不等于0的数,等于乘这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数都得0。
- 乘方:求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂。
a^n 中,a叫做底数,n叫做指数。
2. 实数。
- 无理数:无限不循环小数叫做无理数,如√(2)、π等。
- 实数的概念:有理数和无理数统称为实数。
实数与数轴上的点一一对应。
- 实数的运算:实数的运算顺序为先算乘方、开方,再算乘除,最后算加减;有括号的先算括号里面的。
3. 代数式。
- 代数式的概念:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式,单独的一个数或者一个字母也是代数式。
- 整式:单项式和多项式统称为整式。
单项式是数与字母的乘积,单独的一个数或一个字母也是单项式;多项式是几个单项式的和。
- 整式的加减:实质是合并同类项,同类项是指所含字母相同,并且相同字母的指数也相同的项。
初三数学知识点总结归纳(4篇)
初三数学知识点总结归纳初三数学复习五大方法初三新学期数学知识点一、圆的定义1、以定点为圆心,定长为半径的点组成的图形。
2、在同一平面内,到一个定点的距离都相等的点组成的图形。
二、圆的各元素1、半径:圆上一点与圆心的连线段。
2、直径:连接圆上两点有经过圆心的线段。
3、弦:连接圆上两点线段(直径也是弦)。
4、弧:圆上两点之间的曲线部分。
半圆周也是弧。
(1)劣弧:小于半圆周的弧。
(2)优弧:大于半圆周的弧。
5、圆心角:以圆心为顶点,半径为角的边。
6、圆周角:顶点在圆周上,圆周角的两边是弦。
7、弦心距:圆心到弦的垂线段的长。
三、圆的基本性质1、圆的对称性(1)圆是图形,它的对称轴是直径所在的直线。
(2)圆是中心对称图形,它的对称中心是圆心。
(3)圆是对称图形。
2、垂径定理。
(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。
(2)推论:平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。
平分弧的直径,垂直平分弧所对的弦。
3、圆心角的度数等于它所对弧的度数。
圆周角的度数等于它所对弧度数的一半。
(1)同弧所对的圆周角相等。
(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。
4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。
5、夹在平行线间的两条弧相等。
6、设⊙O的半径为r,OP=d。
初三数学知识点总结归纳(二)1.数的分类及概念数系表:说明:分类的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。
(表为:x0)性质:若干个非负数的和为0,则每个非负数均为0。
3.倒数:①定义及表示法②性质:A.a1/a(a1);B.1/a中,aC.04.相反数:①定义及表示法②性质:A.a0时,aB.a与-a在数轴上的位置;C.和为0,商为-1。
5.数轴:①定义(三要素)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
2023初中数学中考必背知识点总结归纳
2023初中数学中考必背知识点总结归纳同学们应该在数学方面应该一开始就打下良好的基础,并进行强化训练。
以下是整理的一些2023初中数学中考必背知识点总结,欢迎阅读参考。
中考数学知识点梳理归纳1一元一次方程知识点(一)方程:先设字母表示未知数,然后根据相等关系,写出含有未知数的等式叫做方程。
(二)一元一次方程一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式,叫做一元一次方程。
求出方程中未知数的值叫做方程式的解。
(三)解方程式的步骤解一元一次方程的步骤:去分母、去括号、移项、合并同类项、未知数系数化为1。
2一元二次方程(一)只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程。
一元二次方程经过整理都可化成一般形式aX?+bX+c=0(a≠0).其第1页共9页中aX?叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。
(二)一元二次方程的解法1.开平方法形如(X-m)?=n(n≥0)一元二次方程可以直接开平方法求得解为X=m±√n。
①等号左边是一个数的平方的形式而等号右边是一个常数。
②降次的实质是由一个一元二次方程转化为两个一元一次方程。
③方法是根据平方根的意义开平方。
2.配方法用配方法解一元二次方程的步骤:①把原方程化为一般形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤进一步通过直接开平方法求出方程的解,如果右边是非负数,则方程有两个实根;如果右边是一个负数,则方程有一对共轭虚根。
3.求根公式用求根公式法解一元二次方程的一般步骤为:①把方程化成一般形式aX?+bX+c=0,确定a,b,c的值(注意符号);②求出判别式△=b?-4ac的值,判断根的情况。
当Δ0时,x=[-b±(b?-4ac)^(1/2)]/2a,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ0时,方程无实数根,但有2个共轭复根。
中考数学必考知识点
中考数学必考知识点中考数学的必考知识点主要包括以下内容:一、数与代数运算1.数的基本概念:整数、有理数、实数、自然数、负数、正数等2.整数的加减乘除运算及性质3.分数的加减乘除运算及性质4.百分数、纯小数、循环小数的相互转换和运算5.正比例、反比例关系及其应用6.代数式的概念和基本运算:加法、乘法、合并同类项、分配律等7.一次方程与一次方程组的概念、解法及应用二、几何与空间1.图形的分类与性质:点、线、面、角2.直角、全等、相似三角形及其性质3.平行线与平行线的性质:同位角、内错角、对顶角等4.三角形内外角的关系、三角形中位线、高线的性质5.平面镶嵌、园的常见性质、多边形的周长和面积计算三、函数与方程1.函数的概念:自变量、函数值、定义域、值域等2.一次函数和二次函数的概念、图像和性质3.代数方程的解法:一次方程、二次方程的解法及应用4.不等式的解法及其应用四、数据与统计1.数据的收集和整理:频数、频率、众数等2.统计图的绘制:折线图、柱状图、饼图等3.平均数的计算:算术平均数、加权平均数等4.相关系数和回归直线的概念及计算方法五、概率与统计1.基本概念:试验、随机事件、样本空间、事件等2.概率的计算:古典概型、条件概率、事件的独立性等3.概率树的绘制及应用4.排列与组合的概念和计算方法六、应用题1.复合运算:综合运用多个知识点解决实际问题2.数学建模:运用数学知识解决实际问题3.空间几何、概率统计等知识在实际问题中的应用以上是中考数学的必考知识点的一个大致概括,具体考纲可能因不同地区、不同年份而有所不同。
