复杂排列数与组合数练习题和答案

合集下载

高中数学-排列组合100题(附解答)

高中数学-排列组合100题(附解答)

高中数学-排列组合100题(附解答)高中数学_排列组合100题一、填充题1. (1)设{}3,8A =﹐{}8,36B x =+﹐若A B =﹐则x =____________﹒(2)设{}2|320A x x x =-+=﹐{}1,B a =﹐若A B =﹐则a =____________﹒ 2. (1)822x x ⎛⎫- ⎪⎝⎭展开式中10x 项的系数为____________﹒ (2)52123x x ⎛⎫- ⎪⎝⎭展开式中3x 项的系数为____________﹒ (3)53212x x ⎛⎫+ ⎪⎝⎭展开式中常数项为____________﹒ 3. (1)()82x y z +-展开式中332x y z 项的系数为____________﹒(2)()532x y z -+展开式中﹐2.3x y 项的系数为____________﹒4. 四对夫妇围一圆桌而坐﹐夫妇相对而坐的方法有___________种﹒5. {}{}1,21,2,3,4,5,A ⊂⊂且A 有4个元素﹐则这种集合A 有____________个﹒6. 从2000到3000的所有自然数中﹐为3的倍数或5的倍数者共有____________个﹒7. 从1至10的十个正整数中任取3个相异数﹐其中均不相邻的整数取法有____________种﹒8. 某女生有上衣5件﹑裙子4件﹑外套2件﹐请问她外出时共有__·····__________种上衣﹑裙子﹑外套的搭配法﹒(注意:外套可穿也可不穿﹒)9. 已知数列n a 定义为1132n n a a a n +=⎧⎨=+⎩﹐n 为正整数﹐求100a =____________﹒ 10. 设A ﹑B ﹑T 均为集合﹐{},,,A a b c d =﹐{},,,,=B c d e f g ﹐则满足T A ⊂或T B ⊂的集合T 共有____________个﹒11. 李先生与其太太有一天邀请邻家四对夫妇围坐一圆桌聊天﹐试求下列各情形之排列数:(1)男女间隔而坐且夫妇相邻____________﹒(2)每对夫妇相对而坐____________﹒12. 体育课后﹐阿珍将4个相同排球﹐5个相同篮球装入三个不同的箱子﹐每箱至少有1颗球﹐则方法有13. 如图﹐由A 沿棱到G 取快捷方式(最短路径)﹐则有____________种不同走法﹒14. 0﹑1﹑1﹑2﹑2﹑2﹑2七个数字全取排成七位数﹐有____________种方法﹒15. 10132⎛⎫ ⎪ ⎪⎝⎭展开式中﹐各实数项和为____________﹒16. 有一数列n a 满足11a =且1213n n a a +=+﹐n 为正整数﹐求()13n n a ∞=-=∑____________﹒ 17. 设{}2,4,1A a =+﹐{}24,2,23B a a a =----﹐已知A B ⋂{}2,5=﹐则()()A B A B ⋃-⋂=____________﹒ 18. 把1~4四个自然数排成一行﹐若要求除最左边的位置外﹐每个位置的数字比其左边的所有数字都大或都小﹐则共有____________种排法﹒(例如:2314及3421均为符合要求的排列)19. 从1到1000的自然数中﹐(1)是5的倍数或7的倍数者共有____________个﹒(2)不是5的倍数也不是7的倍数者共有____________个﹒(3)是5的倍数但不是7的倍数者共有____________个﹒20. 如图﹐从A 走到B 走快捷方式﹐可以有____________种走法﹒21. 1到1000的正整数中﹐不能被2﹑3﹑4﹑5﹑6之一整除者有____________个﹒22. 将100元钞票换成50元﹑10元﹑5元﹑1元的硬币﹐则(1)50元硬币至少要1个的换法有____________种﹒(2)不含1元硬币的换法有____________种﹒23. 求()21x -除1001x +的余式为____________﹒24. 在()8x y z ++的展开式中﹐同类项系数合并整理后﹐(1)共有____________个不同类项﹒(2)其中323x y z 的系数25. 小明与小美玩猜数字游戏﹐小明写一个五位数﹐由小美来猜;小美第一次猜75168﹐小明说五个数字都对﹐但只有万位数字对﹐其他数字所在的位数全不对﹐则小美最多再猜____________次才能猜对﹒26. 若{}|,,110000S x x x x =≤≤為正整數為正整數﹐{}|12,,110000T x x k k x ==≤≤為正整數﹐则()n S T -=____________﹒27. 小于10000之自然数中﹐6的倍数所成集合为A ﹐9的倍数所成集合为B ﹐12的倍数所成集合为C ﹐则(1)()n A B ⋂=____________﹒ (2)()n A B C ⋂⋂=____________﹒ (3)()n A B C ⎡⋂⋃⎤=⎣⎦____________﹒(4)()n A B C ⎡⋂⋃⎤=⎣⎦____________﹒28. 1到300的自然数中﹐是2或3的倍数但非5的倍数有____________个﹒29. ()10222x x -+除以()31x -所得的余式为____________﹒ 30.如圖﹐以五色塗入各區﹐每區一色且相鄰區不得同色﹐則有____________種不同的塗法﹒(圖固定不得旋轉)31. 如图﹐则(1)由A 取捷徑到B 的走法有____________種﹒ (2)由A 走到B ﹐走向可以↑﹑→或↓﹐但不可以←﹐且不可重複走﹐則走法有____________種﹒32. 求()()23311x x ++++……()2031x ++展开式中12x 项系数为____________﹒ 33. ()1001k k x =-∑展开式中5x 的系数为____________﹒34. 展开()200.990.abcd =……﹐则a b c ++=____________﹒35. 建中高二教室楼梯一层有11个阶梯﹐学生上楼时若限定每步只可跨一阶或二阶﹐则上楼的走法有____________种﹒36. 利用二项式定理求12323n nn n n C C C nC +++⋅⋅⋅⋅⋅⋅+和为____________﹒ 37. 四对夫妇Aa ﹑Bb ﹑Cc ﹑Dd 围一圆桌而坐﹐若Aa 要相对且Bb 要相邻的坐法有____________种﹒49. 将pallmall 的字母全取排成一列﹐相同字母不相邻的排法有____________种﹒50. 二个中国人﹑二个日本人﹑二个美国人排成一列﹐同国籍不相邻有____________种排法﹒二、计算题1. 设数列n a 满足14a =且132k n a a +=+﹐n 为自然数﹐试求(1)2a ﹐3a ﹐4a ﹐5a ﹒(2)推测n a 之值(以n 表示)﹒(3)401k k a =∑﹒2. 某校从8名教师中选派4名教师分别去4个城市研习﹐每地一人﹒其中甲和乙不能同时被选派﹐甲和丙只能同时被选派或同时不被选派﹐问共有几种选派方法?3. 试求()632x y -的展开式﹒4. 试求()421x -的展开式﹒5. 从SENSE 的5个字母中任取3个排成一列﹐问有几个排法?6. 下列各图形﹐自A 到A 的一笔划﹐方法各有多少种﹖ (1) (2) (3)7. 如图﹐至少包含A 或B 两点之一的矩形共有几个?8. 设()n x y +展开式中依x 降序排列的第6项为112﹐第7项为7﹐第8项为14﹐试求x ﹑y 及n 之值﹒(但x ﹑y 都是正数)9. 红﹑白﹑绿﹑黑四色大小相同的球各4颗共16颗球﹐任取四颗﹐则(1)四球恰为红﹑白二色的情形有几种?(2)四球恰具两种颜色的情形有几种?10. 一楼梯共10级﹐某人上楼每步可走一级或两级﹐要8步走完这10级楼梯﹐共有多少种走法?11. 设{}1,2,3,4,5,6,7,8,9,10U =为一基集(宇集)﹐则{}1,2,4,5,8A =﹐{}1,2,5,7,9B =﹐求(1)A B ⋃(2)A B ⋂ (3)A B - (4)B A - (5)'A (6)'B (7)()'⋃A B (8)''⋂A B (9)()'A B ⋂ (10)''A B ⋃﹒12. 若()1922381211x x a x a x x -+=+++⋅⋅⋅⋅⋅⋅+﹐求1a 和2a 的值﹒13. 某一场舞会将4位男生与4位女生配成4对﹐每一对皆含一位男生与一位女生﹐试问总共有几种配对法﹖(1)43C ﹒ (2)44P ﹒ (3)44﹒ (4)44H ﹒ (5)4﹒→一笔划的方法数有几种﹖14. 如图﹐A A(1)(2)15. 如图﹐由A至B走快捷方式﹐不能穿越斜线区﹐有多少种走法﹖0.998之近似值﹒(至小数点后第6位)16. 求()717. 设()1012220211x x ax bx cx +-=+++⋅⋅⋅⋅⋅⋅+﹐求a ﹑b ﹑c 之值﹒18. (1)试证明下列等式成立:()1012121.12311n n n n n n C C C C n n ++++⋅⋅⋅⋅⋅⋅+=-++ (2)设n 为自然数﹐且满足12031,2311n n n nn C C C C n n +++⋅⋅⋅⋅⋅⋅+=++则n 之值为何?19. 王老师改段考考卷﹐她希望成绩是0﹑4﹑5﹑6﹑7﹑8﹑9所组成的2位数﹐则(1)不小于60分的数有几个﹖(2)有几个3的倍数﹖(3)改完考卷后发现由小到大排列的第12个数正是全班的平均成绩﹐请问班上的平均成绩是几分﹖﹐国文也要连两堂上课﹐但同科目的课程不跨上﹑下午(即第四五节课不算连堂)﹐若第四﹑五堂课也不排体育﹐则该日之课程有几种可能的排法﹖21. ()10122320211,x x ax bx cx x +-=++++⋅⋅⋅⋅⋅⋅+求a ﹑b ﹑c ﹒22. 已知{}{}{}0,,1,2,1,1,2=∅A ﹐下列何者为真﹖(A)∅∈A (B)∅⊂A (C)0A ∈ (D)0A ⊂ (E){}1,2A ∈ (F){}1,2A ⊂ (G){}∅⊂A ﹒23.設有A ﹑B ﹑C ﹑D ﹑E 五個市鎮﹐其通道如圖所示﹐今某人自A 地到E 地﹐同一市鎮不得經過兩次或兩次以24. 设数列n a 的首项15a =且满足递归关系式()123n n a a n +=+-﹐n 为正整数﹐试求(1)2a ﹐3a ﹐4a ﹐5a ﹒(2)一般项n a (以n 表示)﹒(3)20a ﹒25. 方程式10x y z ++=有多少组非负整数解?26. 用0﹑1﹑2﹑3﹑4﹑5作成大于230的三位数奇数﹐数字可重复使用(1)可作成多少个﹖ (2)其总和若干﹖27. 求5678192023451617C C C C C C ++++++的值﹒28. 妈妈桌球俱乐部拟购买8把桌球拍以供忘记携带球拍的会员使用﹐若球拍分为刀板﹐直拍与大陆拍3类﹐试问俱乐部有多少种不同的购买方式?29. 设直线方程式0ax by +=中的,a b 是取自集合{}3,2,1,0,2,4,6---中两个不同的元素﹐且该直线的斜率为正值﹐试问共可表出几条相异的直线﹖30. 下列各图﹐由A 到B 的一笔划﹐方法各有多少种﹖ (1) (2)31. 以五种不同的颜色﹐涂入下列各图(图形不能转动)﹐同色不相邻﹐颜色可重复使用﹐则涂法各有多少种﹖ (1) (2)32. 平面上有n 个圆﹐其中任三个圆均不共点﹐此n 个圆最多可将平面分割成n a 个区域﹐则(1)求1a ﹐2a ﹐3a ﹐4a ﹒(2)写出n a 的递归关系式﹒(3)求第n 项n a (以n 表示)﹒33. 于下列各图中﹐以五色涂入各区﹐每区一色但相邻不得同色﹐则各有几种不同的涂法﹖(各图固定﹐不得旋转) (1) (2) (3)34. 车商将3辆不同的休旅车及3辆不同的跑车排成一列展示﹒求下列各种排列方法:(1)休旅车及跑车相间排列﹒(2)休旅车及跑车各自排在一起﹒35. 从6本不同的英文书与5本不同的中文书中﹐选取2本英文书与3本中文书排在书架上﹐共有几种排法?36. 将9本不同的书依下列情形分配﹐方法各有几种?(1)分给甲﹐乙﹐丙3人﹐每人各得3本﹒(2)分装入3个相同的袋子﹐每袋装3本﹒(3)分装入3个相同的袋子﹐其中一袋装5本﹐另两袋各装2本﹒37. 学校举办象棋及围棋比赛﹐已知某班级有42位同学参赛﹐其中有34位同学参加围棋比赛﹐而两种棋赛都参加的同学有15人﹒试问此班有多少位同学参加象棋比赛?38. 求()321x x ++的展开式中2x 的系数﹒39. 求()322x x -+的展开式中4x 的系数﹒41. 自甲地到乙地有电车路线1条﹐公交车路线3条﹐自乙地到丙地有电车路线2条﹐公交车路线2条﹒今小明自甲地经乙地再到丙地﹐若甲地到乙地与乙地到丙地两次选择的路线中﹐电车与公交车路线各选一次﹐则有几种不同的路线安排?42. 某班举行数学测验﹐测验题分A﹐B﹐C三题﹒结果答对A题者有15人﹐答对B题者有19人﹐答对C题者有20人﹐其中A﹐B两题都答对者有10人﹐B﹐C两题都答对者有12人﹐C﹐A两题都答对者有8人﹐三题都答对者有3人﹒试问A﹐B﹐C三题中至少答对一题者有多少人?43. 在1到600的正整数中﹐是4﹐5和6中某一个数的倍数者共有几个?44.用黑白兩種顏色的正方形地磚依照如右的規律拼圖形:設n a 是第n 圖需用到的白色地磚塊數﹒(1)寫下數列n a 的遞迴關係式﹒(2)求一般項n a ﹒(3)拼第95圖需用到幾塊白色地磚﹒45. 欲将8位转学生分发到甲﹐乙﹐丙﹐丁四班﹒(1)若平均每班安排2人﹐共有几种分法?(2)若甲乙两班各安排3人﹐丙丁两班各安排1人﹐共有几种分法?46. 求满足12320003000n n nnn C C C C <++++<的正整数n ﹒47. (1)方程式9x y z ++=有多少组非负整数解﹖(2)方程式9x y z ++=有多少组正整数解﹖48. 旅行社安排两天一夜的渡假行程﹐其中往返渡假地点的交通工具有飞机﹑火车及汽车3种选择﹐而住宿有套房与小木屋2种选择﹒试问全部渡假行程﹐交通工具与住宿共有几种安排法﹖49. 老师想从10位干部中选出3人分别担任班会主席﹑司仪及纪录﹒试问有几种选法﹖50. 如果某人周末时﹐都从上网﹑打牌﹑游泳﹑慢跑与打篮球等5种活动选一种作休闲﹐那么这个月4个周末共有答 案一、填充题 (65格 每格0分 共0分)1. (1)1-;(2)22. (1)112;(2)0;(3)403. (1)4480;(2)90-4. 485. 36. 4687. 568. 609. 9903 10. 44 11.(1)48;(2)384 12. 228 13. 6 14. 90 15. 12- 16. 6 17. {}4,4- 18. 8 19. (1)314;(2)686;(3)172 20. 35 21.266 22. (1)37;(2)18 23. 10098x - 24. (1)45;(2)560 25. 9 26. 84 27. (1)555;(2)277;(3)1111;(4)1111 28. 160 29. 2102011x x -+ 30. 780 31. (1)26;(2)120 32. 20349 33. 462- 34. 16 35. 144 36. 12n n -⋅ 37. 192 38. 21 39. (1)27;(2)81 40. 63 41. 8 42. 64 43. (1)56;(2)20 44. (1)369;(2)76 45. 129 46. 3756 47. 8640 48. 80 49. 54 50. 240二、计算题 (75小题 每小题0分 共0分)1. (1)2112a =﹐37a =﹐4172a =﹐510a =;(2)3522n +;(3)1330 2. 600 3. 见解析 4. 见解析 5. 18 6.(1)48;(2)48;(3)96 7. 150 8. 4x =﹐12y =﹐8n = 9. (1)3;(2)18 10. 28 11. 见解析 12. 1219,190a a =-= 13. (2) 14. (1)32;(2)64 15. 27 16. 0.986084 17. 101,4949,a b ==1c =- 18. (1)见解析;(2)4 19. (1)28;(2)14;(3)57 20. 52 21. 101,4949,a b ==156550c = 22. (A)(B)(C)(E)(F)(G) 23. 76 24. (1)24a =﹐35a =﹐48a =﹐513a =; (2)248n n -+;(3)328 25. 66 26. (1)63;(2)25299 27. 5980 28. 45 29. 13 30. (1)72;(2)864 31. (1)420;(2)3660 32. (1)12a =﹐24a =﹐38a =﹐414a =;(2)12n n a a n +=+⨯;(3)22n n -+ 33. (1)260;(2)3380;(3)43940 34. (1)72;(2)72 35. 18000 36. (1)1680;(2)280;(3)378 37. 23 38. 6 39. 9 40. 20 41. 8 42. 27 43. 280 44.(1)15,2n n a a n -=+≥;(2)53n +;(3)478 45. (1)2520;(2)1120 46. 11 47. (1)55;(2)28 48. 18 49. 