光通信背景
电磁学的应用领域
![电磁学的应用领域](https://img.taocdn.com/s3/m/dd7659c3aff8941ea76e58fafab069dc502247fb.png)
电磁学的应用领域引言电磁学是研究电荷和电流之间相互作用的物理学分支,它是现代科学和技术的基础之一。
电磁学的应用广泛,涵盖了许多不同的领域,如通信、能源、医学、工业等。
本文将详细描述电磁学在这些领域中的实际应用情况,包括应用背景、应用过程和应用效果等。
通信领域无线通信无线通信是现代社会中不可或缺的一部分,它使用电磁波传输信息。
电磁学在无线通信中的应用非常广泛,包括无线电、微波、红外线和可见光通信等。
无线电通信是最常见的无线通信方式之一,它使用无线电波来传输信号。
无线电波是一种电磁波,具有较长的波长和低频率,可以穿透建筑物和其他障碍物。
无线电通信的应用包括广播、电视、手机、卫星通信等。
例如,手机通信使用的是无线电频段,手机通过发送和接收无线电信号来进行语音和数据传输。
微波通信是一种高频率的电磁波通信方式,它具有较短的波长和高频率,适用于高速数据传输。
微波通信在雷达系统、卫星通信、无线局域网等领域得到广泛应用。
例如,雷达系统使用微波波段的电磁波来探测目标的位置和速度,广播电视使用微波信号传输音视频信号。
红外线通信是一种使用红外线的无线通信方式,它的波长较长,适用于短距离通信。
红外线通信在遥控器、红外线传感器等设备中得到广泛应用。
例如,电视遥控器使用红外线信号来控制电视的开关和音量。
可见光通信是一种使用可见光的无线通信方式,它的波长范围在400-700纳米之间。
可见光通信可以利用现有的照明设备进行数据传输,具有安全性高、带宽大等优点。
可见光通信在室内定位、室内导航等领域得到应用。
光纤通信光纤通信是一种利用光波在光纤中传输信号的通信方式。
光纤通信利用了光的折射和反射原理,实现了大容量、高速率的数据传输。
光纤通信的应用背景是对于传统的铜线通信来说,光纤通信具有更高的带宽和更低的信号损耗。
光纤通信的应用过程主要包括光信号的发射、传输和接收。
光信号通过激光器产生,并通过光纤传输到目标地点。
在传输过程中,光信号会受到衰减和色散等影响,因此需要使用光纤放大器和光纤补偿器来增强和修正信号。
光学通信技术的发展
![光学通信技术的发展](https://img.taocdn.com/s3/m/5ea032ca05a1b0717fd5360cba1aa81144318fd0.png)
光学通信技术的发展随着科技的不断进步,光学通信技术也得到了飞速的发展。
光学通信技术基于光传输信息的原理,具有传输速度快、信号稳定、隐蔽性高等优点,在如今的信息传输领域中备受人们青睐。
那么,光学通信技术的发展史究竟是如何的呢?它又将会朝着何方向发展呢?1. 光通信技术的发展概述光通信技术,英文名为 Optical Communication,是指利用光波作为信息传输的媒介进行通信。
早在公元前350年左右,我国的著名思想家孔子就已经探讨了光的传播问题,而到了公元17世纪,荷兰学者胡克(Hooke)首次提出了光传输信息的想法。
但是光学通信技术直到20世纪40年代后期才真正开始出现。
最早的光传输技术使用的是红外线,但由于传输效果不佳等问题,后来逐渐被激光技术所取代。
1960年代,激光技术开始广泛应用。
1977年,世界上第一条光纤通信线路在美国正式开通,标志着光通信技术的逐渐成熟。
随着计算机和互联网的不断普及以及数据通信需求的增长,光学通信技术得到了迅速的发展。
20世纪80年代,随着LED(发光二极管)和半导体激光器的发展,光的传输距离也有了很大的提高。
20世纪90年代,光通信技术逐渐进入商业化应用阶段,成为数据传输领域中最主要,也是最重要的一个部分。
2. 光通信技术的主要应用光通信技术主要应用于城市间的远距离通信、互联网数据中心的高速网络传输、移动通信、电视直播等领域。
(1)在城市间的远距离通信中,光纤的传输速度快,数据量大,传输距离远,既避免了传输过程中发生传输错误的可能性,又可满足高速数据通信需求。
(2)在互联网数据中心的高速网络传输中,由于网站、视频、文件等数据量的巨大,光通信技术的优越性在这种情况下得到了充分发挥。
而随着云计算等技术的不断发展和普及,对网络通信带宽提高的要求也越来越高,光通信技术也会在这个领域中持续发挥重要作用。
(3)在移动通信中,光学通信技术主要应用于基站与核心网之间的传输,在保障高速数据流量的同时,还能大大降低网络拥塞率,并为未来的技术更新和升级打下基础。
光通信和光模块
![光通信和光模块](https://img.taocdn.com/s3/m/2c2db5ec51e2524de518964bcf84b9d528ea2c38.png)
光通信和光模块一、光通信的概念及发展历程光通信是指利用光作为信息传输的媒介,将信息从一个地方传送到另一个地方。
它是一种高速、大容量、低损耗的通信方式,被广泛应用于互联网、电视、电话等领域。
光通信的发展历程可以分为以下几个阶段:1. 光纤出现阶段:20世纪60年代,人们开始研究光纤,但由于技术限制和成本问题,应用范围有限。
2. 光纤商业化阶段:20世纪70年代末期,随着技术的不断进步和成本的降低,光纤开始被商业化应用。
3. 光网络阶段:20世纪90年代初期,随着互联网的普及和需求不断增加,光网络逐渐成为主流。
4. 全光网络阶段:21世纪初期,全光网络开始普及,并逐渐取代了传统的电信网络。
二、光模块的概念及分类光模块是指将激光器、探测器、调制器等元件封装在一起形成的集成组件。
它是光通信系统中的重要组成部分,可以实现光信号的发送和接收。
根据不同的封装方式和功能,光模块可以分为以下几类:1. 激光器模块:将激光器封装在一起,用于发送光信号。
2. 探测器模块:将探测器封装在一起,用于接收光信号。
3. 光电转换模块:将激光器和探测器封装在一起,用于实现光电转换。