在备考中,一定要结合教材进行系统学习,并进行大量的练习和题型熟悉,同时特别重视基础知识的巩固和应用题的拓展训练,这样才能全面提升数学水平,取得好成绩。
初三数学知识点总结大全(热门6篇)
初三数学知识点总结大全(热门6篇)初三数学知识点总结大全第1篇1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
3、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
4、中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。
5、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
6、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
7、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
8、多边形的内角:多边形相邻两边组成的角叫做它的内角。
9、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
10、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
11、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。
12、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做多边形覆盖平面(平面镶嵌)。
镶嵌的条件:当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个时,就能拼成一个平面图形。
13、公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和。
性质2:三角形的一个外角大于任何一个和它不相邻的内角。
⑶多边形内角和公式:边形的内角和等于·180°⑷多边形的外角和:多边形的外角和为360°。
⑸多边形对角线的条数:①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形、②边形共有条对角线。
初三数学知识点总结大全第2篇平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A 的算术平方根。
②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。
中考数学复习知识点归纳总结6篇
中考数学复习知识点归纳总结6篇篇1一、数与代数1. 数的基本概念:整数、分数、小数、百分数、比例、方程等。
2. 数的运算:加减乘除四则运算,乘方、开方运算,分数运算,小数运算等。
3. 代数表达式:用字母表示数,表达数量关系和变化规律。
4. 方程与不等式:解一元一次方程,解一元一次不等式,理解函数的概念。
二、几何与图形1. 几何概念:点、线、面、体,角、度数,平行、垂直等基本几何概念。
2. 图形与变换:平移、旋转、对称等图形变换,相似图形,全等图形。
3. 面积与体积:计算平面图形的面积,计算立体图形的体积。
4. 解析几何:理解直线的方程,理解圆及其方程。
三、函数与图像1. 函数的概念:理解变量间的关系,用解析式表示函数关系。
2. 函数的运算:函数的加减法,函数的乘法,复合函数。
3. 函数的图像:理解函数的图像及其变换,根据图像理解函数的性质。
4. 反函数与对称函数:理解反函数的概念,理解对称函数的概念。
四、数据与概率1. 数据收集与整理:理解数据收集的方法,会用统计图表表示数据。
2. 数据的计算:平均数、中位数、众数等统计量的计算,方差和标准差的计算。
3. 概率的概念:理解概率的基本概念,会计算事件的概率。
4. 概率的应用:理解概率在生活中的应用,会解决与概率相关的问题。
五、综合与实践1. 图形的变换与对称:运用几何知识解决实际问题,理解图形的变换和对称。
2. 函数的实际应用:理解函数在实际问题中的应用,如利润、成本等问题。
3. 数据的分析与决策:运用统计知识解决实际问题,理解数据的分析与决策。
4. 课题学习与研究性学习:理解课题学习与研究性学习的意义和方法。
在中考数学复习过程中,我们需要对以上知识点进行全面的梳理和总结,形成系统的知识框架。
同时,我们需要关注考试动态和命题趋势,结合历年真题进行有针对性的练习和巩固。
此外,我们还要注重解题技巧和策略的学习和应用,提高解题效率和准确性。
希望同学们能够认真复习备考,取得优异的成绩!篇2一、数与代数(一)数的认识复习要点:整数、小数、分数、百分数的认识及其关系,数的运算规则和运算性质。
中考数学基本考点归纳梳理总结附考点答案(完美版 )
中考基本考点归纳总结(概念、定理、推论、法则)第一章 实数与代数式第1讲 实数的概念与应用考点1:正负数的意义:正负数表示___________。
实数与___________一一对应。
考点2:非负数a 、2a 1)a (2a 0;(2)非负数之和为0,当且仅当每一个非负数为0。
考点2:能根据相反数、倒数、绝对值的概念及其有关性质解题,理解相反数、绝对值的几何意义。
(1)实数:可分为 、无理数;还可分为 、0、 。
(2)数轴:规定了 、 、 的直线。
数轴上的点与 一一对应。
(2)相反数:是只有___________不同的两个数,即若a 、b 互为相反数,那么___________,0在相反数仍是0;在数轴上表示相反数的两个点。
实数a 的相反数是 ,0的相反数是0。
