排列组合练习题及答案精编
高中数学-排列组合100题(附解答)
高中数学-排列组合100题(附解答)高中数学_排列组合100题一、填充题1. (1)设{}3,8A =﹐{}8,36B x =+﹐若A B =﹐则x =____________﹒(2)设{}2|320A x x x =-+=﹐{}1,B a =﹐若A B =﹐则a =____________﹒ 2. (1)822x x ⎛⎫- ⎪⎝⎭展开式中10x 项的系数为____________﹒ (2)52123x x ⎛⎫- ⎪⎝⎭展开式中3x 项的系数为____________﹒ (3)53212x x ⎛⎫+ ⎪⎝⎭展开式中常数项为____________﹒ 3. (1)()82x y z +-展开式中332x y z 项的系数为____________﹒(2)()532x y z -+展开式中﹐2.3x y 项的系数为____________﹒4. 四对夫妇围一圆桌而坐﹐夫妇相对而坐的方法有___________种﹒5. {}{}1,21,2,3,4,5,A ⊂⊂且A 有4个元素﹐则这种集合A 有____________个﹒6. 从2000到3000的所有自然数中﹐为3的倍数或5的倍数者共有____________个﹒7. 从1至10的十个正整数中任取3个相异数﹐其中均不相邻的整数取法有____________种﹒8. 某女生有上衣5件﹑裙子4件﹑外套2件﹐请问她外出时共有__·····__________种上衣﹑裙子﹑外套的搭配法﹒(注意:外套可穿也可不穿﹒)9. 已知数列n a 定义为1132n n a a a n +=⎧⎨=+⎩﹐n 为正整数﹐求100a =____________﹒ 10. 设A ﹑B ﹑T 均为集合﹐{},,,A a b c d =﹐{},,,,=B c d e f g ﹐则满足T A ⊂或T B ⊂的集合T 共有____________个﹒11. 李先生与其太太有一天邀请邻家四对夫妇围坐一圆桌聊天﹐试求下列各情形之排列数:(1)男女间隔而坐且夫妇相邻____________﹒(2)每对夫妇相对而坐____________﹒12. 体育课后﹐阿珍将4个相同排球﹐5个相同篮球装入三个不同的箱子﹐每箱至少有1颗球﹐则方法有13. 如图﹐由A 沿棱到G 取快捷方式(最短路径)﹐则有____________种不同走法﹒14. 0﹑1﹑1﹑2﹑2﹑2﹑2七个数字全取排成七位数﹐有____________种方法﹒15. 10132⎛⎫ ⎪ ⎪⎝⎭展开式中﹐各实数项和为____________﹒16. 有一数列n a 满足11a =且1213n n a a +=+﹐n 为正整数﹐求()13n n a ∞=-=∑____________﹒ 17. 设{}2,4,1A a =+﹐{}24,2,23B a a a =----﹐已知A B ⋂{}2,5=﹐则()()A B A B ⋃-⋂=____________﹒ 18. 把1~4四个自然数排成一行﹐若要求除最左边的位置外﹐每个位置的数字比其左边的所有数字都大或都小﹐则共有____________种排法﹒(例如:2314及3421均为符合要求的排列)19. 从1到1000的自然数中﹐(1)是5的倍数或7的倍数者共有____________个﹒(2)不是5的倍数也不是7的倍数者共有____________个﹒(3)是5的倍数但不是7的倍数者共有____________个﹒20. 如图﹐从A 走到B 走快捷方式﹐可以有____________种走法﹒21. 1到1000的正整数中﹐不能被2﹑3﹑4﹑5﹑6之一整除者有____________个﹒22. 将100元钞票换成50元﹑10元﹑5元﹑1元的硬币﹐则(1)50元硬币至少要1个的换法有____________种﹒(2)不含1元硬币的换法有____________种﹒23. 求()21x -除1001x +的余式为____________﹒24. 在()8x y z ++的展开式中﹐同类项系数合并整理后﹐(1)共有____________个不同类项﹒(2)其中323x y z 的系数25. 小明与小美玩猜数字游戏﹐小明写一个五位数﹐由小美来猜;小美第一次猜75168﹐小明说五个数字都对﹐但只有万位数字对﹐其他数字所在的位数全不对﹐则小美最多再猜____________次才能猜对﹒26. 若{}|,,110000S x x x x =≤≤為正整數為正整數﹐{}|12,,110000T x x k k x ==≤≤為正整數﹐则()n S T -=____________﹒27. 小于10000之自然数中﹐6的倍数所成集合为A ﹐9的倍数所成集合为B ﹐12的倍数所成集合为C ﹐则(1)()n A B ⋂=____________﹒ (2)()n A B C ⋂⋂=____________﹒ (3)()n A B C ⎡⋂⋃⎤=⎣⎦____________﹒(4)()n A B C ⎡⋂⋃⎤=⎣⎦____________﹒28. 1到300的自然数中﹐是2或3的倍数但非5的倍数有____________个﹒29. ()10222x x -+除以()31x -所得的余式为____________﹒ 30.如圖﹐以五色塗入各區﹐每區一色且相鄰區不得同色﹐則有____________種不同的塗法﹒(圖固定不得旋轉)31. 如图﹐则(1)由A 取捷徑到B 的走法有____________種﹒ (2)由A 走到B ﹐走向可以↑﹑→或↓﹐但不可以←﹐且不可重複走﹐則走法有____________種﹒32. 求()()23311x x ++++……()2031x ++展开式中12x 项系数为____________﹒ 33. ()1001k k x =-∑展开式中5x 的系数为____________﹒34. 展开()200.990.abcd =……﹐则a b c ++=____________﹒35. 建中高二教室楼梯一层有11个阶梯﹐学生上楼时若限定每步只可跨一阶或二阶﹐则上楼的走法有____________种﹒36. 利用二项式定理求12323n nn n n C C C nC +++⋅⋅⋅⋅⋅⋅+和为____________﹒ 37. 四对夫妇Aa ﹑Bb ﹑Cc ﹑Dd 围一圆桌而坐﹐若Aa 要相对且Bb 要相邻的坐法有____________种﹒49. 将pallmall 的字母全取排成一列﹐相同字母不相邻的排法有____________种﹒50. 二个中国人﹑二个日本人﹑二个美国人排成一列﹐同国籍不相邻有____________种排法﹒二、计算题1. 设数列n a 满足14a =且132k n a a +=+﹐n 为自然数﹐试求(1)2a ﹐3a ﹐4a ﹐5a ﹒(2)推测n a 之值(以n 表示)﹒(3)401k k a =∑﹒2. 某校从8名教师中选派4名教师分别去4个城市研习﹐每地一人﹒其中甲和乙不能同时被选派﹐甲和丙只能同时被选派或同时不被选派﹐问共有几种选派方法?3. 试求()632x y -的展开式﹒4. 试求()421x -的展开式﹒5. 从SENSE 的5个字母中任取3个排成一列﹐问有几个排法?6. 下列各图形﹐自A 到A 的一笔划﹐方法各有多少种﹖ (1) (2) (3)7. 如图﹐至少包含A 或B 两点之一的矩形共有几个?8. 设()n x y +展开式中依x 降序排列的第6项为112﹐第7项为7﹐第8项为14﹐试求x ﹑y 及n 之值﹒(但x ﹑y 都是正数)9. 红﹑白﹑绿﹑黑四色大小相同的球各4颗共16颗球﹐任取四颗﹐则(1)四球恰为红﹑白二色的情形有几种?(2)四球恰具两种颜色的情形有几种?10. 一楼梯共10级﹐某人上楼每步可走一级或两级﹐要8步走完这10级楼梯﹐共有多少种走法?11. 设{}1,2,3,4,5,6,7,8,9,10U =为一基集(宇集)﹐则{}1,2,4,5,8A =﹐{}1,2,5,7,9B =﹐求(1)A B ⋃(2)A B ⋂ (3)A B - (4)B A - (5)'A (6)'B (7)()'⋃A B (8)''⋂A B (9)()'A B ⋂ (10)''A B ⋃﹒12. 若()1922381211x x a x a x x -+=+++⋅⋅⋅⋅⋅⋅+﹐求1a 和2a 的值﹒13. 某一场舞会将4位男生与4位女生配成4对﹐每一对皆含一位男生与一位女生﹐试问总共有几种配对法﹖(1)43C ﹒ (2)44P ﹒ (3)44﹒ (4)44H ﹒ (5)4﹒→一笔划的方法数有几种﹖14. 如图﹐A A(1)(2)15. 如图﹐由A至B走快捷方式﹐不能穿越斜线区﹐有多少种走法﹖0.998之近似值﹒(至小数点后第6位)16. 求()717. 设()1012220211x x ax bx cx +-=+++⋅⋅⋅⋅⋅⋅+﹐求a ﹑b ﹑c 之值﹒18. (1)试证明下列等式成立:()1012121.12311n n n n n n C C C C n n ++++⋅⋅⋅⋅⋅⋅+=-++ (2)设n 为自然数﹐且满足12031,2311n n n nn C C C C n n +++⋅⋅⋅⋅⋅⋅+=++则n 之值为何?19. 王老师改段考考卷﹐她希望成绩是0﹑4﹑5﹑6﹑7﹑8﹑9所组成的2位数﹐则(1)不小于60分的数有几个﹖(2)有几个3的倍数﹖(3)改完考卷后发现由小到大排列的第12个数正是全班的平均成绩﹐请问班上的平均成绩是几分﹖﹐国文也要连两堂上课﹐但同科目的课程不跨上﹑下午(即第四五节课不算连堂)﹐若第四﹑五堂课也不排体育﹐则该日之课程有几种可能的排法﹖21. ()10122320211,x x ax bx cx x +-=++++⋅⋅⋅⋅⋅⋅+求a ﹑b ﹑c ﹒22. 已知{}{}{}0,,1,2,1,1,2=∅A ﹐下列何者为真﹖(A)∅∈A (B)∅⊂A (C)0A ∈ (D)0A ⊂ (E){}1,2A ∈ (F){}1,2A ⊂ (G){}∅⊂A ﹒23.設有A ﹑B ﹑C ﹑D ﹑E 五個市鎮﹐其通道如圖所示﹐今某人自A 地到E 地﹐同一市鎮不得經過兩次或兩次以24. 设数列n a 的首项15a =且满足递归关系式()123n n a a n +=+-﹐n 为正整数﹐试求(1)2a ﹐3a ﹐4a ﹐5a ﹒(2)一般项n a (以n 表示)﹒(3)20a ﹒25. 方程式10x y z ++=有多少组非负整数解?26. 用0﹑1﹑2﹑3﹑4﹑5作成大于230的三位数奇数﹐数字可重复使用(1)可作成多少个﹖ (2)其总和若干﹖27. 求5678192023451617C C C C C C ++++++的值﹒28. 妈妈桌球俱乐部拟购买8把桌球拍以供忘记携带球拍的会员使用﹐若球拍分为刀板﹐直拍与大陆拍3类﹐试问俱乐部有多少种不同的购买方式?29. 设直线方程式0ax by +=中的,a b 是取自集合{}3,2,1,0,2,4,6---中两个不同的元素﹐且该直线的斜率为正值﹐试问共可表出几条相异的直线﹖30. 下列各图﹐由A 到B 的一笔划﹐方法各有多少种﹖ (1) (2)31. 以五种不同的颜色﹐涂入下列各图(图形不能转动)﹐同色不相邻﹐颜色可重复使用﹐则涂法各有多少种﹖ (1) (2)32. 平面上有n 个圆﹐其中任三个圆均不共点﹐此n 个圆最多可将平面分割成n a 个区域﹐则(1)求1a ﹐2a ﹐3a ﹐4a ﹒(2)写出n a 的递归关系式﹒(3)求第n 项n a (以n 表示)﹒33. 于下列各图中﹐以五色涂入各区﹐每区一色但相邻不得同色﹐则各有几种不同的涂法﹖(各图固定﹐不得旋转) (1) (2) (3)34. 车商将3辆不同的休旅车及3辆不同的跑车排成一列展示﹒求下列各种排列方法:(1)休旅车及跑车相间排列﹒(2)休旅车及跑车各自排在一起﹒35. 从6本不同的英文书与5本不同的中文书中﹐选取2本英文书与3本中文书排在书架上﹐共有几种排法?36. 将9本不同的书依下列情形分配﹐方法各有几种?(1)分给甲﹐乙﹐丙3人﹐每人各得3本﹒(2)分装入3个相同的袋子﹐每袋装3本﹒(3)分装入3个相同的袋子﹐其中一袋装5本﹐另两袋各装2本﹒37. 学校举办象棋及围棋比赛﹐已知某班级有42位同学参赛﹐其中有34位同学参加围棋比赛﹐而两种棋赛都参加的同学有15人﹒试问此班有多少位同学参加象棋比赛?38. 求()321x x ++的展开式中2x 的系数﹒39. 求()322x x -+的展开式中4x 的系数﹒41. 自甲地到乙地有电车路线1条﹐公交车路线3条﹐自乙地到丙地有电车路线2条﹐公交车路线2条﹒今小明自甲地经乙地再到丙地﹐若甲地到乙地与乙地到丙地两次选择的路线中﹐电车与公交车路线各选一次﹐则有几种不同的路线安排?42. 某班举行数学测验﹐测验题分A﹐B﹐C三题﹒结果答对A题者有15人﹐答对B题者有19人﹐答对C题者有20人﹐其中A﹐B两题都答对者有10人﹐B﹐C两题都答对者有12人﹐C﹐A两题都答对者有8人﹐三题都答对者有3人﹒试问A﹐B﹐C三题中至少答对一题者有多少人?43. 在1到600的正整数中﹐是4﹐5和6中某一个数的倍数者共有几个?44.用黑白兩種顏色的正方形地磚依照如右的規律拼圖形:設n a 是第n 圖需用到的白色地磚塊數﹒(1)寫下數列n a 的遞迴關係式﹒(2)求一般項n a ﹒(3)拼第95圖需用到幾塊白色地磚﹒45. 欲将8位转学生分发到甲﹐乙﹐丙﹐丁四班﹒(1)若平均每班安排2人﹐共有几种分法?(2)若甲乙两班各安排3人﹐丙丁两班各安排1人﹐共有几种分法?46. 求满足12320003000n n nnn C C C C <++++<的正整数n ﹒47. (1)方程式9x y z ++=有多少组非负整数解﹖(2)方程式9x y z ++=有多少组正整数解﹖48. 旅行社安排两天一夜的渡假行程﹐其中往返渡假地点的交通工具有飞机﹑火车及汽车3种选择﹐而住宿有套房与小木屋2种选择﹒试问全部渡假行程﹐交通工具与住宿共有几种安排法﹖49. 老师想从10位干部中选出3人分别担任班会主席﹑司仪及纪录﹒试问有几种选法﹖50. 如果某人周末时﹐都从上网﹑打牌﹑游泳﹑慢跑与打篮球等5种活动选一种作休闲﹐那么这个月4个周末共有答 案一、填充题 (65格 每格0分 共0分)1. (1)1-;(2)22. (1)112;(2)0;(3)403. (1)4480;(2)90-4. 485. 36. 4687. 568. 609. 9903 10. 44 11.(1)48;(2)384 12. 228 13. 6 14. 90 15. 12- 16. 6 17. {}4,4- 18. 8 19. (1)314;(2)686;(3)172 20. 35 21.266 22. (1)37;(2)18 23. 10098x - 24. (1)45;(2)560 25. 9 26. 84 27. (1)555;(2)277;(3)1111;(4)1111 28. 160 29. 2102011x x -+ 30. 780 31. (1)26;(2)120 32. 20349 33. 462- 34. 16 35. 144 36. 12n n -⋅ 37. 192 38. 21 39. (1)27;(2)81 40. 63 41. 8 42. 64 43. (1)56;(2)20 44. (1)369;(2)76 45. 129 46. 3756 47. 8640 48. 80 49. 54 50. 240二、计算题 (75小题 每小题0分 共0分)1. (1)2112a =﹐37a =﹐4172a =﹐510a =;(2)3522n +;(3)1330 2. 600 3. 见解析 4. 见解析 5. 18 6.(1)48;(2)48;(3)96 7. 150 8. 4x =﹐12y =﹐8n = 9. (1)3;(2)18 10. 28 11. 见解析 12. 1219,190a a =-= 13. (2) 14. (1)32;(2)64 15. 27 16. 0.986084 17. 101,4949,a b ==1c =- 18. (1)见解析;(2)4 19. (1)28;(2)14;(3)57 20. 52 21. 101,4949,a b ==156550c = 22. (A)(B)(C)(E)(F)(G) 23. 76 24. (1)24a =﹐35a =﹐48a =﹐513a =; (2)248n n -+;(3)328 25. 66 26. (1)63;(2)25299 27. 5980 28. 45 29. 13 30. (1)72;(2)864 31. (1)420;(2)3660 32. (1)12a =﹐24a =﹐38a =﹐414a =;(2)12n n a a n +=+⨯;(3)22n n -+ 33. (1)260;(2)3380;(3)43940 34. (1)72;(2)72 35. 18000 36. (1)1680;(2)280;(3)378 37. 23 38. 6 39. 9 40. 20 41. 8 42. 27 43. 280 44.(1)15,2n n a a n -=+≥;(2)53n +;(3)478 45. (1)2520;(2)1120 46. 11 47. (1)55;(2)28 48. 18 49. 