中考数学冲刺复习三角形02与三角形有关的角

合集下载

中考总复习解直角三角形

中考总复习解直角三角形

解直角三角形一、目标与策略明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数!学习目标:●理解三角函数的定义和正弦、余弦、正切的概念,并能运用;●掌握特殊角三角函数值,并能运用特殊角的三角函数值进行计算和化简;●掌握互为余角和同角三角函数间关系;●掌握直角三角形的边角关系和解直角三角形的概念,并能运用直角三角形的两锐角互余、勾股定理和锐角三角函数解直角三角形;●了解实际问题中的概念,并会用解直角三角形的有关知识解决实际问题.复习策略:●复习本专题应从四方面入手:(1)直角三角形在角方面的关系;(2)直角三角形在边方面的关系;(3)直角三角形的边角之间的关系;(4)怎样运用直角三角形的边角关系求直角三角形的未知元素.同时,解答这类题目时,应注重借助图形来解题,它能使已知条件、所求结论直观化,以便启迪思维,快捷解题.二、学习与应用知识点一:锐角三角函数“凡事预则立,不预则废”。

科学地预习才能使我们上课听讲更有目的性和针对性。

我们要在预习的基础上,认真听讲,做到眼睛看、耳朵听、心里想、手上记。

知识考点梳理认真阅读、理解教材,尝试把下列知识要点内容补充完整,若有其它补充可填在右栏空白处。

详细内容请参看网校资源ID:#tbjx4#248924知识框图通过知识框图,先对本单元知识要点有一个总体认识。

(一)锐角三角函数:在Rt△ABC中,∠C是直角,如图(1)正弦:∠A的与的比叫做∠A的正弦,记作sinA,即sinA= ;(2)余弦:∠A的与的比叫做∠A的余弦,记作cosA,即cosA= ;(3)正切:∠A的与的比叫做∠A的正切,记作tanA,即tanA= ;锐角三角函数:锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.(二)同角三角函数关系:(1)平方关系:sin2A+cos2A= ;(2)商数关系:tanA= .(三)互余两角的三角函数关系sinA=cos(),cosA=sin().(四)特殊角的三角函数值(五)锐角三角函数的增减性(1)角度在0°~90°之间变化时,正弦值(正切值)随角度的增大(或减小)而(或).(2)角度在0°~90°之间变化时,余弦值随角度的增大(或减小)而(或).要点诠释:∠A在0°~90°之间变化时,<sinA<,<cosA<,tanA>知识点二:解直角三角形在直角三角形中,由已知元素求未知元素的过程叫做解直角三角形.(一)三边之间的关系:a2+b2= (勾股定理)(二)锐角之间的关系:∠A+∠B= °(三)边角之间的关系:sinA= ,cosA= ,tanA=要点诠释:解直角三角形时,只要知道其中的个元素(至少有一个),就可以求出其余未知元素.知识点三:解直角三角形的实际应用(一)仰角和俯角:在视线与所成的角中,视线在上方的是仰角;视线在下方的是俯角.(二)坡角和坡度:坡面与的夹角叫做坡角.坡面的和的比叫做坡面的坡度(即坡角的值)常用i表示.(三)株距:相邻两树间的.(四)方位角与方向角:从某点的方向沿时针方向旋转到目标方向所形成的角叫做方位角.从方向或方向到目标方向所形成的小于°的角叫做方向角.经典例题-自主学习认真分析、解答下列例题,尝试总结提升各类型题目的规律和技巧,然后完成举一反三。

中考数学知识点顺口溜及三角形复习

中考数学知识点顺口溜及三角形复习

中考数学知识点顺⼝溜及三⾓形复习 初中的数学是不是让你抓破脑袋?有哪些好的数学学习⽅法呢?以下是⼩编给⼤家带来的中考数学知识点顺⼝溜及三⾓形复习,仅供考⽣参考,欢迎⼤家阅读! 2019年中考数学复习:三⾓形 1、“三线⼋⾓”:两条直线被第三条直线所截⽽成的⼋个⾓。

其中, 同位⾓:位置相同,及同旁和同规; 内错⾓:内部,两旁; 同旁内⾓:内部,同旁。

2、平⾏线的判定⽅法: 1)同位⾓相等,两直线平⾏ 2)内错⾓相等,两直线平⾏ 3)同旁内⾓互补,两直线平⾏ 3、平⾏线的性质: 1)两直线平⾏,同位⾓相等 2)两直线平⾏,内错⾓相等 3)两直线平⾏,同旁内⾓互补 4、三⾓形的分类: 1)按⾓分:锐⾓三⾓形、直⾓三⾓形、钝⾓三⾓形 2)按边分:等腰三⾓形、不等边三⾓形 5、三⾓形的性质: 1)三⾓形中任意两边之和⼤于第三边,任意两边只差⼩于第三边 2)三⾓形内⾓和为180o 3)三⾓形外⾓等于与之不相邻的两个内⾓的和 6、三⾓形中的主要线段: 1)三⾓形的中位线:连接三⾓形两边中点的线段 中位线性质:中位线平⾏于第三边,且等于第三边的⼀半。