(3)绝对值的概念:___________;一个数a 的绝对值等于在数轴上表示数a 的点___________。
(4)倒数:乘积是1的两个数互为系数,若a 、b 互为倒数,那么___________,0没有倒数。
考点3:能按___________要求确定一个数的近似值,能用___________表示数。
(1)精确度:指将一个数四舍五入到的___________。
( 2 )有效数字:指从一个数的______________起到___________止之间的所有数字。
(3)科学记数法:把一个数写成___________形式,其中___________,这种计数方法叫做___________。
第2讲 实数的运算及大小比较考点1:实数的加、减、乘、除、乘方、开方运算。
注意:(1)0次幂运算:0a (a ≠0)=___________;(2)负指数幂运算:n a -=___________(a ≠0);(3)()n a -与()n a -的联系与区别:当n 是偶数时,()n a -+()n a -=___________,当n 是奇数时,()n a -=___________。
初三中考数学知识点归纳
初三中考数学知识点归纳初三中考数学知识点归纳是帮助学生系统复习和掌握数学基础概念、公式和解题技巧的重要工具。
以下是对初三中考数学知识点的归纳总结:一、数与代数1. 实数:包括有理数和无理数的概念,实数的性质和运算。
2. 代数式:包括代数表达式的简化、合并同类项、因式分解等。
3. 方程与不等式:一元一次方程、一元二次方程的解法,不等式的基本性质和解法。
4. 函数:包括一次函数、二次函数、反比例函数的图像和性质。
5. 指数与对数:指数运算法则,对数的定义和基本性质。
二、几何1. 平面图形:包括线段、角、三角形、四边形、圆等基本几何图形的性质。
2. 相似与全等:相似三角形、全等三角形的判定和性质。
3. 圆的性质:圆周角、切线、弧长、扇形面积等。
4. 立体几何:包括长方体、圆柱、圆锥、球等立体图形的表面积和体积计算。
三、统计与概率1. 数据的收集与处理:数据的收集方法,数据的整理和描述。
2. 统计图表:条形图、折线图、饼图的绘制和解读。
3. 概率:事件的确定性和不确定性,概率的计算方法。
四、解题技巧1. 审题:仔细阅读题目,理解题意。
2. 列式:根据题意列出相应的数学表达式或方程。
3. 计算:准确进行数学运算,注意运算顺序。
4. 检查:解题后要进行结果的检验和验证。
结束语通过以上对初三中考数学知识点的归纳,希望能帮助同学们更好地复习和准备中考。
数学学习需要不断的练习和思考,希望每位同学都能在中考中取得优异的成绩。
记住,数学不仅仅是记忆公式和定理,更重要的是理解其背后的逻辑和原理。
祝你们学习进步,考试顺利!。
中考数学重难点知识归纳
中考数学重难点知识归纳一、代数基础知识1. 代数式:包括单项式、多项式、分式等基本概念,以及代数式的化简、求值等基本技能。
2. 方程与不等式:包括一元一次方程、一元二次方程、二元一次方程组、不等式与不等式组等,掌握解法和应用。
3. 函数:包括一次函数、二次函数、反比例函数等,理解函数的性质和图像,掌握函数的求值和应用。
二、几何基础知识1. 平面几何:包括线段、角、三角形、四边形、多边形等基本概念,以及图形的性质和判定。
2. 立体几何:包括点、线、面、体等基本概念,以及空间图形的性质和判定。
三、函数与方程1. 函数与图像:掌握函数与图像的关系,能够通过图像解决实际问题。
2. 方程与求解:掌握一元二次方程的解法,能够解决实际问题。
四、平面几何1. 三角形:掌握三角形的性质和判定,能够解决实际问题。
2. 四边形:掌握四边形的性质和判定,能够解决实际问题。
五、立体几何1. 空间图形:掌握空间图形的性质和判定,能够解决实际问题。
2. 空间距离:掌握空间距离的计算方法,能够解决实际问题。
六、概率与统计1. 概率:掌握概率的基本概念和计算方法,能够解决实际问题。
2. 统计:掌握统计的基本知识和方法,能够解决实际问题。
七、代数式与方程1. 代数式的化简:掌握代数式的化简方法,能够解决实际问题。
2. 方程的求解:掌握一元一次方程、一元二次方程的解法,能够解决实际问题。
八、圆与三角形1. 圆的基本性质:掌握圆的基本性质和判定,能够解决实际问题。
2. 三角形的相似与全等:掌握三角形相似与全等的判定方法,能够解决实际问题。
数学中考知识点归纳2023
数学中考知识点归纳2023
数学中考知识点:
(一)初中数学基础知识
1. 数的性质:自然数、整数、有理数、无理数、实数
2. 数的运算:加、减、乘、除、乘方、开方
3. 数的表示法:分数、百分数、比例、数列、代数式
4. 数的变化规律:倍数、百分率、利率、增长率、减少率
(二)初中数学基本概念
1. 数学中的图形:点、线、面、体、多面体
2. 图形的性质:角、边、对称、相似、恒等、平行、垂直
3. 圆的相关概念:圆心、半径、直径、圆周、弧、扇形、面积
(三)初中代数基础知识
1. 代数式的基本概念:变量、常量、系数、项、幂
2. 代数式的拆分、合并与系数分离等基本操作
3. 一元一次方程及其解法:加减消去法、配方法、公式法等
4. 简单的函数的概念和表示:自变量、函数值、函数的图像等
(四)初中几何基础知识
1. 基本几何图形的面积:矩形、平行四边形、三角形、梯形、圆
2. 三角形的相关概念:高、中线、角平分线、外心、内心、垂心
3. 几何证明:数学思想、证明方法、证明过程等
(五)初中统计与概率基础知识
1. 双变量统计:统计图表、相关系数等
2. 概率的基本概念:事件、样本空间、概率、条件概率等
3. 简单的排列组合问题:阶乘、组合数、排列等
以上是数学中考知识点的基本归纳,掌握这些知识点能够提高学生的数学基本素养,有利于顺利应对中考中的数学题目。
年中考数学必背知识点(完整版)