4. 调制器模块:将调制器封装在一起,用于调制发送的光信号。
三、常见的光模块及其应用1. SFP(Small Form-factor Pluggable)模块:是一种小型化、高速率、可插拔式的光纤收发器。
它广泛应用于数据中心、企业网络、存储网络等领域。
2. QSFP(Quad Small Form-factor Pluggable)模块:是一种四通道高速率、可插拔式的光纤收发器。
它主要应用于数据中心和高性能计算等领域。
3. CFP(C Form-factor Pluggable)模块:是一种大型化、高速率、可插拔式的光纤收发器。
它主要应用于光网络、数据中心等领域。
4. XFP(10 Gigabit Small Form-factor Pluggable)模块:是一种小型化、高速率、可插拔式的光纤收发器。
光纤通信技术的发展与应用
![光纤通信技术的发展与应用](https://img.taocdn.com/s3/m/90f7ce00b5daa58da0116c175f0e7cd185251852.png)
光纤通信技术的发展与应用光纤通信技术的发展与应用一、光纤通信的应用背景通信产业是伴随着人类社会的发展而发展的。
追溯光通信的发展起源,早在三千多年前,我国就利用烽火台火光传递信息,这是一种视觉光通信。
随后,在贝尔发明了光电话,但是它们所传输的信息容量小,距离短,可靠性低,设备笨重,究其原因是由于采用太阳光等普通光源。
之后伴随着激光的发现,英籍华人高锟博士发表了一篇划时代性的论文,他提出利用带有包层材料的石英玻璃光学纤维,能作为通信媒质。
从此,开创了光纤通信领域的研究工作。
二、光纤通信的技术原理光纤即光导纤维,光纤通信是指利用光波作为载波,以光纤作为传输介质将要传输的信号从一处传至另一处的通信方式。
其中,光纤由纤芯、包层和涂层组成。
纤芯是一种玻璃材质,以微米为单位,一般几或几十微米,比发丝还细。
由多根光纤组成组成的称之为光缆。
中间层称为包层,根据纤芯和包层的折射率不同从而实现光信号传输过程中在纤芯内的全反射,实现信号的传输。
涂层就是保护层,可以增加光纤的韧性以保护光纤。
光纤通信系统的基本组成部分有光发信机、光纤线路、光收信机、中继器及无源器件组成。
光发信机的作用是将要传输的信号变成可以在光纤上传输的光信号,然后通过光纤线路实现信号的远距离传输,光纤线路在终端把信号耦合到收信端的光检测器上,通过光收信端把变化后的光信号再转换为电信号,并通过光放大器将这微弱的电信号放大到足够的电平,最终送达到接收端的电端完成信号的输送。
中继器在这一过程中的作用是补偿光信号在光纤传输过程中受到的衰减,并对波形失真的脉冲进行校正。
无源器件的作用则是完成光纤之间、光纤与光端机之间的连接及耦合。
其原理图如图1所示:通过信号的这一传输过程可以看出,信号在传输过程中其形式主要实现了两次转换,第一次即把电信号变成可在光纤中传输的光信号,第二次即把光信号在接收端还原成电信号。
此外,在发信端还需首先把要传输的信号如语音信号变成可传输的电信号。
光通信技术的发展和应用
![光通信技术的发展和应用](https://img.taocdn.com/s3/m/4dbe75a618e8b8f67c1cfad6195f312b3169ebd7.png)
光通信技术的发展和应用随着信息时代的到来,对于数据传输的速度和安全性要求也越来越高。
光通信技术作为目前最快、最安全的传输技术之一,被广泛应用于通信、物流、医疗、金融等领域。
本文将从光通信技术的发展历程、原理、应用等不同角度来进行探讨。
一、光通信技术的发展说到光通信技术,人们最先想到的是光纤通信,但其实早在20世纪60年代,人们就开始研究光纤通信技术。
1977年,全球第一条单模光纤由日本NTT公司制造出来,并于1983年开始了光纤通信的商业化运营。
随着光通信技术的进一步发展,传输速度也从最初的几百兆每秒一直提高到了每秒几十兆的速度。
现今,随着光通信技术的进一步发展,传输速度已经提高到了每秒上百兆、上千兆的速度,而且对传输距离的限制也几乎被消除。
可以说,现今光通信技术已经成为了信息高速公路中最为重要的一条通道之一。
二、光通信技术的原理光通信技术的核心就是光纤,光纤的物理原理就是利用入射光线的反射来实现光信号的传输。
简单来说,当光线从一介质进入另一介质时,会发生反射和折射,反射的光线会在介质中来回反弹,最终形成了一条线路。
光纤由短段的玻璃或塑料纤维组成,光信号在光纤内部通过不断的反射而进行传输。
与其他传输媒介相比,光纤无需电子设备来进行放大和重新发送信号,因此传输效率极高。
三、光通信技术的应用光通信技术的应用非常广泛,既包括商业领域,也包括科学研究领域。
以下是其中几个应用领域的简要介绍:1. 通信领域光通信技术在通信领域的主要作用就是实现高效、高速、低延迟的数据传输。
目前,光纤通信已经被广泛应用于互联网、移动通信、广播电视、有线电视等领域。
在数据中心、云计算等领域,光通信技术的应用也越来越广泛。
2. 医疗领域在医疗领域,光通信技术主要应用于内视镜、激光手术、医学成像等方面。
使用光纤进行内视镜检查可以减轻病人痛苦,使医生对病情的判断更为准确;激光手术则可以实现更为精细的手术,减少手术过程中对身体的损伤;而医学成像也可以在不破坏人体组织的情况下,实现对人体内部的精确观察。
光通信系统中无线光通信技术的研究
![光通信系统中无线光通信技术的研究](https://img.taocdn.com/s3/m/c7c594a3541810a6f524ccbff121dd36a22dc444.png)
光通信系统中无线光通信技术的研究一、引言随着人们对高速率数据传输需求越来越高,无线光通信技术作为一种高带宽、高可靠性、安全性高、抗干扰能力强、适应性好等优点的无线传输方式,被广泛应用于智能家居、工业自动化、无人驾驶、医疗卫生等领域,成为继有线、WIFI等传统通信技术之后的有效补充。