720 50.625解 析一、填充题 (65格 每格0分 共0分)1. (1)3631x x +=⇒=-﹒(2)()()2320120x x x x -+=⇒--=1,2x ⇒=﹐∴2a =﹒2. (1)设第1r +项为10x 项﹐则()()882816222rrr r r rr Cx C xx x ---⎛⎫-=- ⎪⎝⎭163102r r ⇒-=⇒=﹐∴10x 项之系数为()2822112C -=﹒ (2)设第1r +项为3x 项﹐则()55255102112233r rrr r rrr Cx C xx x ----⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭710333r r ⇒-=⇒=(不合)﹐∴3x 项之系数为0﹒ (3)设第1r +项为常数项﹐则()5535515322122rrr r rrr Cx C xx x ----⎛⎫= ⎪⎝⎭15503r r ⇒-=⇒=﹐∴常数项为523240C =﹒3. (1)()()()()332238!22144803!3!2!x y z -⇒⨯⨯-=﹒ (2)()()()()2303223235!321031902!3!x y z x y x y -=⨯-=-﹐∴系数为90-﹒ 4. 所求为1161412148⨯⨯⨯⨯⨯⨯⨯=﹒ [另解]34!2484⨯=﹒ 5. {}1,2,3,4﹐{}1,2,3,5﹐{}1,2,4,5﹐共3个﹒ 6. 2000~3000中3的倍数有3000200033433⎡⎤⎡⎤-=⎢⎥⎢⎥⎣⎦⎣⎦个﹐ 2000~3000中5的倍数有30002000120155⎡⎤⎡⎤-+=⎢⎥⎢⎥⎣⎦⎣⎦个﹐ 2000~3000中15的倍数有30002000671515⎡⎤⎡⎤-=⎢⎥⎢⎥⎣⎦⎣⎦个﹐ ∴所求为33420167468+-=﹒ 7. 83563!P =﹒8. ()542160⨯⨯+=﹒ 9. ∵12n n a a n +=+﹐ ∴2121a a =+⨯ 3222a a =+⨯()1)21n n a a n -+=+⨯-()()21121213232n n n a a n n n -⋅=+⎡++⋅⋅⋅⋅⋅⋅+-⎤=+⨯=-+⎣⎦﹐∴210010010039903a =-+=﹒ 10. ∵T A T B ⊂⋃⊂﹐∴T 的个数为4522221632444+-=+-=﹒11. (1)5!2485⨯=﹒ (2)A a B b C c D d E e 1181614121384⨯⨯⨯⨯⨯⨯⨯⨯⨯=﹒ [另解]55!1238452⨯⨯=﹒ 12. 全部-(恰有一空箱)-(恰有二空箱)()()333223114514524511H H C H H C H H ⨯-⨯---⨯()67564545323228C C C C =⨯-⨯--=﹒13. 3216⨯⨯=﹒ 14. 任意排0-在首位7!6!5675610515904!2!4!2!22⨯⨯⨯=-=-=-=﹒ 15. 展开后各实数项和为 246810864210101010100246811313131322222C C C C C ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭101010132C ⎛⎫⎛⎫+ ⎪ ⎪ ⎪⎝⎭⎝⎭512110242=-=-﹒ [另解]原式()()10cos 60sin 60i =⎡-︒+-︒⎤⎣⎦()()cos 600sin 600i =-︒+-︒132=-+﹐ ∴实数项和为12-﹒16. ∵1213n n a a +=+⋅⋅⋅⋅⋅⋅∴1213n n a a -=+⋅⋅⋅⋅⋅⋅-()1123n n n n a a a a +-⇒-=- 而11a =﹐2125133a a =+=﹐2123a a -=﹐表示数列1n n a a +-为首项23﹐公比23的等比数列﹐()()()121321n n n a a a a a a a a -=+-+-+⋅⋅⋅⋅⋅⋅+-111221332211213223313n n n ---⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎛⎫⎣⎦=+=+-=-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦-﹐∴()111223262313n n n n a -∞∞==⎛⎫-=== ⎪⎝⎭-∑∑﹒17. ∵{}2,5A B ⋂=﹐∴154a a +=⇒=﹐∴{}2,4,5A =﹐{}4,2,5B =-﹐{}4,2,4,5A B ⋃=-﹐ ∴()(){}4,4A B A B ⋃-⋂=-﹒ 18. 1234 3214 2134 3241 2314 3421 2341 4321 共8种﹒19. 设1到1000的自然数所成的集合为基集U ﹐1到1000的自然數中﹐5的倍數者所成的集合為A ﹐而7的倍數者所成的集合為B ﹐則A B ⋂表示35的倍數者所成的集合﹐ (1)即求()()()()n A B n A n B n A B ⋃=+-⋂100010001000200142283145735⎡⎤⎡⎤⎡⎤=+-=+-=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦﹒(2)即求()()()()1000314686⎡⎤'''⋂=⋃=-⋃=-=⎢⎥⎣⎦n A B n A B n U n A B ﹒(3)即求()()()20028172n A B n A n A B -=-⋂=-=﹒20.7!354!3!=﹒ 21. 若一整数不能被2整除﹐则必不能被4﹑6整除﹐故本题即求1到1000正整数中﹐不能被2﹑3﹑5之一整除者的个数﹒设1到1000之正整数中﹐可被2﹑3﹑5整除者之集合分别为A ﹑B ﹑C ﹐则()10005002n A ⎡⎤==⎢⎥⎣⎦﹐()10003333n B ⎡⎤==⎢⎥⎣⎦﹐()10002005n C ⎡⎤==⎢⎥⎣⎦﹐()10001666n A B ⎡⎤⋂==⎢⎥⎣⎦﹐()100010010n A C ⎡⎤⋂==⎢⎥⎣⎦﹐()10006615n B C ⎡⎤⋂==⎢⎥⎣⎦﹐ ()10003330n A B C ⎡⎤⋂⋂==⎢⎥⎣⎦﹐ ()()()()()()()()n A B C n A n B n C n A B n A C n B C n A B C ⋃⋃=++-⋂-⋂-⋂+⋂⋂ 5003332001661006633734=++---+=﹐故所求为()()'''10001000734266n A B C n A B C ⋂⋂=-⋃⋃=-=(个)﹒22. (1)①一个50⇒设10元x 个﹐5元y 个﹐1元z 个﹐则10550x y z ++=﹐x0 1 2 3 4 5 y 0~10 0~8 0~6 0~4 0~20 z 50~0 40~0 30~0 20~0 10~0共119753136+++++=种﹒ ②二个50⇒1种﹒ ∴所求为36137+=种﹒(2)设50元x 个﹐10元y 个﹐5元z 个﹐则50105100x y z ++= 10220x y z ⇒++=﹐x0 1 2 y0~10 0~5 0 z20~010~0共116118++=种﹒23. ()()()1002100100100121111111x x C x C x +=⎡+-⎤+=+-+-+⎣⎦……()10010010011C x +-+﹐∴1001x +除以()21x -的余式为()11001110098x x +-+=-﹒24. (1)3101088245H C C ===﹒(2)8!560.3!2!3!= 25. 先考虑5不在千位﹐1不在百位﹐6不在十位﹐8不在个位的方法﹐ 14!43!62!41!10!9⨯-⨯+⨯-⨯+⨯=﹐∴最多再猜9次﹒26. {}{}2222,1100001,2,3,,100,=≤≤=為正整數S x x x ∴()100n S =﹐{}|12,,110000T x x k k x ==≤≤為正整數﹐ 令()222212232336x k k ==⨯⨯=⨯⨯=﹐则()()(){}22261,62,,616,⋂=⨯⨯⨯S T∴()16n S T ⋂=﹐故()1001684n S T -=-=﹒ 27. (1)所求为999955518⎡⎤=⎢⎥⎣⎦﹒ (2)所求为999927736⎡⎤=⎢⎥⎣⎦﹒(3)()()()()n A B C n A B n C n A B C ⎡⋂⋃⎤=⋂+-⎡⋂⋂⎤⎣⎦⎣⎦ 5558332771111=+-=﹒ (4)()()()n A B C n A B A C ⎡⋂⋃⎤=⎡⋂⋃⋂⎤⎣⎦⎣⎦()()()()n A B n A C n A B A C =⋂+⋂-⎡⋂⋂⋂⎤⎣⎦ ()555833n A B C =+-⋂⋂ 5558332771111=+-=﹒ 28.()()()()()()236151030n n n n n n +---+15010050203010160=+---+=﹒29. ()()1010222211x x x ⎡⎤-+=-+⎣⎦()()10922101010911C x C x ⎡⎤⎡⎤=-+-+⎣⎦⎣⎦……()()22210101021011C x C x C ⎡⎤+-+-+⎣⎦故余式为()()210102210110211102011C x C x x x x -+=-++=-+﹒30.①B ﹑D 同﹐54143240,A B D C E ⨯⨯⨯⨯=②B ﹑D 異﹐54333540,A B D C E ⨯⨯⨯⨯=由①②可得﹐共有240540780+=种﹒ 31.(1)走捷徑等於是走向只許向右與向上兩種﹒如圖﹐ 由A 開始朝任何方向走都有1種走法﹐走至交叉 點P 後﹐將會合箭頭的方法數全部加起來﹐即為走到該點的走法數(累加法)﹒如圖﹐走法有26種﹒(2)走向可以↑﹑→或↓﹐但不可以←又不可重複走﹒如圖﹐由P 出發﹐依所規定的走法﹐走到隔鄰的鉛垂路線上立即停止﹐再決定走向﹒如此相鄰的兩鉛垂路線間的走法數相乘﹐即為所求的走法數﹒∴走法有120種﹒32. ()()23311x x ++++……()()()()()()203321332033311111111x x x x x x x ⎡⎤++-+-+⎢⎥⎣⎦++==+-﹐ 所求即分子()2131x +展开式中15x 项系数∴所求为21521201918172034954321C ⨯⨯⨯⨯==⨯⨯⨯⨯﹒33.()()()()10121111kk x x x x =-=-+-+-+∑……()101x +-()()()11111111111x x x x⎡⎤----⎣⎦==--﹐展开式中5x 系数即为()1111x --展开式中6x 系数﹐ ∴所求为()61161462C --=-﹒ 34. ()()20200.9910.01=⎡+-⎤⎣⎦()()()2320202012310.010.010.01C C C =+-+-+-+……()2020200.01C +-10.20.0190.00114=-+-+……0.81786≈﹐ ∴81716a b c ++=++=﹒35. 设一步一阶走x 次﹐一步二阶走y 次﹐则211x y +=﹐x1 3 5 7 9 11 y543216!7!8!9!10!15!3!4!5!3!7!2!9!⇒+++++144=﹒ 36. 令12323n n nn n S C C C nC =+++⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅⋅⋅则()0111n n nn S nC n C C -=+-+⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅⋅⋅+()0122n n n nn S n C C C n ⇒=++⋅⋅⋅⋅⋅⋅+=⋅﹐∴12n S n -=⋅﹒ 37.()1142!4!192.⨯⨯⨯⨯=選位A aBb38. 设白色x 块﹐黑色y 块﹐则27x y +=﹐y 0 1 2 3 x7531⇒6!5!4!116104215!2!3!3!+++=+++=﹒ 39. (1)33311127C C C =﹒(2)33333333321121121181C C C C C C C C C ++=﹒40. 62163-=41. 20202020123202320S C C C C =+++⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅⋅⋅ 20202001192019S C C C =++⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅⋅⋅()202020200120220202S C C C +⇒=++⋅⋅⋅⋅⋅⋅+=⨯﹐∴20102S =⨯﹐∵20log220log2200.3010 6.02==⨯=﹐∴202为7位数﹐∴S 为8位数﹒ 42. ①选一面4⇒﹐ ②选二面4312⇒⨯=﹐ ③选三面43224⇒⨯⨯=﹐ ④选四面⇒432124⨯⨯⨯=﹐由①②③④可得﹐共可作成412242464+++=种﹒43. (1)8!565!3!=﹒(2)所求=全部()n C D -⋃()()()56A C B A D B A C D B =-⎡→→+→→-→→→⎤⎣⎦ 3!5!4!4!3!4!5612!3!2!3!2!2!2!2!2!⎛⎫=-⨯+⨯-⨯⨯ ⎪⎝⎭()5630241820=-+-=﹒44. (1)含中空:3342111172,C C C C ⨯⨯⨯=左 上 右 下不含中空:37934792334342222222222222223C C C C C C C C C C C C C C +++----左 上 右 下 左上 右上 左下 右下 631081263691836297=+++----= ∴所求为72297369.+=(2)含中空:边长为31⇒﹐边长为44⇒﹐边长为56⇒﹐边长为63⇒﹐∴共14个﹐ 不含中空:()()()()625128176352418523122362,⨯+⨯+⨯+⨯+⨯+⨯+⨯+--⨯+⨯--=左 上 右 下 左上 右上 左下 右下 ∴所求为146276+=个﹒ 45. ①只用一色:3种﹐②只用二色:()()()()()()6,1,5,2,4,3,3,42,5,1,6∴()322!636,C ⋅⨯=上下色交換③用三色:红+白+黄=7 1 1 1 剩4∴36443!690,⨯=⨯=H C 紅白黃排列∴共33690129++=种﹒46. 444333222111234234234234146410H H H H H H H H H H H H ⨯⨯⨯-⨯⨯⨯+⨯⨯⨯-⨯⨯⨯+⨯700049006604103756=-⨯+⨯-⨯+=﹒47. 6A a Bb →→→坐法其他人坐法 1162!6!8640⨯⨯⨯⨯=﹒48. ()A B A P B A Q B A P Q B →-→→+→→-→→→ 10!4!6!5!5!4!5!16!4!2!2!4!2!3!2!3!2!2!2!3!2!⎛⎫⇒-⨯+⨯-⨯⨯ ⎪⎝⎭()210901006080=-+-=﹒ 49. aa 不相邻且llll 不相邻﹐可先排pm aa ﹐再安插llll ﹐ ①aa 排在一起时:aa 排法有3!6=种﹐再安插4个l :p m a a △△△△△方法有434C =种﹒↑ l②aa 不排在一起时:p m △△△排法有322!6C ⨯=种﹐ 再安排4个l :p a m a △△△△△方法有545C =种﹒ 由①②可知﹐排法有646554⨯+⨯=种﹒ [另解]llll 不相邻llll -不相邻且aa 相邻54444!3!606542!4!4!P P =⨯-⨯=-=﹒50. 6!35!2!34!2!2!13!2!2!2!240-⨯⨯+⨯⨯⨯-⨯⨯⨯⨯=﹒二、计算题 (75小题 每小题0分 共0分)1. ∵132n n a a +=+﹐∴132n n a a +-=﹐ 表示n a 为首项4﹐公差32的等差数列﹐(1)2133114222a a =+=+=﹐ 3231137222a a =+=+=﹐ 4333177222a a =+=+=﹐ 54317310222a a =+=+=﹒ (2)()()1335141222n a a n d n n =+-=+-⨯=+﹒(3)()401240134024401213302k k a a a a =⎡⎤⨯+-⨯⎢⎥⎣⎦=++⋅⋅⋅⋅⋅⋅+==∑﹒ 2. 从8名教师中选出4名教师去4个城市研习的方式可分为甲去和甲不去两种情形: (1)若是甲去研习﹐则丙也会去﹐而乙不去﹐因此需从剩下的5名教师中选出2人去参加研习﹐故选法有52C 种﹒ (2)若是甲不去研习﹐则丙也不会去﹐而乙可去也可不去﹐因此需从剩下的6名教师中选出4名教师去参加研习﹐故选法有64C 种﹒综合这两种情形﹐从8名教师中选派4名教师的选法共有562425C C +=种﹒而选出4名教师后﹐分别安排到4个城市去研习﹐则安排的方式有4!种﹐ 因此总共有254!600⨯=种选派方法﹒3. ()()()()()()()()()()6651423324666660123432332323232x y C x C x y C x y C x y C x y -=+-+-+-+- ()()()566656322C x y C y +-+-6542332456729291648604320216057664.x x y x y x y x y xy y =-+-+-+4. ()()()()()()()()()44312213444444012342122121211x C x C x C x C x C -=+-+-+-+-43216322481x x x x =-+-+﹒5. SENSE 的5个字母中取3种字母﹐其中任取3个字母可能取出「三个字母皆不相同」或「两个字母同另一不同」两种情形:(1)选出三个字母皆不相同的选法有331C =种﹐排列的方法有3!