中考数学复习资料第一章实数考点一、实数的,概念及分类 0考点二、实数的,倒数、相反数和绝对值 0考点三、平方根、算数平方根和立方根 (1)考点四、科学记数法和近似数 (1)考点五、实数大小的,比较 (1)考点六、实数的,运算 (2)第二章代数式考点一、整式的,有关概念 (3)考点二、多项式 (3)考点三、因式分解 (4)考点四、分式 (5)考点五、二次根式 (5)第三章方程(组)考点一、一元一次方程的,概念 (7)考点二、一元二次方程 (7)考点三、一元二次方程的,解法 (7)考点四、一元二次方程根的,判别式 (8)考点五、一元二次方程根与系数的,关系 (8)考点六、分式方程 (9)考点七、二元一次方程组 (9)第四章不等式(组)考点一、不等式的,概念 (10)考点二、不等式基本性质 (10)考点三、一元一次不等式 (10)考点四、一元一次不等式组 (11)第五章统计初步与概率初步考点一、平均数 (12)考点二、统计学中的,几个基本概念 (13)考点三、众数、中位数 (13)考点四、方差 (13)考点五、频率分布 (14)考点六、确定事件和随机事件 (15)考点七、随机事件发生的,可能性 (15)考点八、概率的,意义与表示方法 (15)考点九、确定事件和随机事件的,概率之间的,关系 (16)考点十、古典概型 (16)考点十一、列表法求概率 (16)考点十二、树状图法求概率 (16)考点十三、利用频率估计概率 (17)第六章一次函数与反比例函数考点一、平面直角坐标系 (17)考点二、不同位置的,点的,坐标的,特征 (17)考点三、函数及其相关概念 (18)考点四、正比例函数和一次函数 (19)考点五、反比例函数 (21)第七章二次函数考点一、二次函数的,概念和图像 (23)考点二、二次函数的,解析式 (24)考点三、二次函数的,最值 (24)考点四、二次函数的,性质 (24)第八章图形的,初步认识考点一、直线、射线和线段 (26)考点二、角 (28)考点三、相交线 (29)考点四、平行线 (30)考点五、命题、定理、证明 (31)第九章三角形考点一、三角形 (32)考点二、全等三角形 (34)考点三、等腰三角形 (35)第十章四边形考点一、四边形的,相关概念 (37)考点二、平行四边形 (38)考点三、矩形 (39)考点四、菱形 (39)考点五、正方形 (40)考点六、梯形 (41)第十一章解直角三角形考点一、直角三角形的,性质 (43)考点二、直角三角形的,判定 (43)考点三、锐角三角函数的,概念 (44)考点四、解直角三角形 (44)第十二章圆考点一、圆的,相关概念 (45)考点二、弦、弧等与圆有关的,定义 (45)考点三、垂径定理及其推论 (45)考点四、圆的,对称性 (46)考点五、弧、弦、弦心距、圆心角之间的,关系定理 (46)考点六、圆周角定理及其推论 (46)考点七、点和圆的,位置关系 (47)考点八、过三点的,圆 (47)考点九、反证法 (47)考点十、直线与圆的,位置关系 (47)考点十一、切线的,判定和性质 (48)考点十二、切线长定理 (48)考点十三、三角形的,内切圆 (48)考点十四、圆和圆的,位置关系 (48)考点十五、正多边形和圆 (49)考点十六、与正多边形有关的,概念 (49)考点十七、正多边形的,对称性 (49)考点十八、弧长和扇形面积 (50)第十三章图形的,变换考点一、平移 (51)考点二、轴对称 (51)考点三、旋转 (52)考点四、中心对称 (52)考点五、坐标系中对称点的,特征 (52)第十四章图形的,相似考点一、比例线段 (53)考点二、平行线分线段成比例定理 (54)考点三、相似三角形 (54)第十五章尺规作图考点一、尺规作图的,要求 (57)考点2、五种基本尺规作图 (57)第一章 实数考点一、实数的,概念及分类1、实数的,分类正有理数有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的,数,如32,7等;(2)有特定意义的,数,如圆周率π,或化简后含有π的,数,如3π+8等; (3)有特定结构的,数,如0.1010010001…等;(4)某些三角函数,如sin60o 等考点二、实数的,倒数、相反数和绝对值1、相反数实数与它的,相反数时一对数(只有符号不同的,两个数叫做互为相反数,零的,相反数是零),从数轴上看,互为相反数的,两个数所对应的,点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a= - b ,反之亦成立。
中考数学知识点总结(完整版)
中考数学知识点总结(完整版)中考数学知识点总结一、整数及其运算1. 整数的概念:包括正整数、负整数和零。
2. 整数的比较:根据绝对值的大小进行比较,绝对值越大的整数越小。
3. 整数的加法和减法:- 同号相加,取相同符号,数值相加;- 异号相加,取绝对值较大的符号,数值取较大的减去较小的;- 整数减法可以转换为加法运算。
二、分数及其运算1. 分数的概念:由分子和分母组成,表示部分与整体的比例关系。
2. 分数的比较:可以先通分,再比较分子的大小。
3. 分数的加法和减法:- 分母相同,分子相加或相减;- 分母不同,先通分,再进行加减运算。
4. 分数的乘法和除法:- 分子相乘,分母相乘;- 除法转换为乘法,将除数倒数乘以被除数。
三、代数式及其运算1. 代数式的概念:由数字、字母和算符组成,可表示一个或多个数的和、差、积、商。
2. 代数式的加法和减法:将同类项相加或相减,并合并同类项。
3. 代数式的乘法:使用分配律,将每一项与其他项相乘。
4. 代数式的除法:将除法转换为乘法,将除数的倒数乘以被除数。
四、方程与方程组1. 方程的概念:由等号连接的两个代数式构成,表示两个量相等的关系。
2. 解一元一次方程:通过逆运算,使得未知数单独在一边,求出未知数的值。
3. 解一元一次不等式:通过运算规则,求出不等式的解集。
4. 方程组的概念:由多个方程组成,表示多个变量之间的关系。
5. 解二元一次方程组:通过消元法或代入法,求出方程组的解。
五、几何图形与计算1. 平面图形:包括点、线、线段、射线、角、三角形、四边形等。
2. 空间图形:包括立体图形如球体、长方体、正方体等。
3. 相似与全等:相似图形的对应边比值相等,全等图形各边和角相等。
4. 长度、面积、体积的计算公式:根据几何图形的特点,计算对应的量。
六、统计与概率1. 统计图表的读取与分析:理解直方图、折线图、饼图等的含义。
2. 平均数的计算:包括算术平均数、加权平均数等。
中考数学必背知识点(完整版)
中考数学总复习资料代数部分第一章:实数基础知识点:一、实数的,分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成q p 的,形式,其中p 、q 是互质的,整数,这是有理数的,重要特征。
2、无理数:初中遇到的,无理数有三种:开不尽的,方根,如2、34;特定结构的,不限环无限小数,如1.101001000100001……;特定意义的,数,如π、45sin °等。
3、判断一个实数的,数性不能仅凭表面上的,感觉,往往要经过整理化简后才下结论。