随着技术的不断发展,光通信系统中的无线光通信技术也得到了快速的发展和应用。
本篇文章拟结合当前的技术进展,以及实际应用场景,对光通信系统中的无线光通信技术进行研究和探讨。
二、技术背景随着无线通信技术的不断发展,各类无线通信技术的研究报告和实际应用也越来越多。
在光通信系统中,无线光通信技术作为一种新型的无线通信技术,在传输速率、信号质量等方面具有明显的优势,因而得到了越来越多的关注。
1.无线光通信技术的概念无线光通信技术是指利用无线电频段的光波通过空气或水中的传输,实现光通信和无线通信技术融合的一种新型传输技术。
无线光通信技术目前主要应用于高速率数据传输领域,如高速互联网、高清视频、虚拟现实、车联网、工业自动化、医疗卫生等领域。
2.无线光通信技术的发展历史随着光通信技术的不断发展,无线光通信技术也得以发展和应用。
无线光通信技术最初是由韩国研究人员提出,此后得到了全球范围内的重视和研究。
无线光通信技术的应用领域也在不断扩展和深化,不断向着更加先进的水平迈进。
三、技术原理无线光通信技术是利用空气或水中的介质,传输通过无线电频段的光波,实现光通信和无线通信技术的融合。
无线光通信技术的传输速率和信号质量比传统的无线通信技术要好很多。
1.无线光通信技术的工作原理无线光通信技术的传输方式是将高速数据通过电信号转变为高频光信号,然后通过无线光通信传输技术途径进行数据传输。
当信号经过传输后,再将光信号通过光检波器转变为电信号,进而实现了数据的传输。
该过程中,无线光通信技术需要光纤或者空气中的介质来传播光信号。
2.无线光通信技术的传输距离和速率无线光通信技术的传输距离和传输速率是两个主要指标。
中国无线光通信发展现状及未来趋势分析
![中国无线光通信发展现状及未来趋势分析](https://img.taocdn.com/s3/m/55c20c2824c52cc58bd63186bceb19e8b9f6ec50.png)
中国无线光通信发展现状及未来趋势分析随着信息与通信技术的不断演进,无线光通信作为一项重要的通信技术,正在逐渐成为未来通信业的发展方向。
中国作为全球最大的电信市场之一,对无线光通信的发展具有重要的战略意义。
本文将对中国无线光通信的现状进行分析,并展望其未来的发展趋势。
首先,我们来看一下中国无线光通信的现状。
目前,中国的无线光通信技术发展较为活跃,取得了一定的突破。
无线光通信技术可以通过可见光和红外光进行数据传输,具备高带宽、长距离传输、低延迟等优势。
这使得无线光通信在高速无线接入、室内定位、无线传感等场景中具备广阔的应用前景。
在中国的城市领域,无线光通信已经开始得到应用。
一些大型商场和办公楼已经采用无线光通信技术来提供宽带接入服务,极大地满足了人们对于高速网络的需求。
此外,国内的一些公共场所,如车站、机场等,也开始尝试应用无线光通信技术进行室内定位,提供更准确的导航和位置服务。
这些领域的应用表明,无线光通信技术在中国已经取得了一定的实践成果。
然而,中国的无线光通信发展还面临一些挑战。
首先,技术层面的挑战是最为突出的。
无线光通信技术的距离限制、干扰问题以及接入设备的成本等方面,都需要进一步的解决。
此外,安全性和隐私保护问题也是无线光通信发展过程中需要关注的方面。
在中国,无线光通信技术的标准化工作和相关政策的完善也需要加强。
然而,尽管面临挑战,中国的无线光通信仍然具备广阔的发展前景。
一方面,中国作为全球最大的电信市场,无线光通信在面对信息技术快速发展的背景下,逐渐成为一项重要的基础设施。
另一方面,中国政府高度重视无线光通信技术的发展,并加大了在这一领域的投入和支持。
通过政策引导和产业合作,中国的无线光通信产业具备了快速发展的基础。
在未来,中国无线光通信有望迎来更广阔的发展空间。
首先,随着5G时代的到来,需要更高速率和更低时延的通信技术,无线光通信将成为满足需求的关键技术之一。
其次,智能物联网的发展也将推动无线光通信技术的应用。
光电通信技术的发展与应用前景
![光电通信技术的发展与应用前景](https://img.taocdn.com/s3/m/99db8f9b77eeaeaad1f34693daef5ef7ba0d123f.png)
光电通信技术的发展与应用前景光电通信技术是一种将光学和电子学技术相结合的通信技术,是当今世界上最快、最安全和最可靠的通信方式之一。
随着现代通信系统的高速发展,光电通信技术也得到了迅猛发展和应用。
一、光电通信技术的发展历程1、光通信的起源光通信的起源可以追溯到19世纪初叶,法国物理学家戴盖将太阳的光线从一座山顶经由反射仪传送到另一座山顶,说明光可以作为一种传输信息的媒介,从而打开了光通信的研究领域。
2、光纤通信的诞生20世纪60年代初期,美国贝尔实验室的高斯和基尔比通过石英光纤的研究,提出了使用光纤进行信息传输的想法,之后经过了多年的研究和发展,于1977年成功制造了第一根光纤,随之而来的是光纤通信开始得到广泛应用。
3、光电通信技术的发展光电通信技术是在光纤通信的基础上发展起来的,其最初的应用主要是在军事、航空航天、通讯和广播电视等领域。
20世纪90年代末,光电通信技术开始得到广泛的商业应用,并逐渐成为了通信领域的重要技术之一。
二、光电通信技术的原理和特点1、光电通信技术的原理光电通信技术的原理主要是利用光纤传输信息,利用激光器将电信号转换为光信号,将信息通过光纤传输到接收端,通过接收器将光信号转换为电信号再输出,完成信息传输。
2、光电通信技术的特点(1)传输速度快:光速比电速快得多,因此光通信速度可以达到十分之万亿的数量级;(2)传输距离远:使用光纤传输可以达到几百公里甚至上千公里的传输距离;(3)传输容量大:光纤总带宽可以达到几十Gbps至数Tbps 每秒,传输容量大;(4)抗电磁干扰:由于光信号是通过光纤传输的,因此可以有效避免电磁干扰;(5)安全性高:光信号可以很好地加密,使得通信过程更加安全可靠。