种﹐ 因此排法有333!6C ⨯=种﹒(2)选出两个字母同另一不同的选法有2211C C ⨯种﹐排列的方法有3!2!1!种﹐ 因此排法有22113!122!1!C C ⨯⨯=种﹒ 综合这两种情形﹐共有18种排法﹒6. (1)先走任一瓣都可以﹐故将3瓣视为3条路任意排列﹐方法3!种﹐又每一瓣走法有2种(两个方向)﹐故所求为323!⨯48=种﹒(2)323!48⨯=﹒ (3)423!96⨯=﹒7. ()()()()n A B n A n B n A B ⋃=+-⋂253343422332111111111111C C C C C C C C C C C C =⨯⨯⨯+⨯⨯⨯-⨯⨯⨯ 909636150.=+-=8. 555112n n C x y -=⋅⋅⋅⋅⋅⋅ 6667n n C x y -=⋅⋅⋅⋅⋅⋅77714n n C x y -=⋅⋅⋅⋅⋅⋅6165xn y⇒⋅=⋅⋅⋅⋅⋅⋅- 7286xn y⇒⋅=⋅⋅⋅⋅⋅⋅- ()()66167528n n -⇒=-﹐∴8n =﹐ 代入⇒8x y =﹐由⇒()877184C y y =8812y ⎛⎫⇒= ⎪⎝⎭﹐即得12y =±﹐4x =±﹐∴14,,82x y n ===(取正值)﹒9. (1)红+白=41 1 剩223223H C ⇒==﹒[另解] 红 白 1322313.⇒共種 (2)利用第(1)题的结果42318C ⇒⨯=﹒10. 用8步走完10级楼梯﹐假设一级走了x 步﹐两级走了y 步﹐可列得8210x y x y +=⎧⎨+=⎩解得6x =﹐2y =﹐因此用这样的走法共有8!286!2!=(种)﹒ 11.(1){}1,2,4,5,7,8,9A B ⋃=﹒ (2){}1,2,5A B ⋂=﹒ (3){}4,8A B -=﹒ (4){}7,9B A -=﹒ (5){}3,6,7,9,10'=-=A U A ﹒(6){}3,4,6,8,10'=-=B U B ﹒(7)(){}3,6,10'⋃=A B ﹒(8){}3,6,10''⋂=A B ﹒(9)(){}3,4,6,7,8,9,10'⋂=A B ﹒(10){}3,4,6,7,8,9,10''⋃=A B ﹒12. ()()()()191919182219192011111x x x x C x C x x ⎡⎤-+=-+=-+-+⋅⋅⋅⋅⋅⋅⎣⎦﹐ ∴()1919101119,a C C =-=-1919192021190.a C C C =+=13. 可看作第一位男生有4位女生舞伴可选择﹐第二位男生有3位女生舞伴可选择﹐以此类推得舞会配对方法数共有44432124P =⨯⨯⨯=种﹒ 故选(2)﹒ 14. (1)5232=﹒(2)①先往右42232⨯=﹐ ②先往左42232⨯=﹐ 共有323264+=﹒ 15.如图﹐共有27种方法﹒16. ()()()()()77237777712370.99810.00210.0020.0020.0020.002C C C C =-=-⨯+⨯-⨯+⋅⋅⋅⋅⋅⋅-⨯10.0140.0000840.0000002800.9860837200.986084.≈-+-=≈ 17. ()()1011012211x x x x ⎡⎤+-=+-⎣⎦()()()()()21011011009910121012101212101111x C x x C x x C x =+-+++-⋅⋅⋅⋅⋅⋅+-()10111c =-=-﹐∵()1011x +展开式中才有x 项﹐∴1011101,a C == ∵()1011x +及()100101211C x x -+展开式中均有2x 项﹐∴101101214949.b C C =-=18. (1)∵()()()()()()111!!11!1!1!1!1n n k k n C n C k n k k k n n k k n +++===+-+⋅+⋅-++﹐∴左式()()1111121011121.111nn n n n n k n k C C C C k n n +++++==⨯=++⋅⋅⋅⋅⋅⋅+=-+++∑ (2)承(1)知﹐()1113121213111n n n n ++-=⇒-=++﹐得4n =﹒ 19. (1)□□:4728⨯=﹒ ↓ 6﹑7﹑8﹑9(2)45﹑48﹑54﹑57﹑60﹑66﹑69﹑75﹑78﹑84﹑87﹑90﹑96﹑99﹐共14个﹒ (3)4□7⇒个﹐ 5□7⇒个﹐∴1459a =﹐1358a =﹐1257a =﹐∴平均为57分﹒ 20.上午 下午 1 2 3 4 5 6 7數 數 國 國 ╳ 體 體 2228⇒⨯⨯=數 數 體 ╳ 國 國 體2228⇒⨯⨯=數 數 體 ╳ ╳ 國 國 2124⇒⨯⨯=體 數 數 ╳ 國 國 體 2228⇒⨯⨯= 體 數 數 ╳ ╳ 國 國 2124⇒⨯⨯=體 體數數國國 體 23212⇒⨯⨯=體體 數 數 ╳國國 2228⇒⨯⨯=∴共有8848412852++++++=種﹒21. ()()()()1011012211x xx x+-=++-()()()()()()21011011009910121012101212101111x C x x C x x C x =+++-++-+⋅⋅⋅⋅⋅⋅+-()()()1011002411011x x x x f x =+-++⋅﹐其中()f x 为一多项式﹐∴x 项的系数1011101,a C == 2x 项的系数10121014949,b C =-=3x 项的系数10110031101156550.c C C =-⨯=23.∴共有441212218396676+++++++++=种走法﹒ 24. (1)∵()123n n a a n +=+-且15a =﹐ ∴()21213514a a =+⨯-=-=﹐ ()32223415a a =+⨯-=+=﹐ ()43233538a a =+⨯-=+=﹐ ()542438513a a =+⨯-=+=﹒ (2)∵()123n n a a n +=+-﹐ ∴()21213a a =+⨯- ()32223a a =+⨯-()()121223)213n n n n a a n a a n ---=+⎡⨯--⎤⎣⎦+=+⎡⨯--⎤⎣⎦()()()2112121315233482n n n a a n n n n n -⋅=+⨯⎡++⋅⋅⋅⋅⋅⋅+-⎤--=+⨯-+=-+⎣⎦﹒(3)20a =2204208328-⨯+=﹒25. x ﹐y ﹐z 的非负整数解共有331011212101010266H C C C +-====(组)﹒26. (1)3﹑4﹑5 1﹑3﹑5 →有363⨯⨯个 2 4﹑5 1﹑3﹑5 →有123⨯⨯个 2 3 1﹑3﹑5 →有113⨯⨯个∴共有()()36323363⨯⨯+⨯+=个大于230的三位数奇数﹒(2) 个位数字为1者有()()()36121121⨯+⨯+⨯=个﹐为3﹑5者也各有21个﹐故个位数字的和为()21135189⨯++=﹒②十位数字为1﹑2者各有339⨯=个﹐为3者有()33312⨯+=个﹐为4﹑5者各有 ()331312⨯+⨯=个﹐故十位数字和为()()()9121231245171⨯++⨯+⨯+=﹒③百位数字为3﹑4﹑5者各有6318⨯=个﹐为2者有()()23139⨯+⨯=个﹐ 故百位数字和为()()1834592234⨯++⨯⨯=﹒由①②③可知﹐总和为()()1891711023410025299+⨯+⨯=﹒27. 由于515C =且565622125C C C C =-=-﹐于是利用帕斯卡尔定理111n n n m m m C C C ---=+﹐得 原式()66781920234516175C C C C C C =++++++-778192034516175C C C C C =+++++-8819204516175C C C C =++++-21175C =-5980=﹒28. 设桌球俱乐部拟购买刀板﹐直拍与大陆拍各1x ﹐2x ﹐3x 把﹐ 根据题意得1238x x x ++=﹒其非负整数解有33811010888245H C C C +-====(组)﹐故共有45种不同的购买方式﹒29. 直线0ax by +=是恒过原点﹐且斜率为a b -的直线﹒因为斜率ab-为正值﹐所以,a b 必须异号﹐且,a b 皆不等于0﹒我们以a 的正负情形讨论如下﹕(1)当0a >时﹐a 有3种选法﹐而此时0b <亦有3种选法﹐ 因此有339⨯=种选法﹒(2)当0a <时﹐a 有3种选法﹐而此时0b >亦有3种选法﹐ 因此有339⨯=种选法﹒ 但是①当()()()(),2,1,4,2,6,3a b =---时﹐均表示同一条直线20x y -=﹒ ②当()()()(),3,6,2,4,1,2a b =---时﹐均表示同一条直线20x y -+=﹒ ③当()(),2,2a b =-﹐()2,2-时﹐均表示同一条直线0x y -=﹒ 因此需扣除重复计算的2215++=条直线﹒ 故共可表出99513+-=条相异的直线﹒ 30.(1)從A 走到P 後 ﹐方法有2種﹐ 完成A 到P 的各路線﹐方法有3!種﹐ 完成P 到B 的各路線﹐方法有3!種﹐∴共有()223!3!23!⨯⨯=⨯72=種﹒(2)A 到P 後 ﹐方法2種﹐P 到Q 後 ﹐方法2種﹐∴共有()32223!3!3!23!⨯⨯⨯⨯=⨯864=種﹒ABA Q P B31. (1)B ﹑D 同色﹐A BD C E →→→ 5433180⨯⨯⨯=﹐ B ﹑D 异色﹐A B D C E →→→→ 54322240⨯⨯⨯⨯=﹐ ∴共有180240420+=种涂法﹒(2)B ﹑D ﹑F 同色﹐A BDF C E G →→→→ 54333540⨯⨯⨯⨯=﹐ B ﹑D ﹑F 异色﹐A B D F C E G →→→→→→ 5432222960⨯⨯⨯⨯⨯⨯=﹐ B ﹑D 同色﹐F 异色﹐A BD F C E G →→→→→ 543322720⨯⨯⨯⨯⨯=﹐同理B ﹑F 同色﹐D 异色;D ﹑F 同色﹐B 异色涂法也各有720种﹐ ∴共有54096072033660++⨯=种﹒ 32.(1)12a = 24a = 38a = 414a =1n = 2n = 3n =4n =(2)12a =﹐212a a =+﹐3222a a =+⨯﹐4323a a =+⨯﹐∴12n n a a n +=+⨯﹒ (3)∵12n n a a n +=+⨯且12a =﹐ ∴2121a a =+⨯ 3222a a =+⨯()1222n n a a n --=+⨯- ()1)21n n a a n -+=+⨯-()()21121212222n n n a a n n n -⨯=+⨯⎡++⋅⋅⋅⋅⋅⋅+-⎤=+⨯=-+⎣⎦∴22n a n n =-+﹒ 33. (1)①A ﹑C 同色﹐541480,A B C D⨯⨯⨯=②A ﹑C 异色﹐5433180,A B C D ⨯⨯⨯=由①②可得﹐共有80180260+=种﹒(2)由(1)可知[]541433⨯⨯⨯+⨯﹐推得[]25414333380⨯⨯⨯+⨯=﹒ (3)[]354143343940⨯⨯⨯+⨯=﹒ 34.(1)休旅車及跑車相間排列的情形﹐可分為兩種情形﹐如圖所示:3輛休旅車排成一列共有3!6=種方法﹐ 同樣地﹐3輛跑車排成一列共有3!6=種方法﹐ 因此根據乘法原理﹐共有26672⋅⋅=種排法﹒ (2)因為休旅車及跑車要各自排在一起﹐如圖所示:所以可以將3輛休旅車看成「1」輛﹐3輛跑車看 成「1」輛﹐變成2輛的排列問題﹐有2!2=種方法﹒又3輛休旅車之間有3!6=種排列方法﹐3輛跑車之間有3!6=種排列方法﹒故共有2!3!3!26672⋅⋅=⋅⋅=種排法﹒35. 选出2本英文书3本中文书的方法有6523150C C ⋅=(种)﹐将此5本书作直线排列﹐有5!种排法﹐故所求排法为65235!18000C C ⋅⋅=(种)﹒36.(1)從9本中取出3本給甲﹐取法有93C 種;再從其餘的6本取出3本給乙﹐取法有63C 種;剩下的3本給丙﹐即33C 種﹒因此﹐全部分配方式共有9633331680C C C ⋅⋅=(種)﹒ (2)先假設袋子上依序標示有甲﹐乙﹐丙的記號﹐則有963333C C C ⋅⋅種分法﹐但事實上袋子是相同的﹐因 此每3!種只能算1種﹐如圖所示﹒故分配方式共有96333316802803!6C C C ⋅⋅==(種)﹒ (3)仿上述作法﹐先假設袋子依序有甲﹐乙﹐丙的記號﹐甲得5本﹐乙丙各得 2本的分法有942522C C C ⋅⋅種﹒因袋子是無記號的﹐所以如圖的2!種其實是同1種﹒故分配方式共有9425223782!C C C ⋅⋅=(種)﹒37.設集合A 表示參加象棋比賽的同學﹐ 集合B 表示參加圍棋比賽的同學﹐ 集合A B ⋃表示參加棋藝活動的同學﹐ 集合A B ⋂表示參加兩種棋藝活動的同學﹒ 由題意知()34n B =﹐()42n A B ⋃=﹐()15n A B ⋂=﹒ 利用()()()()n A B n A n B n A B ⋃=+-⋂﹐得()423415n A =+-﹐即()23n A =﹒故這個班級中共有23位同學參加象棋比賽﹒38. 因为()()()332211x x x x ++=++﹐所以利用二项式定理将乘积展开﹐得()()()()()3321232320111A x x C x C x x ++=++部分+()()()1233232311B C x x C x +++部分﹒由于上式中A 部分的各项次数均超过2次﹐因此全部展开式中2x 的系数﹐就是B 部分的展开式中的2x 系数﹒ 又B 部分的展开式为()()223243232133137631x x x x x x x x x x ++++++=++++﹐ 故全部展开式中2x 的系数为6﹒39. 因为()()()332222x x x x -+=-+﹐所以利用二项式定理将乘积展开得()()()()()()()()()()3321123232323232012322222A B x x C x x C x x C x x C x x -+=-+-+-+-部分部分上述()()322x x -+展开式中B 部分各项次数低于4次﹐因此要计算展开式中4x 的系数只要计算A 部分各项展开式即可﹐又A 部分展开式为()()()()320132320122C x x C x x -+- ()()654343233322x x x x x x x =-+-+-+⨯6543239136x x x x x =-+-+故4x 的系数为9﹒40. 将240作质因子分解﹐得411240235=⨯⨯﹒因为240的正因子必为235a b c ⨯⨯的形式﹐其中{}0,1,2,3,4a ∈﹐{}0,1b ∈﹐{}0,1c ∈﹐所以a 有5种选择﹐b 有2种选择﹐c 有2种选择﹒利用乘法原理﹐得240的正因子个数有52220⨯⨯=个﹒41. 依题意图示如下:其中实线表电车路线﹐虚线表公交车路线﹒ 因为电车与公交车路线各选一次﹐所以路线安排可分成以下二类:(1)先电车再公交车:利用乘法原理﹐得有122⨯=种路线﹒(2)先公交车再电车:利用乘法原理﹐得有326⨯=种路线﹒由加法原理得知﹐共有268+=种路线安排﹒42. 设A ﹐B ﹐C 分别表示答对A ﹐B ﹐C 题的人组成的集合﹒由题意知()15n A =﹐()19n B =﹐()20n C =﹐()10n A B ⋂=﹐()12n B C ⋂=﹐()8n C A ⋂=﹐()3n A B C ⋂⋂=﹒利用排容原理﹐得()()()()()()()n A B C n A n B n C n A B n B C n C A ⋃⋃=++-⋂-⋂-⋂()n A B C +⋂⋂151920101283=++---+27=﹒故三题中至少答对一题者有27人﹒43.設集合A ﹐B ﹐C 分別表示從1到600的自然數當中的4﹐5,6倍數所形成的集合﹐即()150n A =﹐()120n B =﹐()100n C =﹐()30n A B ⋂=﹐()20n B C ⋂=﹐()50n C A ⋂=﹐()10n A B C ⋂⋂=利用排容原理()()()()()()()n A B C n A n B n C n A B n B C n C A ⋃⋃=++-⋂-⋂-⋂()n A B C +⋂⋂﹐ 得()15012010030205010280n A B C ⋃⋃=++---+=﹒故1到600的自然數中﹐是4﹐5﹐6中某一個數的倍數﹐共有280個﹒44. (1)n a 代表「第n 个图需用到白色地砖的块数」﹐我们可以发现图形每次均增加1个黑色地砖与5个白色地砖﹐因此15n n a a -=+﹐2n ≥﹒(2)而上述这些图形中﹐白色地砖的个数可视为一个首项为8﹐公差为5的等差数列﹐故()81553n a n n =+-⨯=+﹒(3)拼第95图所需用到白色地砖数955953478a =⨯+=﹒45. (1)先将这8位转学生分成四堆﹐每堆2人﹐再将这四堆分发到甲﹐乙﹐丙﹐丁四班﹐故总共有86428642222222224!25204!C C C C C C C C ⋅⋅⋅⨯=⋅⋅⋅=种分法﹒ (2)先将这8位转学生分成四堆﹐两堆3人﹐两堆1人﹐再将3人的两堆分发到甲乙两班﹐1人的两堆分发到丙丁两班﹐故总共有85218521331133112!2!11202!2!C C C C C C C C ⋅⋅⋅⨯⨯=⋅⋅⋅=⋅种分法﹒ 46. 因为01232n n nn n n n C C C C C +++++=﹐ 所以1230221n nn nn n n n C C C C C ++++=-=-﹒即原式可改写为2000213000n <-<﹐即200123001n <<﹐得11n =﹒ 47. (1)3119911!559!2!H C ===组﹒ (2)338936628H H C -===组﹒48. 因为去程有3个交通工具可以选择﹐住宿则有2个方式可供选择﹐而回程亦有3个交通工具可以选择﹒因此由乘法原理得共有32318⨯⨯=种安排法﹒49. 10310!1098720 7!P==⨯⨯=种选法﹒50. 由题意知每个周末都有5种休闲活动可以选择﹒利用乘法原理﹐得4个周末共有5555625⨯⨯⨯=种休闲安排﹒。