720 50.625解 析一、填充题 (65格 每格0分 共0分)1. (1)3631x x +=⇒=-﹒(2)()()2320120x x x x -+=⇒--=1,2x ⇒=﹐∴2a =﹒2. (1)设第1r +项为10x 项﹐则()()882816222rrr r r rr Cx C xx x ---⎛⎫-=- ⎪⎝⎭163102r r ⇒-=⇒=﹐∴10x 项之系数为()2822112C -=﹒ (2)设第1r +项为3x 项﹐则()55255102112233r rrr r rrr Cx C xx x ----⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭710333r r ⇒-=⇒=(不合)﹐∴3x 项之系数为0﹒ (3)设第1r +项为常数项﹐则()5535515322122rrr r rrr Cx C xx x ----⎛⎫= ⎪⎝⎭15503r r ⇒-=⇒=﹐∴常数项为523240C =﹒3. (1)()()()()332238!22144803!3!2!x y z -⇒⨯⨯-=﹒ (2)()()()()2303223235!321031902!3!x y z x y x y -=⨯-=-﹐∴系数为90-﹒ 4. 所求为1161412148⨯⨯⨯⨯⨯⨯⨯=﹒ [另解]34!2484⨯=﹒ 5. {}1,2,3,4﹐{}1,2,3,5﹐{}1,2,4,5﹐共3个﹒ 6. 2000~3000中3的倍数有3000200033433⎡⎤⎡⎤-=⎢⎥⎢⎥⎣⎦⎣⎦个﹐ 2000~3000中5的倍数有30002000120155⎡⎤⎡⎤-+=⎢⎥⎢⎥⎣⎦⎣⎦个﹐ 2000~3000中15的倍数有30002000671515⎡⎤⎡⎤-=⎢⎥⎢⎥⎣⎦⎣⎦个﹐ ∴所求为33420167468+-=﹒ 7. 83563!P =﹒8. ()542160⨯⨯+=﹒ 9. ∵12n n a a n +=+﹐ ∴2121a a =+⨯ 3222a a =+⨯()1)21n n a a n -+=+⨯-()()21121213232n n n a a n n n -⋅=+⎡++⋅⋅⋅⋅⋅⋅+-⎤=+⨯=-+⎣⎦﹐∴210010010039903a =-+=﹒ 10. ∵T A T B ⊂⋃⊂﹐∴T 的个数为4522221632444+-=+-=﹒11. (1)5!2485⨯=﹒ (2)A a B b C c D d E e 1181614121384⨯⨯⨯⨯⨯⨯⨯⨯⨯=﹒ [另解]55!1238452⨯⨯=﹒ 12. 全部-(恰有一空箱)-(恰有二空箱)()()333223114514524511H H C H H C H H ⨯-⨯---⨯()67564545323228C C C C =⨯-⨯--=﹒13. 3216⨯⨯=﹒ 14. 任意排0-在首位7!6!5675610515904!2!4!2!22⨯⨯⨯=-=-=-=﹒ 15. 展开后各实数项和为 246810864210101010100246811313131322222C C C C C ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭101010132C ⎛⎫⎛⎫+ ⎪ ⎪ ⎪⎝⎭⎝⎭512110242=-=-﹒ [另解]原式()()10cos 60sin 60i =⎡-︒+-︒⎤⎣⎦()()cos 600sin 600i =-︒+-︒132=-+﹐ ∴实数项和为12-﹒16. ∵1213n n a a +=+⋅⋅⋅⋅⋅⋅∴1213n n a a -=+⋅⋅⋅⋅⋅⋅-()1123n n n n a a a a +-⇒-=- 而11a =﹐2125133a a =+=﹐2123a a -=﹐表示数列1n n a a +-为首项23﹐公比23的等比数列﹐()()()121321n n n a a a a a a a a -=+-+-+⋅⋅⋅⋅⋅⋅+-111221332211213223313n n n ---⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎛⎫⎣⎦=+=+-=-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦-﹐∴()111223262313n n n n a -∞∞==⎛⎫-=== ⎪⎝⎭-∑∑﹒17. ∵{}2,5A B ⋂=﹐∴154a a +=⇒=﹐∴{}2,4,5A =﹐{}4,2,5B =-﹐{}4,2,4,5A B ⋃=-﹐ ∴()(){}4,4A B A B ⋃-⋂=-﹒ 18. 1234 3214 2134 3241 2314 3421 2341 4321 共8种﹒19. 设1到1000的自然数所成的集合为基集U ﹐1到1000的自然數中﹐5的倍數者所成的集合為A ﹐而7的倍數者所成的集合為B ﹐則A B ⋂表示35的倍數者所成的集合﹐ (1)即求()()()()n A B n A n B n A B ⋃=+-⋂100010001000200142283145735⎡⎤⎡⎤⎡⎤=+-=+-=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦﹒(2)即求()()()()1000314686⎡⎤'''⋂=⋃=-⋃=-=⎢⎥⎣⎦n A B n A B n U n A B ﹒(3)即求()()()20028172n A B n A n A B -=-⋂=-=﹒20.7!354!3!=﹒ 21. 若一整数不能被2整除﹐则必不能被4﹑6整除﹐故本题即求1到1000正整数中﹐不能被2﹑3﹑5之一整除者的个数﹒设1到1000之正整数中﹐可被2﹑3﹑5整除者之集合分别为A ﹑B ﹑C ﹐则()10005002n A ⎡⎤==⎢⎥⎣⎦﹐()10003333n B ⎡⎤==⎢⎥⎣⎦﹐()10002005n C ⎡⎤==⎢⎥⎣⎦﹐()10001666n A B ⎡⎤⋂==⎢⎥⎣⎦﹐()100010010n A C ⎡⎤⋂==⎢⎥⎣⎦﹐()10006615n B C ⎡⎤⋂==⎢⎥⎣⎦﹐ ()10003330n A B C ⎡⎤⋂⋂==⎢⎥⎣⎦﹐ ()()()()()()()()n A B C n A n B n C n A B n A C n B C n A B C ⋃⋃=++-⋂-⋂-⋂+⋂⋂ 5003332001661006633734=++---+=﹐故所求为()()'''10001000734266n A B C n A B C ⋂⋂=-⋃⋃=-=(个)﹒22. (1)①一个50⇒设10元x 个﹐5元y 个﹐1元z 个﹐则10550x y z ++=﹐x0 1 2 3 4 5 y 0~10 0~8 0~6 0~4 0~20 z 50~0 40~0 30~0 20~0 10~0共119753136+++++=种﹒ ②二个50⇒1种﹒ ∴所求为36137+=种﹒(2)设50元x 个﹐10元y 个﹐5元z 个﹐则50105100x y z ++= 10220x y z ⇒++=﹐x0 1 2 y0~10 0~5 0 z20~010~0共116118++=种﹒23. ()()()1002100100100121111111x x C x C x +=⎡+-⎤+=+-+-+⎣⎦……()10010010011C x +-+﹐∴1001x +除以()21x -的余式为()11001110098x x +-+=-﹒24. (1)3101088245H C C ===﹒(2)8!560.3!2!3!= 25. 先考虑5不在千位﹐1不在百位﹐6不在十位﹐8不在个位的方法﹐ 14!43!62!41!10!9⨯-⨯+⨯-⨯+⨯=﹐∴最多再猜9次﹒26. {}{}2222,1100001,2,3,,100,=≤≤=為正整數S x x x ∴()100n S =﹐{}|12,,110000T x x k k x ==≤≤為正整數﹐ 令()222212232336x k k ==⨯⨯=⨯⨯=﹐则()()(){}22261,62,,616,⋂=⨯⨯⨯S T∴()16n S T ⋂=﹐故()1001684n S T -=-=﹒ 27. (1)所求为999955518⎡⎤=⎢⎥⎣⎦﹒ (2)所求为999927736⎡⎤=⎢⎥⎣⎦﹒(3)()()()()n A B C n A B n C n A B C ⎡⋂⋃⎤=⋂+-⎡⋂⋂⎤⎣⎦⎣⎦ 5558332771111=+-=﹒ (4)()()()n A B C n A B A C ⎡⋂⋃⎤=⎡⋂⋃⋂⎤⎣⎦⎣⎦()()()()n A B n A C n A B A C =⋂+⋂-⎡⋂⋂⋂⎤⎣⎦ ()555833n A B C =+-⋂⋂ 5558332771111=+-=﹒ 28.()()()()()()236151030n n n n n n +---+15010050203010160=+---+=﹒29. ()()1010222211x x x ⎡⎤-+=-+⎣⎦()()10922101010911C x C x ⎡⎤⎡⎤=-+-+⎣⎦⎣⎦……()()22210101021011C x C x C ⎡⎤+-+-+⎣⎦故余式为()()210102210110211102011C x C x x x x -+=-++=-+﹒30.①B ﹑D 同﹐54143240,A B D C E ⨯⨯⨯⨯=②B ﹑D 異﹐54333540,A B D C E ⨯⨯⨯⨯=由①②可得﹐共有240540780+=种﹒ 31.(1)走捷徑等於是走向只許向右與向上兩種﹒如圖﹐ 由A 開始朝任何方向走都有1種走法﹐走至交叉 點P 後﹐將會合箭頭的方法數全部加起來﹐即為走到該點的走法數(累加法)﹒如圖﹐走法有26種﹒(2)走向可以↑﹑→或↓﹐但不可以←又不可重複走﹒如圖﹐由P 出發﹐依所規定的走法﹐走到隔鄰的鉛垂路線上立即停止﹐再決定走向﹒如此相鄰的兩鉛垂路線間的走法數相乘﹐即為所求的走法數﹒∴走法有120種﹒32. ()()23311x x ++++……()()()()()()203321332033311111111x x x x x x x ⎡⎤++-+-+⎢⎥⎣⎦++==+-﹐ 所求即分子()2131x +展开式中15x 项系数∴所求为21521201918172034954321C ⨯⨯⨯⨯==⨯⨯⨯⨯﹒33.()()()()10121111kk x x x x =-=-+-+-+∑……()101x +-()()()11111111111x x x x⎡⎤----⎣⎦==--﹐展开式中5x 系数即为()1111x --展开式中6x 系数﹐ ∴所求为()61161462C --=-﹒ 34. ()()20200.9910.01=⎡+-⎤⎣⎦()()()2320202012310.010.010.01C C C =+-+-+-+……()2020200.01C +-10.20.0190.00114=-+-+……0.81786≈﹐ ∴81716a b c ++=++=﹒35. 设一步一阶走x 次﹐一步二阶走y 次﹐则211x y +=﹐x1 3 5 7 9 11 y543216!7!8!9!10!15!3!4!5!3!7!2!9!⇒+++++144=﹒ 36. 令12323n n nn n S C C C nC =+++⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅⋅⋅则()0111n n nn S nC n C C -=+-+⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅⋅⋅+()0122n n n nn S n C C C n ⇒=++⋅⋅⋅⋅⋅⋅+=⋅﹐∴12n S n -=⋅﹒ 37.()1142!4!192.⨯⨯⨯⨯=選位A aBb38. 设白色x 块﹐黑色y 块﹐则27x y +=﹐y 0 1 2 3 x7531⇒6!5!4!116104215!2!3!3!+++=+++=﹒ 39. (1)33311127C C C =﹒(2)33333333321121121181C C C C C C C C C ++=﹒40. 62163-=41. 20202020123202320S C C C C =+++⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅⋅⋅ 20202001192019S C C C =++⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅⋅⋅()202020200120220202S C C C +⇒=++⋅⋅⋅⋅⋅⋅+=⨯﹐∴20102S =⨯﹐∵20log220log2200.3010 6.02==⨯=﹐∴202为7位数﹐∴S 为8位数﹒ 42. ①选一面4⇒﹐ ②选二面4312⇒⨯=﹐ ③选三面43224⇒⨯⨯=﹐ ④选四面⇒432124⨯⨯⨯=﹐由①②③④可得﹐共可作成412242464+++=种﹒43. (1)8!565!3!=﹒(2)所求=全部()n C D -⋃()()()56A C B A D B A C D B =-⎡→→+→→-→→→⎤⎣⎦ 3!5!4!4!3!4!5612!3!2!3!2!2!2!2!2!⎛⎫=-⨯+⨯-⨯⨯ ⎪⎝⎭()5630241820=-+-=﹒44. (1)含中空:3342111172,C C C C ⨯⨯⨯=左 上 右 下不含中空:37934792334342222222222222223C C C C C C C C C C C C C C +++----左 上 右 下 左上 右上 左下 右下 631081263691836297=+++----= ∴所求为72297369.+=(2)含中空:边长为31⇒﹐边长为44⇒﹐边长为56⇒﹐边长为63⇒﹐∴共14个﹐ 不含中空:()()()()625128176352418523122362,⨯+⨯+⨯+⨯+⨯+⨯+⨯+--⨯+⨯--=左 上 右 下 左上 右上 左下 右下 ∴所求为146276+=个﹒ 45. ①只用一色:3种﹐②只用二色:()()()()()()6,1,5,2,4,3,3,42,5,1,6∴()322!636,C ⋅⨯=上下色交換③用三色:红+白+黄=7 1 1 1 剩4∴36443!690,⨯=⨯=H C 紅白黃排列∴共33690129++=种﹒46. 444333222111234234234234146410H H H H H H H H H H H H ⨯⨯⨯-⨯⨯⨯+⨯⨯⨯-⨯⨯⨯+⨯700049006604103756=-⨯+⨯-⨯+=﹒47. 6A a Bb →→→坐法其他人坐法 1162!6!8640⨯⨯⨯⨯=﹒48. ()A B A P B A Q B A P Q B →-→→+→→-→→→ 10!4!6!5!5!4!5!16!4!2!2!4!2!3!2!3!2!2!2!3!2!⎛⎫⇒-⨯+⨯-⨯⨯ ⎪⎝⎭()210901006080=-+-=﹒ 49. aa 不相邻且llll 不相邻﹐可先排pm aa ﹐再安插llll ﹐ ①aa 排在一起时:aa 排法有3!6=种﹐再安插4个l :p m a a △△△△△方法有434C =种﹒↑ l②aa 不排在一起时:p m △△△排法有322!6C ⨯=种﹐ 再安排4个l :p a m a △△△△△方法有545C =种﹒ 由①②可知﹐排法有646554⨯+⨯=种﹒ [另解]llll 不相邻llll -不相邻且aa 相邻54444!3!606542!4!4!P P =⨯-⨯=-=﹒50. 6!35!2!34!2!2!13!2!2!2!240-⨯⨯+⨯⨯⨯-⨯⨯⨯⨯=﹒二、计算题 (75小题 每小题0分 共0分)1. ∵132n n a a +=+﹐∴132n n a a +-=﹐ 表示n a 为首项4﹐公差32的等差数列﹐(1)2133114222a a =+=+=﹐ 3231137222a a =+=+=﹐ 4333177222a a =+=+=﹐ 54317310222a a =+=+=﹒ (2)()()1335141222n a a n d n n =+-=+-⨯=+﹒(3)()401240134024401213302k k a a a a =⎡⎤⨯+-⨯⎢⎥⎣⎦=++⋅⋅⋅⋅⋅⋅+==∑﹒ 2. 从8名教师中选出4名教师去4个城市研习的方式可分为甲去和甲不去两种情形: (1)若是甲去研习﹐则丙也会去﹐而乙不去﹐因此需从剩下的5名教师中选出2人去参加研习﹐故选法有52C 种﹒ (2)若是甲不去研习﹐则丙也不会去﹐而乙可去也可不去﹐因此需从剩下的6名教师中选出4名教师去参加研习﹐故选法有64C 种﹒综合这两种情形﹐从8名教师中选派4名教师的选法共有562425C C +=种﹒而选出4名教师后﹐分别安排到4个城市去研习﹐则安排的方式有4!种﹐ 因此总共有254!600⨯=种选派方法﹒3. ()()()()()()()()()()6651423324666660123432332323232x y C x C x y C x y C x y C x y -=+-+-+-+- ()()()566656322C x y C y +-+-6542332456729291648604320216057664.x x y x y x y x y xy y =-+-+-+4. ()()()()()()()()()44312213444444012342122121211x C x C x C x C x C -=+-+-+-+-43216322481x x x x =-+-+﹒5. SENSE 的5个字母中取3种字母﹐其中任取3个字母可能取出「三个字母皆不相同」或「两个字母同另一不同」两种情形:(1)选出三个字母皆不相同的选法有331C =种﹐排列的方法有3!种﹐ 因此排法有333!6C ⨯=种﹒(2)选出两个字母同另一不同的选法有2211C C ⨯种﹐排列的方法有3!2!1!种﹐ 因此排法有22113!122!1!C C ⨯⨯=种﹒ 综合这两种情形﹐共有18种排法﹒6. (1)先走任一瓣都可以﹐故将3瓣视为3条路任意排列﹐方法3!