2)三⾓形的中线、⾼线、⾓平分线都是线段 7、等腰三⾓形的性质和判定: 1)等腰三⾓形的两个底⾓相等 2)等腰三⾓形底边上的⾼、中线、顶⾓的⾓平分线互相重合,简称三线合⼀ 3)有两个⾓相等的三⾓形是等腰三⾓形 8、等边三⾓形的性质和判定: 1)等边三⾓形每个⾓都等于60o,同样具有三线合⼀的性质 2)三个⾓相等的三⾓形是等边三⾓形;三边相等的三⾓形是等边三⾓形;⼀个⾓等于60o的等腰三⾓形是等边三⾓形 9、直⾓三⾓形的性质和判定: 1)直⾓三⾓形两个锐⾓和为90o(互余) 2)直⾓三⾓形中30o所对的直⾓边等于斜边的⼀半 3)直⾓三⾓形中,斜边的中线等于斜边的⼀半 4)勾股定理:直⾓三⾓形中,两直⾓边的平⽅和等于斜边的平⽅ 5)勾股定理的逆定理:若⼀个三⾓形中,有两边的平⽅和等于第三边的平⽅,则这个三⾓形是直⾓三⾓形 10、全等三⾓形: 1)对应边相等,对应⾓相等的三⾓形叫全等三⾓形 2)全等三⾓形的判定⽅法:SSS、SAS、ASA、AAS、HL 【观察这五种⽅法发现,要证三⾓形全等,⾄少要有⼀组相等的边,因此在应⽤是要养成先找边的习惯】 3)全等三⾓形的性质:全等三⾓形的对应边、对应⾓、⾯积、周长、对应⾼、对应中线、对应⾓平分线都相等 11、分析、证明⼏何题的常⽤⽅法: 1)综合法(由因导果):从命题的题设出发,通过⼀系列的有关定义、公理、定理的应⽤,逐步向前推进,知道问题解决 2)分析法(执果索因):从命题的结论出发,不断寻找使结论成⽴的条件,直到已知条件 3)两头凑法:将分析法和综合法合并使⽤,⽐较起来,分析法利于思考,综合法适宜表达,因此在实际思考问题时,可合并使⽤灵活处理。

2020年中考数学第三轮冲刺专题复习:三角形 压轴题练习(含答案)

2020年中考数学第三轮冲刺专题复习:三角形 压轴题练习(含答案)