二、实数中的,几个概念1、相反数:只有符号不同的,两个数叫做互为相反数。
(1)实数a 的,相反数是 -a ; (2)a 和b 互为相反数⇔a+b=02、倒数:(1)实数a (a ≠0)的,倒数是a1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数 3、绝对值:(1)一个数a 的,绝对值有以下三种情况:⎪⎩⎪⎨⎧-==0,0,00, a a a a a a(2)实数的,绝对值是一个非负数,从数轴上看,一个实数的,绝对值,就是数轴上表示这个数的,点到原点的,距离。
(3)去掉绝对值符号(化简)必须要对绝对值符号里面的,实数进行数性(正、负)确认,再去掉绝对值符号。
4、n 次方根(1)平方根,算术平方根:设a ≥0,称a ±叫a 的,平方根,a 叫a 的,算术平方根。
(2)正数的,平方根有两个,它们互为相反数;0的,平方根是0;负数没有平方根。
(3)立方根:3a 叫实数a 的,立方根。
(4)一个正数有一个正的,立方根;0的,立方根是0;一个负数有一个负的,立方根。
三、实数与数轴1、数轴:规定了原点、正方向、单位长度的,直线称为数轴。
原点、正方向、单位长度是数轴的,三要素。
初三数学中考重点知识归纳
初三数学中考重点知识归纳一、整数与有理数
整数的概念
整数的加减法
整数的乘法
整数的除法
绝对值的概念与性质
有理数的概念
有理数的加减法
有理数的乘法
有理数的除法
有理数的比较
二、代数式与方程
代数式的概念与性质
同类项的合并与分离
代数式的加减法
代数式的乘法
一元一次方程的概念与解法一元一次方程的应用
一元一次方程的实际问题
一元一次方程组的概念与解法一元一次方程组的实际问题三、图形的性质与计算
平面图形的基本概念
线段的概念与计算
角的概念与计算
三角形的性质
四边形的性质
多边形的性质
圆的概念与性质
圆的计算
四、比与相似
比的概念与性质
比例的概念与性质
比例的计算
百分数的概念与计算
利率的概念与计算
相似的概念与性质
相似三角形的判定与性质
相似三角形的计算
五、函数与图像
函数的概念与性质
函数的表示与计算
函数的图像与性质
函数的应用
六、统计与概率
频数与频率的概念
统计图表的读取与制作
均值的概念与计算
概率的概念与计算
综上所述,初三数学中考的重点知识包括整数与有理数、代数式与方程、图形的性质与计算、比与相似、函数与图像,以及统计与概率
等内容。
熟练掌握这些知识点,能够灵活运用解题方法和技巧,将对
初三数学的学习和中考备考起到积极的促进作用。
学生们在学习过程
中应加强对这些知识点的理解和掌握,通过大量的练习和实际应用,
提高数学解题的能力和思维方法,为中考取得好成绩奠定坚实的基础。
学生中考数学知识点归纳总结模板(8篇)
学生中考数学知识点归纳总结模板(8篇)还在为没有系统的中考数学知识点而发愁吗?在年少学习的日子里,不管我们学什么,都需要掌握一些知识点,知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。
下面是小编给大家整理的学生中考数学知识点归纳总结模板,仅供参考希望能帮助到大家。
学生中考数学知识点归纳总结模板篇11.单项式:在代数式中,若只含有乘法(包括乘方)运算。
或虽含有除法运算,但除式中不含字母的一类代数式叫单项式;数字或字母的乘积叫单项式(单独的一个数字或字母也是单项式)。
2.系数:单项式中的数字因数叫做这个单项式的系数。
所有字母的指数之和叫做这个单项式的次数。
任何一个非零数的零次方等于1.3.多项式:几个单项式的和叫多项式。
4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。
5.常数项:不含字母的项叫做常数项。
6.多项式的排列(1)把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。
(2)把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。
7.多项式的排列时注意:(1)由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。
(2)有两个或两个以上字母的多项式,排列时,要注意:a.先确认按照哪个字母的指数来排列。
b.确定按这个字母向里排列,还是向外排列。
(3)整式:单项式和多项式统称为整式。
8.多项式的加法:多项式的加法,是指多项式的同类项的系数相加(即合并同类项)。
9.同类项:所含字母相同,并且相同字母的次数也分别相同的项叫做同类项。
10.合并同类项:多项式中的同类项可以合并,叫做合并同类项,合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母与字母的指数不变。
11.掌握同类项的概念时注意:(1)判断几个单项式或项,是否是同类项,就要掌握两个条件:①所含字母相同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学基础知识要点归纳(新人教版)实数⑴ 数轴的三要素为 、 和 . 数轴上的点与 构成一一对应. ⑵ 实数a 的相反数为________. 若a ,b 互为相反数,则b a += . ⑶ 非零实数a 的倒数为______. 若a ,b 互为倒数,则ab = .⑷ 绝对值⎪⎩⎪⎨⎧<=>=)0( )0( )0( a a a a . ⑸ 科学记数法:把一个数表示成 的形式,其中1≤a <10的数,n 是整数.⑹ 一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是 的数起,到 止,所有的数字都叫做这个数的有效数字.数的开方⑴ 任何正数a 都有______个平方根,它们互为________.其中正的平方根a 叫_______________. 没有平方根,0的算术平方根为______.⑵ 任何一个实数a 都有立方根,记为 .⑶ =2a ⎩⎨⎧<-≥=)0( )0( a a a a a 。