排列组合练习题及答案
《排列组合》一、排列与组合1.从9人中选派2人参加某一活动,有多少种不同选法?2.从9人中选派2人参加文艺活动,1人下乡演出,1人在本地演出,有多少种不同选派方法?3. 现从男、女8名学生干部中选出2名男同学和1名女同学分别参加全校“资源”、“生态”和“环保”三个夏令营活动,已知共有90种不同的方案,那么男、女同学的人数是A.男同学2人,女同学6人 B.男同学3人,女同学5人C. 男同学5人,女同学3人D. 男同学6人,女同学2人4.一条铁路原有m个车站,为了适应客运需要新增加n个车站(n>1),则客运车票增加了58种(从甲站到乙站与乙站到甲站需要两种不同车票),那么原有的车站有A.12个B.13个C.14个D.15个5.用0,1,2,3,4,5这六个数字,(1)可以组成多少个数字不重复的三位数?(2)可以组成多少个数字允许重复的三位数?(3)可以组成多少个数字不允许重复的三位数的奇数?(4)可以组成多少个数字不重复的小于1000的自然数?(5)可以组成多少个大于3000,小于5421的数字不重复的四位数?二、注意附加条件1.6人排成一列(1)甲乙必须站两端,有多少种不同排法?(2)甲乙必须站两端,丙站中间,有多少种不同排法?2.由1、2、3、4、5、6六个数字可组成多少个无重复数字且是6的倍数的五位数?3.由数字1,2,3,4,5,6,7所组成的没有重复数字的四位数,按从小到大的顺序排列起来,第379个数是A.3761B.4175C.5132D.61574. 设有编号为1、2、3、4、5的五个茶杯和编号为1、2、3、4、5的五个杯盖,将五个杯盖盖在五个茶杯上,至少有两个杯盖和茶杯的编号相同的盖法有A.30种B.31种C.32种D.36种5.从编号为1,2,…,10,11的11个球中取5个,使这5个球中既有编号为偶数的球又有编号为奇数的球,且它们的编号之和为奇数,其取法总数是A.230种B.236种C.455种D.2640种6.从6双不同颜色的手套中任取4只,其中恰好有1双同色的取法有A.240种B.180种C.120种D.60种7. 用0,1,2,3,4,5这六个数组成没有重复数字的四位偶数,将这些四位数从小到大排列起来,第71个数是 。
经典排列组合问题100题配超详细解析
1.n N ∈且55n <,则乘积(55)(56)(69)n n n ---等于A .5569nn A --B .1555n A -C .1569n A -D .1469n A -【答案】C【解析】根据排列数的定义可知,(55)(56)(69)n n n ---中最大的数为69-n,最小的数为55-n ,那么可知下标的值为69-n,共有69-n-(55-n )+1=15个数,因此选择C2.某公司新招聘8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一部门,另外三名电脑编程人员也不能全分在同一部门,则不同的分配方案共有( ) A. 24种 B. 36种 C. 38种 D. 108种 【答案】B 【解析】因为平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一部门,另外三名电脑编程人员也不能全分在同一部门,那么特殊元素优先考虑,分步来完成可知所有的分配方案有36种,选B3.n ∈N *,则(20-n )(21-n)……(100-n)等于( )A .80100n A - B .nn A --20100 C .81100n A -D .8120n A -【答案】C【解析】因为根据排列数公式可知n ∈N *,则(20-n )(21-n)……(100-n)等于81100n A -,选C4.从0,4,6中选两个数字,从3.5.7中选两个数字,组成无重复数字的四位数.其中偶数的个数为 ( )A.56B. 96C. 36D.360 【答案】B【解析】因为首先确定末尾数为偶数,那么要分为两种情况来解,第一种,末尾是0,那么其余的有A 35=60,第二种情况是末尾是4,或者6,首位从4个人选一个,其余的再选2个排列即可 433⨯⨯,共有96种5.从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者不能从事翻译工作,则选派方案共有 ( ) A. 280种 B. 240种 C. 180种 D. 96种 【答案】B【解析】根据题意,由排列可得,从6名志愿者中选出4人分别从事四项不同工作,有46360A =种不同的情况,其中包含甲从事翻译工作有3560A =种,乙从事翻译工作的有3560A =种,若其中甲、乙两名支援者都不能从事翻译工作,则选派方案共有360-60-60=240种.6.如图,在∠AOB 的两边上分别有A 1、A 2、A 3、A 4和B 1、B 2、B 3、B 4、B 5共9个点,连结线段A i B j (1≤i ≤4,1≤j ≤5),如果其中两条线段不相交,则称之为一对“和睦线”,则图中共有( )对“和睦线”.A .60B .62C .72 D.124 【答案】A【解析】在∠AOB 的两边上分别取,(),i j A A i j <和,()p q B B p q <,可得四边形i j p qA AB B 中,恰有一对“和睦线”(i p AB 和)j q A B ,而在OA 上取两点有25C 种方法,在OB 上取两点有24C 种方法,共有10660⨯=对“和睦线”.7.在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为 ( )A .10B .11C .12D .15 【答案】B【解析】由题意知与信息0110至多有两个对应位置上的数字相同的信息包括三类:第一类:与信息0110有两个对应位置上的数字相同有C 42=6(个)第二类:与信息0110有一个对应位置上的数字相同的有C 41=4个,第三类:与信息0110没有一个对应位置上的数字相同的有C 40=1,由分类计数原理知与信息0110至多有两个对应位置数字相同的共有6+4+1=11个8.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中至少有1门不相同的选法共有 ( )A . 6种B . 12种C . 30种D . 36种 【答案】C【解析】分有一门不相同和二门不相同两种情况,所以共有2112422430C C C C +=9.从一个不透明的口袋中摸出红球的概率为1/5,已知袋中红球有3个,则袋中共有球的个数为( ).A .5个B .8个C .10个D .15个 【答案】D【解析】由于从一个不透明的口袋中摸出红球的概率为1/5,并且袋中红球有3个,设袋中共有球的个数为n,则31,5n =所以15n =. 10.从编号为1,2,3,4的四个不同小球中取三个不同的小球放入编号为1,2,3的三个不同盒子,每个盒子放一球,则1号球不放1号盒子且3号球不放3号盒子的放法总数为A. 10 B. 12 C. 14 D. 16【答案】C【解析】解:由题意知元素的限制条件比较多,要分类解决,当选出的三个球是1、2、3或1、3、4时,以前一组为例,1号球在2号盒子里,2号和3号只有一种方法,1号球在3号盒子里,2号和3号各有两种结果,选1、2、3时共有3种结果,选1、3、4时也有3种结果,当选到1、2、4或2、3、4时,各有C21A22=4种结果,由分类和分步计数原理得到共有3+3+4+4=14种结果,故选C.11..在实验室进行的一项物理实验中,要先后实施6个程序,其中程序A只能出现在第一或最后一步,程序B和C在实施时必须相邻,则实验顺序的编排方法共有()A.34种B.48种C.96种 D.144种【答案】C【解析】解:本题是一个分步计数问题,∵由题意知程序A只能出现在第一步或最后一步,∴从第一个位置和最后一个位置选一个位置把A排列,有A21=2种结果∵程序B和C实施时必须相邻,∴把B和C看做一个元素,同除A外的3个元素排列,注意B和C之间还有一个排列,共有A44A22=48种结果.根据分步计数原理知共有2×48=96种结果,故选C.12.由两个1、两个2、一个3、一个4这六个数字组成6位数,要求相同数字不能相邻,则这样的6位数有A. 12个B. 48个C. 84个D. 96个【答案】C【解析】解:因为先排雷1,2,3,4然后将其与的元素插入进去,则根据相同数字不能相邻的原则得到满足题意的6位数有84个。
排列组合题目精选(附答案)
排列组合题目精选(附答案)1.A和B必须相邻且B在A的右边,剩下的C、D、E可以随意排列,因此排列方式为4.即24种。
选项D正确。
2.先计算所有可能的排列方式,即7.然后减去甲乙相邻的排列方式,即2×6.因此不同的排列方式为5×6.即3600种。
选项B正确。
3.第一个格子有4种选择,第二个格子有3种选择,第三个格子有2种选择,因此不同的填法有4×3×2=24种。
选项D 错误。
4.由于每封信可以投入5个信箱中的任意一个,因此总的投放方式为5的4次方,即625种。
5.对于每个路口,选择4名同学进行调查的方式有12选4种,因此总的分配方案为(12选4)的3次方,即154,440种。
6.第一排有6种选择,第二排有5种选择,第三排有4种选择,因此不同的排法有6×5×4=120种。
选项B正确。
7.首先从8个元素中选出2个排在前排,有8选2种选择方式。
然后从剩下的6个元素中选出1个排在后排,有6种选择方式。
最后将剩下的5个元素排在后排,有5!种排列方式。
因此不同的排法有8选2×6×5!=28×720=20,160种。
8.首先将甲、乙、丙三人排成一排,有3!种排列方式。
然后将其余4人插入到相邻的位置中,有4!种排列方式。
因此不同的排法有3!×4!=144种。
9.首先将10个名额排成一排,有10!种排列方式。
然后在9个间隔中插入6个分隔符,每个间隔至少插入一个分隔符,因此有8种插入方式。
因此不同的分配方案有10!÷(6×8)=21,000种。
10.首先将除了甲和乙的8个人排成一排,有8!种排列方式。
然后将甲和乙插入到相邻的位置中,有2种插入方式。
因此不同的派遣方案有8!×2=80,640种。
11.个位数字小于十位数字的六位数,可以从1、2、3、4、5中选出两个数字排列,有5选2种选择方式,即10种。
(完整版)排列组合练习题3套(含答案)
(完整版)排列组合练习题3套(含答案)排列练习⼀、选择题1、将3个不同的⼩球放⼊4个盒⼦中,则不同放法种数有()A、81B、64C、12D、142、n∈N且n<55,则乘积(55-n)(56-n)……(69-n)等于()A、 B、 C、 D、3、⽤1,2,3,4四个数字可以组成数字不重复的⾃然数的个数()A、64B、60C、24D、2564、3张不同的电影票全部分给10个⼈,每⼈⾄多⼀张,则有不同分法的种数是()A、2160B、120C、240D、7205、要排⼀张有5个独唱和3个合唱的节⽬表,如果合唱节⽬不能排在第⼀个,并且合唱节⽬不能相邻,则不同排法的种数是()A、 B、 C、 D、6、5个⼈排成⼀排,其中甲、⼄两⼈⾄少有⼀⼈在两端的排法种数有()A、 B、 C、 D、7、⽤数字1,2,3,4,5组成没有重复数字的五位数,其中⼩于50000的偶数有()A、24B、36C、46D、608、某班委会五⼈分⼯,分别担任正、副班长,学习委员,劳动委员,体育委员,其中甲不能担任正班长,⼄不能担任学习委员,则不同的分⼯⽅案的种数是()A、B、C、D、⼆、填空题1、(1)(4P84+2P85)÷(P86-P95)×0!=___________(2)若P2n3=10Pn3,则n=___________2、从a、b、c、d这四个不同元素的排列中,取出三个不同元素的排列为__________________________________________________________________3、4名男⽣,4名⼥⽣排成⼀排,⼥⽣不排两端,则有_________种不同排法4、有⼀⾓的⼈民币3张,5⾓的⼈民币1张,1元的⼈民币4张,⽤这些⼈民币可以组成_________种不同币值。
三、解答题1、⽤0,1,2,3,4,5这六个数字,组成没有重复数字的五位数,(1)在下列情况,各有多少个?①奇数②能被5整除③能被15整除④⽐35142⼩⑤⽐50000⼩且不是5的倍数2、7个⼈排成⼀排,在下列情况下,各有多少种不同排法?(1)甲排头(2)甲不排头,也不排尾(3)甲、⼄、丙三⼈必须在⼀起(4)甲、⼄之间有且只有两⼈(5)甲、⼄、丙三⼈两两不相邻(6)甲在⼄的左边(不⼀定相邻)(7)甲、⼄、丙三⼈按从⾼到矮,⾃左向右的顺序(8)甲不排头,⼄不排当中3、从2,3,4,7,9这五个数字任取3个,组成没有重复数字的三位数(1)这样的三位数⼀共有多少个?(2)所有这些三位数的个位上的数字之和是多少?(3)所有这些三位数的和是多少?排列与组合练习(1)⼀、填空题1、若,则n的值为()A、6B、7C、8D、92、某班有30名男⽣,20名⼥⽣,现要从中选出5⼈组成⼀个宣传⼩组,其中男、⼥学⽣均不少于2⼈的选法为()A、 B、 C、 D、3、空间有10个点,其中5点在同⼀平⾯上,其余没有4点共⾯,则10个点可以确定不同平⾯的个数是()A、206B、205C、111D、1104、6本不同的书分给甲、⼄、丙三⼈,每⼈两本,不同的分法种数是()A、 B、 C、 D、5、由5个1,2个2排成含7项的数列,则构成不同的数列的个数是()A、21B、25C、32D、426、设P1、P2…,P20是⽅程z20=1的20个复根在复平⾯上所对应的点,以这些点为顶点的直⾓三⾓形的个数为()A、360B、180C、90D、457、若,则k的取值范围是()A、[5,11]B、[4,11]C、[4,12]D、4,15]8、⼝袋⾥有4个不同的红球,6个不同的⽩球,每次取出4个球,取出⼀个线球记2分,取出⼀个⽩球记1分,则使总分不⼩于5分的取球⽅法种数是()A、 B、 C、 D、1、计算:(1)=_______(2)=_______2、把7个相同的⼩球放到10个不同的盒⼦中,每个盒⼦中放球不超1个,则有_______种不同放法。
排列组合的数学练习题及答案
排列组合的数学练习题及答案关于排列组合的数学练习题及答案数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。
下面是店铺精心整理的关于排列组合的数学练习题及答案,仅供参考,欢迎大家阅读。
1.有五对夫妇围成一圈,使每一对夫妇的夫妻二人动相邻的排法有()A、768种B、32种C、24种D、2的10次方中解:根据乘法原理,分两步:第一步是把5对夫妻看作5个整体,进行排列有5×4×3×2×1=120种不同的排法,但是因为是围成一个首尾相接的圈,就会产生5个5个重复,因此实际排法只有120÷5=24种。
第二步每一对夫妻之间又可以相互换位置,也就是说每一对夫妻均有2种排法,总共又2×2×2×2×2=32种,综合两步,就有24×32=768种。
2 若把英语单词hello的字母写错了,则可能出现的错误共有 ( )A 119种B 36种C 59种D 48种解:5全排列5*4*3*2*1=120,有两个l所以120/2=60,原来有一种正确的所以60-1=593.慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间?答案为53秒算式是(140+125)÷(22-17)=53秒可以这样理解:“快车从追上慢车的车尾到完全超过慢车”就是快车车尾上的点追及慢车车头的点,因此追及的路程应该为两个车长的和。
4.在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒4.4米,两人起跑后的第一次相遇在起跑线前几米?答案为100米300÷(5-4.4)=500秒,表示追及时间5×500=2500米,表示甲追到乙时所行的路程2500÷300=8圈……100米,表示甲追及总路程为8圈还多100米,就是在原来起跑线的前方100米处相遇。
(完整版)排列组合概率练习题(含答案)