四川省渠县崇德实验学校2020年中考数学第三轮冲刺专题复习:三角形压轴题练习1、如图,等腰直角三角形△ABC中,∠ACB=90°,AC=BC,点D是AC边上一点,∠CBD=30°,点E是BD边上一点,且CE=12 AB.(1)如图①,若AB=,求S△CBE(2)如图②,过点E作EQ⊥BD交BC于点Q,求证:AC=12BD+2EQ.2、如图,等边三角形ABC中,E是线段AC上一点,F是BC延长线上一点.连接BE,AF.点G是线段BE的中点,BN∥AC,BN与AG延长线交于点N.(1)若∠BAN=15°,求∠N;(2)若AE=CF,求证:2AG=AF.3、已知,如图,在Rt△ABC中,∠ACB=90°,点D为AB中点,连接CD.点E为边AC上一点,过点E作EF∥AB,交CD于点F,连接EB,取EB的中点G,连接DG、FG.(1)求证:EF=CF;(2)求证:FG⊥DG.4、△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠CAB交CD于F,CH⊥EF于H,连接DH,求证:(1)EH=FH;(2)∠CAB=2∠CDH.5、如图,在△ABC中,AD平分∠CAB交BC于点D,过点C作CE⊥AD于E,CE的延长线交AB于点F,点G是BF的中点,连接EG.(1)求证:EG∥BC;(2)若△ACD∽△AEC,且AE•AD=16,AB=4,求EG的长.6、如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=4,AB=6,求ACAF的值.7、如图,△ABC中,∠ACB=90°,D是AB上一点,M是CD中点,且∠AMD=∠BMD,AP∥CD交BC延长线于P点,延长BM交P A于N点,且PN=AN.(1)求证:MN=MA;(2)求证:∠CDA=2∠ACD.8、如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D在边AB上,点E在边AC的左侧,连接AE.(1)求证:AE=BD;(2)试探究线段AD、BD与CD之间的数量关系;(3)过点C作CF⊥DE交AB于点F,若BD:AF=1:,CD,求线段AB的长.9、如图,△ABC是等边三角形,点D在AC上,点E在BC的延长线上,且BD=DE.(1)若点D是AC的中点,如图1,求证:AD=CE.(2)若点D不是AC的中点,如图2,试判断AD与CE的数量关系,并证明你的结论:(提示:过点D作DF∥BC,交AB于点F.)(3)若点D在线段AC的延长线上,(2)中的结论是否仍成立?如果成立,给予证明;如果不成立,请说明理由.10、在△ABC中,已知AB=AC,∠BAC=90°,E为边AC上一点,连接BE.(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,D为AB上一点,且满足AE=AD,过点A作AF⊥BE交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M,求证:BG=AF+FG.11、如图,在△ABC中,∠ABC=60°,点D,E分别为AB,BC上一点,BD=BE,连接DE,DC,AC=CD.(1)如图1,若AC=DE=EC的长;(2)如图2,连接AE交DC于点F,点M为EC上一点,连接AM交DC于点N,若AE=AM,求证:2DE=MC;(3)在(2)的条件下,若∠ACB=45°,直接写出线段AD,MC,AC的等量关系.12、把两块全等的直角三角形ABC和DEF叠放在一起,使三角板DEF的锐角顶点D与三角板ABC的斜边中点O重合,其中∠ABC=∠DEF=90°,∠C=∠F=45°,AB=DE =4,把三角板ABC固定不动,让三角板DEF绕点O旋转,设射线DE与射线AB相交于点P,射线DF与线段BC相交于点Q.(1)如图1,当射线DF经过点B,即点Q与点B重合时,易证△APD∽△CDQ.此时AP•CQ的值为.将三角板DEF由图1所示的位置绕点O沿逆时针方向旋转,设旋转角为α.其中0°<α<90°,则AP•CQ的值是否会改变?答:.(填“会”或“不会”)此时AP•CQ的值为.(不必说明理由)(2)在(1)的条件下,设CQ=x,两块三角板重叠面积为y,求y与x的函数关系式.(图2、图3供解题用)(3)在(1)的条件下,PQ能否与AC平行?若能,求出y的值;若不能,试说明理由.14、已知:△ABC与△ABD中,∠CAB=∠DBA=β,且∠ADB+∠ACB=180°.提出问题:如图1,当∠ADB=∠ACB=90°时,求证:AD=BC;类比探究:如图2,当∠ADB≠∠ACB时,AD=BC是否还成立?并说明理由.综合运用:如图3,当β=18°,BC=1,且AB⊥BC时,求AC的长.15、已知△ABC中,AB=AC.(1)如图1,在△ADE中,AD=AE,连接BD、CE,若∠DAE=∠BAC,求证:BD=CD;(2)如图2,在△ADE中,AD=AE,连接BE、CE,若∠DAE=∠BAC=60°,CE⊥AD于点F,AE=4,AC=7,求BE的长;(3)如图3,在△BCD中,∠CBD=∠CDB=45°,连接AD,若∠CAB=45°,求AD AB的值.16、已知等边△ABC和等腰△CDE,CD=DE,∠CDE=120°.