三、光电通信技术的应用前景光电通信技术的快速发展和应用给我们带来了极大的希望和发展空间,尤其是在云计算、大数据、物联网和5G时代的到来,其应用前景更是不言而喻。
1、云计算和大数据领域的应用云计算和大数据具有海量的数据量和高速的数据处理能力,这就要求在信号传输的过程中,需要高速、低延迟和大带宽,光电通信技术的应用正可以满足这一需求。
我国光通信行业概况研究
![我国光通信行业概况研究](https://img.taocdn.com/s3/m/a659fd1cdd36a32d72758126.png)
我国光通信行业概况研究(一)行业概况1、行业简介光通信是以光波作为信息载体,以光纤作为传输媒介的一种通信方式。
光通信具有容量大、传输距离远、信号串扰小、抗电磁干扰等优点,给通信产业带来了革命性的变化,推动了信息时代的发展。
互联网业务的迅速发展和音频、视频、数据、多媒体应用的快速增长,数据通信对带宽的需求快速增长,对超高速和超长距离的大容量光纤网络和传输系统有了更为迫切的需求,推动光通信网络不断地升级换代。
(1)电信行业持续稳定发展全球电信市场保持持续增长,根据市场研究公司Point Topic统计,截至2018年2季度,全球固网宽带用户已经突破10亿,其中80%是光纤连接用户。
基于ADSL 的宽带用户数同比去年同期减少了8%,光纤宽带接入已成为主流的通信模式,光通信设备投资规模也进一步扩大,成为推动通信行业增长的重要力量。
每一代移动通信网络的建设都要先进行资本性投入,运营商资本开支的高峰往往出现在网络建设的前中期,随着通信设备的价格下降和流量创收的增长,运营商逐渐减少资本开支,低谷往往出现在技术迭代的过渡期。
全球电信资本开支发展及预测(单位:10亿美元)2019年,我国工信部向三大运营商发放运营牌照,通信行业即将进入5G时代,运营商资本开支将迎来上升通道。
当前网络建设的政策提速信号明显,建站预期规模不断提高,相应带来资本开支预期的提升。
根据三大运营商年度报告及德邦证券研究数据,三大运营商2019年基站建设规模预计达15-20万站,用于5G的资本开支在300-400亿元。
2009-2022E 营运商资本开支总额变化及预测(2)数通市场在数通领域,2017年底全球数据中心共计44.4万个,2017年市场规模近465.5亿美元(仅包括IDC基础设施租赁收入,不包括云服务等收入),同比增长10.7%,预计2018年将达到514亿美元。
根据中国信息通信研究院联合开放数据中心委员会《数据中心白皮书》(2018年),2017年我国在用IDC机架总体规模166万架,数量1844个;规划在建数据中心规模107万架,数量463个;IDC市场规模650.4亿元,近五年复合增长率为32%。
自由空间光通信技术的研究现状和发展方向综述
![自由空间光通信技术的研究现状和发展方向综述](https://img.taocdn.com/s3/m/d6c7c986250c844769eae009581b6bd97f19bca9.png)
自由空间光通信技术的研究现状和发展方向综述一、概括自由空间光通信技术,作为现代通信领域的一项前沿技术,以其高带宽、低成本、抗电磁干扰等独特优势,在军事、航天、城域网等多个领域展现出广阔的应用前景。
随着光电器件性能的不断提升以及光通信理论的深入发展,自由空间光通信技术取得了显著的研究进展。
本文旨在综述自由空间光通信技术的研究现状,分析其关键技术问题,并探讨未来的发展方向。
在研究现状方面,自由空间光通信技术已经实现了从理论探索到实际应用的重要跨越。
光发射与接收技术、光束控制技术、信道编码与调制技术等关键技术不断取得突破,使得自由空间光通信系统的性能得到了显著提升。
随着光网络的不断发展,自由空间光通信技术在组网技术、协议设计等方面也取得了重要进展。
自由空间光通信技术仍面临一些挑战和问题。
大气衰减、散射、湍流等环境因素对光信号传输的影响;光束对准、跟踪与捕获技术的实现难度;以及光通信系统的安全性、可靠性等问题。
这些问题的解决需要进一步深入研究相关技术,并推动技术创新和产业升级。
自由空间光通信技术将继续向高速度、大容量、智能化等方向发展。
通过研发更高效的光电器件、优化光通信算法,提升系统的传输速度和容量;另一方面,借助人工智能、大数据等技术手段,实现光通信系统的智能化管理和运维。
随着5G、物联网等新一代信息技术的快速发展,自由空间光通信技术将与这些技术深度融合,共同推动通信领域的创新发展。
1. 自由空间光通信技术的定义与特点自由空间光通信(Free Space Optical Communications),又称自由空间光学通讯,是一种利用光波作为信息载体,在真空或大气中传递信息的通信技术。
其核心技术在于以激光光波作为载波,通过空气这一传输介质,实现设备间的宽带数据、语音和视频传输。
自由空间光通信技术不仅继承了光纤通信与微波通信的优势,如大容量、高速传输等特性,更在铺设成本、机动灵活性以及环境适应性方面表现出显著优势。
光通信发展历程
![光通信发展历程](https://img.taocdn.com/s3/m/f1bf57b582d049649b6648d7c1c708a1284a0a8f.png)
光通信发展历程
光通信是指利用光的特性来传输信息的通信技术。
它具有传输速度快、带宽大、抗干扰能力强等优点,因而得到了广泛的应用。
下面我们来了解一下光通信的发展历程。
20世纪60年代,人们开始使用光纤进行通信,但是当时的光纤技术还不成熟,传输距离受限,同时光源和探测器的性能也不够好,导致光通信无法大规模应用。
20世纪70年代,随着激光器和探测器技术的进步,光通信的传输距离得到了大幅度延长,同时传输速度也得到了提高。
1977年,美国贝尔实验室首次实现了1.7千米的光纤通信。
20世纪80年代,光通信技术逐渐成熟,应用范围也逐步扩大。
1981年,法国研制出了第一条全长40千米的光纤通信线路,标志着光通信技术进入了实用化阶段。