3. 实数的分类: 和 统称实数.4.=0a (其中a 0 且a 是 )=-pa(其中a 0)整式(1)单项式:由数与字母的 组成的代数式叫做单项式(单独一个数或 也是单项式).单项式中的叫做这个单项式的系数;单项式中的所有字母的 叫做这个单项式的次数.(2) 多项式:几个单项式的 叫做多项式.在多项式中,每个单项式叫 做多项式的 ,其中次数最高的项的 叫做这个多项式的次数.不含字母的项叫做 . (3) 整式: 与 统称整式.4. 同类项:在一个多项式中,所含 相同并且相同字母的 也分别相等的项叫做同类项. 合并同类项的法则是 ___.5. 幂的运算性质: a m ·a n = ; (a m )n = ; a m ÷a n =_____; (ab)n= .因式分解1. 因式分解:就是把一个多项式化为几个整式的 的形式.分解因式要进行到每一个因式都不能再分解为止.2. 因式分解的方法:⑴ ,⑵ , ⑶ .3. 提公因式法:=++mc mb ma __________ _________.4. 公式法: ⑴ =-22b a ⑵ =++222b ab a , ⑶ =+-222b ab a . 5. 十字相乘法:()=+++pq x q p x 2.6.因式分解的一般步骤:一“提”(取公因式),二“用”(公式). 7.易错知识辨析(1)注意因式分解与整式乘法的区别;(2)完全平方公式、平方差公式中字母,不仅表示一个数,还可以表示单项式、多项式.分式1. 分式:整式A 除以整式B ,可以表示成 A B 的形式,如果除式B 中含有 ,那么称 A B 为分式.若 ,则 AB有意义;若 ,则 A B 无意义;若 ,则 AB=0.2.分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的 .用式子表示为 .3. 约分:把一个分式的分子和分母的 约去,这种变形称为分式的约分.4.通分:根据分式的基本性质,把异分母的分式化为 的分式,这一过程称为分式的通分.二次根式1.二次根式的有关概念⑴式子)0(≥a a 叫做二次根式.注意被开方数a 只能是 .并且根式.⑵简二次根式:被开方数所含因数是 ,因式是 ,不含能 的二次根式,叫做最简二次根式. (3)同类二次根式:化成最简二次根式后,被开方数 的几个二次根式,叫做同类二次根式. 2.二次根式的性质:⑴;⑵()=2a (a ≥0); =2a ; ⑶ =ab (0,0≥≥b a ); ⑷=ba(0,0>≥b a ). 方程(组)和不等式(1)判断一个方程是不是一元一次方程,首先在整式方程前提下,化简后满足只含有一个未知数,并且未知数的次数是1,系数不等于0的方程,像21=x,()1222+=+x x 等不是一元一次方程. (2)解方程的基本思想就是应用等式的基本性质进行转化,要注意:①方程两边不能乘以(或除以)含有未知数的整式,否则所得方程与原方程不同解;②去分母时,不要漏乘没有分母的项;③解方程时一定要注意“移项”要变号.一元二次方程的常用解法(1)直接开平方法:形如)0(2≥=a a x 或)0()(2≥=-a a b x 的一元二次方程,就可用直接开平方的方法. (2)配方法:用配方法解一元二次方程()02≠=++a o c bx ax 的一般步骤是:①化二次项系数为1,即方程两边同时除以二次项系数;② ,使方程左边为二次项和一次项,右边为常数项,③ ,即方程两边都加上一次项系数一半的平方,④化原方程为2()x m n +=的形式,⑤如果是非负数,即0n ≥,就可以用直接开平方求出方程的解.如果n <0,则原方程无解.(3)公式法:一元二次方程20(0)ax bx c a ++=≠的求根公式是21,240)x b ac =-≥.(4)因式分解法:因式分解法的一般步骤是:①将方程的右边化为 ;②将方程的左边化成两个一次因式的乘积;③令每个因式都等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.一元二次方程根的判别式关于x 的一元二次方程()002≠=++a c bx ax 的根的判别式为 .(1)ac b 42->0⇔一元二次方程()002≠=++a c bx ax 有两个 实数根,即=2,1x .(2)ac b 42-=0⇔一元二次方程有 相等的实数根,即==21x x .(3)ac b 42-<0⇔一元二次方程()002≠=++a c bx ax 实数根.不等式的基本性质(1)若a <b ,则a +c c b +;(2)若a >b ,c >0则ac bc (或c a cb); (3)若a >b ,c <0则ac bc (或c a cb). 平面直角坐标系1. 根据点所在位置填表(图)点的位置 横坐标符号 纵坐标符号 第一象限 第二象限 第三象限第四象限2. x 0.3. P (x,y)关于x 轴对称的点坐标为__________,关于y 轴对称的点坐标为________,关于原点对称的点坐标为___________.练习: ⑴ 在平面直角坐标系中,点A 、B 、C 的坐标分别为A (-•2,1),B (-3,-1),C (1,-1).若四边形ABCD 为平行四边形,那么点D 的坐标是_______.(2)将点A (3,1)绕原点O 顺时针旋转90°到点B ,则点B•的坐标是_____.一次函数1.正比例函数的一般形式是__________.一次函数的一般形式是__________________. 2. 一次函数y kx b =+的图象是经过 和 两点的 . 3. 求一次函数的解析式的方法是 ,其基本步骤是:⑴ ; ⑵ ;⑶ ;⑷ . 4.一次函数y kx b =+的图象与性质反比例函数1.反比例函数:一般地,如果两个变量x 、y 之间的关系可以表示成y = 或 (k 为常数,k ≠0)的形式,那么称y 是x 的反比例函数. 2. 反比例函数的图象和性质k 、b 的符号 k >0b >0k >0 b <0k <0 b >0k <0b <0图像的大致位置经过象限 第 象限第 象限 第 象限 第 象限 性质y 随x 的增大 而 y 随x 的增大而y 随x 的增大而y 随x 的增大而k 的符号k >0 k <0y xoyx O3.k 的几何含义:反比例函数y =k x(k ≠0)中比例系数k 的几何意义,即过双曲线y =kx(k ≠0)上任意一点P 作x 轴、y 轴垂线,设垂足分别为A 、B ,则所得矩形OAPB 的面积为二 二次函数1. 二次函数2()y a x h k =-+的图像和性质a >0a <0图 象 开 口 对 称 轴 顶点坐标最 值当x = 时,y 有最 值 当x = 时,y 有最 值 增减性在对称轴左侧 y 随x 的增大而 y 随x 的增大而 在对称轴右侧y 随x 的增大而y 随x 的增大而2. 二次函数c bx ax y ++=2用配方法可化成()k h x a y +-=2的形式,其中h = , k = .3. 