(1)如图1,点D在BC上,点E在AB上,P是BE的中点,连接AD,PD,则线段AD与PD之间的数量关系为;(2)如图2,点D在△ABC内部,点E在△ABC外部,P是BE的中点,连接AD,PD,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)如图3,若点D在△ABC内部,点E和点B重合,点P在BC下方,且PB+PC为定值,当PD最大时,∠BPC的度数为.参考答案1、【解答】(1)解:如图①中,作CH ⊥BD 于H .∵CA =CB ,∠ACB =90°,AB =∴AC =BC =2,在Rt △BCH 中,∵∠CBH =30°,∴CH =12BC =1,BH ,∵CE =12AB ,∴HE 1,∴BE ﹣1,∴S △CBE =12•BE •CH =12•1)•1=2. (2)证明:如图②中,连接DQ 、作CH ⊥BD 于H .∵=CE CH AB BC =12,∠CHE =∠ACB =90°, ∴△CHE ∽△ACB ,∴∠CEH =∠ABC =45°,∵∠DCQ =∠DEQ =90°,∴∠DCQ +∠DEQ =180°,C 、D 、E 、Q 四点共圆,∴∠CQD =∠CED =45°,∴△CDQ 是等腰直角三角形,∴CD =CQ ,AD =BQ ,∵AC =CD +AD ,CQ =CQ =12BD ,BQ =2EQ , ∴AC =12BD +2EQ . 2、【解答】解:(1)∵△ABC 是等边三角形,∴∠ABC =∠ACB =60°,∵AC∥BN,∴∠NBC=∠ACB=60°,∴∠ABN=∠ABC+∠NBC=120°,∴在△ABN中,∠N=180°﹣∠ABN﹣∠BAN=180°﹣120°﹣15°=45°;(2)∵AC∥BN,∴∠N=∠GAE,∠NBG=∠AEG,又∵点G是线段BE的中点,∴BG=EG,∴△NBG≌△AEG(AAS),∴AG=NG,AE=BN,∵AE=CF,∴BN=CF,∵∠ACB=60°,∴∠ACF=180°﹣∠ACB=120°,∴∠ABN=∠ACF,又∵AB=AC,∴△ABN≌△ACF(SAS),∴AF=AN,∵AG=NG=12 AN,∴AF=2AG.3、【解答】证明:(1)如图,∵在Rt △ABC 中,∠ACB =90°,点D 为AB 中点, ∴CD 是斜边AB 上的中线,∴CD =AD =BD =12AB . 又EF ∥AB , ∴=EF CF AD CD, ∴=EF AD CF CD =1, ∴EF =CF ;(2)如图,延长DG 交BC 于点M ,连接GM∴DM 为△BAC 的中位线,GM 为△BEC 的中位线,DG 为△BAE 的中位线; ∴DG =2AE ,GM =2EC , ∴+==1+DM AE EC EC DG AE AE, 又EF ∥AB ,易证得=EC FC AE DF, ∴+=1+=1+==DM EC FC DF FC DF DG AE DF DF FC ,在△DGF 与△DMC 中,有∠FDG=∠CDM ,=DM DC DG DF; 故△DGF ∽△DMC ;所以∠FGD =∠CMD ;又∠CMD =180°﹣∠ACB =90°,∴∠FGD =90°,∴FG ⊥DG .4、【解答】解:(1)∵∠ACB =90°,CD ⊥AB 于D ,∴∠CAE +∠AEC =∠DAF +∠AFD =90°,∴∠AFD =∠AEC ,∵∠AFD =∠CFE ,∴∠CFE =∠CEF ,∴CF =CE ,∵CH ⊥EF ,∴HE =HF ;(2)∵∠ADF =∠CHF =90°,∠AFD =∠CFH ,∴△ADF ∽△CFH , ∴=CF HF AF DF,∵∠AFC =∠DFH ,∴△AFC ∽△DFH ,∴∠CAF =∠CDH ,∵∠CAD =2∠CAF ,∴∠CAB =2∠CDH .5、【解答】证明:(1)∵AD 平分∠CAB ,∴∠CAE =∠F AE .∵CE ⊥AD ,∴∠CEA =∠FEA =90°.在△ACE 和△AFE 中,∠CAE=∠FAE ,AE=AE ,∠CEA=∠FEA=90°, ∴△ACE ≌△AFE .∴CE =FE .又∵G 是BF 的中点,∴EG ∥BC .(2)∵△ACD ∽△AEC ,CE ⊥AD ,∴∠ACD =∠AEC =90°,且=AC AE AD AC. ∴AC 2=AE •AD =16.∴AC=4.在Rt△ABC中,AB=AC=4,由勾股定理得:BC8.∵EG是△FBC的中位线,∴EG=11=8=4 22×BC.6、【解答】(1)证明:∵AC平分∠DAB,∴∠DAC=∠CAB,∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴AD:AC=AC:AB,∴AC2=AB•AD;(2)证明:∵E为AB的中点,∴CE=12AB=AE,∴∠EAC=∠ECA,∵∠DAC=∠CAB,∴∠DAC=∠ECA,∴CE∥AD;(3)解:∵CE∥AD,∴△AFD∽△CFE,∴AD:CE=AF:CF,∵CE=12 AB,∴CE=12×6=3,∵AD=4,∴4=3AFCF,∴7=4ACAF.7、【解答】证明:(1)∵AP∥CD,∴∠AMD=∠MAN,∠BMD=∠MNA,∵∠AMD=∠BMD,∴∠MAN=∠MNA,∴MN=MA.(2)如图,连接NC,∵AP∥CD,且PN=AN.∴==,∴MC=MD,∴CN为直角△ACP斜边AP的中线,∴CN=NA,∠NCA=∠NAC,∵AP∥CD,∴∠NCM=2∠ACD,∵∠CMN=∠DMB,∠DMA=∠BMD,∴∠CMD=∠DMA,在△CMN和△DMA中,CM=MD,∠CMN=∠DMA,MN=MA,∴△CMN≌△DMA(SAS),∠ADM=∠NCM=2∠ACD.