种﹐又每一瓣走法有2种(两个方向)﹐故所求为323!⨯48=种﹒(2)323!48⨯=﹒ (3)423!96⨯=﹒7. ()()()()n A B n A n B n A B ⋃=+-⋂253343422332111111111111C C C C C C C C C C C C =⨯⨯⨯+⨯⨯⨯-⨯⨯⨯ 909636150.=+-=8. 555112n n C x y -=⋅⋅⋅⋅⋅⋅ 6667n n C x y -=⋅⋅⋅⋅⋅⋅77714n n C x y -=⋅⋅⋅⋅⋅⋅6165xn y⇒⋅=⋅⋅⋅⋅⋅⋅- 7286xn y⇒⋅=⋅⋅⋅⋅⋅⋅- ()()66167528n n -⇒=-﹐∴8n =﹐ 代入⇒8x y =﹐由⇒()877184C y y =8812y ⎛⎫⇒= ⎪⎝⎭﹐即得12y =±﹐4x =±﹐∴14,,82x y n ===(取正值)﹒9. (1)红+白=41 1 剩223223H C ⇒==﹒[另解] 红 白 1322313.⇒共種 (2)利用第(1)题的结果42318C ⇒⨯=﹒10. 用8步走完10级楼梯﹐假设一级走了x 步﹐两级走了y 步﹐可列得8210x y x y +=⎧⎨+=⎩解得6x =﹐2y =﹐因此用这样的走法共有8!286!2!=(种)﹒ 11.(1){}1,2,4,5,7,8,9A B ⋃=﹒ (2){}1,2,5A B ⋂=﹒ (3){}4,8A B -=﹒ (4){}7,9B A -=﹒ (5){}3,6,7,9,10'=-=A U A ﹒(6){}3,4,6,8,10'=-=B U B ﹒(7)(){}3,6,10'⋃=A B ﹒(8){}3,6,10''⋂=A B ﹒(9)(){}3,4,6,7,8,9,10'⋂=A B ﹒(10){}3,4,6,7,8,9,10''⋃=A B ﹒12. ()()()()191919182219192011111x x x x C x C x x ⎡⎤-+=-+=-+-+⋅⋅⋅⋅⋅⋅⎣⎦﹐ ∴()1919101119,a C C =-=-1919192021190.a C C C =+=13. 可看作第一位男生有4位女生舞伴可选择﹐第二位男生有3位女生舞伴可选择﹐以此类推得舞会配对方法数共有44432124P =⨯⨯⨯=种﹒ 故选(2)﹒ 14. (1)5232=﹒(2)①先往右42232⨯=﹐ ②先往左42232⨯=﹐ 共有323264+=﹒ 15.如图﹐共有27种方法﹒16. ()()()()()77237777712370.99810.00210.0020.0020.0020.002C C C C =-=-⨯+⨯-⨯+⋅⋅⋅⋅⋅⋅-⨯10.0140.0000840.0000002800.9860837200.986084.≈-+-=≈ 17. ()()1011012211x x x x ⎡⎤+-=+-⎣⎦()()()()()21011011009910121012101212101111x C x x C x x C x =+-+++-⋅⋅⋅⋅⋅⋅+-()10111c =-=-﹐∵()1011x +展开式中才有x 项﹐∴1011101,a C == ∵()1011x +及()100101211C x x -+展开式中均有2x 项﹐∴101101214949.b C C =-=18. (1)∵()()()()()()111!!11!1!1!1!1n n k k n C n C k n k k k n n k k n +++===+-+⋅+⋅-++﹐∴左式()()1111121011121.111nn n n n n k n k C C C C k n n +++++==⨯=++⋅⋅⋅⋅⋅⋅+=-+++∑ (2)承(1)知﹐()1113121213111n n n n ++-=⇒-=++﹐得4n =﹒ 19. (1)□□:4728⨯=﹒ ↓ 6﹑7﹑8﹑9(2)45﹑48﹑54﹑57﹑60﹑66﹑69﹑75﹑78﹑84﹑87﹑90﹑96﹑99﹐共14个﹒ (3)4□7⇒个﹐ 5□7⇒个﹐∴1459a =﹐1358a =﹐1257a =﹐∴平均为57分﹒ 20.上午 下午 1 2 3 4 5 6 7數 數 國 國 ╳ 體 體 2228⇒⨯⨯=數 數 體 ╳ 國 國 體2228⇒⨯⨯=數 數 體 ╳ ╳ 國 國 2124⇒⨯⨯=體 數 數 ╳ 國 國 體 2228⇒⨯⨯= 體 數 數 ╳ ╳ 國 國 2124⇒⨯⨯=體 體數數國國 體 23212⇒⨯⨯=體體 數 數 ╳國國 2228⇒⨯⨯=∴共有8848412852++++++=種﹒21. ()()()()1011012211x xx x+-=++-()()()()()()21011011009910121012101212101111x C x x C x x C x =+++-++-+⋅⋅⋅⋅⋅⋅+-()()()1011002411011x x x x f x =+-++⋅﹐其中()f x 为一多项式﹐∴x 项的系数1011101,a C == 2x 项的系数10121014949,b C =-=3x 项的系数10110031101156550.c C C =-⨯=23.∴共有441212218396676+++++++++=种走法﹒ 24. (1)∵()123n n a a n +=+-且15a =﹐ ∴()21213514a a =+⨯-=-=﹐ ()32223415a a =+⨯-=+=﹐ ()43233538a a =+⨯-=+=﹐ ()542438513a a =+⨯-=+=﹒ (2)∵()123n n a a n +=+-﹐ ∴()21213a a =+⨯- ()32223a a =+⨯-()()121223)213n n n n a a n a a n ---=+⎡⨯--⎤⎣⎦+=+⎡⨯--⎤⎣⎦()()()2112121315233482n n n a a n n n n n -⋅=+⨯⎡++⋅⋅⋅⋅⋅⋅+-⎤--=+⨯-+=-+⎣⎦﹒(3)20a =2204208328-⨯+=﹒25. x ﹐y ﹐z 的非负整数解共有331011212101010266H C C C +-====(组)﹒26. (1)3﹑4﹑5 1﹑3﹑5 →有363⨯⨯个 2 4﹑5 1﹑3﹑5 →有123⨯⨯个 2 3 1﹑3﹑5 →有113⨯⨯个∴共有()()36323363⨯⨯+⨯+=个大于230的三位数奇数﹒(2) 个位数字为1者有()()()36121121⨯+⨯+⨯=个﹐为3﹑5者也各有21个﹐故个位数字的和为()21135189⨯++=﹒②十位数字为1﹑2者各有339⨯=个﹐为3者有()33312⨯+=个﹐为4﹑5者各有 ()331312⨯+⨯=个﹐故十位数字和为()()()9121231245171⨯++⨯+⨯+=﹒③百位数字为3﹑4﹑5者各有6318⨯=个﹐为2者有()()23139⨯+⨯=个﹐ 故百位数字和为()()1834592234⨯++⨯⨯=﹒由①②③可知﹐总和为()()1891711023410025299+⨯+⨯=﹒27. 由于515C =且565622125C C C C =-=-﹐于是利用帕斯卡尔定理111n n n m m m C C C ---=+﹐得 原式()66781920234516175C C C C C C =++++++-778192034516175C C C C C =+++++-8819204516175C C C C =++++-21175C =-5980=﹒28. 设桌球俱乐部拟购买刀板﹐直拍与大陆拍各1x ﹐2x ﹐3x 把﹐ 根据题意得1238x x x ++=﹒其非负整数解有33811010888245H C C C +-====(组)﹐故共有45种不同的购买方式﹒29. 直线0ax by +=是恒过原点﹐且斜率为a b -的直线﹒因为斜率ab-为正值﹐所以,a b 必须异号﹐且,a b 皆不等于0﹒我们以a 的正负情形讨论如下﹕(1)当0a >时﹐a 有3种选法﹐而此时0b <亦有3种选法﹐ 因此有339⨯=种选法﹒(2)当0a <时﹐a 有3种选法﹐而此时0b >亦有3种选法﹐ 因此有339⨯=种选法﹒ 但是①当()()()(),2,1,4,2,6,3a b =---时﹐均表示同一条直线20x y -=﹒ ②当()()()(),3,6,2,4,1,2a b =---时﹐均表示同一条直线20x y -+=﹒ ③当()(),2,2a b =-﹐()2,2-时﹐均表示同一条直线0x y -=﹒ 因此需扣除重复计算的2215++=条直线﹒ 故共可表出99513+-=条相异的直线﹒ 30.(1)從A 走到P 後 ﹐方法有2種﹐ 完成A 到P 的各路線﹐方法有3!種﹐ 完成P 到B 的各路線﹐方法有3!種﹐∴共有()223!3!23!⨯⨯=⨯72=種﹒(2)A 到P 後 ﹐方法2種﹐P 到Q 後 ﹐方法2種﹐∴共有()32223!3!3!23!⨯⨯⨯⨯=⨯864=種﹒ABA Q P B31. (1)B ﹑D 同色﹐A BD C E →→→ 5433180⨯⨯⨯=﹐ B ﹑D 异色﹐A B D C E →→→→ 54322240⨯⨯⨯⨯=﹐ ∴共有180240420+=种涂法﹒(2)B ﹑D ﹑F 同色﹐A BDF C E G →→→→ 54333540⨯⨯⨯⨯=﹐ B ﹑D ﹑F 异色﹐A B D F C E G →→→→→→ 5432222960⨯⨯⨯⨯⨯⨯=﹐ B ﹑D 同色﹐F 异色﹐A BD F C E G →→→→→ 543322720⨯⨯⨯⨯⨯=﹐同理B ﹑F 同色﹐D 异色;D ﹑F 同色﹐B 异色涂法也各有720种﹐ ∴共有54096072033660++⨯=种﹒ 32.(1)12a = 24a = 38a = 414a =1n = 2n = 3n =4n =(2)12a =﹐212a a =+﹐3222a a =+⨯﹐4323a a =+⨯﹐∴12n n a a n +=+⨯﹒ (3)∵12n n a a n +=+⨯且12a =﹐ ∴2121a a =+⨯ 3222a a =+⨯()1222n n a a n --=+⨯- ()1)21n n a a n -+=+⨯-()()21121212222n n n a a n n n -⨯=+⨯⎡++⋅⋅⋅⋅⋅⋅+-⎤=+⨯=-+⎣⎦∴22n a n n =-+﹒ 33. (1)①A ﹑C 同色﹐541480,A B C D⨯⨯⨯=②A ﹑C 异色﹐5433180,A B C D ⨯⨯⨯=由①②可得﹐共有80180260+=种﹒(2)由(1)可知[]541433⨯⨯⨯+⨯﹐推得[]25414333380⨯⨯⨯+⨯=﹒ (3)[]354143343940⨯⨯⨯+⨯=﹒ 34.(1)休旅車及跑車相間排列的情形﹐可分為兩種情形﹐如圖所示:3輛休旅車排成一列共有3!6=種方法﹐ 同樣地﹐3輛跑車排成一列共有3!6=種方法﹐ 因此根據乘法原理﹐共有26672⋅⋅=種排法﹒ (2)因為休旅車及跑車要各自排在一起﹐如圖所示:所以可以將3輛休旅車看成「1」輛﹐3輛跑車看 成「1」輛﹐變成2輛的排列問題﹐有2!2=種方法﹒又3輛休旅車之間有3!6=種排列方法﹐3輛跑車之間有3!6=種排列方法﹒故共有2!3!3!26672⋅⋅=⋅⋅=種排法﹒35. 选出2本英文书3本中文书的方法有6523150C C ⋅=(种)﹐将此5本书作直线排列﹐有5!种排法﹐故所求排法为65235!18000C C ⋅⋅=(种)﹒36.(1)從9本中取出3本給甲﹐取法有93C 種;再從其餘的6本取出3本給乙﹐取法有63C 種;剩下的3本給丙﹐即33C 種﹒因此﹐全部分配方式共有9633331680C C C ⋅⋅=(種)﹒ (2)先假設袋子上依序標示有甲﹐乙﹐丙的記號﹐則有963333C C C ⋅⋅種分法﹐但事實上袋子是相同的﹐因 此每3!種只能算1種﹐如圖所示﹒故分配方式共有96333316802803!6C C C ⋅⋅==(種)﹒ (3)仿上述作法﹐先假設袋子依序有甲﹐乙﹐丙的記號﹐甲得5本﹐乙丙各得 2本的分法有942522C C C ⋅⋅種﹒因袋子是無記號的﹐所以如圖的2!種其實是同1種﹒故分配方式共有9425223782!C C C ⋅⋅=(種)﹒37.設集合A 表示參加象棋比賽的同學﹐ 集合B 表示參加圍棋比賽的同學﹐ 集合A B ⋃表示參加棋藝活動的同學﹐ 集合A B ⋂表示參加兩種棋藝活動的同學﹒ 由題意知()34n B =﹐()42n A B ⋃=﹐()15n A B ⋂=﹒ 利用()()()()n A B n A n B n A B ⋃=+-⋂﹐得()423415n A =+-﹐即()23n A =﹒故這個班級中共有23位同學參加象棋比賽﹒38. 因为()()()332211x x x x ++=++﹐所以利用二项式定理将乘积展开﹐得()()()()()3321232320111A x x C x C x x ++=++部分+()()()1233232311B C x x C x +++部分﹒由于上式中A 部分的各项次数均超过2次﹐因此全部展开式中2x 的系数﹐就是B 部分的展开式中的2x 系数﹒ 又B 部分的展开式为()()223243232133137631x x x x x x x x x x ++++++=++++﹐ 故全部展开式中2x 的系数为6﹒39. 因为()()()332222x x x x -+=-+﹐所以利用二项式定理将乘积展开得()()()()()()()()()()3321123232323232012322222A B x x C x x C x x C x x C x x -+=-+-+-+-部分部分上述()()322x x -+展开式中B 部分各项次数低于4次﹐因此要计算展开式中4x 的系数只要计算A 部分各项展开式即可﹐又A 部分展开式为()()()()320132320122C x x C x x -+- ()()654343233322x x x x x x x =-+-+-+⨯6543239136x x x x x =-+-+故4x 的系数为9﹒40. 将240作质因子分解﹐得411240235=⨯⨯﹒因为240的正因子必为235a b c ⨯⨯的形式﹐其中{}0,1,2,3,4a ∈﹐{}0,1b ∈﹐{}0,1c ∈﹐所以a 有5种选择﹐b 有2种选择﹐c 有2种选择﹒利用乘法原理﹐得240的正因子个数有52220⨯⨯=个﹒41. 依题意图示如下:其中实线表电车路线﹐虚线表公交车路线﹒ 因为电车与公交车路线各选一次﹐所以路线安排可分成以下二类:(1)先电车再公交车:利用乘法原理﹐得有122⨯=种路线﹒(2)先公交车再电车:利用乘法原理﹐得有326⨯=种路线﹒由加法原理得知﹐共有268+=种路线安排﹒42. 设A ﹐B ﹐C 分别表示答对A ﹐B ﹐C 题的人组成的集合﹒由题意知()15n A =﹐()19n B =﹐()20n C =﹐()10n A B ⋂=﹐()12n B C ⋂=﹐()8n C A ⋂=﹐()3n A B C ⋂⋂=﹒利用排容原理﹐得()()()()()()()n A B C n A n B n C n A B n B C n C A ⋃⋃=++-⋂-⋂-⋂()n A B C +⋂⋂151920101283=++---+27=﹒故三题中至少答对一题者有27人﹒43.設集合A ﹐B ﹐C 分別表示從1到600的自然數當中的4﹐5,6倍數所形成的集合﹐即()150n A =﹐()120n B =﹐()100n C =﹐()30n A B ⋂=﹐()20n B C ⋂=﹐()50n C A ⋂=﹐()10n A B C ⋂⋂=利用排容原理()()()()()()()n A B C n A n B n C n A B n B C n C A ⋃⋃=++-⋂-⋂-⋂()n A B C +⋂⋂﹐ 得()15012010030205010280n A B C ⋃⋃=++---+=﹒故1到600的自然數中﹐是4﹐5﹐6中某一個數的倍數﹐共有280個﹒44. (1)n a 代表「第n 个图需用到白色地砖的块数」﹐我们可以发现图形每次均增加1个黑色地砖与5个白色地砖﹐因此15n n a a -=+﹐2n ≥﹒(2)而上述这些图形中﹐白色地砖的个数可视为一个首项为8﹐公差为5的等差数列﹐故()81553n a n n =+-⨯=+﹒(3)拼第95图所需用到白色地砖数955953478a =⨯+=﹒45. (1)先将这8位转学生分成四堆﹐每堆2人﹐再将这四堆分发到甲﹐乙﹐丙﹐丁四班﹐故总共有86428642222222224!25204!C C C C C C C C ⋅⋅⋅⨯=⋅⋅⋅=种分法﹒ (2)先将这8位转学生分成四堆﹐两堆3人﹐两堆1人﹐再将3人的两堆分发到甲乙两班﹐1人的两堆分发到丙丁两班﹐故总共有85218521331133112!2!11202!2!C C C C C C C C ⋅⋅⋅⨯⨯=⋅⋅⋅=⋅种分法﹒ 46. 因为01232n n nn n n n C C C C C +++++=﹐ 所以1230221n nn nn n n n C C C C C ++++=-=-﹒即原式可改写为2000213000n <-<﹐即200123001n <<﹐得11n =﹒ 47. (1)3119911!559!2!H C ===组﹒ (2)338936628H H C -===组﹒48. 因为去程有3个交通工具可以选择﹐住宿则有2个方式可供选择﹐而回程亦有3个交通工具可以选择﹒因此由乘法原理得共有32318⨯⨯=种安排法﹒49. 10310!1098720 7!P==⨯⨯=种选法﹒50. 由题意知每个周末都有5种休闲活动可以选择﹒利用乘法原理﹐得4个周末共有5555625⨯⨯⨯=种休闲安排﹒。