20世纪90年代,光通信进入了高速发展期。
1991年,美国实现了2.5Gbps的光纤通信,标志着光通信技术进入了Gbps时代。
同时,WDM技术的应用也加速了光通信技术的发展。
21世纪初,光通信技术已经成为信息通信领域的重要组成部分。
2001年,全球第一条10Gbps的商用光纤通信线路在美国建成,标志着光通信技术进入了Tbps时代。
当前,光通信技术已经得到了广泛的应用,包括互联网、移动通信、有线电视、医疗、军事等领域。
随着5G技术的普及和人们对高速、稳定的通信需求的不断增长,光通信技术将会继续迎来新的发展
机遇。
光通信行业发展近况
![光通信行业发展近况](https://img.taocdn.com/s3/m/215cb3627e21af45b307a823.png)
的接 入 ( 国例 外 ,其 Cb 美 al e占了较大 比例 )。光纤 网络建 设提出 80 00万的两年实现 目标 ,从 已有的P N 布局情 况来测算 目前国内仅 O 有 不超过30 万线的 布局 ,预计未来 两年需要实现 每年20 万线的 00 50 布局 目标 ,以此 看来每年光接入设备 的增 长可能达到 10 0 %以上甚至 更 多。而从更远的发展空 间来看 ,以全 国城镇 电话装 机容量1 亿来 . 7
照 蒸 2! 璺 QQ 飙 舞第
信 息 纵 横
光 通 信 行 业 发 展 近 况
黄
摘 要
卫
( 江职 业 技 术 学 院 ) 内
光通信行业是我 国近年来发展最快的产业之 一=电信业务带来的不断增长的带宽需求和三网合一的推动使得 运营商加快
了网络 光 纤化 的 改 造 和光 通 信 产品 需 求 不 断提 升 , 市场 价 格 竞 争 的 激 烈 程 度 使 得设 备 厂 商 的核 心 枝 术 能 力 、产 品 价 格 以及 成 本控 制 能
目前 ,光传输设备的市场竞争首先是技术能力的竞 争。从整体上 来 说国内光传输 设备商的技术 能力 已经走 到国际前 沿 。以A O S N为 例 ,烽火 、华为 、中兴等有着 一定的优势 , 烽火 曾主持国家A O 方 SN 面的技术标 准,但是由于A O S N技术本 身 目前正不断的在实践中完善 的提升 ,绝对 的优势暂难获取 。从 P N发展的情况来 看 ,去年 中国 T 移动 P N招标 结果 显示 中兴 、华为 领头 ,烽火 通 信次之 。总 的来 T 看 ,设备方面的竞 争一方面包含着技术 的竞争 ,另一方面也 是价格和 整体方案解决能力的竞争。
2 光接入设备
光通信
![光通信](https://img.taocdn.com/s3/m/ec23d35e59fafab069dc5022aaea998fcc22403c.png)
光通信器件是构建光通信系统与网络的基础,高速光传输设备、长距离光传输设备和智能光网络的发展、升 级以及推广应用,都取决于光通信器件技术进步和产品更新换代的支持。因此,通信技术的更新与升级将促使光 通信器件不断发展进步。
历史
1
烽火台语
4
光**
5
“走弯路”
新疆呼图壁县境内的烽火台每当我们提到烽火台,就会自然而然地想到长城,实际上烽火台筑在长城沿线的 险要处和交通要道上。一旦发现敌情,便立刻发出警报:白天点燃掺有狼粪的柴草,使浓烟直上云霄;夜里则燃 烧加有硫磺和硝石的干柴,使火光通明,以传递紧急军情。上图为新疆呼图壁县境内的烽火台,在呼图壁县境内 共有5个烽火台,其中3个已毁,烽火台长宽均约4米,高约5米,筑台年月不详。
贝尔用弧光灯或者太阳光作为光源,光束通过透镜聚焦在话筒的震动片上。当人对着话筒讲话时,震动片随 着话音震动而使反射光的强弱随着话音的强弱作相应的变化,从而使话音信息“承载”在光波上(这个过程叫调 制)。在接收端,装有一个抛物面接收镜,它把经过大气传送过来的载有话音信息的光波反射到硅光电池上,硅 光电池将光能转换成电流(这个过程叫解调)。电流送到听筒,就可以听到从发送端送过来的声音了。
了解F1的旗语吧: 白色旗表示跑道上有缓慢移动的车辆 红色旗表示比赛已停止 黑色旗表示指定的赛车下次通过修理站时要停车 黄底红道旗意思是告诉车手跑道较滑 黑白对角旗表示是非运动员行为 黄旗表示有危险
光通信的出现比无线电通信还早。波波夫发送与接收第一封无线电报是在1896年,以发明**而著名的贝尔, 在1876年发明了**之后,就想到利用光来通**的问题。1880年,他利用太阳光作光源,大气为传输媒质,用硒晶 体作为光接收器件,成功地进行了光**的实验,通话距离最远达到了213米。1881年,贝尔宣读了题为《关于利 用光线进行声音的产生与复制》的论文,报导了他的光**装置。在贝尔本人看来:在他的所有发明中,光**是最 伟大的发明。
2021年中国光通信行业发展现状分析
![2021年中国光通信行业发展现状分析](https://img.taocdn.com/s3/m/9b3a8f25f02d2af90242a8956bec0975f465a4a1.png)
2021年中国光通信行业发展现状分析一、概述光通信是以光信号为信息载体的通信方式,其在电通信的基础上发展而来。
光波和无线电波同属电磁波,但光波的频率比无线电波的频率高,波长比无线电波的波长短。
因此,相比于传统的电通信,光通信具有巨大传输带宽、极低传输损耗、较低成本和高保真等优势。
光通信系统作为信息基础设施,在世界上得到了充分发展和大量应用。
二、行业发展背景1、政策近年来,中国光通信行业受到各级政府的高度重视和国家产业政策的重点支持。
国家陆续出台了多项政策,鼓励光通信行业发展与创新,为光通信行业的发展提供了明确、广阔的市场前景,为企业提供了良好的生产经营环境。
2、经济随着近年来我国通信业的蓬勃发展,通信业发展质量持续提升,5G、千兆光网等新型信息基础设施建设覆盖和应用普及全面加速,移动互联网流量持续快速增长,为我国光通信行业的发展奠定坚实的基础。