即:∠CDA=2∠ACD.8、【解答】(1)证明:∵△ACB和△ECD都是等腰直角三角形∴AC=BC,EC=DC,∠ACB=∠ECD=90°∴∠ACB﹣∠ACD=∠ECD﹣∠ACD∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD.(2)解:由(1)得△ACE≌△BCD,∴∠CAE=∠CBD,又∵△ABC是等腰直角三角形,∴∠CAB=∠CBA=∠CAE=45°,∴∠EAD=90°,在Rt△ADE中,AE2+AD2=ED2,且AE=BD,∴BD2+AD2=ED2,∵ED CD,(3)解:连接EF ,设BD =x ,∵BD :AF =1:,则AF =x ,∵△ECD 都是等腰直角三角形,CF ⊥DE ,∴DF =EF ,由 (1)、(2)可得,在Rt △F AE 中,EF =3x ,∵AE 2+AD 2=2CD 2∴222x +=2(), 解得x =1,∴AB =+4.9、【解答】(1)证明:∵△ABC 是等边三角形,∴∠ABC =∠ACB =60°,AB =AC =BC ,∵D 为AC 中点,∴∠DBC =30°,AD =DC ,∵BD=DE,∴∠E=∠DBC=30°∵∠ACB=∠E+∠CDE,∴∠CDE=30°=∠E,∴CD=CE,∵AD=DC,∴AD=CE;(2)成立,如图2,过D作DF∥BC,交AB于F,则∠ADF=∠ACB=60°,∵∠A=60°,∴△AFD是等边三角形,∴AD=DF=AF,∠AFD=60°,∴∠BFD=∠DCE=180°﹣60°=120°,∵DF∥BC,∴∠FDB=∠DBE=∠E,在△BFD和△DCE中,∠FDB=∠E,∠BFD=∠DCE,BD=DE,∴△BFD≌△DCE,∴CE=DF=AD,即AD=CE.(3)(2)中的结论仍成立,如图3,过点D作DP∥BC,交AB的延长线于点P,∵△ABC是等边三角形,∴△APD也是等边三角形,∴AP=PD=AD,∠APD=∠ABC=∠ACB=∠PDC=60°,∵DB=DE,∴∠DBC=∠DEC,∵DP∥BC,∴∠PDB=∠CBD,∴∠PDB=∠DEC,在△BPD和△DCE中,∠FDB=∠DEC,∠P=∠DCE=60°,DB=DE,∴△BPD≌△DCE,∴PD=CE,∴AD=CE.10、【解答】(1)解:如图1中,在AB上取一点M,使得BM=ME,连接ME.在Rt△ABE中,∵OB=OE,∴BE=2OA=2,∵MB=ME,∴∠MBE=∠MEB=15°,∴∠AME=∠MBE+∠MEB=30°,设AE=x,则ME=BM=2x,AM,∵AB2+AE2=BE2,∴(2x)2+x2=22,(负根已经舍弃),∴x=2∴AB=AC=(•2∴BC AB.(2)作CQ⊥AC,交AF的延长线于Q,∵AD=AE,AB=AC,∠BAE=∠CAD,∴△ABE≌△ACD(SAS),∴∠ABE=∠ACD,∵∠BAC=90°,FG⊥CD,∴∠AEB=∠CMF,∴∠GEM=∠GME,∴EG=MG,∵∠ABE=∠CAQ,AB=AC,∠BAE=∠ACQ=90°,∴△ABE≌△CAQ(ASA),∴BE=AQ,∠AEB=∠Q,∴∠CMF=∠Q,∵∠MCF=∠QCF=45°,CF=CF,∴△CMF≌△CQF(AAS),∴FM=FQ,∴BE=AQ=AF+FQ=AF=FM,∵EG=MG,∴BG=BE+EG=AF+FM+MG=AF+FG.11、解:(1)如图1,过点C作CG⊥AB于G,∴∠AGC=∠AGB=90°,∵AC=CD,∴AG=DG,设DG=a,∵BD=BE,∠ABC=60°,∴△BDE是等边三角形,∴BD =DE =∴BG =BD +DG =+a ,在Rt △BGC 中,∠BCG =90°﹣∠ABC =30°,∴BC =2BG ,CG =,在Rt △DGC 中,CD =AC =根据勾股定理得,CG 2+DG 2=CD 2,∴()2+a 2=90,∴a =2或a =2(舍), ∴BC =EC +BE =EC +BD ,∴EC +BD =2(BD +DG ),∴EC =BD +2DG =2+2a =2+2×=9﹣;(2)如图2,在MC 上取一点P ,使MP =DE ,连接AP ,∵△BDE 是等边三角形,∴∠BED =60°,BE =DE ,∴∠DEC =120°,BE =PM ,∵AE =AM ,∴∠AEM =∠AME ,∴∠AEB =∠AMP ,∴△ABE ≌△APM (SAS ),∴∠APM=∠ABC=60°,∴∠APC=120°=∠DEC,过点M作AC的平行线交AP的延长线于Q,∴∠MPQ=∠APC=120°=∠DEC,∵AC=CD,∴∠ADC=∠DAC,∴∠CDE=180°﹣∠BDE﹣∠ADC=180°﹣60°﹣∠DAC=120°﹣∠DAC,在△ABC中,∠ACB=180°﹣∠ABC﹣∠DAC=120°﹣∠DAC=∠CDE,∵MQ∥AC,∴∠PMQ=∠ACB,∴∠PMQ=∠EDC,∴△MPQ≌△DEC(ASA),∴MQ=CD,∵AC=MQ,∴△APC≌△QPM(AAS),∴CP=MP,∴CM=MP+CP=2DE;(3)如备用图,在MC上取一点P,使PM=DE,由(2)知,MC=2CP=2DE,由(2)知,△ABE≌△APM,∴AB=AP,∵∠ABC=60°,∴△ABP是等边三角形,∴BP=AB,∵BE=BD,∴PE=AD,∴BC=BE+PE+CP=DE+PE+DE=2DE+AD=MC+AD,过点A作AH⊥BC于H,设BH=m,在Rt△ABH中,AH,在Rt△ACH中,∠ACB=45°,∴∠CAH=90°﹣∠ACB=45°=∠ACB,∴CH=AH,AC AH m,∵MC+AD=BC=BH+CH=m m=(m,∴MC+AD.12、【解答】解:(1)8,不会,8;∵∠A=∠C=45°,∠APD=∠QDC=90°,∴△APD ∽△CDQ .