高三数学练习题:排列与组合

高三数学练习题:排列与组合

高三数学练习题:排列与组合一、排列题目1:某公司有10名员工,其中3名员工将被选为董事会成员。

问有多少种不同的选举结果?题目2:有7本不同的数学书和5本不同的英语书,现从中选取3本书,问有多少种选取方式?题目3:某班有20名学生,其中5名学生将被安排在舞台上演出。

问有多少种不同的安排方式?题目4:由字母A、B、C、D、E组成的5位字母密码,如果不允许重复字母,问有多少种不同的密码?二、组合题目5:从10个人中选取4个人组成一个团队,问有多少种不同的组合方式?题目6:有8个不同的球员参加篮球比赛,现从中选取5名球员组成一支队伍,问有多少种不同的选取方式?题目7:某班有30名学生,其中要从中选取6名学生组成一个小组。

问有多少种不同的组合方式?题目8:某购物网站推出12种不同的优惠券,现用户每次购物可以选择其中3种优惠券使用,问有多少种不同的选择方式?请在白纸上作答后再对照答案进行检查,加强对排列和组合概念的理解和应用。

题目1:答案为 C(10, 3) = 120 种不同选举结果。

此处使用组合公式 C(n, k) = n! / (k! × (n-k)!) 计算。

题目2:答案为 C(7, 3) × C(5, 0) = 35 种不同选取方式。

此处使用组合公式 C(n, k)= n! / (k! × (n-k)!) 计算。

题目3:答案为 A(20, 5) = 15,504 种不同安排方式。

此处使用排列公式 A(n, k) = n! / (n-k)! 计算。

题目4:答案为 P(5, 5) = 5! = 120 种不同密码。

此处使用排列公式 A(n, n) = n! 计算。

题目5:答案为 C(10, 4) = 210 种不同组合方式。

此处使用组合公式 C(n, k) = n! / (k! × (n-k)!) 计算。

题目6:答案为 C(8, 5) = 56 种不同选取方式。

排列组合(经典有难度含答案)

排列组合(经典有难度含答案)
13. 名班委有 种不同的职务,甲、乙、丙三人在 名班委中,现对 名班委进行职务具体分工.
(1)若正、副班长两职只能从甲、乙、丙三人中选两人担任,有多少种不同的分工方案?
(2)若正、副班长两职至少要选甲、乙、丙三人中的一人担任,有多少种不同的分工方案?
14.已知 ,试求x,n的值
15.已知(1+2x-x2)7=a0+a1x+a2x2+…+a13x13+a14x14.
参考答案
1.A
【分析】
由排列数和组合数公式计算即可得到结果.
【详解】
, ,
整理可得: ,解得: 或 或 ,
, .
故选:A.
2.B
【分析】
先将5名同学用甲,乙,丙, 代表,再根据丙是否与甲相邻进行分类,即可求解.
【详解】
解:5名同学分别设为甲,乙,丙, ,
第一类:丙与甲,乙都不相邻,
则先将甲乙捆绑看成一个元素 ,
(3)有限制元素采取“优先法”;
(4)特殊元素顺序确定问题,先让所有元素全排列,然后除以有限制元素的全排列数.
3.C
【分析】
相邻问题用捆绑法,特殊元素优先考虑;
【详解】
解:依题意,①将乙和丙看成一个整体,有 种排法;
②甲不在首位,共有3种排法;
③剩下3个位置全排列,有 种排法;
综上按照分步乘法计数原理可得 种排法;
A.甲从 到达 处的方法有 种
B.甲从 必须经过 到达 处的方法有 种
C.甲、乙两人在 处相遇的概率为
D.甲、乙两人相遇的概率为
二、填空题
9.某部队在一次军演中要先后执行 六项不同的任务,要求是:任务 必须排在前三项执行,且执行任务 之后需立即执行任务 ,任务 不能相邻,则不同的执行方案共有_____种.(用数字作答)

高中数学排列组合专项练习(后附答案)

高中数学排列组合专项练习(后附答案)