排列与组合练习题1.如图,三行三列的方阵中有9个数(1,2,3;1,2,3)ij a i j ==,从中任取三个数,则至少有两个数位于同行或同列的概率是(A )37 (B )47 (C )114 (D )1314 答案:D解析:若取出3个数,任意两个不同行也不同列,则只有6种取法;而从9个数中任意取3个的方法是39C .所以39613114C -=. 2.同室四人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,则四张贺年卡不同的分配方式有(A )6种 (B )9种 (C )11种 (D )13种答案:B解析:设四人分别是甲、乙、丙、丁,他们写的卡片分别为,,,a b c d ,则甲有三种拿卡片的方法,甲可以拿,,b c d 之一.当甲拿b 卡片时,其余三人有三种拿法,分别为,,badc bcda bdac .类似地,当甲拿c 或d 时,其余三人各有三种拿法.故共有9种拿法.3.在平面直角坐标系中,x 轴正半轴上有5个点,y 轴正半轴上有3个点,将x 轴正半轴上这5个点和y 轴正半轴上这3个点连成15条线段,这15条线段在第一象限内的交点最多有(A )30个 (B )20个 (C )35个 (D )15个答案:A解析:设想x 轴上任意两个点和y 轴上任意两个点可以构成一个四边形,则这个四边形唯一的对角线交点,即在第一象限,适合题意.而这样的四边形共有302325=⋅C C 个,于是最多有30个交点.推广1:.在平面直角坐标系中,x 轴正半轴上有m 个点,y 轴正半轴上有n 个点,将x 轴正半轴上这m 个点和y 轴正半轴上这n 个点连成15条线段,这15条线段在第一象限内的交点最多有22m n C C ⋅个变式题:一个圆周上共有12个点,由这些点所连的弦最多有__个交点.答案:412C4.有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机的并排摆放到书架的同一层上,则同一科目的书都不相邻的概率是(A )15 (B )25 (C )35 (D ) 45答案:B111213212223313233a a a a a a a a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭解析:由古典概型的概率公式得522155222233232222=+-=A A A A A A A P . 5.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为(A )13 (B )12 (C )23 (D )34答案:A解析:每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为p=3193=. 6.从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则(|)P B A =A .18B .14C .25D .12答案:B 解析:2()5P A =,1()10P AB =,()1(|)()4P AB P B A P A ==. 7.甲、乙两队进行排球决赛.现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为A .12 B .35 C .23 D .34 答案:D解析:由题得甲队获得冠军有两种情况,第一局胜或第一局输第二局胜,所以甲队获得冠军的概率11132224P =+⋅=.所以选D . 8.如图,用K 、A 1、A 2三类不同的元件连成一个系统.当K 正常工作且A 1、A 2至少有一个正常工作时,系统正常工作.已知K 、A 1、A 2正常工作的概率依次为0.9、0.8、0.8,则系统正常工作的概率为KA 2A 1A .0.960B .0.864C .0.720D .0.576答案:B解析:系统正常工作概率为120.90.8(10.8)0.90.80.80.864C ⨯⨯⨯-+⨯⨯=,所以选B.9.甲乙两人一起去“2011西安世园会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是(A )136 (B )19 (C )536 (D )16 答案:D解析:各自独立地从1到6号景点中任选4个进行游览有1111111166554433C C C C C C C C 种,且等可能,最后一小时他们同在一个景点有11111116554433C C C C C C C 种,则最后一小时他们同在一个景点的概率是11111116554433111111116655443316C C C C C C C p C C C C C C C C ==,故选D . 10.在集合{}1,2,3,4,5中任取一个偶数a 和一个奇数b 构成以原点为起点的向量(,)a b α=.从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形.记所有作成的平行四边形的个数为n ,其中面积不超过...4的平行四边形的个数为m ,则m n =( ) (A )415 (B )13 (C )25 (D )23答案:B解析:基本事件:26(2,1),(2,3),(2,5),(4,1),(4,5),(4,3)23515n C ==⨯=从选取个,.其中面积为2的平行四边形的个数(2,3)(4,5);(2,1)(4,3);(2,1)(4,1);其中面积为4的平行四边形的为(2,3)(2,5);(2,1)(2,3); m=3+2=5故51153m n ==. 11.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于A .14B .13C .12D .23答案:C解析:显然ABE ∆面积为矩形ABCD 面积的一半,故选C .12.在204(3)x y +展开式中,系数为有理数的项共有 项.答案:6解析:二项式展开式的通项公式为20204412020(3)(3)(020)r r r r r r r r T C x y C x y r --+==≤≤要使系数为有理数,则r 必为4的倍数,所以r 可为0.、4、8、12、16、20共6种,故系数为有理数的项共有6项.13.集合{1,2,3,4,5,6,7,8,9,10}M =,从集合M 中取出4个元素构成集合P ,并且集合P 中任意两个元素,x y 满足||2x y -≥,则这样的集合P 的个数为____.答案:35解析:其实就是从1到10这十个自然数中取出不相邻的四个数,共有多少方法的问题.因此这样的集合P 共有4735C =个.14.在一个正六边形的六个区域栽种观赏植物,如右图所示,要求同一块中种同一种植物,相邻的两块种不同的植物,现有4种不同的植物可供选择,则有___种栽种方案.答案:732解析:共分三类:(1)A 、C 、E 三块种同一种植物;(2)A 、B 、C 三块种两种植物(三块中有两块种相同植物,而与另一块所种植物不同);(3)A 、B 、C 三块种三种不同的植物.将三类相加得732.15.根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立.(I)求该地1位车主至少购买甲、乙两种保险中的1种的概率;(Ⅱ)X 表示该地的100位车主中,甲、乙两种保险都不购买的车主数,求X 的期望()E X .解:(I )设A 表示事件“购买甲种保险”,B 表示购买乙种保险. ()A B A A B =并且A 与A B 是互斥事件,所以()()()0.50.30.8P A B P A P A B =+=+=答:该地1位车主至少购买甲、乙两种保险中的1种的概率为0.8. (II )由(I )得任意1位车主两种保险都不购买的概率为()10.80.2p p A B ==-=. 又(3,0.2)XB ,所以()20E X =.所以X 的期望()20E X =.。
(完整版)排列组合练习题(含答案)
排列组合练习题1、三个同学必须从四种不同的选修课中选一种自己想学的课程,共有种不同的选法。
2、8名同学争夺3项冠军,获得冠军的可能性有种。
3、乒乓球队的10名队员中有3名主力队员,派5名参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有_________种。
4、从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有。
5、有8本不同的书,从中取出6本,奖给5位数学优胜者,规定第一名(仅一人)得2本,其它每人一本,则共有种不同的奖法。
6、有3位老师、4名学生排成一排照相,其中老师必须在一起的排法共有种。
7、有8本不同的书,其中数学书3本,外文书2本,其他书3本,若将这些书排成一列放在书架上,则数学书恰好排在一起,外文书也恰好排在一起的排法共有____________种。
8、五种不同的收音机和四种不同的电视机陈列一排,任两台电视机不靠在一起,有种陈列方法。
9、有6名同学站成一排:甲、乙、丙不相邻有种不同的排法。
10、五个人排成一排,要求甲、乙不相邻,且甲、丙也不相邻的不同排法的种数是11、6名男生6名女生排成一排,要求男女相间的排法有种。
12、4名男生和3名女生排成一排,要求男女相间的排法有种。
13、有4男4女排成一排,要求女的互不相邻有种排法;要求男女相间有种排法。
14、一排有8个座位,3人去坐,要求每人左右两边都有空位的坐法有种。
15、三个人坐在一排7个座位上,若3个人中间没有空位,有种坐法。
若4个空位中恰有3个空位连在一起,有种坐法。
16、由1、2、3、4、5组成一个无重复数字的5位数,其中2、3必须排在一起,4、5不能排在一起,则不同的5位数共有个。
17、有4名学生和3位老师排成一排照相,规定两端不排老师且老师顺序固定不变,那么不同的排法有种。
18、从6名短跑运动员中选4人参加4 100米的接力赛,如果其中甲不能跑第一棒,乙不能跑第四棒,共有种参赛方案。
排列组合练习题及答案
排列组合一、排列与组合1.从9人中选派2人参加某一活动,有多少种不同选法2.从9人中选派2人参加文艺活动,1人下乡演出,1人在本地演出,有多少种不同选派方法3. 现从男、女8名学生干部中选出2名男同学和1名女同学分别参加全校“资源”、“生态”和“环保”三个夏令营活动,已知共有90种不同的方案,那么男、女同学的人数是A.男同学2人,女同学6人B.男同学3人,女同学5人C. 男同学5人,女同学3人D. 男同学6人,女同学2人4.一条铁路原有m个车站,为了适应客运需要新增加n个车站n>1,则客运车票增加了58种从甲站到乙站与乙站到甲站需要两种不同车票,那么原有的车站有A.12个B.13个C.14个D.15个5.用0,1,2,3,4,5这六个数字,1可以组成多少个数字不重复的三位数2可以组成多少个数字允许重复的三位数3可以组成多少个数字不允许重复的三位数的奇数4可以组成多少个数字不重复的小于1000的自然数5可以组成多少个大于3000,小于5421的数字不重复的四位数二、注意附加条件1.6人排成一列 1甲乙必须站两端,有多少种不同排法2甲乙必须站两端,丙站中间,有多少种不同排法2.由1、2、3、4、5、6六个数字可组成多少个无重复数字且是6的倍数的五位数3.由数字1,2,3,4,5,6,7所组成的没有重复数字的四位数,按从小到大的顺序排列起来,第379个数是A.3761B.4175C.5132D.61574. 设有编号为1、2、3、4、5的五个茶杯和编号为1、2、3、4、5的五个杯盖,将五个杯盖盖在五个茶杯上,至少有两个杯盖和茶杯的编号相同的盖法有A.30种B.31种C.32种D.36种5.从编号为1,2,…,10,11的11个球中取5个,使这5个球中既有编号为偶数的球又有编号为奇数的球,且它们的编号之和为奇数,其取法总数是A.230种B.236种C.455种D.2640种6.从6双不同颜色的手套中任取4只,其中恰好有1双同色的取法有A.240种B.180种C.120种D.60种7. 用0,1,2,3,4,5这六个数组成没有重复数字的四位偶数,将这些四位数从小到大排列起来,第71个数是 ;三、间接与直接1.有4名女同学,6名男同学,现选3名同学参加某一比赛,至少有1名女同学,由多少种不同选法2. 6名男生4名女生排成一行,女生不全相邻的排法有多少种3.已知集合A 和B 各12个元素,A B 含有4个元素,试求同时满足下列两个条件的集合C 的个数:1()C A B ⊂且C 中含有三个元素;2C A ≠∅,∅表示空集;4. 从5门不同的文科学科和4门不同的理科学科中任选4门,组成一个综合高考科目组,若要求这组科目中文理科都有,则不同的选法的种数A.60种B.80种C.120种D.140种5.四面体的顶点和各棱中点共有10个点,在其中取4个不共面的点不同取法有多少种6. 以正方体的8个顶点为顶点的四棱锥有多少个7. 对正方体的8个顶点两两连线,其中能成异面直线的有多少对四、分类与分步1.求下列集合的元素个数.1{(,)|,,6}M x y x y N x y =∈+≤;2{(,)|,,14,15}H x y x y N x y =∈≤≤≤≤.2.一个文艺团队有9名成员,有7人会唱歌,5人会跳舞,现派2人参加演出,其中1名会唱歌,1名会跳舞,有多少种不同选派方法3.已知直线12//l l ,在1l 上取3个点,在2l 上取4个点,每两个点连成直线,那么这些直线在1l 和2l 之间的交点不包括1l 、2l 上的点最多有A. 18个B.20个C.24个D.36个4. 9名翻译人员中,6人懂英语,4人懂日语,从中选拔5人参加外事活动,要求其中3人担任英语翻译,2人担任日语翻译,选拔的方法有 种用数字作答;5.某博物馆要在20天内接待8所学校的学生参观,每天只安排一所学校,其中一所人数较多的学校要连续参观3天,其余学校只参观1天,则在这20天内不同的安排方法为A.372017C A 种 B.820A 种 C.171817C A 种 D.1818A 种6. 从10种不同的作物种子选出6种放入6个不同的瓶子展出,如果甲乙两种种子不许放第一号瓶内,那么不同的放法共有A.24108C A 种B.1599C A 种 C.1589C A 种 D.1598C A 种7. 在画廊要展出1幅水彩画、4幅油画、5幅国画,要求排成一排,并且同一种的画摆放在一起,还要求水彩画不能摆两端,那么不同的陈列方式有A.1545A A 种 B.245345A A A 种 C.145445A A A 种 D.245245A A A 种8. 把一个圆周24等分,过其中任意3个分点,可以连成圆的内接三角形,其中直角三角形的个数是A.122B.132C.2649. 有三张纸片,正、反面分别写着数字1、2、3和4、5、6 ,将这三张纸片上的数字排成三位数,共能组不同三位数的个数是A. 24B.36C.48D.6410.在1~20共20个整数中取两个数相加,使其和为偶数的不同取法共有多少种11. 如下图,共有多少个不同的三角形解:所有不同的三角形可分为三类:第一类:其中有两条边是原五边形的边,这样的三角形共有5个第二类:其中有且只有一条边是原五边形的边,这样的三角形共有5×4=20个第三类:没有一条边是原五边形的边,即由五条对角线围成的三角形,共有5+5=10个由分类计数原理得,不同的三角形共有5+20+10=35个.12.从5部不同的影片中选出4部,在3个影院放映,每个影院至少放映一部,每部影片只放映一场,共有 种不同的放映方法用数字作答;五、元素与位置——位置分析1.7人争夺5项冠军,结果有多少种情况2. 75600有多少个正约数 有多少个奇约数解:75600的约数就是能整除75600的整数,所以本题就是分别求能整除75600的整数和奇约数的个数.由于 75600=24×33×52×71 75600的每个约数都可以写成l k j l 7532⋅⋅⋅的形式,其中40≤≤i ,30≤≤j ,20≤≤k ,10≤≤l于是,要确定75600的一个约数,可分四步完成,即l k j i ,,,分别在各自的范围内任取一个值,这样i 有5种取法,j 有4种取法,k 有3种取法,l 有2种取法,根据分步计数原理得约数的个数为5×4×3×2=120个.2奇约数中步不含有2的因数,因此75600的每个奇约数都可以写成l k j 753⋅⋅的形式,同上奇约数的个数为4×3×2=24个.3. 2名医生和4名护士被分配到两所学校为学生体检,每校分配1名医生和2名护士,不同分配方法有多少种4.有四位同学参加三项不同的比赛,1每位同学必须参加一项竞赛,有多少种不同的结果2每项竞赛只许一位学生参加,有多少种不同的结果解:1每位学生有三种选择,四位学生共有参赛方法:333381⨯⨯⨯=种;2每项竞赛被选择的方法有四种,三项竞赛共有参赛方法:44464⨯⨯=种.六、染色问题1.如图一,要给①,②,③,④四块区域分别涂上五种颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同颜色,则不同涂色方法种数为 A. 180 B. 160 C. 96 D. 60若变为图二,图三呢 240种,5×4×4×4=320种2. 某班宣传小组一期国庆专刊,现有红、黄、白、绿、蓝五种颜色的粉笔供选用,要求在黑板中A 、B 、C 、D 如图每一 部分只写一种颜色,相邻两块颜色不同,则不同颜色粉笔书写的方法共有 种用具体数字作答;七、消序 1. 有4名男生,3名女生;现将他们排成一行,要求从左到右女生从矮到高排列,有多少种排法2. 书架上有6本书,现再放入3本书,要求不改变原来6本书前后的相对顺序,有多少种不同排法八、分组分配1.某校高中一年级有6个班,分派3名教师任教,每名教师任教二个班,不同的安排方法有多少种2. 高三级8个班,分派4名数学老师任教,每位教师任教2个班,则不同安排方法有多少种3. 6本不同的书分给甲、乙、丙三人,每人一本、二本、三本的不同分法有多少种4.8项工程,甲承包三项,乙承包一项,丙、丁各承包二项,不同的承包方案有 种5..六人住A 、B 、C 三间房,每房最多住三人,图一 图二 图三1每间住两人,有种不同的住法,2一间住三人,一间住二人,一间住一人,有种不同的住宿方案;6. 8人住ABC三个房间,每间最多住3人,有多少种不同住宿方案7.