∴AP :CD =AD :CQ .∴即AP ×CQ =AD ×CD ,∵AB =BC =4,∴斜边中点为O ,∴AP =PD =2,∴AP ×CQ =2×4=8;将三角板DEF 由图1所示的位置绕点O 沿逆时针方向旋转,设旋转角为α. ∵在△APD 与△CDQ 中,∠A =∠C =45°,∠APD =180°﹣45°﹣(45°+a )=90°﹣a ,∠CDQ =90°﹣a ,∴∠APD =∠CDQ .∴△APD ∽△CDQ . ∴=AP CD AD CQ, ∴AP •CQ =AD •CD =AD 2=(12AC )2=8. (2)当0°<α≤45°时,如图2,过点D 作DM ⊥AB 于M ,DN ⊥BC 于N , ∵O 是斜边的中点,∴DM =DN =2,∵CQ =x ,则AP =8x,∴S △APD =12•8x •2=8x ,S △DQC =12x ×2=x , ∴y =8﹣8x﹣x (2≤x <4), 当45°<α<90°时,如图3,过点D 作DG ⊥BC 于G ,DG =2∵CQ =x ,∴AP =8x, ∴BP =8x ﹣4 ∵=BP BM DG MG, 即82-x =2MG MG,MG =2x 4-x ∴MQ =2x 4-x +(2﹣x )=2x -4x+84-x∴y =2x -4x+84-x(0<x <2); (3)在图(2)的情况下,∵PQ ∥AC 时,BP =BQ ,∴AP =QC∴x =8x,解得x =, ∴当x =时,y =8﹣=8﹣.14、【解答】提出问题:解:在△DBA和△CAB中,∠ADB=∠ACB,∠CAB=∠DBA,AB=BA ∴△DBA≌△CAB(AAS),∴AD=BC;类比探究:结论仍然成立.理由:作∠BEC=∠BCE,BE交AC于E.∵∠ADB+∠ACB=∠AEB+∠BEC=180°,∴∠ADB=∠AEB.∵∠CAB=∠DBA,AB=BA,∴△DBA≌△EAB(AAS),∴BE=AD,∵∠BEC=∠BCE,∴BC=BE,∴AD =BC .综合运用:作∠BEC =∠BCE ,BE 交AC 于E .由(2)得,AD =BC =BE =1.在Rt △ACB 中,∠CAB =18°,∴∠C =72°,∠BEC =∠C =72°.由∠CFB =∠CAB +∠DBA =36°, ∴∠EBF =∠CEB ﹣∠CFB =36°,∴EF =BE =1.在△BCF 中,∠FBC =180°﹣∠BFC ﹣∠C =72°, ∴∠FBC =∠BEC ,∠C =∠C ,∴△CBE ∽△CFB . ∴=CB CF CE CB,令CE =x , ∴1=x (x +1).解得,x∴CF . 由∠FBC =∠C ,∴BF =CF .又AF =BF ,∴AC =2CF .15、【解答】(1)证明:如图1中,∵∠DAE=∠BAC,∴∠EAC=∠DAB,∵AE=AD,AC=AB,∴△EAC≌△DAB(SAS),∴EC=BD.(2)解:如图2中,连接BD.∵AE=AD,∠EAD=60°,∴△AED是等边三角形,∴∠DEA=∠CDE=60°,∵EF⊥AD,∴∠FEA=12∠DEA=30°∵∠DAE=∠BAC,∴∠EAC=∠DAB,∵AE=AD,AC=AB,∴∠BDA=∠AEC=30°,EC=BD,∴∠EDB=90°,∵AE=4,AF=2,AC,∠EF A=∠AFC=90°,∴EF CF,∴EC=BD=∴BE(3)解:如图3中,作CM⊥CA,使得CM=CA,连接AM,BM.∵CA=CM,∠ACM=90°,∴∠CAM=45°,∵∠CAB=45°,∴∠MAB=45°+45°=90°,设AB=AC=m,则AM m,BMm,∵∠ACM=∠BCD=90°,∴∠BCM=∠ACD,∵CA=CM,CB=CD,∴AD =BM ,∴AD AB . 16、【解答】解:(1)结论:AD =2PD . 理由:如图1中,∵△ABC 是等边三角形,∴∠B =60°,∵∠EDC =120°,∴∠EDB =180°﹣120°=60°, ∴∠B =∠EDB =∠BED =60°, ∴△BDE 是等边三角形,∵BP =PE ,∴DP ⊥AB ,∴∠APD =90°,∵DE =DC ,DE =DB ,∴BD =CD ,∵AB =AC ,∠BAC =60°,∴∠P AD=12∠BAC=30°,∴AD=2PD.(2)结论成立.理由:延长DP到N,使得PN=PD,连接BN,EN,延长ED到M,使得DM=DE,连接BD,BM,CM.∵DE=DC=DM,∠MDC=180°﹣∠EDC=60°,∴△DCM是等边三角形,∵CA=CB,CM=CD,∠DCM=∠ACB=60°,∴∠BCM=∠ACD,∴△BCM≌△ACD(SAS),∴AD=BM,∵PB=PE,PD=PN,∴四边形BNED是平行四边形,∴BN∥DE,BN=DE,∵DE=DM,∴BN=DM,BN∥DM,∴四边形BNDM是平行四边形,∴BM=DN=2PD,∴AD=2PD.(3)如图3中,作∠PDK=∠BDC=120°,且PD=PK,连接PK,CK.∵DB=DC,DP=DK,∠BDC=∠PDK,∴∠BDP=∠CDK,∴△PDB≌△KDC(SAS),∴PB=CK,∵PB+PC=PC+CK=定值,∴P,C,K共线时,PK定值最大,此时PD的值最大,此时,∠DPB=∠DKP=∠DPK=30°,∠PBC=∠DPB+∠DPK=60°.故答案为60°.。