排列组合一、知识点讲解1.排列与组合的概念2.排列数与组合数(1)排列数的定义:从n 个不同元素中取出m (m ≤n )个元素的________的个数,叫做从n 个不同元素中取出m 个元素的排列数,用____表示.(2)组合数的定义:从n 个不同元素中取出m (m ≤n )个元素的________的个数,叫做从n 个不同元素中取出m 个元素的组合数,用____表示.3.排列数、组合数的公式及性质)(!n m m −+)m n n n C C =二、课堂练习题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)所有元素完全相同的两个排列为相同排列. ( ) (2)一个组合中取出的元素讲究元素的先后顺序. ( ) (3)两个组合相同的充要条件是其中的元素完全相同. ( ) (4)(n +1)!-n !=n ·n !.( )(5)若组合式C x n =C mn ,则x =m 成立. ( ) (6)k C k n =n C k -1n -1.( )题组二 教材改编2.[P29习题T5]6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为________.3.[P16例7]用数字1,2,3,4,5组成无重复数字的四位数,其中偶数的个数为________.题组三易错自纠4.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有_______种.5.为发展国外孔子学院,教育部选派6名中文教师到泰国、马来西亚、缅甸任教中文,若每个国家至少去一人,则不同的选派方案种数为________.6.寒假里5名同学结伴乘动车外出旅游,实名制购票,每人一座,恰在同一排A,B,C,D,E五个座位(一排共五个座位),上车后五人在这五个座位上随意坐,则恰有一人坐对与自己车票相符座位的坐法有______种. (用数字作答)三、课中讲解题型一排列问题1.某高三毕业班有40人,同学之间两两彼此给对方写一条毕业留言,那么全班共写了_______条毕业留言. (用数字作答)2.用1,2,3,4,5,6组成一个无重复数字的六位数,要求三个奇数1,3,5有且只有两个相邻,则不同的排法种数为________.3.在1,2,3,4,5,6,7的任一排列a1,a2,a3,a4,a5,a6,a7中,使相邻两数都互质的排列种数为________.排列应用问题的分类与解法(1)对于有限制条件的排列问题,分析问题时有位置分析法、元素分析法,在实际进行排列时一般采用特殊元素优先原则,即先安排有限制条件的元素或有限制条件的位置,对于分类过多的问题可以采用间接法.(2)对相邻问题采用捆绑法、不相邻问题采用插空法、定序问题采用倍缩法是解决有限制条件的排列问题的常用方法.题型二组合问题例1.某市工商局对35种商品进行抽样检查,已知其中有15种假货. 现从35种商品中选取3种.(1)其中某一种假货必须在内,不同的取法有多少种?(2)其中某一种假货不能在内,不同的取法有多少种?(3)恰有2种假货在内,不同的取法有多少种?(4)至少有2种假货在内,不同的取法有多少种?(5)至多有2种假货在内,不同的取法有多少种?组合问题常有以下两类题型变化:(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”或“至多”含有几个元素的组合题型:解这类题必须十分重视“至少”与“至多”这两个关键词的含义,谨防重复与漏解. 用直接法和间接法都可以求解,通常用直接法分类复杂时,考虑逆向思维,用间接法处理.练1.在某校2017年举办的第32届秋季运动会上,甲、乙两位同学从四个不同的运动项目中各选两个项目报名,则甲、乙两位同学所选的项目中至少有1个不相同的选法种数为________.练2.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有________种.题型三排列与组合问题的综合应用命题点1相邻、相间及特殊元素(位置)问题例1.在高三某班进行的演讲比赛中,共有5位选手参加,其中3位女生,2位男生,如果2位男生不能连续出场,且女生甲不能排第一个,那么出场的顺序的排法种数为________.例2.大数据时代出现了滴滴打车服务,二胎政策的放开使得家庭中有两个孩子的现象普遍存在. 某城市关系要好的A,B,C,D四个家庭各有两个孩子共8人,他们准备使用滴滴打车软件,分乘甲、乙两辆汽车出去游玩,每车限坐4名(乘同一辆车的4个孩子不考虑位置),其中A家庭的孪生姐妹需乘同一辆车,则乘坐甲车的4个孩子恰有2个来自于同一个家庭的乘坐方式共有________种.命题点2分组与分配问题例1.国家教育部为了发展贫困地区教育,在全国重点师范大学免费培养教育专业师范生,毕业后要分到相应的地区任教. 现有6个免费培养的教育专业师范毕业生要平均分到3所学校去任教,有_____种不同的分派方法.例2.有4名优秀学生A,B,C,D全部被保送到甲、乙、丙3所学校,每所学校至少去一名,则不同的保送方案共有________种.(1)解排列、组合问题要遵循的两个原则①按元素(位置)的性质进行分类;②按事情发生的过程进行分步. 具体地说,解排列、组合问题常以元素(位置)为主体,即先满足特殊元素(位置),再考虑其他元素(位置).(2)分组、分配问题的求解策略①对不同元素的分配问题a.对于整体均分,解题时要注意分组后,不管它们的顺序如何,都是一种情况,所以分组后一定要除以A n n(n为均分的组数),避免重复计数.b.对于部分均分,解题时注意重复的次数是均匀分组的阶乘数,即若有m组元素个数相等,则分组时应除以m!,分组过程中有几个这样的均匀分组,就要除以几个这样的全排列数.c.对于不等分组,只需先分组,后排列,注意分组时任何组中元素的个数都不相等,所以不需要除以全排列数.②对于相同元素的“分配”问题,常用方法是采用“隔板法”.练1.(2017·全国Ⅱ改编)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有________种.练2.(2017·浙江)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,则共有________种不同的选法. (用数字作答)练3.把5件不同的产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有________种.四、课后练习1.从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lg a-lg b的不同值的个数是________.2.有5本不同的书,其中语文书3本,数学书2本,若将它们随机并排摆放到书架的同一层上,则同一科目的书都不相邻的摆放方法数为________.3.某小区有排成一排的7个车位,现有3辆不同型号的车需要停放,如果要求剩余的4个车位连在一起,那么不同的停放方法的种数为________.4.方程ay=b2x2+c中的a,b,c∈{-3,-2,0,1,2,3},且a,b,c互不相同. 在所有这些方程所表示的曲线中,不同的抛物线共有________条.5.有A,B,C,D,E五位学生参加网页设计比赛,决出了第一到第五的名次. A,B两位学生去问成绩,老师对A说:你的名次不知道,但肯定没得第一名;又对B说:你是第三名. 请你分析一下,这五位学生的名次排列的种数为________.6.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为________.7.若把英语单词“good”的字母顺序写错了,则可能出现的错误方法共有________种. (用数字作答)8. 在8张奖券中有一、二、三等奖各1张,其余5张无奖. 将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种. (用数字作答)9. 某医院拟派2名内科医生,3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生,外科医生和护士,则不同的分配方案有______种.10. 用数字0,1,2,3,4组成的五位数中,中间三位数字各不相同,但首末两位数字相同的共有_____个.11. 某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是________.12. 某宾馆安排A,B,C,D,E五人入住3个房间,每个房间至少住1人,且A,B不能住同一房间,则共有________种不同的安排方法. (用数字作答)13. 7人站成两排队列,前排3人,后排4人,现将甲、乙、丙三人加入队列,前排加一人,后排加两人,其他人保持相对位置不变,则不同的加入方法的种数为________.14. 将标号为1,2,3,4,5的五个球放入3个不同的盒子中,每个盒子至少有一个球,则一共有________种放法.15. 在第二届乌镇互联网大会中,为了提高安保的级别同时又为了方便接待,现为其中的五个参会国的人员安排酒店,这五个参会国的人员要在a,b,c三家酒店中任选一家,且这三家都至少有一个参会国的人员入住,则这样的安排方法共有________种.16. 设三位数n=abc,若以a,b,c为三条边的长可以构成一个等腰(含等边)三角形,则这样的三位数n有多少个?排列组合一、知识点讲解1.排列与组合的概念2.排列数与组合数(1)排列数的定义:从n 个不同元素中取出m (m ≤n )个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用.(2)组合数的定义:从n 个不同元素中取出m (m ≤n )个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用.3.排列数、组合数的公式及性质)(!n m m −+C m -1n__ 二、课堂练习题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)所有元素完全相同的两个排列为相同排列. ()(2)一个组合中取出的元素讲究元素的先后顺序. ( ) (3)两个组合相同的充要条件是其中的元素完全相同. ( )(4)(n +1)!-n !=n ·n !.( )(5)若组合式C x n =C mn ,则x =m 成立. ( ) (6)k C k n =n C k -1n -1.( )【答案】×;×;√;√;×;√题组二教材改编2. [P29习题T5]6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为________.【答案】24“插空法”,先排3个空位,形成4个空隙供3人选择就座,因此任何两人不相邻的坐法种数为A34=4×3×2=24.3. [P16例7]用数字1,2,3,4,5组成无重复数字的四位数,其中偶数的个数为________.【答案】48末位数字排法有A12种,其他位置排法有A34种,共有A12A34=48(种)排法,所以偶数的个数为48.题组三易错自纠4. 六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有_______种. 【答案】216第一类:甲在左端,有A55=5×4×3×2×1=120(种)排法;第二类:乙在最左端,甲不在最右端,有4A44=4×4×3×2×1=96(种)排法.所以共有120+96=216(种)排法.5. 为发展国外孔子学院,教育部选派6名中文教师到泰国、马来西亚、缅甸任教中文,若每个国家至少去一人,则不同的选派方案种数为________.【答案】540②一个国家派3名,一个国家派2名,一个国家派1名,有C36C23C11A33=360(种);③每个国家各派6. 寒假里5名同学结伴乘动车外出旅游,实名制购票,每人一座,恰在同一排A,B,C,D,E五个座位(一排共五个座位),上车后五人在这五个座位上随意坐,则恰有一人坐对与自己车票相符座位的坐法有______种. (用数字作答)【答案】45设5名同学也用A,B,C,D,E来表示,若恰有一人坐对与自己车票相符的坐法,设E同学坐在自己的座位上,则其他四位都不坐自己的座位,则有BADC,BDAC,BCDA,CADB,CDAB,CDBA,DABC,DCAB,DCBA,共9种坐法,则恰有一人坐对与自己车票相符座位的坐法有9×5=45(种).三、课中讲解题型一排列问题1. 某高三毕业班有40人,同学之间两两彼此给对方写一条毕业留言,那么全班共写了_______条毕业留言. (用数字作答)【答案】1 560由题意知两两彼此给对方写一条毕业留言相当于从40人中任选两人的排列数,所以全班共写了A240=40×39=1 560(条)留言.2. 用1,2,3,4,5,6组成一个无重复数字的六位数,要求三个奇数1,3,5有且只有两个相邻,则不同的排法种数为________.【答案】432根据题意,分三步进行:第一步,先将1,3,5分成两组,共C23A22种排法;第二步,将2,4,6排成一排,共A33种排法;第三步,将两组奇数插入三个偶数形成的四个空位,共A24种排法. 综上,共有C23A22A33 A24=3×2×6×12=432(种)排法.3. 在1,2,3,4,5,6,7的任一排列a1,a2,a3,a4,a5,a6,a7中,使相邻两数都互质的排列种数为________. 【答案】864解析先把数字1,3,5,7作全排列,有A44=24种排法,再排数字6,由于数字6不与3相邻,在排好的排列中,除去3的左、右2个空隙,还有3个空隙可排数字6,故数字6有3种排法,最后排数字2,4,又数字2,4不与6相邻,故在剩下的4个空隙中排上2,4,有A24种排法,故共有A44×3×A24=864(种)排法.排列应用问题的分类与解法(1)对于有限制条件的排列问题,分析问题时有位置分析法、元素分析法,在实际进行排列时一般采用特殊元素优先原则,即先安排有限制条件的元素或有限制条件的位置,对于分类过多的问题可以采用间接法.(2)对相邻问题采用捆绑法、不相邻问题采用插空法、定序问题采用倍缩法是解决有限制条件的排列问题的常用方法.题型二组合问题例1.某市工商局对35种商品进行抽样检查,已知其中有15种假货. 现从35种商品中选取3种.(1)其中某一种假货必须在内,不同的取法有多少种?(2)其中某一种假货不能在内,不同的取法有多少种?(3)恰有2种假货在内,不同的取法有多少种?(4)至少有2种假货在内,不同的取法有多少种?(5)至多有2种假货在内,不同的取法有多少种?【答案】(1)从余下的34种商品中,选取2种有C234=561种取法,∴某一种假货必须在内的不同取法有561种.(2)从34种可选商品中,选取3种,有C334种或者C335-C234=C334=5 984种取法.∴某一种假货不能在内的不同取法有5 984种.(3)从20种真货中选取1种,从15种假货中选取2种有C120C215=2 100种取法.∴恰有2种假货在内的不同的取法有2 100种.(4)选取2种假货有C120C215种,选取3种假货有C315种,共有选取方式C120C215+C315=2 100+455=2 555(种).∴至少有2种假货在内的不同的取法有2 555种.(5)方法一(间接法)选取3种的总数为C335,因此共有选取方式C335-C315=6 545-455=6 090(种).∴至多有2种假货在内的不同的取法有6 090种.方法二(直接法)选取3种真货有C320种,选取2种真货有C220C115种,选取1种真货有C120C215种,因此共有选取方式C320+C220C115+C120C215=6 090(种).∴至多有2种假货在内的不同的取法有6 090种.组合问题常有以下两类题型变化:(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”或“至多”含有几个元素的组合题型:解这类题必须十分重视“至少”与“至多”这两个关键词的含义,谨防重复与漏解. 用直接法和间接法都可以求解,通常用直接法分类复杂时,考虑逆向思维,用间接法处理.练1.在某校2017年举办的第32届秋季运动会上,甲、乙两位同学从四个不同的运动项目中各选两个项目报名,则甲、乙两位同学所选的项目中至少有1个不相同的选法种数为________.【答案】30因为甲、乙两位同学从四个不同的项目中各选两个项目的选法有C24C24种.其中甲、乙所选的项目完全相同的选法有C24种,所以甲、乙所选的项目中至少有1个不相同的选法共有C24C24-C24=30(种).练2.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有________种. 【答案】66共有4个不同的偶数和5个不同的奇数,要使和为偶数,则4个数全为奇数,或全为偶数,或2个奇数和2个偶数,故不同的取法有C45+C44+C25C24=66(种).题型三排列与组合问题的综合应用命题点1相邻、相间及特殊元素(位置)问题例1.在高三某班进行的演讲比赛中,共有5位选手参加,其中3位女生,2位男生,如果2位男生不能连续出场,且女生甲不能排第一个,那么出场的顺序的排法种数为________.【答案】602位男生不能连续出场的排法共有N1=A33×A24=72(种),女生甲排第一个且2位男生不连续出场的排法共有N2=A22×A23=12(种),所以出场顺序的排法种数为N=N1-N2=60.例2.大数据时代出现了滴滴打车服务,二胎政策的放开使得家庭中有两个孩子的现象普遍存在. 某城市关系要好的A,B,C,D四个家庭各有两个孩子共8人,他们准备使用滴滴打车软件,分乘甲、乙两辆汽车出去游玩,每车限坐4名(乘同一辆车的4个孩子不考虑位置),其中A家庭的孪生姐妹需乘同一辆车,则乘坐甲车的4个孩子恰有2个来自于同一个家庭的乘坐方式共有________种.【答案】24根据题意,分两种情况讨论:①A家庭的孪生姐妹在甲车上,甲车上另外的两个孩子要来自不同的家庭,可以在剩下的三个家庭中任选2个,再从每个家庭的2个孩子中任选一个来乘坐甲车,有C23×C12×C12=12(种)乘坐方式;②A家庭的孪生姐妹不在甲车上,需要在剩下的三个家庭中任选1个,让其2个孩子都在甲车上,对于剩余的两个家庭,从每个家庭的2个孩子中任选一个来乘坐甲车,有C13×C12×C12=12(种)乘坐方式,故共有12+12=24(种)乘坐方式.命题点2分组与分配问题例1.国家教育部为了发展贫困地区教育,在全国重点师范大学免费培养教育专业师范生,毕业后要分到相应的地区任教. 现有6个免费培养的教育专业师范毕业生要平均分到3所学校去任教,有________种不同的分派方法.【答案】90例2.有4名优秀学生A,B,C,D全部被保送到甲、乙、丙3所学校,每所学校至少去一名,则不同的保送方案共有________种.【答案】36则共有6×6=36(种)不同的保送方案.(1)解排列、组合问题要遵循的两个原则①按元素(位置)的性质进行分类;②按事情发生的过程进行分步. 具体地说,解排列、组合问题常以元素(位置)为主体,即先满足特殊元素(位置),再考虑其他元素(位置).(2)分组、分配问题的求解策略①对不同元素的分配问题a. 对于整体均分,解题时要注意分组后,不管它们的顺序如何,都是一种情况,所以分组后一定要除以A n n(n为均分的组数),避免重复计数.b. 对于部分均分,解题时注意重复的次数是均匀分组的阶乘数,即若有m组元素个数相等,则分组时应除以m!,分组过程中有几个这样的均匀分组,就要除以几个这样的全排列数.c. 对于不等分组,只需先分组,后排列,注意分组时任何组中元素的个数都不相等,所以不需要除以全排列数.②对于相同元素的“分配”问题,常用方法是采用“隔板法”.练1.(2017·全国Ⅱ改编)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有________种.【答案】36由题意可知,其中1人必须完成2项工作,其他2人各完成1项工作,可得安排方式为C13·C24·A22=练2.(2017·浙江)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,则共有________种不同的选法. (用数字作答)【答案】660方法一只有1名女生时,先选1名女生,有C12种方法;再选3名男生,有C36种方法;然后排队长、副队长位置,有A24种方法. 由分步计数原理知,共有C12C36A24=480(种)选法.有2名女生时,再选2名男生,有C26种方法;然后排队长、副队长位置,有A24种方法. 由分步计数原理知,共有C26A24=180(种)选法. 所以依据分类计数原理知,共有480+180=660(种)不同的选法.方法二不考虑限制条件,共有A28C26种不同的选法,而没有女生的选法有A26C24种,故至少有1名女生的选法有A28C26-A26C24=840-180=660(种).练3.把5件不同的产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有________种.【答案】36将产品A与B捆绑在一起,然后与其他三种产品进行全排列,共有A22A44种方法,将产品A,B,C 捆绑在一起,且A在中间,然后与其他两种产品进行全排列,共有A22A33种方法. 于是符合题意的摆法共有A22A44-A22A33=36(种).四、课后练习1.从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lg a-lg b的不同值的个数是________.【答案】18为A25-2=18.2. 有5本不同的书,其中语文书3本,数学书2本,若将它们随机并排摆放到书架的同一层上,则同一科目的书都不相邻的摆放方法数为________.【答案】12A33A22=12.3. 某小区有排成一排的7个车位,现有3辆不同型号的车需要停放,如果要求剩余的4个车位连在一起,那么不同的停放方法的种数为________.【答案】24将4个车位捆绑在一起,看成一个元素,先排3辆不同型号的车,在3个车位上任意排列,有A33=6种排法,再将捆绑在一起的4个车位插入4个空档中,有4种方法,故共有4×6=24(种)方法.4. 方程ay=b2x2+c中的a,b,c∈{-3,-2,0,1,2,3},且a,b,c互不相同. 在所有这些方程所表示的曲线中,不同的抛物线共有________条.【答案】62a,b均不为0,且b取互为相反数的两数时抛物线相同,故分a取1与a不取1两类:①a取1时,b2取值为4,9两类,当b2=4和b2=9时,c都有5种情况,此时有2×5=10(种);②a不取1时有C14种,不妨设a取2,则b2取值有1,4,9三类,当b2=1时,c有4种,当b2=4时,c有4种,当b2=9时,c有5种,此时有C14(4+4+5)=52(条)不同的抛物线.故共有10+52=62(种)不同的抛物线.5. 有A,B,C,D,E五位学生参加网页设计比赛,决出了第一到第五的名次. A,B两位学生去问成绩,老师对A说:你的名次不知道,但肯定没得第一名;又对B说:你是第三名. 请你分析一下,这五位学生的名次排列的种数为________.【答案】18由题意知,名次排列的种数为C13A33=18.6. 用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为________.【答案】72由题可知,五位数要为奇数,则个位数只能是1,3,5.分为两步:先从1,3,5三个数中选一个作为个位数有C13种选法,再将剩下的4个数字排列有A44种排法,则满足条件的五位数有C13·A44=72(个).7. 若把英语单词“good”的字母顺序写错了,则可能出现的错误方法共有________种. (用数字作答)【答案】11把g,o,o,d 4个字母排一列,可分两步进行,第一步:排g和d,共有A24种排法;第二步:排两个o,共1种排法,所以总的排法种数为A24=12.其中正确的有一种,所以错误的共有A24-1=12-1=11(种).8. 在8张奖券中有一、二、三等奖各1张,其余5张无奖. 将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种. (用数字作答)【答案】60分两类:第一类:3张中奖奖券分给3个人,共A34种分法;第二类:3张中奖奖券分给2个人相当于把3张中奖奖券分两组再分给4人中的2人,共有C23A24种分法.总获奖情况共有A34+C23A24=60(种).9. 某医院拟派2名内科医生,3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生,外科医生和护士,则不同的分配方案有______种.【答案】362名内科医生的分法为A22,3名外科医生与3名护士的分法为C23C13+C13C23,共有A22(C23C13+C13C23)=36(种)不同的分法.10. 用数字0,1,2,3,4组成的五位数中,中间三位数字各不相同,但首末两位数字相同的共有________个.【答案】240由题意,知本题是一个分步计数问题,从1,2,3,4四个数中选取一个有四种选法,接着从这五个数中选取3个在中间三个位置排列,共有A35=60个,根据分步计数原理知,有60×4=240(个).11. 某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是________.【答案】120先安排小品节目和相声节目,然后让歌舞节目去插空. 安排小品节目和相声节目的顺序有三种:“小品1,小品2,相声”,“小品1,相声,小品2”和“相声,小品1,小品2”. 对于第一种情况,形式为“□小品1歌舞1小品2□相声□”,有A22C13A23=36(种)安排方法;同理,第三种情况也有36种安排方法,对于第二种情况,三个节目形成4个空,其形式为“□小品1□相声□小品2□”,有A22A34=48(种)安排方法. 由分类计数原理知,共有36+36+48=120(种)安排方法.12. 某宾馆安排A,B,C,D,E五人入住3个房间,每个房间至少住1人,且A,B不能住同一房间,则共有________种不同的安排方法. (用数字作答)【答案】1145个人住3个房间,每个房间至少住1人,则有(3,1,1)和(2,2,1)两种,当为(3,1,1)时,有C35·A33=90种,A,B住同一房间有C23·A33=18种,故有90-18=72(种),根据分类计数原理可知,共有42+72=114(种).13. 7人站成两排队列,前排3人,后排4人,现将甲、乙、丙三人加入队列,前排加一人,后排加两人,其他人保持相对位置不变,则不同的加入方法的种数为________.【答案】360前排3人有4个空,从甲、乙、丙3人中选1人插入,有C14C13种方法,对于后排,若插入的2人不相邻,有A25种方法;若相邻,有C15A22种,故共有C14C13(A25+C15A22)=360(种).14. 将标号为1,2,3,4,5的五个球放入3个不同的盒子中,每个盒子至少有一个球,则一共有________种放法.【答案】150标号为1,2,3,4,5的五个球放入3个不同的盒子中,每个盒子至少有一个球,故可分成(3,1,1)和(2,2,1)15. 在第二届乌镇互联网大会中,为了提高安保的级别同时又为了方便接待,现为其中的五个参会国的人员安排酒店,这五个参会国的人员要在a,b,c三家酒店中任选一家,且这三家都至少有一个参会国的人员入住,则这样的安排方法共有________种.【答案】150这三家酒店入住的参会国数目有以下两种可能:满足题意的安排方法共有90+60=150(种).。