据资料显示,2021年我国电信业务累计完成1.47万亿元,同比增长8%,实现自2014年的8年来较高增长水平,增速较上年提高4.1个百分点。
3、技术从我国光通信技术专利情况来看,随着我国光通信行业的不断发展,近年来光通信相关专利数量也随之不断增长。
据资料显示2021年我国光通信相关专利申请数量为1775项,同比下降19.2%。
三、产业链分析1、产业链光通信行业产业链上游主要包括光芯片、陶瓷套管、陶瓷插芯、光纤适配器、转化器等零部件;中游为由多种光通信器件封装而成的光模块与子系统;下游为光通信设备商、电信网络运营商、数据中心及云服务提供商等。
2、上游端分析就光通信上游而言,光芯片是其最重要的材料,甚至可以说是整个上游的灵魂所在。
目前,我国光芯片国产化水平较低,高端芯片主要由海外厂商所垄断。
在国家政策的大力支持下,近年来我国光芯片国产化进程也稳步推进,市场规模也随之逐渐扩张,据资料显示,2019年我国光芯片市场规模为4.6亿美元,同比增长9.5%。
预计到2025年市场规模将增长至11.22亿美元。
光传输通信发展史
![光传输通信发展史](https://img.taocdn.com/s3/m/3dd909336d85ec3a87c24028915f804d2a168776.png)
光传输通信发展史1. 引言光传输通信是指利用光信号进行信息传输的通信方式。
自古以来,人类就一直在探索更高效、更快速的通信方式,而光传输通信正是在这一背景下应运而生的。
本文将全面、详细、完整地探讨光传输通信的发展史,从早期的光信号传输到现代光纤通信技术的应用。
2. 早期光信号传输2.1 光信号传输的起源光信号传输的起源可以追溯到古代,人们通过使用火把等光源来进行远距离的视觉传输。
这种方式虽然简单,但是受制于光源的亮度和传输距离的限制。
2.2 光信号传输的进展随着科技的进步,人们开始使用更为复杂的光信号传输方式。
在19世纪末,人们发明了光电传感器,可以将光信号转化为电信号进行传输。
这种方式大大提高了传输效率和可靠性,但是仍然受制于电信号的传输速度。
3. 光纤通信的诞生3.1 光纤的发现20世纪60年代,科学家发现了光纤的传导特性。
光纤是一种由光学玻璃或塑料制成的细长材料,具有良好的光学传导性能。
这一发现为光传输通信的革命奠定了基础。
3.2 光纤通信的初步应用在20世纪70年代,光纤通信技术开始得到应用。
人们利用光纤传输光信号,取代了传统的电信号传输方式。
光纤通信具有传输速度快、传输距离远、抗干扰能力强等优点,成为当时通信领域的重要突破。
4. 现代光纤通信技术4.1 单模光纤与多模光纤随着对光纤通信技术的深入研究,人们发现光信号在光纤中传输时会发生衰减和色散等问题。
为了解决这些问题,人们提出了单模光纤和多模光纤两种传输方式。
单模光纤适用于长距离传输,而多模光纤适用于短距离传输。
4.2 光纤通信系统现代光纤通信系统由发光器、光纤、光纤放大器和接收器等组成。
发光器将电信号转化为光信号,光信号在光纤中传输,光纤放大器用于放大光信号,接收器将光信号转化为电信号。
这一系统的应用使得光纤通信技术在实际应用中更加成熟和稳定。
4.3 光纤通信的应用领域现代光纤通信技术已经广泛应用于各个领域。
在互联网时代,光纤通信成为了信息传输的主要方式。
可见光通信技术及其应用
![可见光通信技术及其应用](https://img.taocdn.com/s3/m/0a194b0db207e87101f69e3143323968011cf4d0.png)
可见光通信技术及其应用随着科技的不断发展和智能化应用的推进,人们对于更高速、更安全的通信技术需求也越来越迫切。
在这个背景下,可见光通信技术应运而生。
可见光通信是一种利用可见光波段进行数据传输的技术,其原理基于LED灯或激光器产生的可见光信号进行通信,具有广阔的应用前景。
本文将从可见光通信技术的原理、特点及其应用等方面进行阐述。
首先,可见光通信技术的原理是利用可见光波段的光信号进行数据传输。
它采用的是无线通信方式,但是信号不是通过无线电波进行传输,而是利用可见光作为通信介质。
可见光通信技术通常使用LED灯作为光源,通过调制和解调技术将数据转换为光信号,然后利用光接收器接收并解码光信号,最终实现信息传输。
其次,可见光通信技术具有一些独特的特点。
首先,它可以实现高速通信。
与传统的无线通信技术相比,可见光通信技术的频率较高,使得它的数据传输速率更快,可以满足人们对于高速通信的需求。
其次,可见光通信技术具有较强的安全性。
由于可见光信号不能穿透墙壁,使得这种通信方式在保护数据的安全性方面具有优势,可以有效防止信息泄露。
最后,可见光通信技术无需额外电磁波频带资源,减少了对无线电频谱的需求,有利于减少频带资源的压力。
接下来,我们来探讨可见光通信技术的应用领域。
首先,它可以应用于室内定位和导航。
由于可见光信号无法穿透墙壁,可以利用这一特点对室内的位置进行准确定位,从而实现室内导航和定位服务。
其次,可见光通信技术可以应用于车联网领域。
传统的车载通信系统采用无线电波进行通信,但受限于无线电频谱资源,存在通信干扰问题。
而可见光通信技术则可以利用车内的灯光进行通信,解决了频谱资源的竞争问题,有助于提升车联网通信的安全性和可靠性。
此外,可见光通信技术还可以应用于室内无线网络。
传统的无线网络基于无线电波进行数据传输,但在密集的室内环境中,频谱资源的竞争导致网络速度下降。
而采用可见光通信技术构建室内无线网络可以利用光波的高频率特点,提高网络的传输速率和容量。
水下光通信-综述
![水下光通信-综述](https://img.taocdn.com/s3/m/adbcf814c281e53a5802fff3.png)
水下光通信综述一、水下光通信的国内外研究现状光通信起源最早可追溯到19 世纪70 年代,当时Alexander Graham Bell 提出采用可见光为媒介进行通信,但是当时既不能产生一个有用的光载波,也不能将光从一个地方传到另外一个地方。