二次函数2()y a x h k =-+的图像和2ax y =图像的关系.要点归纳:1.二次函数c bx ax y ++=2通过配方可得224()24b ac b y a x a a-=++, ⑴ 当0a >时,抛物线开口向 ,有最 (填“高”或“低”)点, 当x = 时,y 有最 (“大”或“小”)值是 ; ⑵ 当0a <时,抛物线开口向 ,有最 (填“高”或“低”)点, 当x = 时,y 有最 (“大”或“小”)值是 .统计知识1.平均数的计算公式___________________________. 2. 加权平均数公式_____________________________. 3. 中位数是___________________________,众数是__________________________. 4.极差是__________________,方差的计算公式_____________________________. 标准差的计算公式:_________________________.图像的大致位置经过象限 第 象限 第 象限 性质在每一象限内y 随x 的增大而在每一象限内y 随x 的增大而oy x概率知识【知识要点】1.__________________叫确定事件,________________叫不确定事件(或随机事件),__________________叫做必然事件,______________________叫做不可能事件.2._________________________叫频率,_________________________叫概率.3.求概率的方法:(1)利用概率的定义直接求概率;(2)用树形图和________________求概率;(3)用_________________的方法估计一些随机事件发生的概率.相交线与平行线【知识要点】1. 两点确定一条直线,两点之间线段最短._______________叫两点间距离.2. 1周角=__________平角=_____________直角=____________.3. 如果两个角的和等于90度,就说这两个角互余,同角或等角的余角相等;如果_____________________互为补角,__________________的补角相等.4. ____________________________叫对顶角,对顶角___________.5. 过直线外一点心___________条直线与这条直线平行.6. 平行线的性质:两直线平行,_________相等,________相等,________互补.7. 平行线的判定:________相等,或______相等,或______互补,两直线平行.8. 平面内,过一点有且只有_____条直线与已知直线垂直.三角形【知识再现】一、三角形的分类:1.三角形按角分为______________,______________,_____________.2.三角形按边分为_______________,__________________.二、三角形的性质:1.三角形中任意两边之和____第三边,两边之差_____第三边2.三角形的内角和为_______,外角与内角的关系:__________________.三、三角形中的主要线段:1.___________________________________叫三角形的中位线.2.中位线的性质:____________________________________________.3.三角形的中线、高线、角平分线都是____________.(线段、射线、直线)【考点提要】一.等腰三角形的性质与判定:1. 等腰三角形的两底角__________;2. 等腰三角形底边上的______,底边上的________,顶角的_______,三线合一;3. 有两个角相等的三角形是_________.二.等边三角形的性质与判定:1. 等边三角形每个角都等于_______,同样具有“三线合一”的性质;2. 三个角相等的三角形是________,三边相等的三角形是_______,一个角等于60°的_______三角形是等边三角形.三.直角三角形的性质与判定:1. 直角三角形两锐角________.2. 直角三角形中30°所对的直角边等于斜边的________.3. 直角三角形中,斜边的中线等于斜边的______.;4. 勾股定理:_________________________________________.5. 勾股定理的逆定理:_________________________________________________.全等三角形【知识回顾】1.全等三角形:____________、______________的三角形叫全等三角形.2. 三角形全等的判定方法有:_______、______、_______、______.直角三角形全等的判定除以上的方法还有________.3. 全等三角形的性质:全等三角形___________,____________.4. 全等三角形的面积_______、周长_____、对应高、______、_______相等.【典例精析】相似三角形【要点罗列】一、相似三角形的定义三边对应成_________,三个角对应________的两个三角形叫做相似三角形. 二、相似三角形的判定方法1. 若DE ∥BC (A 型和X 型)则______________.2. 射影定理:若CD 为Rt △ABC 斜边上的高(双直角图形)则Rt △ABC ∽Rt △ACD ∽Rt △CBD 且AC 2=________,CD 2=_______,BC 2=__ ____.E A D CBEADCBA D CB3. 两个角对应相等的两个三角形__________.4. 两边对应成_________且夹角相等的两个三角形相似.5. 三边对应成比例的两个三角形___________. 三、相似三角形的性质1. 相似三角形的对应边_________,对应角________.2. 相似三角形的对应边的比叫做________,一般用k 表示.3. 相似三角形的对应角平分线,对应边的________线,对应边上的_______•线的比等于_______比,周长之比也等于________比,面积比等于_________.锐角三角函数【知识回顾】1.sin α,cos α,tan α定义sin α=____,cos α=_______,tan α=______ . 2.