高中组合数计算试题及答案

高中组合数计算试题及答案

高中组合数计算试题及答案试题一:某班级有40名学生,需要从中选出5名学生参加数学竞赛。

求:1. 总共有多少种不同的选法?2. 如果班级中有5名女生和35名男生,选出的5名学生中有至少1名女生的选法有多少种?试题二:在一个有10个不同颜色的球的袋子里,需要取出3个球。

求:1. 取出3个球的所有可能组合有多少种?2. 如果取出的3个球中必须包含至少一个红色球,有多少种不同的取法?试题三:在一个有8个不同元素的集合中,需要选择3个元素组成一个小组。

求:1. 这个小组的所有可能组合有多少种?2. 如果小组中必须包含特定的一个元素,有多少种不同的组合方式?试题四:某学校有5个不同的社团,每个学生可以选择加入1个或多个社团。

求:1. 学生可以选择的所有不同社团组合有多少种?2. 如果规定每个学生至少需要加入1个社团,那么有多少种不同的选择方式?试题五:在一个有7个不同数字的序列中,需要选择5个数字形成一个子序列。

求:1. 这个子序列的所有可能组合有多少种?2. 如果子序列中必须包含特定的一个数字,有多少种不同的组合方式?答案:试题一:1. 组合数公式为C(n, k) = n! / [k! * (n-k)!],其中n为总数,k为选择的数量。

所以C(40, 5) = 40! / (5! * 35!) = 658008种选法。

2. 首先计算没有限制的选法,C(40, 5) = 658008种。

然后计算只选男生的选法,C(35, 5) = 324632种。

所以至少有1名女生的选法为658008 - 324632 = 333376种。

试题二:1. 组合数公式同样适用,C(10, 3) = 10! / (3! * 7!) = 120种组合。

2. 首先计算不包含红色球的组合数,C(9, 3) = 84种。

然后从总组合数中减去这部分,120 - 84 = 36种。

试题三:1. 使用组合数公式,C(8, 3) = 8! / (3! * 5!) = 56种组合。

排列组合习题_(含详细答案)

排列组合习题_(含详细答案)

圆梦教育中心排列组合专项训练1.题1 (方法对比,二星) 题面:(1)有5个插班生要分配给3所学校,每校至少分到一个,有多少种不同的分配方法?(2)有5个数学竞赛名额要分配给3所学校,每校至少分到一个名额,有多少种不同的名额分配方法? 解析:“名额无差别"--相同元素问题 (法1)每所学校各分一个名额后,还有2个名额待分配,可将名额分给2所学校、1所学校,共两类:2133C C +(种) (法2-—挡板法)相邻名额间共4个空隙,插入2个挡板,共:246C =(种)注意:“挡板法”可用于解决待分配的元素无差别,且每个位置至少分配一个元素的问题.(位置有差别,元素无差别)同类题一题面:有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案?答案:69C详解:因为10个名额没有差别,把它们排成一排。

相邻名额之间形成9个空隙。

在9个空档中选6个位置插个隔板,可把名额分成7份,对应地分给7个班级,每一种插板方法对应一种分法共有69C 种分法。

同类题二题面:求方程X+Y+Z=10的正整数解的个数. 答案:36. 详解:将10个球排成一排,球与球之间形成9个空隙,将两个隔板插入这些空隙中(每空至多插一块隔板),规定由隔板分成的左、中、右三部分的球数分别为x 、y 、z 之值, 故解的个数为C 92=36(个)。

2.题2 (插空法,三星)题面:某展室有9个展台,现有3件展品需要展出,要求每件展品独自占用1个展台,并且3件展品所选用的展台既不在两端又不相邻,则不同的展出方法有______种;如果进一步要求3件展品所选用的展台之间间隔不超过两个展位,则不同的展出方法有____种。

答案:60,48同类题一题面:6男4女站成一排,任何2名女生都不相邻有多少种排法?答案:A 66·A 错误!种。

详解: 任何2名女生都不相邻,则把女生插空,所以先排男生再让女生插到男生的空中,共有A 错误!·A 错误!种不同排法.同类题二 题面:有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有( )A .36种B .48种C .72种D .96种答案:C.详解:恰有两个空座位相邻,相当于两个空位与第三个空位不相邻,先排三个人,然后插空,从而共A 错误!A 错误!=72种排法,故选C 。

组合数学练习题排列和组合

组合数学练习题排列和组合

组合数学练习题排列和组合组合数学练习题:排列和组合组合数学是数学中的一个重要分支,主要研究离散结构和有限结构的性质以及它们之间关联的方法和技巧。

在组合数学中,排列和组合是最基本的概念之一。

本文将介绍排列和组合的概念,并提供一些练习题供读者练习。

一、排列排列是从一组元素中选择一部分元素进行有序排列的方式。

在排列中,元素的顺序是重要的。

假设有n个元素,要从中选择r个元素进行排列。

那么可以使用排列的计算公式 P(n,r) = n! / (n-r)! 来计算排列的数量,其中n!表示n的阶乘。

下面是一些排列的练习题:1. 从字母A、B、C、D、E、F中选择3个字母进行排列,计算排列的数量。

2. 从数字1、2、3、4、5中选择3个数字进行排列,计算排列的数量。

3. 从一个包含10个不同字母的单词中选择5个字母进行排列,计算排列的数量。

二、组合组合是从一组元素中选择一部分元素形成集合的方式。

在组合中,元素的顺序不重要。

假设有n个元素,要从中选择r个元素进行组合。

那么可以使用组合的计算公式 C(n,r) = n! / ((n-r)! * r!) 来计算组合的数量。

下面是一些组合的练习题:1. 从字母A、B、C、D、E、F中选择3个字母进行组合,计算组合的数量。

2. 从数字1、2、3、4、5中选择3个数字进行组合,计算组合的数量。

3. 从一个包含10个不同字母的单词中选择5个字母进行组合,计算组合的数量。

三、练习题解答1. 解答排列题目:1.1. 从字母A、B、C、D、E、F中选择3个字母进行排列,计算排列的数量。

解答:由于选择3个字母进行排列,使用排列的计算公式 P(n,r) = n! / (n-r)! 计算,其中n=6,r=3。

代入公式计算得到 P(6,3) = 6! / (6-3)! = 6! / 3! = 6 * 5 * 4 = 120。

所以,从字母A、B、C、D、E、F中选择3个字母进行排列的数量为120。

高中数学练习题附带解析排列与组合的计算

高中数学练习题附带解析排列与组合的计算

高中数学练习题附带解析排列与组合的计算高中数学练习题附带解析——排列与组合的计算一、知识点概述排列和组合都是概率统计中的基本算法,它们的计算方法对于各种领域都有着重要的应用,也是高中数学的重点内容。

排列和组合的计算主要有以下几个方面:1. 排列的计算方法2. 组合的计算方法3. 排列与组合的相互转化4. 排列组合的应用二、练习题及解析1、在一堆扑克牌中,从中随机选取4张牌,求其中恰好有2张红桃牌的概率。

解析:从13张红桃牌中选取2张,再从39张非红桃牌中选取2张,即可得到恰好有2张红桃牌的情况数。

由于这是无序选择,所以需要计算组合的方式,即C(13,2)*C(39,2)。

同时,一共从52张牌中选取4张牌的方案数为A(52,4)。

因此,恰好有2张红桃牌的概率为[C(13,2)*C(39,2)]/A(52,4),即19.1%。

2、某小组共有10人,其中有3男7女,从小组中选取5人,问其中至少有2男的选法数是多少?解析:考虑分两种情况,即选定了2男3女或选定了3男2女,然后分别计算对应的选法数,最后相加即可。

对于选定了2男3女的情况,选法数为C(3,2)*C(7,3)。

对于选定了3男2女的情况,选法数为C(3,3)*C(7,2)。

因此,至少有2男的选法数是C(3,2)*C(7,3)+C(3,3)*C(7,2),即1310种。

3、有7个人参加招待会,其中3个人是A公司的,4个人是B公司的。

现在需要从其中选取3人担任招待,问选出来的3人中至少有2个是A公司的人的概率是多少?解析:首先计算所有选法的总数,即A(7,3)=35种。

然后计算选出来的3人中,至少有2个是A公司的人的情况数。

这个情况数可以拆分成两个部分,即选出2个A公司人和1个B公司人的情况数,以及选出3个A公司人的情况数。

对于选出2个A公司人和1个B公司人的情况,情况数为C(3,2)*C(4,1)=12。

对于选出3个A公司人的情况,情况数为C(3,3)*C(4,0)=1。

排列和组合的基本计算练习题

排列和组合的基本计算练习题

排列和组合的基本计算练习题一、排列问题1. 从5个人中选取3个人排成一队,共有多少种排列方式?2. 一个由字母A、B、C、D、E组成的五位密码,每位密码不能重复,共有多少种排列方式?3. 一个班级有10个学生,要选取3名学生作为班级委员,共有多少种不同的委员组合?4. 一张音乐专辑中有10首歌曲,其中要选择5首歌曲放入一个播放列表,共有多少种不同的组合方式?5. 某公司有8个部门,要从8个部门中选取3个部门安排一次合作项目,共有多少种不同的组合方式?二、组合问题1. 一个有6个红球和4个蓝球的盒子,从中随机选取3个球,共有多少种不同的组合方式?2. 一家餐厅有7种汤和5种主菜,顾客可以选择一种汤和一种主菜组成一份套餐,共有多少种不同的组合方式?3. 一个班级有20个学生,要选取4个学生组成一个数学小组,共有多少种不同的小组组合?4. 一家服装店有8件上衣和6条裤子,如果一位顾客要买一件上衣和一条裤子,共有多少种不同的购买组合方式?5. 在一个农场,有9只鸡和5只鸭子,从中选取4只禽类作为宠物,共有多少种不同的组合方式?三、排列与组合的混合问题1. 一本书包含10个篇章,其中6个篇章是数学相关的,4个篇章是文学相关的。

要选择4个篇章开设一个讲座,共有多少种不同的组合方式,假设篇章顺序不重要?2. 一个班级有10个男生和12个女生,要从中选出一个男生和一个女生组成一对表演参赛,共有多少种不同的组合方式?3. 一家酒店有5间大床房和8间双人床房,要为一个团体安排3间房间,共有多少种不同的房间分配方式?4. 一条项链由6颗红宝石和4颗蓝宝石组成,要选择3颗宝石制作一条手链,共有多少种不同的组合方式?5. 一家餐厅有10种主菜和8种甜品,要选择一种主菜和一种甜品作为套餐,共有多少种不同的组合方式?。

排列与组合练习题及解析

排列与组合练习题及解析

排列与组合练习题及解析在数学中,排列和组合是组合数学中的基本概念。

排列是指从给定的元素集合中选取一些元素并按照一定的顺序排列,而组合是指从给定的元素集合中选取一些元素并形成一个集合,不考虑顺序。

在此,我们提供一些排列与组合的练习题,并给出详细的解析过程。

1. 排列问题:(1) 从10个不同的球中,按照一定的顺序取出5个球,问共有多少种不同的结果?解析:排列问题要考虑元素的顺序,因此可以使用排列公式进行计算。

对于这个问题,可以使用10个不同的球中取出5个球的排列数公式:P(10, 5) = 10! / (10-5)! = 10 * 9 * 8 * 7 * 6 = 30,240因此,共有30,240种不同的结果。

(2) 一个由字母组成的字符串,字母顺序可以重复,共有8个字母。

从中选取4个字母组成字符串,问共有多少种不同的结果?解析:同样地,对于这个问题,我们可以使用排列公式进行计算。

从8个字母中选取4个字母的排列数为:P(8, 4) = 8! / (8-4)! = 8 * 7 * 6 * 5 = 1,680因此,共有1,680种不同的结果。

2. 组合问题:(1) 从10个不同的球中,按照任意顺序取出5个球,问共有多少种不同的结果?解析:与排列问题不同的是,组合问题不考虑元素的顺序。

那么我们可以使用组合公式进行计算。

对于这个问题,可以使用10个不同的球中取出5个球的组合数公式:C(10, 5) = 10! / (5! * (10-5)!) = 10 * 9 * 8 * 7 * 6 / (5 * 4 * 3 * 2 * 1) = 252因此,共有252种不同的结果。