有4个不同小球放入四个不同盒子,其中有且只有一个盒子留空,有多少种不同放法7. 把标有a,b,c,d,…的8件不同纪念品平均赠给甲、乙两位同学,其中a、b不赠给同一个人,则不同的赠送方法有种用数字作答;九、捆绑1. A、B、C、D、E五个人并排站成一列,若A、B必相邻,则有多少种不同排法2. 有8本不同的书, 其中科技书3本,文艺书2本,其它书3本,将这些书竖排在书架上,则科技书连在一起,文艺书也连在一起的不同排法种数与这8本书的不同排法之比为A.1:14B.1:28C.1:140D.1:336十、插空1.要排一个有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目都不相邻,有多少种不同排法2、4名男生和4名女生站成一排,若要求男女相间,则不同的排法数有A.2880B.1152C.48D.1443. 要排一个有5个歌唱节目和3个舞蹈节目的演出节目单,如果舞蹈节目不相邻,则有多少种不同排法4. 5人排成一排,要求甲、乙之间至少有1人,共有多少种不同排法5..把5本不同的书排列在书架的同一层上,其中某3本书要排在中间位置,有多少种不同排法6.1到7七个自然数组成一个没有重复数字的七位数,其中偶数不相邻的个数有个.7.排成一排的8个空位上,坐3人,使每人两边都有空位,有多少种不同坐法8.8张椅子放成一排,4人就坐,恰有连续三个空位的坐法有多少种9. 排成一排的9个空位上,坐3人,使三处有连续二个空位,有多少种不同坐法10. 排成一排的9个空位上,坐3人,使三处空位中有一处一个空位、有一处连续二个空位、有一处连续三个空位,有多少种不同坐法11. 某城市修建的一条道路上有12只路灯,为了节省用电而又不影响正常的照明,可以熄灭其中三只灯,但不能熄灭两端的灯,也不能熄灭相邻的两只灯,那么熄灯的方法共有种A.38C B.38A C.39C D.39A12. 在一次文艺演出中,需给舞台上方安装一排彩灯共15只,以不同的点灯方式增加舞台效果,要求设计者按照每次点亮时,必需有6只灯是关的,且相邻的灯不能同时被关掉,两端的灯必需点亮的要求进行设计,那么不同的点亮方式是A.28种B.84种C.180种D.360种13. 一排长椅上共有10个座位,现有4人就座,恰有五个连续空位的坐法种数为 ;用数字作答十一、隔板法1. 不定方程12347x x x x+++=的正整数解的组数是 ,非负整数解的组数是 ;2.某运输公司有7个车队,每个车队的车多于4辆,现从这7个车队中抽出10辆车,且每个车队至少抽一辆组成运输队,则不同的抽法有A.84种B.120种C.63种D.301种3. 要从7所学校选出10人参加素质教育研讨班,每所学校至少参加1人,则这10个名额共有种分配方法;4.有编号为1、2、3的3个盒子和10个相同的小球,现把10个小球全部装入3个盒子中,使得每个盒子所装球数不小于盒子的编号数,这种装法共有A.9种B.12种C.15种D.18种5.将7只相同的小球全部放入4个不同盒子,每盒至少1球的方法有多少种6.某中学从高中7个班中选出12名学生组成校代表队,参加市中学数学应用题竞赛活动,使代表中每班至少有1人参加的选法有多少种十二、对应的思想1.在100名选手之间进行单循环淘汰赛即一场比赛失败要退出比赛,最后产生一名冠军,问要举行几场十三、找规律1.在1~20共20个整数中取两个数相加,使其和大于20的不同取法共有多少种解:分类标准一,固定小加数.小加数为1时,大加数只有20这1种取法;小加数为2时,大加数有19或20两种取法;小加数为3时,大加数为18,19或20共3种取法…小加数为10时,大加数为11,12,…,20共10种取法;小加数为11时,大加数有9种取法…小加数取19时,大加数有1种取法.由分类计数原理,得不同取法共有1+2+…+9+10+9+…+2+1=100种.分类标准二:固定和的值.有和为21,22,…,39这几类,依次有取法10,9,9,8,8, …,2,2,1,1种.由分类计数原理得不同取法共有10+9+9+…+2+2+1+1=100种.2.从1到100的自然数中,每次取出不同的两个数,使它们的和大于一百,则不同的取法有A.50种B.100种C.1275种D.2500种十四、实验——写出所有的排列或组合1.将数字1,2,3,4填入标号1,2,3,4的四个方格中,每个格填一个,则每一个方格的标号与所填的数字均不同的填法有种.A.6B.9C.11D.23⨯⨯⨯=种.解:列表排出所有的分配方案,共有3+3+3=9种,或33119未归类几道题1.从数字0,1,3,5,7中取出不同的三位数作系数,可以组成多少个不同的一元二次方程ax+bx+c=0 其中有实根的方程有多少个变式:若直线Ax+By+C=0的系数A、B可以从0,1,2,3,6,7这六个数字中取不同的数值,则这些方程所表示的直线条数是 AA.18B.20C.12D.222.在100件产品中,有98件合格品,2件不合格品.从这100件产品中任意抽出3件1一共有多少种不同的抽法2抽出的3件中恰好有一件是不合格品的抽法有多少种3抽出的3件中至少有一件是不合格品的抽法有多少种3.10双互不相同的鞋子混装在一只口袋中,从中任意抽取4只,试求各有多少种情况出现如下结果14只鞋子没有成双;2 4只鞋子恰好成双;3 4只鞋子有2只成双,另2只不成双4.f是集合M={a,b,c,d}到N{0,1,2}的映射,且fa+fb+fc+fd=4,则不同的映射有多少个解:根据a,b,c,d 对应的象为2的个数分类,可分为三类:第一类,没有一个元素的象为2,其和又为4,则集合M 所有元素的象都为1,这样的映射只有1个第二类,有一个元素的象为2,其和又为4,则其余3个元素的象为0,1,1,这样的映射有C41C3 1C22个第三类,有两个元素的象为2,其和又为4,则其余2个元素的象必为0,这样的映射有C42C22个 根据加法原理共有 1+ C41C3 1C22 +C42 C22=19个5.四个不同的小球放入编号为1,2,3,4的四个盒子中,则恰有一个空盒的方法共有多少种6.由12个人组成的课外文娱小组,其中5个人只会跳舞,5个人只会唱歌,2个人既会跳舞又会唱歌,若从中选出4个会跳舞和4个会唱歌的人去排演节目,共有多少种不同选法排列、组合练习题参考答案:1.2936C =2.2972A =3.解析:设男生有n 人,则女生有8-n 人,由题意得()213831(8)6902n n n n C C A n --⋅⋅=⨯-⨯= 即()1(8)30n n n --= 用选支验证选B4.分类:①恰有两个杯盖和茶杯的编号相同的盖法有25220C ⨯=种; ②恰有三个杯盖和茶杯的编号相同的盖法有3510C =种;③无恰有四个杯盖和茶杯的编号相同的盖法,只有五个杯盖和茶杯的编号完全相同的盖法1种; 故选B31种;5 .分类:①1奇4偶:146530C C = ②3奇2偶:3265200C C = 选A6.分步:122652240C C ⋅⋅=选A7.间接法:33106C C -或分类:1221346464C C +C C +C 8. 间接法:10471047A A A -9. 间接法:33208C C -10.对应:一交点对应1l 、2l 上各两点:223418C C =个选A11. 分类:①英语翻译从单会英语中选派:325460C C = ②英语翻译选派中一人既会英语又会日语:225330C C = 填90 12. 分步:245245A A A 选D 13.元素与位置:以冠军为位置,选人:5777777⨯⨯⨯⨯=14.432756002357=⨯⨯⨯①5432120⨯⨯⨯=;②43224⨯⨯= 15. 分步:5433180⨯⨯⨯= 填18016.消序:9966789A A =⨯⨯=504 或分步插空:789⨯⨯=504 或39A17.先分组后分配:2223642333C C C A A ⋅ 或位置分析:222642C C C18. 先分组后分配:32136313C C C A 懂英语1 懂日语56 A 4B8 819. 位置分析:31228542 C C C C20.1仿17题;2先分组后分配:32136313 C C C A21. 先分组后分配:3323 852322C C CAA⋅或分类,先确定住两人的房间——位置分析:12333863 C C C C重复题目: 先分组后分配:2343C A或分类——位置分析:3211421C C C22.捆绑:53253288128A A AA=选B23. 插空:4345A A 24. 插空:34A 25. 插空:4245A A 26. 插空:3334A C27. 插空:3334A A 28.A38C29. 隔板法:639998784321C C⨯⨯===⨯⨯选A30.1先在编号为2、3的2个盒子分别放入1个小球、2个小球;2对余下7个小球用隔板法2615C=;选C31.对应的思想:100名选手之间进行单循环淘汰赛,最后产生一名冠军,要环淘99名选手,每淘汰1名选手,对应一场比赛;故要举行99场比赛;32. 解法一:找规律:固定小加数.小加数为1时,大加数只有20这1种取法;小加数为2时,大加数有19或20两种取法;小加数为3时,大加数为18,19或20共3种取法…小加数为10时,大加数为11,12,…,20共10种取法;小加数为11时,大加数有9种取法…小加数取19时,大加数有1种取法.由分类计数原理,得不同取法共有1+2+…+9+10+9+…+2+1=100种.法二:固定和的值.有和为21,22,…,39这几类,依次有取法10,9,9,8,8, …,2,2,1,1种.由分类计数原理得不同取法共有10+9+9+…+2+2+1+1=100种.以上两种方法是两种不同的分类;33. 解:列表排出所有的分配方案,共有3+3+3=9种,或33119⨯⨯⨯=种.34.144102C⋅ 2210C 31221092C C⋅⋅35. 解:根据a,b,c,d对应的象为2的个数分类,可分为三类:第一类,没有一个元素的象为2,其和又为4,则集合M所有元素的象都为1,这样的映射只有1个第二类,有一个元素的象为2,其和又为4,则其余3个元素的象为0,1,1,这样的映射有112432C C C=12个第三类,有两个元素的象为2,其和又为4,则其余2个元素的象必为0,这样的映射有2242C C=6个根据加法原理共有 1+112432C C C+2242C C =1+12+6=19个。
(完整版)排列组合经典练习(带答案)
排列与组合习题1.6个人分乘两辆不同的汽车,每辆车最多坐4人,则不同的乘车方法数为() A.40B.50C.60D.70[解析]先分组再排列,一组2人一组4人有C26=15种不同的分法;两组各3人共有C36A22=10种不同的分法,所以乘车方法数为25×2=50,故选B.2.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有()A.36种B.48种C.72种D.96种[解析]恰有两个空座位相邻,相当于两个空位与第三个空位不相邻,先排三个人,然后插空,从而共A33A24=72种排法,故选C.3.只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数有()A.6个B.9个C.18个D.36个[解析]注意题中条件的要求,一是三个数字必须全部使用,二是相同的数字不能相邻,选四个数字共有C13=3(种)选法,即1231,1232,1233,而每种选择有A22×C23=6(种)排法,所以共有3×6=18(种)情况,即这样的四位数有18个.4.男女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有() A.2人或3人B.3人或4人C.3人D.4人[解析]设男生有n人,则女生有(8-n)人,由题意可得C2n C18-n=30,解得n=5或n=6,代入验证,可知女生为2人或3人.5.某幢楼从二楼到三楼的楼梯共10级,上楼可以一步上一级,也可以一步上两级,若规定从二楼到三楼用8步走完,则方法有()A.45种B.36种C.28种D.25种[解析]因为10÷8的余数为2,故可以肯定一步一个台阶的有6步,一步两个台阶的有2步,那么共有C28=28种走法.6.某公司招聘来8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一个部门,另外三名电脑编程人员也不能全分在同一个部门,则不同的分配方案共有()A.24种B.36种C.38种D.108种[解析]本题考查排列组合的综合应用,据题意可先将两名翻译人员分到两个部门,共有2种方法,第二步将3名电脑编程人员分成两组,一组1人另一组2人,共有C13种分法,然后再分到两部门去共有C13A22种方法,第三步只需将其他3人分成两组,一组1人另一组2人即可,由于是每个部门各4人,故分组后两人所去的部门就已确定,故第三步共有C13种方法,由分步乘法计数原理共有2C13A22C13=36(种).7.已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为()A.33 B.34 C.35 D.36[解析]①所得空间直角坐标系中的点的坐标中不含1的有C12·A33=12个;②所得空间直角坐标系中的点的坐标中含有1个1的有C12·A33+A33=18个;③所得空间直角坐标系中的点的坐标中含有2个1的有C13=3个.故共有符合条件的点的个数为12+18+3=33个,故选A.8.由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是() A.72 B.96 C.108 D.144[解析]分两类:若1与3相邻,有A22·C13A22A23=72(个),若1与3不相邻有A33·A33=36(个)故共有72+36=108个.9.如果在一周内(周一至周日)安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余学校均只参观一天,那么不同的安排方法有()A.50种B.60种C.120种D.210种[解析]先安排甲学校的参观时间,一周内两天连排的方法一共有6种:(1,2)、(2,3)、(3,4)、(4,5)、(5,6)、(6,7),甲任选一种为C16,然后在剩下的5天中任选2天有序地安排其余两所学校参观,安排方法有A25种,按照分步乘法计数原理可知共有不同的安排方法C16·A25=120种,故选C.10.安排7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法共有________种.(用数字作答)[解析]先安排甲、乙两人在后5天值班,有A25=20(种)排法,其余5人再进行排列,有A55=120(种)排法,所以共有20×120=2400(种)安排方法.11.今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有________种不同的排法.(用数字作答)[解析]由题意可知,因同色球不加以区分,实际上是一个组合问题,共有C49·C25·C33=1260(种)排法.12.将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有________种(用数字作答).[解析]先将6名志愿者分为4组,共有C26C24A22种分法,再将4组人员分到4个不同场馆去,共有A 44种分法,故所有分配方案有:C 26·C 24A 22·A 44=1 080种. 13.要在如图所示的花圃中的5个区域中种入4种颜色不同的花,要求相邻区域不同色,有________种不同的种法(用数字作答).[解析] 5有4种种法,1有3种种法,4有2种种法.若1、3同色,2有2种种法,若1、3不同色,2有1种种法,∴有4×3×2×(1×2+1×1)=72种.14. 将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有(A )12种 (B )18种 (C )36种 (D )54种【解析】标号1,2的卡片放入同一封信有种方法;其他四封信放入两个信封,每个信封两个有种方法,共有种,故选B.15. 某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有A. 504种B. 960种C. 1008种D. 1108种 解析:分两类:甲乙排1、2号或6、7号 共有4414222A A A ⨯种方法甲乙排中间,丙排7号或不排7号,共有)(43313134422A A A A A +种方法故共有1008种不同的排法16. 由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是 (A )72 (B )96 (C ) 108 (D )144 解析:先选一个偶数字排个位,有3种选法①若5在十位或十万位,则1、3有三个位置可排,32232A A =24个②若5排在百位、千位或万位,则1、3只有两个位置可排,共32222A A =12个算上个位偶数字的排法,共计3(24+12)=108个 答案:C17. 在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为 A.10 B.11 C.12 D.1518. 现安排甲、乙、丙、丁、戌5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加。
排列组合练习题及答案.