2021年广东省广州市九年级中考数学 三轮冲刺复习:三角形(含答案)

2021年广东省广州市九年级中考数学  三轮冲刺复习:三角形(含答案)

2021广州中考三轮冲刺复习:三角形一、选择题1. 下面是小强用三根火柴组成的图形,其中符合三角形概念的是()2. 在一个三角形中,有一个角是55°,则另外的两个角可能是()A.95°,20°B.45°,80°C.55°,60°D.90°,20°3. 如图,在△ABC中,表示AB边上的高的图形是()4. 已知等腰三角形的腰和底的长分别是一元二次方程x2-6x+8=0的根,则该三角形的周长为()A. 8B. 10C. 8或10D. 125. 如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E,若∠E=35°,则∠BAC的度数为()A. 40°B. 45°C. 60°D. 70°6. 在△ABC中,若∠B=3∠A,∠C=2∠B,则∠B的度数为()A.18°B.36°C.54°D.90°7. (2019•荆门)将一副直角三角板按如图所示的位置摆放,使得它们的直角边互相垂直,则1的度数是A.95︒B.100︒C.105︒D.110︒8. 如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC交BC于点D,DE∥AB交AC 于点E,则∠ADE的度数是()A.54°B.50°C.45°D.40°二、填空题9. 如图,已知AB,CD相交于点O,且∠A=38°,∠B=58°,∠C=44°,则∠D=________°.10. 若正多边形的一个外角是60°,则这个正多边形的内角和是________.11. 如图,已知∠A=54°,∠B=31°,∠C=21°,则∠1=________°.12. 如图,在△ABC中,∠ABC,∠ACB的平分线相交于点O,OD⊥OC交BC于点D.若∠A =80°,则∠BOD=________°.13. 在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是________.14. 模拟某人为机器人编制了一段程序(如图),如果机器人以2 cm/s的速度在平地上按照程序中的步骤行走,那么该机器人从开始到停止所需的时间为________s.15. 如图,在△ABC中,BO平分∠ABC,CO平分∠ACB.若∠A=70°,则∠BOC=________°.16. 如图,若该图案是由8个形状和大小相同的梯形拼成的,则∠1=________°.三、解答题17. 如图,佳佳和音音住在同一小区(A点),每天一块去学校(B点)上学.一天,佳佳要先去文具店(C点)买练习本再去学校,音音要先去书店(D点)买书再去学校(B,D,C三点在同一条直线上).这天两人从家到学校谁走的路程远?为什么?18. 如图,已知BE 、CF 分别为ABC ∆中B ∠、C ∠的平分线,AM BE ⊥于M ,AN CF ⊥于N ,求证:MN BC ∥.19. 某单位修建正多边形花台,已知正多边形花台的一个外角的度数比一个内角度数的15多12°.(1)求出这个正多边形的一个内角的度数; (2)求这个正多边形的边数.20. 如图,CE是△ABC 的外角∠ACD 的平分线,且CE 交BA 的延长线于点E ,∠B =25°,∠E=30°,求∠BAC 的度数.21. 如图,在△ABC中,BD 是角平分线,CE 是AB 边上的高,且∠ACB=60°,∠ADB=97°,求∠A 和∠ACE 的度数.NMEFCBA22. 观察与转化思想如图是五角星形,求∠A+∠B+∠C+∠D+∠E的度数.23. 已知:如图1-Z-20,在四边形ABCD中,∠D=90°,∠ABC=∠BCD,点E在直线BC上,点F在直线CD上,且∠AEB=∠CEF.(1)如图①,若AE平分∠BAD,求证:EF⊥AE;(2)如图②,若AE平分四边形ABCD的外角,其余条件不变,则(1)中的结论是否仍然成立?说明理由.24. 如图①所示,在△ABC中,∠1=∠2,∠C>∠B,E为AD上一点,且EF⊥BC于点F.(1)试探索∠DEF与∠B,∠C之间的数量关系;(2)如图②所示,当点E在AD的延长线上时,其余条件都不变,你在(1)中探索得到的结论是否还成立?2021广州中考三轮冲刺复习:三角形-答案一、选择题1. 【答案】C2. 【答案】B[解析] ∵在一个三角形中,有一个角是55°,∴另外的两个角的和为125°,各选项中只有B选项中的两个角的和为125°.故选B.3. 【答案】D4. 【答案】B【解析】解一元二次方程x2-6x+8=0,得x1=2,x2=4.当三角形三边为2,2,4时,∵2+2=4,∴不符合三边关系,应舍去;当三角形三边为2,4,4时,∵2+4>4,符合三边关系,∴三角形的周长为10,故选B.5. 【答案】A【解析】由AE∥BD,可得∠DBC=∠E=35°,由BD平分∠ABC可得∠ABC=2∠DBC=70°,由AB=AC可得∠ABC=∠C=70°,由三角形内角和定理可得∠BAC=180°-70°-70°=40°.6. 【答案】C[解析] ∵在△ABC中,∠B=3∠A,∠C=2∠B,∴∠C=6∠A.设∠A=x,则∠B=3x,∠C=6x.由三角形内角和定理可得x+3x+6x=180°,解得x=18°,∴∠B=3x=54°.7. 【答案】C【解析】如图,由题意得,2454903060∠=︒∠=︒︒=︒,-,∴3245∠=∠=︒, 由三角形的外角性质可知,134105∠=∠+∠=︒,故选C .8. 【答案】D[解析] 由三角形内角和定理可知∠BAC =180°-∠B -∠C =180°-46°-54°=80°.因为AD 平分∠BAC , 所以∠BAD =12∠BAC =40°. 因为DE ∥AB ,所以∠ADE =∠BAD =40°.二、填空题9. 【答案】64[解析] 由三角形内角和定理可知∠A +∠D +∠AOD =180°,∠B +∠C +∠BOC=180°.∵∠AOD =∠BOC , ∴∠A +∠D =∠B +∠C. ∴∠D =64°.10. 【答案】720°[解析] 该正多边形的边数为360°÷60°=6.该正多边形的内角和为(6-2)×180°=720°.11. 【答案】106[解析] 由三角形的外角性质可知,∠CDB =∠A +∠C =75°,∴∠1=∠CDB +∠B =106°.12. 【答案】4013. 【答案】4∶3【解析】如解图,过D 作DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,∵AD 是∠BAC 的平分线,∴DE =DF(角平分线上的点到角两边的距离相等),设DE =DF =h ,则S △ABD S △ACD=12AB·h 12AC·h =43.14. 【答案】16[解析] 由题意得,该机器人所经过的路径是一个正多边形,多边形的边数为36045=8, 则所走的路程是4×8=32(cm), 故所用的时间是32÷2=16(s).15. 【答案】125[解析] ∵BO 平分∠ABC ,CO 平分∠ACB ,∴∠ABO =∠CBO ,∠BCO =∠ACO.∴∠CBO +∠BCO =12(∠ABC +∠ACB)=12(180°-∠A)=12(180°-70°)=55°. ∴在△BOC 中,∠BOC =180°-55°=125°.16. 【答案】67.5三、解答题17. 【答案】解:佳佳从家到学校走的路程远.理由:佳佳从家到学校走的路程是AC+CD+BD ,音音从家到学校走的路程是AD+BD.∵在△ACD 中,AC+CD>AD ,∴AC+CD+BD>AD+BD ,即佳佳从家到学校走的路程远.18. 【答案】延长AM 、AN 交BC 于点Q 、R .由等腰三角形三线合一可得AM QM =、AN RN =再由三角形中位线可得MN BC ∥.19. 【答案】解:(1)设这个多边形的一个内角的度数是x °,则与其相邻的外角度数是15x °+12°.由题意,得x+1x+12=180,解得x=140.5即这个正多边形的一个内角的度数是140°.=9.(2)这个正多边形的每一个外角的度数为180°-140°=40°,所以这个正多边形的边数是36040 20. 【答案】解:∵∠B=25°,∠E=30°,∴∠ECD=∠B+∠E=55°.∵CE是∠ACD的平分线,∴∠ACE=∠ECD=55°.∴∠BAC=∠ACE+∠E=85°.21. 【答案】解:∵∠ADB=∠DBC+∠ACB,∴∠DBC=∠ADB-∠ACB=97°-60°=37°.∵BD是△ABC的角平分线,∴∠ABC=74°.∴∠A=180°-∠ABC-∠ACB=46°.∵CE是AB边上的高,∴∠AEC=90°.∴∠ACE=90°-∠A=44°.22. 【答案】解:如图,∵∠1是△CEG的外角,∴∠1=∠C+∠E.同理可得∠AFB=∠B+∠D.∵在△AFG中,∠A+∠1+∠AFG=180°,∴∠A+∠B+∠C+∠D+∠E=180°.23. 【答案】解:(1)证明:∵∠BAE=180°-∠ABC-∠AEB,∠EFC=180°-∠BCD-∠CEF,且∠ABC=∠BCD,∠AEB=∠CEF,∴∠BAE=∠EFC.∵AE平分∠BAD,∴∠BAE=∠DAE.∴∠EFC=∠DAE.∵∠EFC+∠EFD=180°,∴∠DAE+∠EFD=180°.∴∠AEF+∠D=360°-(∠DAE+∠EFD)=180°.又∵∠D=90°,∴∠AEF=90°.∴EF⊥AE.(2)EF⊥AE仍成立.理由如下:如图.∵∠1=∠ABC-∠AEB,∠F=∠BCD-∠CEF,且∠ABC=∠BCD,∠AEB=∠CEF,∴∠1=∠F.∵AE平分四边形ABCD的外角,∴∠1=∠2.∴∠F=∠2.∵∠2+∠EAD=180°,∴∠F+∠EAD=180°.∴∠AEF+∠D=360°-(∠F+∠EAD)=180°.又∵∠D=90°,∴∠AEF=90°.∴EF⊥AE.24. 【答案】解:(1)∵∠1=∠2,∴∠1=12∠BAC.又∵∠BAC =180°-(∠B +∠C),∴∠1=12[180°-(∠B +∠C)]=90°-12(∠B +∠C).∴∠EDF =∠B +∠1=∠B +90°-12(∠B +∠C)=90°+12(∠B -∠C).∵EF ⊥BC ,∴∠EFD =90°.∴∠DEF =90°-∠EDF =90°-[90°+12(∠B -∠C)]=12(∠C -∠B).(2)当点E 在AD 的延长线上时,其余条件都不变,在(1)中探索得到的结论仍成立.。