因此直到1960 年激光器的发明,光通信才有了突破性的发展,但研究领域基本上集中在光纤通信和不可见光无线通信领域。
由于海水对光的强吸收特性,水下光通信技术一直没有得到重视。
直到1963 年,Dimtley 等人在研究光波在海洋中的传播特性时, 发现海水在450- 550 纳米波段内蓝绿光的衰减比其它光波段的衰减要小很多, 证实在海洋中亦存在一个类似于大气中存在的透光窗口。
这一物理现象的发现为解决长期水下目标探测、通信等难题提供了基础。
水下光学通信技术研究前期主要集中在军事领域,长期以来一直是水下潜艇通信中的关键技术。
美国海军从1977 年提出卫星与潜艇间通信的可行性后, 就与美国国防研究远景规划局开始执行联合战略激光通信计划。
从1980 年起, 以几乎每两年一次的频率, 进行了迄今为止共 6 次海上大型蓝绿激光对潜通信试验, 这些试验包括成功进行的12 千米高空对水下300 米深海的潜艇的单工激光通信试验, 以及在更高的天空、长续航时间的模拟无人驾驶飞机与以正常下潜深度和航速航行的潜艇间的双工激光通信可行性试验, 证实了蓝绿激光通信能在天气不正常、大暴雨、海水浑浊等恶劣条件下正常进行。
1983 年底, 前苏联在黑海舰队的主要基地塞瓦斯托波尔附近也进行了把蓝色激光束发送到空间轨道反射镜后再转发到水下弹道潜艇的激光通信试验。
澳大利亚国立大学信息科学与工程研究学院的研究小组开发了一种低成本、小体积、结构简单的光学通信系统,选用LuxeonⅢLED 的蓝(460nm)、青(490nm)、绿(520nm)光,接收器电路采用对蓝青绿三种光灵敏度很高的SLD—70BG2A 光电二极管,这套系统在兼顾速度与稳定性的同时,通讯速率可达57.6kbps,由于采用红外无线通信协议,其水下传输速率和传输距离受到极大限制。
关于光通信与光网络技术介绍
![关于光通信与光网络技术介绍](https://img.taocdn.com/s3/m/70fac0e9f71fb7360b4c2e3f5727a5e9856a270b.png)
关于光通信与光网络技术介绍最近有网友想了解下光通信与光网络技术的知识,所以店铺就整理了相关资料分享给大家,具体内容如下.希望大家参考参考光通信与光网络技术介绍一:光通信技术是一种以光波为传输媒质的通信方式常用的光通信有:大气激光通信信息以激光束为载波,沿大气传播。
它不需要敷设线路,设备较轻,便于机动,保密性好,传输信息量大,可传输声音、数据、图像等信息。
大气激光通信易受气候和外界环境的影响,一般用作河湖山谷、沙漠地区及海岛间的视距通信。
光纤通信是一种有线通信,光波沿光导纤维传输。
光源可以是激光器(又称半导体激光二极管),也可以是发光二极管。
光纤通信传输衰减小、容量大、不受外界干扰、保密性好,可用于大容量国防干线通信和野战通信等。
光纤有三个低损耗窗口:850nm,1310nm,1550nm。
蓝绿光通信是一种使用波长介于蓝光与绿光之间的激光,在海水中传输信息的通信方式,是目前较好的一种水下通信手段。
红外线通信是利用红外线(波长 300 ~ 0.76 微米)传输信息的通信方式。
可传输语言、文字、数据、图像等信息,适用于沿海岛屿间、近距离遥控、飞行器内部通信等。
其通信容量大、保密性强、抗电磁干扰性能好,设备结构简单,体积小、重量轻、价格低。
但在大气信道中传输时易受气候影响,传输的距离也就是4000米。
紫外线通信是利用紫外线(波长 0.39 ~60 × 10 微米)传输信息的通信方式。
其基本原理与红外线通信相似,与红外线通信同属非激光通信。
因为激光是一种方向性极强的相干光,沿光纤传输是目前最理想的恒参信道。
从发展的观点看,激光通信特别是光纤通信将被广泛采用。
光通信与光网络技术介绍二:光纤通信技术已渗透到了电信网的接人网、本地网(接人中继网)和长途干线网(骨干网)之中。
由于价格和用户所需带宽的问题.短时间内完全实现全部光纤接人到户还不现实.但是长远来看,实现全部光纤入户是社会发展的必然性,而同时对光网络工程师的人才需求也将越来越大。
光通信的原理及发展趋势
![光通信的原理及发展趋势](https://img.taocdn.com/s3/m/f349b3cf690203d8ce2f0066f5335a8102d266a5.png)
光通信的原理及发展趋势一、引言光通信是一种利用光作为信息载体的通信方式。
与传统的电通信方式不同,光通信在传输过程中无需电子设备进行转换,从而避免了信号的失真和损耗。
本文将介绍光通信的原理,并探讨其发展趋势。
二、光通信的原理1.光的传播特性光是一种电磁波,具有波粒二象性。
在传播过程中,光以波动形式传播,具有一定的频率、波长和相位。
光的传播特性决定了其在不同介质中的传播速度和衰减程度。
2.光的调制光通信中的光信号通常采用激光器产生。
激光器能够将电信号转换成光信号,并对光信号进行调制。
调制方式包括直接调制和外调制。
直接调制是指激光器内的电信号直接控制激光的强度、频率或偏振等属性,从而实现光的传输。
外调制则是将激光信号耦合到光学器件上,如反射镜、偏振片或半导体光放大器等,实现对光的进一步控制。
3.光的传输光信号在光纤中传输时,由于光纤的折射率具有各向异性,光信号会在光纤中按照一定的模式进行传播。
当光信号在光纤中传输时,会受到散射、吸收和反射等影响,从而导致光的强度、频率和相位发生变化。
因此,需要通过光放大器等技术对传输中的光信号进行补偿。
三、发展趋势1.超大容量和超长距离传输随着技术的发展,光通信的传输容量和距离也在不断增长。
目前,商用光纤传输系统的传输容量已经达到了数十Tb/s,并且还在不断增长。
同时,超长距离传输也得到了广泛的研究和应用,如跨洋传输和城域传输。
2.波分复用和量子通信波分复用技术可以将不同波长的光信号复用在一根光纤中进行传输,从而大大提高了传输容量。