《排列组合》一、排列与组合1. 从 9人中选派 2人参加某一活动,有多少种不同选法?2. 从 9人中选派 2人参加文艺活动, 1人下乡演出, 1人在本地演出, 有多少种不同选派方法?3. 现从男、女 8名学生干部中选出 2名男同学和 1名女同学分别参加全校“资源”、“生态” 和“环保”三个夏令营活动,已知共有 90种不同的方案,那么男、女同学的人数是A. 男同学 2人,女同学 6人B.男同学 3人,女同学 5人C. 男同学 5人,女同学 3人D. 男同学 6人,女同学 2人4. 一条铁路原有 m 个车站,为了适应客运需要新增加 n 个车站(n>1,则客运车票增加了 58种(从甲站到乙站与乙站到甲站需要两种不同车票,那么原有的车站有A.12个B.13个C.14个D.15个5.用 0, 1, 2, 3, 4, 5这六个数字,(1可以组成多少个数字不重复的三位数?(2可以组成多少个数字允许重复的三位数?(3可以组成多少个数字不允许重复的三位数的奇数?(4可以组成多少个数字不重复的小于 1000的自然数?(5可以组成多少个大于 3000,小于 5421的数字不重复的四位数?二、注意附加条件1.6人排成一列 (1甲乙必须站两端,有多少种不同排法?(2甲乙必须站两端,丙站中间,有多少种不同排法?2. 由 1、 2、 3、 4、 5、 6六个数字可组成多少个无重复数字且是 6的倍数的五位数?3. 由数字 1, 2, 3, 4, 5, 6, 7所组成的没有重复数字的四位数,按从小到大的顺序排列起来, 第 379个数是A.3761B.4175C.5132D.61574. 设有编号为 1、 2、 3、 4、 5的五个茶杯和编号为 1、 2、 3、 4、 5的五个杯盖,将五个杯盖盖在五个茶杯上,至少有两个杯盖和茶杯的编号相同的盖法有A.30种B.31种C.32种D.36种5. 从编号为1, 2,…, 10,11的 11个球中取 5个,使这 5个球中既有编号为偶数的球又有编号为奇数的球,且它们的编号之和为奇数,其取法总数是A.230种B.236种C.455种D.2640种6. 从 6双不同颜色的手套中任取 4只,其中恰好有 1双同色的取法有A.240种B.180种C.120种D.60种7. 用 0, 1, 2, 3, 4, 5这六个数组成没有重复数字的四位偶数,将这些四位数从小到大排列起来,第 71个数是。
排列组合试题及答案
排列组合试题及答案一、选择题1. 有5个人站成一排,其中甲乙两人必须相邻,有多少种不同的排法?A. 120B. 240C. 480D. 720答案:B2. 从6个不同的球中选3个球排成一排,有多少种不同的排法?A. 20B. 30C. 60D. 120答案:C二、填空题1. 将5个不同的球放入3个不同的盒子中,每个盒子至少有一个球,共有______种不同的放法。
答案:1502. 有4个不同的球和4个不同的盒子,每个盒子放一个球,共有______种不同的放法。
答案:4^4 = 256三、简答题1. 某班有50名学生,现在要选出5名学生代表参加学校活动,有多少种不同的选法?答案:从50名学生中选出5名学生代表,这是一个组合问题。
根据组合公式 C_n^m = n! / [m!(n-m)!],其中 n=50, m=5,计算得 C_50^5 = 50! / [5!(50-5)!]。
2. 某公司有10名员工,需要选出3名员工组成一个团队,有多少种不同的团队组合?答案:这是另一个组合问题,根据组合公式 C_n^m = n! / [m!(n-m)!],其中 n=10, m=3,计算得 C_10^3 = 10! / [3!(10-3)!]。
四、计算题1. 一个班级有30名学生,现在要选出一个由5名学生组成的委员会。
如果甲和乙两名学生必须同时被选中,那么有多少种不同的委员会组成方式?答案:首先,甲和乙两名学生已经被选中,剩下3个位置需要从28名学生中选出3名学生,这是一个组合问题。
根据组合公式,C_28^3 =28! / [3!(28-3)!]。
2. 有7个不同的字母,需要组成一个3个字母的单词,有多少种不同的单词可以组成?答案:组成一个3个字母的单词,这是一个排列问题。
根据排列公式P_n^m = n! / (n-m)!,其中 n=7, m=3,计算得 P_7^3 = 7! / (7-3)!。
五、应用题1. 某公司有5个部门,需要选出3个部门进行合作。
(精心整理)排列组合练习题与答案
排列组合习题精选一、纯排列与组合问题:1.从9人中选派2人参加某一活动,有多少种不同选法?2.从9人中选派2人参加文艺活动,1人下乡演出,1人在本地演出,有多少种不同选派方法?3. 现从男、女8名学生干部中选出2名男同学和1名女同学分别参加全校“资源”、“生态”和“环保”三个夏令营活动,已知共有90种不同的方案,那么男、女同学的人数是()A.男同学2人,女同学6人B.男同学3人,女同学5人C. 男同学5人,女同学3人D. 男同学6人,女同学2人4.一条铁路原有m个车站,为了适应客运需要新增加n个车站(n>1),则客运车票增加了58种(从甲站到乙站与乙站到甲站需要两种不同车票),那么原有的车站有()A.12个B.13个C.14个D.15个2221322选C.二、相邻问题:1. A、B、C、D、E五个人并排站成一列,若A、B必相邻,则有多少种不同排法?2. 有8本不同的书,其中3本不同的科技书,2本不同的文艺书,3本不同的体育书,将这些书竖排在书架上,则科技书连在一起,文艺书也连在一起的不同排法种数为( )A.720B.1440C.2880D.3600答案:1.242448A A=(2) 选B 3253251440A A A=三、不相邻问题:1.要排一个有4个歌唱节目和3个舞蹈节目的演出节目单,任何两个舞蹈节目都不相邻,有多少种不同排法?2、1到7七个自然数组成一个没有重复数字的七位数,其中奇数不相邻的有多少个?3.4名男生和4名女生站成一排,若要求男女相间,则不同的排法数有()A.2880B.1152C.48D.1444.排成一排的8个空位上,坐3人,使每人两边都有空位,有多少种不同坐法?5.8张椅子放成一排,4人就坐,恰有连续三个空位的坐法有多少种?6. 排成一排的9个空位上,坐3人,使三处有连续二个空位,有多少种不同坐法?7. 排成一排的9个空位上,坐3人,使三处空位中有一处一个空位、有一处连续二个空位、有一处连续三个空位,有多少种不同坐法?8. 在一次文艺演出中,需给舞台上方安装一排彩灯共15只,以不同的点灯方式增加舞台效果,要求设计者按照每次点亮时,必须有6只灯是熄灭的,且相邻的灯不能同时熄灭,两端的灯必须点亮的要求进行设计,那么不同的点亮方式是()A.28种B.84种C.180种D.360种答案:1.43451440A A = (2)3434144A A = (3)选B 444421152A A = (4)3424A = (5)4245480A A =(6)333424A C = (7)3334144A A = (8)选A 6828C =四、定序问题:1. 有4名男生,3名女生。
排列组合典型题大全含答案
排列组合典型题大全一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法?(2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果?(3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法?【解析】:(1)43(2)34(3)34【例2】把6名实习生分配到7个车间实习共有多少种不同方法?【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案,第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案.【例3】8名同学争夺3项冠军,获得冠军的可能性有()A、38 B、83 C、38A D、3C8【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有38种不同的结果。
所以选A1、4封信投到3个信箱当中,有多少种投法?2、4个人争夺3项冠军,要求冠军不能并列,每个人可以夺得多项冠军也可以空手而还,问最后有多少种情况?3、4个同学参加3项不同的比赛(1)每位同学必须参加一项比赛,有多少种不同的结果?(2)每项竞赛只许一名同学参加,有多少种不同的结果?4、5名学生报名参加4项比赛,每人限报1项,报名方法的种数有多少?又他们争夺这4项比赛的冠军,获得冠军的可能性有多少? 5、甲乙丙分10瓶汽水的方法有多少种?6、(全国II 文)5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共 (A)10种(B) 20种(C) 25种(D) 32种7、5位同学报名参加并负责两个课外活动小组,每个兴趣小组只能有一个人来负责,负责人可以兼职,则不同的负责方法有多少种?8、4名不同科目的实习教师被分配到3个班级,不同的分法有多少种?思考:4名不同科目的实习教师被分配到3个班级,每班至少一个人的不同的分法有多少种?二.相邻问题捆绑法: 题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.【例1】,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有【解析】:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
(完整版)排列组合练习题及答案
《排列组合》一、排列与组合1.从9人中选派2人参加某一活动,有多少种不同选法?2.从9人中选派2人参加文艺活动,1人下乡演出,1人在本地演出,有多少种不同选派方法?3. 现从男、女8名学生干部中选出2名男同学和1名女同学分别参加全校“资源”、“生态”和“环保”三个夏令营活动,已知共有90种不同的方案,那么男、女同学的人数是A.男同学2人,女同学6人B.男同学3人,女同学5人C. 男同学5人,女同学3人D. 男同学6人,女同学2人4.一条铁路原有m个车站,为了适应客运需要新增加n个车站(n>1),则客运车票增加了58种(从甲站到乙站与乙站到甲站需要两种不同车票),那么原有的车站有A.12个B.13个C.14个D.15个5.用0,1,2,3,4,5这六个数字,(1)可以组成多少个数字不重复的三位数?(2)可以组成多少个数字允许重复的三位数?(3)可以组成多少个数字不允许重复的三位数的奇数?(4)可以组成多少个数字不重复的小于1000的自然数?(5)可以组成多少个大于3000,小于5421的数字不重复的四位数?二、注意附加条件1.6人排成一列(1)甲乙必须站两端,有多少种不同排法?(2)甲乙必须站两端,丙站中间,有多少种不同排法?2.由1、2、3、4、5、6六个数字可组成多少个无重复数字且是6的倍数的五位数?3.由数字1,2,3,4,5,6,7所组成的没有重复数字的四位数,按从小到大的顺序排列起来,第379个数是D.6157A.3761B.4175C.51324. 设有编号为1、2、3、4、5的五个茶杯和编号为1、2、3、4、5的五个杯盖,将五个杯盖盖在五个茶杯上,至少有两个杯盖和茶杯的编号相同的盖法有 A.30种 B.31种 C.32种 D.36种5.从编号为1,2,…,10,11的11个球中取5个,使这5个球中既有编号为偶数的球又有编号为奇数的球,且它们的编号之和为奇数,其取法总数是A.230种B.236种C.455种D.2640种6.从6双不同颜色的手套中任取4只,其中恰好有1双同色的取法有 A.240种 B.180种 C.120种 D.60种7. 用0,1,2,3,4,5这六个数组成没有重复数字的四位偶数,将这些四位数从小到大排列起来,第71个数是 。
排列组合题集(含详细答案)
排列组合题集一、解决排列、组合问题常用方法:两个原理、优限法、排除法、捆绑法(视一法)、插空法、隔板法、等可能法、固定模型、树图法等,但最基础的是“两个原理”.二、排列、组合问题大体分以下几个类型类型一:排队问题例1:7人站成一排,求满足下列条件的不同站法:(1)甲不站排头,乙不站排尾____________________(2)甲、乙两人不站两端________________________ (3)甲、乙两人相邻____________________________(4)甲、乙两人不相邻________________________ (5)甲、乙之间隔着2人______________________(6)甲在乙的左边____________________________ (7)若7人顺序不变,再加入3个人,要求保持原先7人顺序不变________________(8)若7人中有4男生,3女生,男、女生相间隔排列________(9)7人站成前后两排,前排3人,后排4人的站法____________(10)甲站中间______ _____(11)7人中现需改变3人所站位置,则不同排法____________ (12)若7人身高各不相同,则按照从高到低的站法________________(13)甲、乙、丙3人中从左向右看由高到底(3人身高不同)的站法________(14)若甲、乙两人去坐标号为1,2,3,4,5,6,7的七把椅子,要求每人两边都有空位的坐法_____ 类型二:分组与分配问题例2:将6本不同的书,若按如下方式来分,则不同分法种数有:(1)平均分成3堆,每堆2本______________________(2)分给甲、乙、丙3人,每人2本________________ (3)分成3堆,每堆本数分别是1,2,3,____________(4)分给甲1本,乙2本,丙3本________ __ (5)分给3人,1人1本,1人2本,1人3本________________(6)分给甲、乙、丙3人,每人至少1本____________________(7)若将6本不同书放到5个不同盒子里,有________种不同放法(8)若将6本不同书放到5个不同盒子里,每个盒子至少1本,则有_____种不同放法。
排列组合的数学练习题及答案
排列组合的数学练习题及答案关于排列组合的数学练习题及答案数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。
下面是店铺精心整理的关于排列组合的数学练习题及答案,仅供参考,欢迎大家阅读。
1.有五对夫妇围成一圈,使每一对夫妇的夫妻二人动相邻的排法有()A、768种B、32种C、24种D、2的10次方中解:根据乘法原理,分两步:第一步是把5对夫妻看作5个整体,进行排列有5×4×3×2×1=120种不同的排法,但是因为是围成一个首尾相接的圈,就会产生5个5个重复,因此实际排法只有120÷5=24种。
第二步每一对夫妻之间又可以相互换位置,也就是说每一对夫妻均有2种排法,总共又2×2×2×2×2=32种,综合两步,就有24×32=768种。
2 若把英语单词hello的字母写错了,则可能出现的错误共有 ( )A 119种B 36种C 59种D 48种解:5全排列5*4*3*2*1=120,有两个l所以120/2=60,原来有一种正确的所以60-1=593.慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间?答案为53秒算式是(140+125)÷(22-17)=53秒可以这样理解:“快车从追上慢车的车尾到完全超过慢车”就是快车车尾上的点追及慢车车头的点,因此追及的路程应该为两个车长的和。
4.在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒4.4米,两人起跑后的第一次相遇在起跑线前几米?答案为100米300÷(5-4.4)=500秒,表示追及时间5×500=2500米,表示甲追到乙时所行的路程2500÷300=8圈……100米,表示甲追及总路程为8圈还多100米,就是在原来起跑线的前方100米处相遇。
排列组合练习题及答案