(2) 一个由字母组成的字符串,字母顺序可以重复,共有8个字母。

从中选取4个字母组成字符串,问共有多少种不同的结果?解析:同样地,对于这个问题,我们可以使用组合公式进行计算。

从8个字母中选取4个字母的组合数为:C(8, 4) = 8! / (4! * (8-4)!) = 8 * 7 * 6 * 5 / (4 * 3 * 2 * 1) = 70因此,共有70种不同的结果。

排列与组合的计算与应用综合练习题

排列与组合的计算与应用综合练习题

排列与组合的计算与应用综合练习题一、排列计算题1. 从10个不同的书籍中选择3本,按照顺序排列,有多少种不同的排列方式?解答:这是一个从10个不同的元素中选择3个元素的排列问题。

根据排列计算公式,可知排列方式为10 × 9 × 8 = 720种。

2. 有6个人需要站成一排,其中2个人必须始终站在一起,他们共有多少种不同的站位方式?解答:我们可以把这两个人看作一个整体,那么问题就转化为了5个不同的元素的排列问题。

根据排列计算公式,可知排列方式为5! = 120种。

然而,在这120种排列方式中,这两个人又可以发生不同的排列,因此需再乘以2!(这两个人的排列方式只有2种)。

所以最终结果为120 × 2 = 240种。

二、组合计算题1. 从8个人中选择4个人,有多少种不同的选择方式?解答:这是一个从8个不同的元素中选择4个元素的组合问题。

根据组合计算公式,可知组合方式为8! / (4! × (8-4)!) = 70种。

2. 从10个人中选择3个人组成一个团队,其中必须包含某两个特定的人,有多少种不同的选择方式?解答:我们可以把这两个特定的人看作是已经选择好的部分,只需要从剩下的8个人中选择1个人即可。

根据组合计算公式,可知组合方式为8种。

三、应用综合练习题1. 某商店有10个不同的商品,某顾客只想购买其中的5个商品,求出他选择商品的不同方式数。

解答:这是一个从10个不同的元素中选择5个元素的组合问题。

根据组合计算公式,可知组合方式为10! / (5! × (10-5)!) = 252种。

2. 某国家的电话号码由7位数字组成,其中不能包含重复数字。

求出该国家可能的电话号码的总数。

解答:因为电话号码不能包含重复数字,所以需要从0到9这10个数字中选择7个数字进行排列。

根据排列计算公式,可知排列方式为10 × 9 × 8 × 7 × 6 × 5 × 4 = 20,160种。

排列与组合的计算综合练习题

排列与组合的计算综合练习题

排列与组合的计算综合练习题排列与组合是数学中常用的计算方法,用于解决不同对象的排列和组合问题。

通过这些计算方法,我们可以求出不同对象排列的方式以及从一组对象中选取特定数量的组合方式。

本文将为您提供一些排列与组合的综合练习题,以帮助您更好地理解和运用这些计算方法。

练习题1:桌上有7本不同的书,你需要选取其中3本放入书包中。

请问有多少种不同的选择方式?解答1:这是一个组合问题,我们需要从7本书中选取3本放入书包中。

根据组合的计算公式,可以得到选择方式的总数为C(7, 3) = 7! / (3! * (7-3)!) = 7! / (3! * 4!) = 7 * 6 * 5 / (3 * 2 * 1) = 35种。

练习题2:某班级有10个学生,其中3个学生参加了运动会,请问他们站成一排的方式有多少种?解答2:这是一个排列问题,我们需要计算3个学生排成一排的方式数。

根据排列的计算公式,可以得到他们排成一排的总数为P(3, 3) = 3! = 3 * 2 * 1 = 6种。

练习题3:小明准备选择自己的生日庆祝礼物,他在一家商场看中了8本图书和5款电子产品,但他最多只能选购3样商品。

请问他有多少种不同的购买方式?解答3:这是一个排列与组合相结合的问题,我们需要计算从8本图书和5款电子产品中选择3样商品的方式数。

首先,我们可以从8本图书中选取任意数量的商品,然后再从5款电子产品中选取剩余的数量。

根据排列与组合相乘的原则,可以得到购买方式的总数为C(8, 0) * C(5, 3) + C(8, 1) * C(5, 2) + C(8, 2) * C(5, 1) + C(8, 3) * C(5, 0) = 1 * 10 +8 * 10 + 28 * 5 + 56 * 1 = 10 + 80 + 140 + 56 = 286种。

练习题4:有6个人参加某项比赛,其中3个人获得了奖品,请问他们获得奖品的方式有多少种?解答4:这是一个组合问题,我们需要计算从6个人中选取3个获得奖品的方式数。

组合数学练习题及解析

组合数学练习题及解析

组合数学练习题及解析组合数学是数学中的一个分支,主要研究离散对象之间的组合关系。

它在计算机科学、统计学、运筹学等领域中具有广泛的应用。

本文将提供一些组合数学的练习题,并附上详细的解析,以帮助读者更好地理解和掌握这一领域的知识。

一、排列组合1. 从10个人中选出3个人组成一个小组,问有多少种不同的选择方式?解析:这是一个从10个元素中选取3个元素的组合问题。

根据组合的公式,可以得到答案为C(10, 3) = 10! / (3! * (10-3)!) = 120种选择方式。

2. 有10个小球,5个红色,5个蓝色,从中选取3个小球组成一个集合,问有多少种不同的集合?解析:这是一个从10个元素中选取3个元素并忽略其顺序的组合问题。

根据组合的公式,可以得到答案为C(10, 3) = 10! / (3! * (10-3)!)= 120种不同的集合。

3. 从字母A、B、C、D、E中任选3个字母组成一个字符串,问有多少种不同的字符串?解析:这是一个从5个元素中选取3个元素并考虑其顺序的排列问题。

根据排列的公式,可以得到答案为P(5, 3) = 5! / (5-3)! = 5*4*3 = 60种不同的字符串。

二、组合数学问题1. 假设有8本不同的书放在一排,问有多少种不同的放置方式?解析:这是一个考虑顺序的排列问题。

根据排列的公式,可以得到答案为P(8, 8) = 8! = 40320种不同的放置方式。

2. 有5个不同的水果,需要选择2个水果放入一个篮子中,问有多少种不同的放置方式?解析:这是一个从5个元素中选取2个元素并考虑其顺序的排列问题。

根据排列的公式,可以得到答案为P(5, 2) = 5! / (5-2)! = 5*4 = 20种不同的放置方式。

3. 一家公司有10个员工,其中3个员工必须参加一个会议,问有多少种不同的选取方式?解析:这是一个从10个元素中选取3个元素的组合问题。

根据组合的公式,可以得到答案为C(10, 3) = 10! / (3! * (10-3)!) = 120种不同的选取方式。

1排列与组合 - 拔高难度 - 习题(含答案)

1排列与组合 - 拔高难度 - 习题(含答案)

排列与组合一、选择题(共12小题;共60分)1. 已知集合,,从,这两个集合中各选一个元素分别作为点的横坐标、纵坐标,则这样的坐标在直角坐标系中可表示第一、第二象限内不同的点的个数是A. B. C. D.2. 名篮球运动员比赛前将外衣放在休息室,比赛完后都回休息室取衣服,由于灯光暗淡,只有人拿到自己的外衣,另外人拿到别人外衣的情况有种A. B. C. D.3. 若,且,则等于A. B. C. D.4. 某班小张等位同学报名参加A,B,C三个课外活动小组,每位同学限报其中一个小组,且小张不能报A小组,则不同的报名方法有A. 种B. 种C. 种D. 种5. 若,则的个位数字是A. B. C. D.6. 下列各式中与排列数相等的是A. B.C. D.7. 设集合,集合,,,,满足且,那么满足条件的集合的个数为A. B. C. D.8. 如图,小明从街道的处出发,先到处与小红会合,再一起到位于处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为A. B. C. D.9. 从双不同颜色的手套中任取只,其中恰好有双同色的取法有种A. B. C. D.10. 有七名同学站成一排照毕业纪念照,其中甲必须站在正中间,并且乙、丙两位同学要站在一起,则不同的站法有A. 种B. 种C. 种D. 种11. 已知集合,,从两个集合中各取一个元素作为点的坐标,则在直角坐标系中,第一、第二象限不同点的个数是A. B. C. D.12. 从正方体的个顶点中任取个为顶点作三角形,其中直角三角形的个数是A. B. C. D.二、填空题(共5小题;共25分)13. 甲、乙、丙、丁四名同学和一名老师站成一排合影留念.要求老师必须站在正中间,且甲同学不与老师相邻,则不同的站法种数为.14. 名学生参加跳高、跳远、游泳比赛,人都来争夺这三项冠军,则冠军分配的种数有.15. 从,,,这四个数中选三个不同的数作为函数中的参数,,,可组成不同的二次函数共有个.16. ,,,,,这个数组成没有重复数字的四位偶数,将这些四位数从小到大排列起来,第个数是.17. 有本不同的数学书,本不同的语文书,本不同的英语书,从中任取两本不同类的书,共有种不同的取法.三、解答题(共5小题;共65分)18. 有一项活动需在名老师,名男同学和名女同学中选人参加.(1)若只需一人参加,有多少种不同选法?(2)若需一名老师、一名学生参加,有多少种不同选法?(3)若需老师、男同学、女同学各一人参加,有多少种不同选法?19. 空间上个点,,,,其中,,,在同一平面内,此外再无三点共线、四点共面.以这些点为顶点,一共可以构成几个四面体?20. 某国的篮球职业联赛共有支球队参加.(1)每队与其余各队在主客场分别比赛一次,共要进行多少场比赛?(2)若支球队恰好支来自北部赛区,支来自南部赛区,为增加比赛观赏度,各自赛区分别采用()中的赛制决出赛区冠军后,再进行一场总冠军赛,共要进行多少场比赛?21. 某城市在中心广场建造一个花圃,花圃分为个部分(如图).现要栽种种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,则不同的栽种方法有多少种(用数字作答)?22. 由个人组成的课外活动小组,其中个人只会跳舞,个人只会唱歌,个人既会唱歌,也会跳舞,若从中选出个会跳舞和个会唱歌的人去演节目,共有多少种不同的选法?答案第一部分1. C 【解析】分两步:第一步先确定横坐标,有种情况,第二步再确定纵坐标,有种情况,因此第一、二象限内不同点的个数是.2. C 【解析】(种).3. D4. C 【解析】小张的报名方法有种,其他位同学各有种,所以由分步乘法计数原理知共有(种)不同的报名方法.5. C6. D7. C 【解析】在集合中任取三个数共有种情况,这三个数大小关系确定,其中不满足的情况只有种,即,,,其他均满足题意,所以满足条件的集合的个数为.8. B 【解析】如图,除已知标记的,,三点外,另记,,,,,,,,,,,如图所示.若总体线路最短,则需到最短,并且到也最短.到最短,可由或.显然,由最短有条(或或),由最短有条(或或),由分类加法计数原理可知,共有条最短路径.而有,,共条最短路径,由分步乘法计数原理可知,共有条最短路径.9. A 【解析】先从双手套中任选一双,有种方法,再从其余手套中任选只,有种方法,其中选一双同色手套的选法有种,故总的选法数为种.10. B11. C 【解析】第一象限不同点有(个),第二象限不同点有(个),故(个).12. C 【解析】解法1:个顶点中任取个可构成三角形,但其中有个等边三角形,故直角三角形的个数为个.解法2:正方体的个表面及个对角面都是矩形,而每个矩形可构成个直角三角形,故直角三角形共有(个).第二部分13.14.【解析】本题中要完成的一件事:“将比赛的各项冠军逐一分配给名参赛学生”.因为跳高冠军的分配有种不同的方法.跳远冠军的分配有种不同的方法.游泳冠军的分配有种不同的方法.所以根据分步乘法计数原理,冠军的分配方法有(种).15.【解析】若得到二次函数,则,有种选择,故二次函数有(个).16.17.【解析】分三类,第一类:取数学书和语文书,有(种);第二类:取数学书和英语书,有(种);第三类:取语文书和英语书,有(种),故共有(种).第三部分18. (1)只需一人参加,可按老师、男同学、女同学分三类,各自有,,种方法,总方法数为种.(2)分两步,先选老师,共种选法,再选学生,共种选法,由分步乘法计数原理知,总方法数为种.(3)选老师、男同学、女同学各一人,可分三步,每步方法依次为,,种.由分步乘法计数原理知总方法数为种.19. 解法 1(间接法):;解法 2(直接法):从,,,中可取,,,个点,故四面体共有(个).20. (1)任意两队之间要进行一场主场比赛及一场客场比赛,对应于从支球队任取两支的一个排列,比赛的总场次是.(2)由()中的分析,比赛的总场次是.21. 解法一:从题意来看,部分种种颜色的花,又从图形看,可知必有组同颜色的花,故从同色入手分类求解.()若与同色,则,或,同色,共有种栽种方法;()若与同色,则,或,同色,共有种栽种方法;()若与且与同色,则共有种栽种方法.所以共有种栽种方法.解法二:记四种颜色的花分别为,,,,先安排,,,有种不同的栽法,不妨设,,已分别栽种,,,则,,的栽种方法共有种,由以下树状图清晰可见.根据分步乘法计数原理知,共有种不同的栽种方法.22. 分类进行.第一类:个跳舞的人都来自只会跳舞的个人,共有种;第二类:个跳舞的人中有个来自只会跳舞的个人,共有种;第三类:个跳舞的人中有个来自只会跳舞的个人,共有种;第四类:个跳舞的人中有个来自只会跳舞的个人,共有种.共有种.。

排列组合题集(含详细答案)

排列组合题集(含详细答案)

排列组合题集一、解决排列、组合问题常用方法:两个原理、优限法、排除法、捆绑法(视一法)、插空法、隔板法、等可能法、固定模型、树图法等,但最基础的是“两个原理”.二、排列、组合问题大体分以下几个类型类型一:排队问题例1:7人站成一排,求满足下列条件的不同站法:(1)甲不站排头,乙不站排尾____________________(2)甲、乙两人不站两端________________________ (3)甲、乙两人相邻____________________________(4)甲、乙两人不相邻________________________ (5)甲、乙之间隔着2人______________________(6)甲在乙的左边____________________________ (7)若7人顺序不变,再加入3个人,要求保持原先7人顺序不变________________(8)若7人中有4男生,3女生,男、女生相间隔排列________(9)7人站成前后两排,前排3人,后排4人的站法____________(10)甲站中间______ _____(11)7人中现需改变3人所站位置,则不同排法____________ (12)若7人身高各不相同,则按照从高到低的站法________________(13)甲、乙、丙3人中从左向右看由高到底(3人身高不同)的站法________(14)若甲、乙两人去坐标号为1,2,3,4,5,6,7的七把椅子,要求每人两边都有空位的坐法_____ 类型二:分组与分配问题例2:将6本不同的书,若按如下方式来分,则不同分法种数有:(1)平均分成3堆,每堆2本______________________(2)分给甲、乙、丙3人,每人2本________________ (3)分成3堆,每堆本数分别是1,2,3,____________(4)分给甲1本,乙2本,丙3本________ __ (5)分给3人,1人1本,1人2本,1人3本________________(6)分给甲、乙、丙3人,每人至少1本____________________(7)若将6本不同书放到5个不同盒子里,有________种不同放法(8)若将6本不同书放到5个不同盒子里,每个盒子至少1本,则有_____种不同放法。