量子通信则是一种基于量子力学原理的加密通信方式,具有更高的安全性。
随着量子理论的不断发展,量子通信有望成为未来通信的重要方向。
3.新型光纤和器件新型光纤和器件的发展对光通信的发展具有重要意义。
例如,非零色散位移光纤可以在一定程度上缓解色散问题,提高传输容量;新型光放大器和光学滤波器可以补偿光信号的衰减和提高信号质量;量子点激光器等新型光源器件可以进一步提高光的调制精度和稳定性。
可见光通信技术
![可见光通信技术](https://img.taocdn.com/s3/m/617b8dcf7f1922791688e872.png)
特点
1.无线电信号传输设备存在很多局限性,它们稀有、 昂贵、但效率不高,比如手机,全球数百万个基站帮 助其增强信号,但大部分能量却消耗在冷却上,效率 只有5%。相比之下,全世界使用的灯泡却取之不尽, 尤其在国内LED光源正在大规模取代传统白炽灯。只 要在任何不起眼的LED灯泡中增加一个微芯片,便可 让灯泡变成无线网络发射器。
特点
2.该系统还具有安全性高的特点。用窗帘遮住光线, 信息就不会外泄至室外,同时使用多台电脑也不会影 响通信速度。由于不使用无线电波通信,对电磁信号 敏感的医院等部门可以自由使用该系统。而且,光谱 比无线电频谱大10000倍,意味着更大的带宽和更高 的速度,网络设置又几乎不需要任何新的基础设施。
应用
应用
未来飞机上也能打电话 乘飞机“飞在天上”的数小时处于现代通讯覆盖“盲区”,会给生活、工作带 来不便。LED“光通讯”设备同样能很好地解决这个难题。在飞机飞行期间, 手机发出的无线信号会干扰飞行员与机场无线电的联系,还会干扰飞机罗 盘(飞机航向)的正确性,而LED光源所发出的可见光波段就不存在这样的隐 患,旅客可以通过座位上方的阅读灯发射,不仅可以实现打电话,带个平 板电脑上网也将不是难事,届时飞机将和火车一样,结束乘客的无通信时 代。
应用
“光通讯”运用于日常生活中 今年宽带上网速度从原先的2M免费提升至4M,而一般光纤宽带的网速也 只有上百兆,LED光通讯在家庭广泛运用后,网速上限可达几百M甚至上G, 远远超乎目前的水平,届时,在家看视频、下载电影再也不会有“卡”的现 象。和家庭无线路由器所发出的信号一样,LED光源发出的信号适用于几十 米内的短距离通信,这样就省去家里纷繁复杂的线路问题,打开一盏LED灯, 室内的电脑就可以高速上网,不需要任何无线路由器,屋里其他的电视、 热水器、空调也可以自动控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
我国拥有全世界最大的光通信市场,却只能造就一些在低端市场竞争的企业;拥有最完整的光通信产业链,但核心的光器件却依然靠进口。
一个光通信大国却不是光通信强国,不得不让人担忧。
“雄州雾列,俊采星驰,台隍枕夷夏之交,宾主尽东南之美。
”用《滕王阁序》中的这段话来描述通信展期间的光通信企业,可谓应其时、逢其景。
得益于中国通信业大发展,多数光通信企业都已经颇具规模,在国内乃至国际都有很大的影响力。
巧的是,通信展也是时维九月,与王勃作序时间相同,这些光通信企业也基本来自江浙、深圳一带。
上演盛况
本次通信展,我国光纤光缆、线缆制造的代表企业为烽火科技、亨通集团、俊知集团、中利集团。
这些企业在通信行业都有多年的积累,他们所展示的产品已经覆盖了整个通信行业对于线缆的需求:从电信到广电,再到航天、海洋、能源等,凡是需要线缆的地方都能完成覆盖。
值得一提的是,亨通集团本次展出了其具备完全自主知识产权的光纤预制棒,将光纤预制棒刻上了中国印记,可谓民族企业技术研发的典范。
美中不足的是目前产能只能自给自足,对于我国仍有60%光纤预制棒靠进口的局面尚没有带来直接的改变,但相信这只是时间问题。
此外,本次通信展上所有的光纤光缆企业均无一例外地展示了其ODN整体解决方案。
今年初,中国电信发布了“光网城市”战略、中国联通(600050,股吧)也启动了FTTH工程。
一石激起千层浪,行业内所有的企业都迅速转型,能生产ODN无源器件的都在扩容;不能生产的纷纷通过并购、建厂等方式参与进来。
国内企业发现市场的反应之快令人惊叹。
但如此迅速的扩产,也充分说明了一个问题:我国的ODN市场门槛太低,所生产的产品没有太多技术含量,市场很容易饱和。
大部分厂商只能靠着频繁打价格战来保证市场份额。
我国拥有全世界最大的光通信市场,却只能造就一些在低端市场竞争的企业;我国拥有最完整的光通信产业链,但核心的光器件却依然靠进口。
一个光通信大国却不是光通信强国,不得不让人担忧。
谱写愁绪
每读滕王阁序,惊艳于王勃的文采之余,也总能体会其在文中抒发的无奈。
看罢光通信的盛况,不难分析出国内民族企业的隐忧:如果没有我国如此庞大的市场,这些企业又将所剩几何?
本次参展的光纤光缆企业还有一家国外公司康宁,知道光纤的人没有不知道康宁的,但知道光纤的又有多少人注意过国内企业与康宁的差距?本次参展,康宁的展台规模、参展人员、所展产品种类都与其跨国企业的背景有些不符。
但康宁的每一个展出都让人们惊叹其在光纤领域40多年的经验积累和绝对领先的技术创新能力。
损耗低于0.18dB/km,用于超长距离高速传输的光纤;横贯平均海拔超过5000米的青藏高原的光纤,工作于低于零下20℃低温环境,保障国家电网的通信工程。
这都是康宁在技术上领先世界的表现。
在细节上,有多少企业会在意数据中心机柜上那短短的一截跳线?而正是基于这个截跳线,康宁提出的“易境”方案每年都能带来10亿美元的收入。
国内某厂商的工程师曾表示:“我们每次采购一些器件的时候,总希望能尽量多的使用国产的产品,但很多时候都在技术评标的时候放弃了:同一个器件,国内生产的产品在规格、颜色都不尽相同,要我们怎么用呢?”
正如武汉邮电科学院毛谦所讲:“通信强国不能完全靠引进来建设,在引进的同时,要有消化、吸收和创新,要建立、完善和发展自己的、民族的通信产业来支撑通信强国的建立。
”。