《排列组合》一、排列与组合1.从9人中选派2人参加某一活动,有多少种不同选法?2.从9人中选派2人参加文艺活动,1人下乡演出,1人在本地演出,有多少种不同选派方法?3. 现从男、女8名学生干部中选出2名男同学和1名女同学分别参加全校“资源”、“生态”和“环保”三个夏令营活动,已知共有90种不同的方案,那么男、女同学的人数是A.男同学2人,女同学6人B.男同学3人,女同学5人C. 男同学5人,女同学3人D. 男同学6人,女同学2人4.一条铁路原有m个车站,为了适应客运需要新增加n个车站(n>1),则客运车票增加了58种(从甲站到乙站与乙站到甲站需要两种不同车票),那么原有的车站有A.12个B.13个C.14个D.15个5.用0,1,2,3,4,5这六个数字,(1)可以组成多少个数字不重复的三位数?(2)可以组成多少个数字允许重复的三位数?(3)可以组成多少个数字不允许重复的三位数的奇数?(4)可以组成多少个数字不重复的小于1000的自然数?(5)可以组成多少个大于3000,小于5421的数字不重复的四位数?二、注意附加条件1.6人排成一列(1)甲乙必须站两端,有多少种不同排法?(2)甲乙必须站两端,丙站中间,有多少种不同排法?2.由1、2、3、4、5、6六个数字可组成多少个无重复数字且是6的倍数的五位数?3.由数字1,2,3,4,5,6,7所组成的没有重复数字的四位数,按从小到大的顺序排列起来,第379个数是A.3761B.4175C.5132D.61574. 设有编号为1、2、3、4、5的五个茶杯和编号为1、2、3、4、5的五个杯盖,将五个杯盖盖在五个茶杯上,至少有两个杯盖和茶杯的编号相同的盖法有A.30种B.31种C.32种D.36种5.从编号为1,2,…,10,11的11个球中取5个,使这5个球中既有编号为偶数的球又有编号为奇数的球,且它们的编号之和为奇数,其取法总数是A.230种B.236种C.455种D.2640种6.从6双不同颜色的手套中任取4只,其中恰好有1双同色的取法有A.240种B.180种C.120种D.60种7. 用0,1,2,3,4,5这六个数组成没有重复数字的四位偶数,将这些四位数从小到大排列起来,第71个数是 。
(完整版)排列组合习题_(含详细答案)
圆梦教育中心排列组合专项训练1.题1 (方法对比,二星)题面:(1)有5个插班生要分配给3所学校,每校至少分到一个,有多少种不同的分配方法?(2)有5个数学竞赛名额要分配给3所学校,每校至少分到一个名额,有多少种不同的名额分配方法? 解析:“名额无差别”——相同元素问题(法1)每所学校各分一个名额后,还有2个名额待分配,可将名额分给2所学校、1所学校,共两类:2133C C +(种)(法2——挡板法)相邻名额间共4个空隙,插入2个挡板,共:246C =(种) 注意:“挡板法”可用于解决待分配的元素无差别,且每个位置至少分配一个元素的问题.(位置有差别,元素无差别)同类题一 题面:有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案?答案:69C详解:因为10个名额没有差别,把它们排成一排。
相邻名额之间形成9个空隙。
在9个空档中选6个位置插个隔板,可把名额分成7份,对应地分给7个班级,每一种插板方法对应一种分法共有69C 种分法。
同类题二题面:求方程X+Y+Z=10的正整数解的个数。
答案:36. 详解:将10个球排成一排,球与球之间形成9个空隙,将两个隔板插入这些空隙中(每空至多插一块隔板),规定由隔板分成的左、中、右三部分的球数分别为x 、y 、z 之值, 故解的个数为C 92=36(个)。
2.题2 (插空法,三星)题面:某展室有9个展台,现有3件展品需要展出,要求每件展品独自占用1个展台,并且3件展品所选用的展台既不在两端又不相邻,则不同的展出方法有______种;如果进一步要求3件展品所选用的展台之间间隔不超过两个展位,则不同的展出方法有____种. 答案:60,48同类题一题面:6男4女站成一排,任何2名女生都不相邻有多少种排法?答案:A 66·A 47种.详解: 任何2名女生都不相邻,则把女生插空,所以先排男生再让女生插到男生的空中,共有A 66·A 47种不同排法.同类题二 题面:有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有( )A .36种B .48种C .72种D .96种答案:C.详解:恰有两个空座位相邻,相当于两个空位与第三个空位不相邻,先排三个人,然后插空,从而共A 33A 24=72种排法,故选C.3.题3 (插空法,三星)题面:5个男生到一排12个座位上就座,两个之间至少隔一个空位.1]没有坐人的7个位子先摆好,[2](法1——插空)每个男生占一个位子,插入7个位子所成的8个空当中,有:58A =6720种排法.(法2)[1]5个男生先排好:55A ;[2]每个男生加上相邻的一个座位,共去掉9个位置,当作5个排好的元素,共有6个空,剩下的3个元素往里插空,每个空可以插1个、2个、3个元素,共有:3216662C C C ++种,综上:有55A (3216662C C C ++)=6720种.同类题一题面:文艺团体下基层宣传演出,准备的节目表中原有4个歌舞节目,如果保持这些节目的相对顺序不变,拟再添两个小品节目,则不同的排列方法有多少种? 答案:30。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排列组合习题精选一、纯排列与组合问题:1.从9人中选派2人参加某一活动,有多少种不同选法?2.从9人中选派2人参加文艺活动,1人下乡演出,1人在本地演出,有多少种不同选派方法?3. 现从男、女8名学生干部中选出2名男同学和1名女同学分别参加全校“资源”、“生态”和“环保”三个夏令营活动,已知共有90种不同的方案,那么男、女同学的人数是( )A.男同学2人,女同学6人B.男同学3人,女同学5人C. 男同学5人,女同学3人D. 男同学6人,女同学2人4.一条铁路原有m 个车站,为了适应客运需要新增加n 个车站(n>1),则客运车票增加了58种(从甲站到乙站与乙站到甲站需要两种不同车票),那么原有的车站有 ( )个 个 个 个2221322选C.二、相邻问题:1. A 、B 、C 、D 、E 五个人并排站成一列,若A 、B 必相邻,则有多少种不同排法?2. 有8本不同的书, 其中3本不同的科技书,2本不同的文艺书,3本不同的体育书,将这些书竖排在书架上,则科技书连在一起,文艺书也连在一起的不同排法种数为( )答案:1.242448A A = (2) 选B 3253251440A A A = 三、不相邻问题:1.要排一个有4个歌唱节目和3个舞蹈节目的演出节目单,任何两个舞蹈节目都不相邻,有多少种不同排法?2、1到7七个自然数组成一个没有重复数字的七位数,其中奇数不相邻的有多少个? 名男生和4名女生站成一排,若要求男女相间,则不同的排法数有( )4.排成一排的8个空位上,坐3人,使每人两边都有空位,有多少种不同坐法? 张椅子放成一排,4人就坐,恰有连续三个空位的坐法有多少种?6. 排成一排的9个空位上,坐3人,使三处有连续二个空位,有多少种不同坐法?7. 排成一排的9个空位上,坐3人,使三处空位中有一处一个空位、有一处连续二个空位、有一处连续三个空位,有多少种不同坐法?8. 在一次文艺演出中,需给舞台上方安装一排彩灯共15只,以不同的点灯方式增加舞台效果,要求设计者按照每次点亮时,必须有6只灯是熄灭的,且相邻的灯不能同时熄灭,两端的灯必须点亮的要求进行设计,那么不同的点亮方式是 ( )种 种 种 种答案:1.43451440A A = (2)3434144A A = (3)选B 444421152A A = (4)3424A = (5)4245480A A =(6)333424A C = (7)3334144A A = (8)选A 6828C = 四、定序问题:1. 有4名男生,3名女生。
现将他们排成一行,要求从左到右女生从矮到高排列,有多少种排法?2. 书架上有6本书,现再放入3本书,要求不改变原来6本书前后的相对顺序,有多少种不 同排法?答案:1.7733840A A = 2.9966504A A =五、分组分配问题:1.某校高中二年级有6个班,分派3名教师任教,每名教师任教两个班,不同的安排方法有多少种?2. 6本不同的书分给甲、乙、丙三人,每人一本、二本、三本的不同分法有多少种? 项工程,甲承包三项,乙承包一项,丙、丁各承包二项,不同的承包方案有多少种? 4. 6人住ABC 三个房间,每间至少住1人,有多少种不同住宿方案?5.有4个不同小球放入四个不同盒子,其中有且只有一个盒子留空,有多少种不同放法?6. 把标有a ,b ,c ,d ,e,f,g,h,8件不同纪念品平均赠给甲、乙两位同学,其中a 、b 不赠给同一个人,则不同的赠送方法有 种(用数字作答)。
答案:1.222364233390C C C A A = (2)12336533360C C C A = (3)3122285422221680C C C C A A = (4)1142223123336546423653332323540C C C C C C A C C C A A A A ++= (5)211134214322144C C C C A A = (6)331122632122222240C C C C A A A A ⋅= 六、相同元素问题:1. 不定方程 的正整数解的组数是 ,非负整数解的组数是 。
2.某运输公司有7个车队,每个车队的车多于4辆,现从这7个车队中抽出10辆车,且每个车队至少抽一辆组成运输队,则不同的抽法有 ( ) 种 种 种 种 3.将7个相同的小球全部放入4个不同盒子中, (1)每盒至少1球的方法有多少种? (2)恰有一个空盒的方法共有多少种?4.有编号为1、2、3的3个盒子和10个相同的小球,现把10个小球全部装入3个盒子中,使得每个盒子所装球数不小于盒子的编号数,这种装法共有( ) 种 种 种 种5.某中学从高中7个班中选出12名学生组成校代表队,参加市中学数学应用题竞赛活动,使代表中每班至少有1人参加的选法有多少种?答案:1.3361020 , 120C C == 2.选A 6984C = 3.(1)3620C = (2)124660C C = (4)选C,2615C =(5)611462C = 七、直接与间接问题:1.有6名男同学,4名女同学,现选3名同学参加某一比赛,至少有1名女同学,由多少种不 同选法? 人排成一列12347x x x x +++=(1)甲乙必须站两端,有多少种不同排法?(2)甲必须站两端,乙站最中间,有多少种不同排法?(3) 甲不站排头乙不站排尾, 有多少种不同排法?3.由1、2、3、4、5、6六个数字可组成多少个无重复数字且不是5的倍数的五位数?4. 2名男生4名女生排成一行,女生不全相邻的排法有多少种?5. 从5门不同的文科学科和4门不同的理科学科中任选4门,组成一个综合高考科目组,若要求这组科目中文理科都有,则不同的选法的种数 ( ) 种 种 种 种6. 5人排成一排,要求甲、乙之间至少有1人,共有多少种不同排法?7.四面体的顶点和各棱中点共有10个点,在其中取4个不共面的点不同取法有多少种?答案:1、1221346464100C C C C C ++= 或 33106100C C -= 2.(1)2525240A A = (2)1525240A A = (3)115655563720A A A A +=或76576523720A A A -+= 3、1455600A A =或5465600A A -= 4、643643576A A A -=或32221224234223576A A A A A A A += 5、选C.132231545454120C C C C C C ++=或444954120C C C --= 6、123222323233223272A A A A A A A A ++=或52452472A A A -= 7、44106463141C C ---=八、分类与分步问题: 1.求下列集合的元素个数.(1){(,)|,,6}M x y x y N x y *=∈+≤;(2). 2.一个文艺团队有10名成员,有7人会唱歌,5人会跳舞,现派2人参加演出,其中1名会唱歌,1名会跳舞,有多少种不同选派方法?3. 9名翻译人员中,6人懂英语,4人懂日语,从中选拔5人参加外事活动,要求其中3人担任英语翻译,2人担任日语翻译,选拔的方法有 种(用数字作答)。
4.某博物馆要在20天内接待8所学校的学生参观,每天只安排一所学校,其中一所人数较多的学校要连续参观3天,其余学校只参观1天,则在这20天内不同的安排方法为 ( ) A. 种 B. 种 C. 种 D. 种5. 从10种不同的作物种子选出6种放入6个不同的瓶子展出,如果甲乙两种种子不能放第一号瓶内,那么不同的放法共有( )A. 种B. 种C. 种D. 种6. 在画廊要展出1幅水彩画、4幅油画、5幅国画,要求排成一排,并且同一种的画摆放在一起,还要求水彩画不能摆两端,那么不同的陈列方式有( ) A. 种 B. 种 C. 种 D. 种7. 把一个圆周24等分,过其中任意3个分点,可以连成圆的内接三角形,其中直角三角形的个数是 ( )8. 有三张纸片,正、反面分别写着数字1、2、3和4、5、6 ,将这三张纸片上的数字排成三位数,共能组不同三位数的个数是( ) A. 24{(,)|,,14,15}Hx y x y N x y *=∈≤≤≤≤372017C A 820A 171817C A 1818A 24108C A 1599C A 1589C A 1598C A 1545A A 245345A A A 145445A A A 245245A A A9.在1~20共20个整数中取两个数相加,使其和为偶数的不同取法共有多少种? 10.用0,1,2,3,4,5这六个数字, (1)可以组成多少个数字不重复的三位数? (2)可以组成多少个数字允许重复的三位数? (3)可以组成多少个数字不重复的三位数的奇数? (4)可以组成多少个数字不重复的三位数的偶数? (5)可以组成多少个数字不重复的小于1000的自然数?(6)可以组成多少个大于3000,小于5421的数字不重复的四位数?11.由数字1,2,3,4,5,6,7所组成的没有重复数字的四位数,按从小到大的顺序排列起来,第379个数是 ( )12. 设有编号为1、2、3、4、5的五个茶杯和编号为1、2、3、4、5的五个杯盖,将五个杯盖盖在五个茶杯上,至少有两个杯盖和茶杯的编号相同的盖法有 ( ) 种 种 种 种13.从编号为1,2,…,10,11的11个球中取5个,使得这5个球的编号之和为奇数,其取法总数是 ( )种 种 种 种14.从6双不同颜色的手套中任取4只,试求各有多少种情况出现如下结果 (1) 4只手套没有成双; (2) 4只手套恰好成双;(3) 4只手套有2只成双,另2只不成双15.从5部不同的影片中选出4部,在3个影院放映,每个影院至少放映一部,每部影片只放映一场,共有 种不同的放映方法(用数字作答)。
1112111(5)325325551231C C C +⨯+⨯= 13、选B 1432565656236C C C C C ++= 14、(1)4111162222240C C C C C =(2)2615C =(3)12116522240C C C C =15.211434215322180C C C CA A = 16.所有不同的三角形可分为三类: 第一类:其中有两条边是原五边形的边,这样的三角形共有5个;第二类:其中有且只有一条边是原五边形的边,这样的三角形共有5×4=20个;第三类:没有一条边是原五边形的边,即由五条对角线围成的三角形,共有5+5=10个.由分类计数原理得,不同的三角形共有5+20+10=35个.九、元素与位置问题:1.有四位同学参加三项不同的比赛,(1)每位同学必须参加一项竞赛,有多少种不同的结果? (2)每项竞赛只许一位学生参加,有多少种不同的结果? 2. 25200有多少个正约数?有多少个奇约数?答案:1.(1)每位学生有三种选择,四位学生共有参赛方法:333381⨯⨯⨯=种;(2)每项竞赛被选择的方法有四种,三项竞赛共有参赛方法:44464⨯⨯=种.2. 25200的约数就是能整除25200的整数,所以本题就是分别求能整除25200的整数和奇约数的个数.由于 25200=24×32×52×7(1) 25200的每个约数都可以写成lk j l 7532⋅⋅⋅的形式,其中40≤≤i ,02j ≤≤,20≤≤k ,10≤≤l于是,要确定25200的一个约数,可分四步完成,即l k j i ,,,分别在各自的范围内任取一个值,这样i 有5种取法,j 有3种取法,k 有3种取法,l 有2种取法,根据分步计数原理得约数的个数为5×3×3×2=90个.(2)奇约数中步不含有2的因数,因此25200的每个奇约数都可以写成lk j 753⋅⋅的形式,同上奇约数的个数为3×3×2=18个. 十、染色问题:1.如图一,要给①,②,③,④四块区域分别涂上五种颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同颜色,则不同涂色方法种数为( ) A. 180 B. 160 C. 96 D. 60若变为图二,图三呢?2.答案:图一图二图三。