2023高考数学组合与排列练习题及答案

2023高考数学组合与排列练习题及答案

2023高考数学组合与排列练习题及答案1. 一次选举中,有8名候选人,其中需要选出3名获胜者。

求不同的选举结果有多少种?解析:由于选出的是获胜者,所以选举结果是有顺序的组合。

根据组合公式,计算可得:C(8,3) = 8! / (3! * (8-3)!) = 56因此,不同的选举结果有56种。

2. 一个班级里有20名学生,其中10名男生和10名女生。

要从中选出一个由5名学生组成的代表团,其中至少有2名男生和2名女生。

求不同的代表团选择方案数目。

解析:根据要求,选出的代表团需要满足至少2名男生和2名女生。

我们可以分两种情况进行计算。

情况一:选出2名男生和3名女生C(10,2) * C(10,3) = 45 * 120 = 5400情况二:选出3名男生和2名女生C(10,3) * C(10,2) = 120 * 45 = 5400总共的选择方案数目为5400 + 5400 = 10800。

3. 在一家餐厅的菜单上有10道菜可供选择。

小明决定点一道主菜和两道配菜。

求小明所有的就餐选择方案数目。

解析:小明在就餐时,需要从10道菜中选择一道主菜和两道配菜。

我们可以使用排列组合的方法计算。

选择主菜的方式有10种,选择第一道配菜的方式有9种(因为已经选了主菜,所以剩余菜的数量为10-1=9),选择第二道配菜的方式有8种(由于已选主菜和一道配菜,所以剩余菜的数量为10-2=8)。

因此,总的选择方案数目为10 * 9 * 8 = 720。

4. 一位作家要将他的12本书按照一定的顺序排列在书架上。

其中有4本小说、3本传记和5本科普书。

求不同的排列方式数目。

解析:根据题目描述,我们需要将12本书按照一定的顺序排列。

由于书的种类不同,我们可以分别计算不同类别的排列方式,再将结果相乘。

小说的排列方式数目为4! = 24;传记的排列方式数目为3! = 6;科普书的排列方式数目为5! = 120。

因此,总的排列方式数目为24 * 6 * 120 = 172,800。

数字的拼排列与组合练习题

数字的拼排列与组合练习题

数字的拼排列与组合练习题1. 数字的拼排列与组合练习题2. 问题一:数字拼排列数字的拼排列是指将多个数字按照一定的规则组合起来,形成新的数字。

请按照以下拼排列规则完成练习题。

3. 一、给出数字1、2、3,请问可以组合成多少个不重复的两位数?4. 二、给出数字1、2、3、4,请问可以组合成多少个不重复的三位数?5. 三、给出数字1、2、3、4、5,请问可以组合成多少个不重复的四位数?6. 四、给出数字1、2、3、4、5、6,请问可以组合成多少个不重复的五位数?7. 答案及解析如下是每个练习题的答案与解析,以便核对和理解。

8. 问题一答案与解析:一、给出数字1、2、3,请问可以组合成多少个不重复的两位数?答案:共有6个不重复的两位数:12、13、21、23、31、32。

解析:在这个练习题中,我们需要考虑两位数的组合情况。

由于只给出了三个数字,所以每个两位数的十位数和个位数都需要从给定的数字中选择。

我们可以通过穷举法,将数字1、2、3分别放在十位和个位上,得到的所有结果即为答案。

考虑到没有重复的情况,最终得到了6个不重复的两位数。

9. 二、给出数字1、2、3、4,请问可以组合成多少个不重复的三位数?答案:共有24个不重复的三位数。

解析:在这个练习题中,我们需要考虑三位数的组合情况。

给出了四个数字,所以每个三位数的百位、十位和个位都需要从给定的数字中选择。

同样地,可以通过穷举法得到所有结果。

由于没有重复的要求,最终得到了24个不重复的三位数。

10. 三、给出数字1、2、3、4、5,请问可以组合成多少个不重复的四位数?答案:共有120个不重复的四位数。

解析:在这个练习题中,我们需要考虑四位数的组合情况。

给出了五个数字,每个四位数的千位、百位、十位和个位都需要从给定的数字中选择。

同样地,可以通过穷举法得到所有结果。

最终得到了120个不重复的四位数。

11. 四、给出数字1、2、3、4、5、6,请问可以组合成多少个不重复的五位数?答案:共有720个不重复的五位数。

复杂排列数与组合数练习题和答案

复杂排列数与组合数练习题和答案

复杂排列数与组合数练习题和答案排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。

教学目标1.进一步理解和应用分步计数原理和分类计数原理。

2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。

提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题. 复习巩固1.分类计数原理完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法,?,在第n 类办法中有mn种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,?,做第n步有mn 种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。

3.确定每一步或每一类是排列问题还是组合问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,两个位置.1先排末位共有C31然后排首位共有C最后排其它位置共有A43113C3A4?288由分步计数原理得C4练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2.人站成一排,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

组合与排列的计算试题

组合与排列的计算试题

组合与排列的计算试题在数学中,组合与排列是常见的计算方法,用于确定一组元素的排列或组合方式。

这种计算方法在统计学、概率论、计算机科学等领域中有广泛的应用。

下面是一些组合与排列的计算试题,帮助读者更好地理解这些概念与计算方法。

题目1:从10个不同的球中,任选5个,计算一共有多少种不同的选法?解答1:根据组合的计算方法,假设10个不同的球分别用编号0, 1, 2, ..., 9表示。

我们需要从中选取5个球,那么一共有C(10, 5)种不同的选法。

计算C(10, 5)的方法是:C(10, 5) = 10! / (5! * (10-5)!)= 10! / (5! * 5!)根据阶乘的定义,10! = 10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1= 3628800同样地,5! = 5 * 4 * 3 * 2 * 1= 120所以,C(10, 5) = 3628800 / (120 * 120)= 252因此,一共有252种不同的选法。

题目2:有6个人排成一排,求他们的不同排列方式有多少种?解答2:根据排列的计算方法,我们需要求出6个人的全排列方式。

全排列的计算方法是:6! = 6 * 5 * 4 * 3 * 2 * 1= 720所以,一共有720种不同的排列方式。

题目3:有5本不同的数学书和3本不同的英语书,计算将这些书放入一个书架上,一共有多少种不同的放置方式?解答3:根据排列与组合的计算方法,我们需要计算将5本数学书和3本英语书放入书架的不同方式。

假设书架有8个位置,我们需要在这8个位置中选择5个位置放置数学书,剩下的3个位置放置英语书。

因此,一共有C(8, 5) * C(3, 3)种不同的放置方式。

计算C(8, 5)和C(3, 3)的方法分别是:C(8, 5) = 8! / (5! * (8-5)!)= 8! / (5! * 3!)C(3, 3) = 3! / (3! * (3-3)!)= 3! / (3! * 0!)= 1根据阶乘的定义,8! = 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1= 40320同样地,5! = 5 * 4 * 3 * 2 * 1= 120所以,C(8, 5) = 40320 / (120 * 6)= 56因此,一共有56种不同的放置方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复杂排列数与组合数练习题和答案排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。

教学目标1.进一步理解和应用分步计数原理和分类计数原理。

2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。

提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题. 复习巩固1.分类计数原理完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法,?,在第n 类办法中有mn种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,?,做第n步有mn 种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。

3.确定每一步或每一类是排列问题还是组合问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,两个位置.1先排末位共有C31然后排首位共有C最后排其它位置共有A43113C3A4?288由分步计数原理得C4练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2.人站成一排,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

由分步计数原理可得共有A55A22A22?480种不同的排法练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 0三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?解:分两步进行第一步排2个相声和3个独唱共有A55种,第二步将4舞蹈插4入第一步排好的6个元素中间包含首尾两个空位共有种A6不同的方法,4由分步计数原理,节目的不同顺序共有A55A6练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为0 四.定序问题倍缩空位插入策略例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的3全排列数,则共有不同排法种数是:A77/A34设想有7把椅子让除甲乙丙以外的四人就坐共有A7种方法,其4余的三个位置甲乙丙共有 1种坐法,则共有A7种方法。

思考:可以先让甲乙丙就坐吗?EABCDEFGHA一般地,n个不同元素作圆形排列,共有!种排法.如果从n个不同元素中取出m个元素作圆形排列共有1mAn n练习题:6颗颜色不同的钻石,可穿成几种钻石圈 120 七.多排问题直排策略例7.8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法解:8人排前后两排,相当于8人坐8把椅子,可以把椅子排成一排.个特殊1元素有A24种,再排后4个位置上的特殊元素丙有A4种,其余的5人在5215个位置上任意排列有A55种,则共有A4A4A5种一般地,元素分成多排的排列问题,可归结为一排考虑,再分段研练习题:有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是46八.排列组合混合问题先选后排策略例8.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.解:第一步从5个球中选出2个组成复合元共有C52种方法.再把4个元素装入4个不同的盒内有A4根据分步计数4种方法, 4原理装球的方法共有C52A4练习题:一个班有6名战士,其中正副班长各1人现从中选4人完成四种不同的任务,每人完成一种任务,且正副班长有且只有1人参加,则不同的选法有 19种九.小集团问题先整体后局部策略例9.用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹1,5在两个奇数之间,这样的五位数有多少个?解:把1,5,2,4当作一个小集团与3排队共有A2再排小集团2种排法,2222AA内部共有A2种排法,由分步计数原理共有222A2A2种排法.小集团排列问题中,先整体后局部,再结合其它策略进行处理。

练习题:1.计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画, 排成一行陈列,要求同一品种的必须连在一起,并且水彩画不在两端,54那么共有陈列方式的种数为A22A5A4552.男生和5女生站成一排照像,男生相邻,女生也相邻的排法有A22A5A5种十.元素相同问题隔板策略例10.有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案?解:因为10个名额没有差别,把它们排成一排。

相邻名额之间形成9个空隙。

在9个空档中选6个位置插个隔板,可把名额分成7份,对应地分给7个班级,每一种插板方法对应一种分法共有C96种分法。

二班三班六班七班将n个相同的元素分成m份,每份至少一个元素,可以用m-1块隔板, m?1插入n个元素排成一排的n-1个空隙中,所有分法数为Cn?1练习题:1. 10个相同的球装5个盒中,每盒至少一有多少装法? C943.x?y?z?w?100求这个方程组的自然数解的组数C10十一.正难则反总体淘汰策略例11.从0,1,2,3,4,5,6,7,8,9这十个数字中取出三个数,使其和为不小于10的偶数,不同的取法有多少种?解:这问题中如果直接求不小于10的偶数很困难,可用总体淘汰法。

这十个数字中有5个偶数5个奇数,所取的三个数含有3个偶数的取法有C53,12123C5,和为偶数的取法共有C5C5?C5只含有1个偶数的取法有C5。

再淘汰和123C5?C5?小于10的偶数共9种,符合条件的取法共有C5有些排列组合问题,正面直接考虑比较复杂,而它的反面往往比较简捷,可以先求出它的反面,再从整体中淘汰.练习题:我们班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在内的抽法有多少种?十二.平均分组问题除法策略例12.本不同的书平均分成3堆,每堆2本共有多少分法?排列与组合习题1.6个人分乘两辆不同的汽车,每辆车最多坐4人,则不同的乘车方法数为A.40B.50 C.60D.70[解析] 先分组再排列,一组2人一组4人有C2C36=15种不同的分法;两组各3人共有A210种不同的分法,所以乘车方法数为25×2=50,故选B.2.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有A.36种B.48种 C.72种D.96种[解析] 恰有两个空座位相邻,相当于两个空位与第三个空位不相邻,先排三个人,然后插空,从而共A33A24=72种排法,故选C.3.只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数有A.6个B.9个C.18个D.36个[解析] 注意题中条件的要求,一是三个数字必须全部使用,二是相同的数字不能相邻,选四个数字共有C13=3选法,即1231,1232,1233,而每种选择有A22×C23=6排法,所以共有3×6=18情况,即这样的四位数有18个.4.男女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有A.2人或3人B.3人或4人 C.3人 D.4人[解析] 设男生有n人,则女生有人,由题意可得C2nC18-n=30,解得n=5或n=6,代入验证,可知女生为2人或3人.5.某幢楼从二楼到三楼的楼梯共10级,上楼可以一步上一级,也可以一步上两级,若规定从二楼到三楼用8步走完,则方法有A.45种B.36种 C.28种D.25种[解析] 因为10÷8的余数为2,故可以肯定一步一个台阶的有6步,一步两个台阶的有2步,那么共有C28=28种走法.6.某公司招聘来8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一个部门,另外三名电脑编程人员也不能全分在同一个部门,则不同的分配方案共有A.24种 B.36种C.38种 D.108种[解析] 本题考查排列组合的综合应用,据题意可先将两名翻译人员分到两个部门,共有2种方法,第二步将3名电脑编程人员分成两组,一组1人另一组2人,共有C13种分法,然后再分到两部门去共有C13A22种方法,第三步只需将其他3人分成两组,一组1人另一组2人即可,由于是每个部门各4人,故分组后两人所去的部门就已确定,故第三步共有C13种方法,由分步乘法计数原理共有2C13A22C13=36.7.已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为A.33B.34C.35D.36[解析] ①所得空间直角坐标系中的点的坐标中不含1的有C12·A33=12个;②所得空间直角坐标系中的点的坐标中含有1个1的有C12·A33+A33=18个;③所得空间直角坐标系中的点的坐标中含有2个1的有C13=3个.故共有符合条件的点的个数为12+18+3=33个,故选A.8.由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是A.72B.9 C.108D.144[解析] 分两类:若1与3相邻,有A22·C13A22A23=72,若1与3不相邻有A33·A33=36 故共有72+36=108个.9.如果在一周内安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余学校均只参观一天,那么不同的安排方法有A.50种B.60种 C.120种D.210种[解析] 先安排甲学校的参观时间,一周内两天连排的方法一共有6种:、、、、、,甲任选一种为C16,然后在剩下的5天中任选2天有序地安排其余两所学校参观,安排方法有A25种,按照分步乘法计数原理可知共有不同的安排方法C16·A25=120种,故选C.10.安排7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法共有________种.[解析] 先安排甲、乙两人在后5天值班,有A25=20排法,其余5人再进行排列,有A55=120排法,所以共有20×120=2400安排方法.11.今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有________种不同的排法.[解析] 由题意可知,因同色球不加以区分,实际上是一个组合问题,共有C4C2C39·5·3=1260排法.12.将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有________种.2C2C [解析] 先将6名志愿者分为4组,共有4组人员分到4个不A2①若5在十位或十万位,则1、3有三个位置可排,3A3A2=24个②若5排在百位、千位或万位,则1、3只有两个位置可排,共3A2A2=12个算上个位偶数字的排法,共计3=108个答案:C17. 在某种信息传输过程中,用4个数字的一个排列表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为A.10B.11C.1D.152222同场馆去,共有C2C2·44A4种分法,故所有分配方案有:·A4=1 080A2种.13.要在如图所示的花圃中的5个区域中种入4种颜色不同的花,要求相邻区域不同色,有________种不同的种法.[解析]有4种种法,1有3种种法,4有2种种法.若1、3同色,2有2种种法,若1、3不同色,2有1种种法,∴有4×3×2×=72种.14. 将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有12种 18种种4种标号1,2的卡片放入同一封信有种方法;其他四封信放入两个信封,每个信封两18. 现安排甲、乙、丙、丁、戌5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加。

相关文档
最新文档