特殊角三角函数值解直角三角形【知识回顾】1.解直角三角形的概念:在直角三角形中已知一些_____________叫做解直角三角形. 2.解直角三角形的类型:已知____________;已知___________________.3.如图(1)解直角三角形的公式:(1)三边关系:__________________.(2)角关系:∠A+∠B =_____,(3)边角关系:sinA=___,sinB=____,cosA=_______.cosB=____,tanA=_____ ,tanB=_____. 4.如图(2)仰角是____________,俯角是____________. 5.如图(3)方向角:OA :_____,OB :_______,OC :_______,OD :________. 6.如图(4)坡度:AB 的坡度i AB =_______,∠α叫_____,tanα=i =____.30° 45° 60° sin α cos α tan αα abcA 45︒南北西东60︒ADC B 70︒O OA B Cc ba AC B(图2) (图3) (图4)四边形【知识回顾】1. 四边形有关知识⑴ n 边形的内角和为 .外角和为 .⑵ 如果一个多边形的边数增加一条,那么这个多边形的内角和增加 ,外角和增加 .⑶ n 边形过每一个顶点的对角线有 条,n 边形的对角线有 条.2. 平面图形的镶嵌⑴ 当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个____________时,就拼成一个平面图形. ⑵ 只用一种正多边形铺满地面,请你写出这样的一种正多边形____________. 3.易错知识辨析多边形的内角和随边数的增加而增加,但多边形的外角和随边数的增加没有变化,外角和恒为360 º.平行四边形【知识要点】1. 特殊的平行四边形的之间的关系2. 特殊的平行四边形的判别条件成为矩形,需增加的条件是_______ _____ ; 要使成为菱形,需增加的条件是_______ _____ ; 要使矩形ABCD 成为正方形,需增加的条件是______ ____ ; 要使菱形ABCD 成为正方形,需增加的条件是______ ____ . 平正行四边形矩形菱形方形梯形【知识回顾】1.梯形的面积公式是________________.2.等腰梯形的性质:边 __________________________________.角 __________________________________. 对角线 __________________________________.3. 等腰梯形的判别方法__________________________________. 4. 梯形的中位线长等于__________________________.圆【要点再现】1. 圆上各点到圆心的距离都等于 .2. 圆是 对称图形,任何一条直径所在的直线都是它的 ;圆又 是 对称图形, 是它的对称中心.3. 垂直于弦的直径平分 ,并且平分 ;平分弦(不是直径)的 垂直于弦,并且平分 .4. 在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两条弦心距,两个圆周角中有一组量 ,那么它们所对应的其余各组量都分别 .5. 同弧或等弧所对的圆周角 ,都等于它所对的圆心角的 .6. 直径所对的圆周角是 ,90°所对的弦是 .1. 点与圆的位置关系共有三种:① ,② ,③ ;对应的点到圆心的距离d 和半径r 之间的数量关系分别为:①d r ,②d r ,③d r .2. 直线与圆的位置关系共有三种:① ,② ,③ . 对应的圆心到直线的距离d 和圆的半径r 之间的数量关系分别为: ①d r ,②d r ,③d r .3. 圆与圆的位置关系共有五种:① ,② ,③ ,④ ,⑤ ;两圆的圆心距d 和两圆的半径R 、r (R≥r )之间的数量关系分别为:①d R -r ,②d R -r ,③ R -r d R +r ,④d R +r ,⑤d R +r.4. 圆的切线 过切点的半径;经过 的一端,并且 这条 的直线是圆的切线.5. 从圆外一点可以向圆引 条切线, 相等, 相等.6. 三角形的三个顶点确定 个圆,这个圆叫做三角形的外接圆,三角形的外接圆的圆心叫 心,是三角形 的交点.7. 与三角形各边都相切的圆叫做三角形的 ,内切圆的圆心是三角形 的交点,叫做三角形的 .1. 圆的周长为 ,1°的圆心角所对的弧长为 ,n °的圆心角所对 的弧长为 ,弧长公式为 .2. 圆的面积为 ,1°的圆心角所在的扇形面积为 ,n °的圆心角所的扇形面积为S= 2R π⨯ = = .3. 圆柱的侧面积公式:S=2rl π.(其中r 为 的半径,l 为 的高)4. 圆锥的侧面积公式:S=rl π.(其中r 为 的半径,l 为 的长)平移与变幻【要点再现】1. 如果一个图形沿一条直线对折,对折后的两部分能 ,那么这个图形就是 ,这条直线就是它的 .2. 如果一个图形沿一条直线折叠,如果它能与另一个图形 ,那么这两个图形成 ,这条直线就是 ,折叠后重合的对应点就是 .3. 如果两个图形关于 对称,那么对称轴是任何一对对应点所连线段的 .4. 把一个图形绕着某一个点旋转 °,如果旋转后的图形能够与原来的图形 ,那么这个图形叫做图形,这个点就是它的 .5. 把一个图形绕着某一个点旋转 °,如果它能够与另一个图形 ,那么就说这两个图形关于这个点 ,这个点叫做 .这两个图形中的对应点叫做关于中心的 .6. 关于中心对称的两个图形,对称点所连线段都经过 ,而且被对称中心所 .关于中心对称的两个图形是 图形.7. 两个点关于原点对称时,它们的坐标符号 ,即点),(y x P 关于原点的对称点1P 为 .8. 一个图形沿着一定的方向平行移动一定的距离,这样的图形运动称为______,它是由移动的 和所决定.9. 平移的特征是:经过平移后的图形与原图形的对应线段 ,对应 ,图形的 与 都没有发生变化,即平移前后的两个图形 ;且对应点所连的线段 .10. 图形旋转的定义:把一个图形 的图形变换,叫做旋转, 叫做旋转中心,叫做旋转角.11. 图形的旋转由 、 和 所决定.其中①旋转 在旋转过程中保持不动.②旋转 分为 时针和 时针. ③旋转 一般小于360º.12. 旋转的特征是:图形中每一点都绕着 旋转了 的角度,对应点到旋转中心的 相等,对应 相等,对应 相等,图形的 都没有发生变化.也就是旋转前后的两个图形 .。