八年级数学《11.2_与三角形有关的角》衔接中考练习测试

八年级数学《11.2_与三角形有关的角》衔接中考练习测试

5·3全练《11.2 与三角形有关的角》衔接中考三年模拟全练1.(2020四川自贡富顺三中期中,4,★☆☆)将一副三角板按如图所示的方式放置,若AE∥BC,则∠BAD=()A.90°B.85°C.75°D.65°2.(2020福建三明宁化月考,9,★☆☆)如图,在△ABC中,AD和BE是角平分线,其交点为O,若∠BOD=66°,则∠ACB的度数是()A.33°B.28°C.52°D.48°3.(2020湖南长沙雨花雅礼实验中学月考,7,★☆☆)在下列条件中,不能确定△ABC是直角三角形的是()A.∠A=12∠B=13∠CB.∠A=2∠B-3∠CC.∠A=∠B=12∠CD.∠A=2∠B=2∠C4.(2020山东东营垦利期中,13,★☆☆)如图,△ABC中,∠ABC=50°,∠ACB=70°,AD平分∠BAC.过点D作DE⊥AB于点E,则∠ADE=__________.5.(2020广东实验中学期中,14,★★☆)如图,AD为△ABC的高,BE为△ABC的角平分线,若∠EBA=30°,∠AEB=80°,则∠CAD的度数为________.6.(2020吉林四平伊通期末,22,★★☆)如图,在△ABC中,AD是BC边上的高,AE,BF分别是∠BAC和∠ABC的平分线,它们相交于点O,∠AOB=125°,求∠CAD的度数.五年中考全练7.(2019内蒙古赤峰中考,13,★☆☆)如图,点D在BC的延长线上,DE⊥AB于点E,交AC于点F.若∠A=35°,∠D=15°,则∠ACB的度数为()A.65°B.70°D.85°8.(2019四川眉山中考,5,★☆女)如图,在△ABC中,AD平分∠BAC交BC于点D,∠B=30°,∠ADC=70°,则∠C的度数是()A.50°B.60°C.70°D.80°9.(2019山东枣庄中考,3,★☆☆)将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠ 的度数是()A.45°B.60°C.75°D.85°10.(2019黑龙江大庆中考,8,★★)如图,在△ABC中,BE是∠ABC的平分线,CE是外角∠ACM的平分线,BE与CE相交于点E,若∠A=60°,则∠BEC是()B.30°C.45°D.60°11.(2019浙江杭州中考,7,★★☆)在△ABC中,若一个内角等于另外两个内角的差,则()A.必有一个内角等于30°B.必有一个内角等于45°C.必有一个内角等于60°D.必有一个内角等于90°12.(2018四川巴中中考,16,★★☆)如图,在△ABC中,BO、CO分别平分∠ABC、∠ACB.若∠BOC=110°,则∠A=_________.13.(2018湖北宜昌中考,18,★★☆)如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.核心素养全练14.(1)如图①,△ABC是锐角三角形,高BD、CE相交于点H,探究∠BHC 与∠A的数量关系;(2)如图②,△ABC是钝角三角形,∠A>90°,高BD、CE所在的直线相交于点H,把图②补充完整,并说明∠BHC与∠A的数量关系与(1)中的结论是否一致.15.问题情景:如图①,有一块直角三角板PMN放置在△ABC上(P点在△ABC 内),三角板PMN的两条直角边PM、PN恰好分别经过点B和点C.试问∠ABP与∠ACP是否存在某种确定的数量关系?(1)特殊探究:若∠A=50°,则∠ABC+∠ACB=_________度,∠PBC+∠PCB=_________度,∠ABP+∠ACP=_________度;(2)类比探索:请探究∠ABP+∠ACP与∠A的关系;(3)类比延伸:如图②,改变直角三角板PMN的位置,使P点在△ABC外,三角板PMN的两条直角边PM、PN仍然分别经过点B和点C,(2)中的结论是否仍然成立?若不成立,请直接写出你的结论.参考答案1.答案:C解析:∵AE∥BC,∴∠ADB=∠DAE=45°,∵∠B=60°,∴∠BAD=l80°-∠B-∠ADB=180°-60°-45°=75°,故选C.2.答案:D解析:∵∠BOD是△ABO的外角,∴∠ABO+∠BAO=∠BOD=66°,又∵AD 和BE是△ABC的角平分线,∴∠ABC+∠BAC=2(∠ABO+∠BAO)=2×66°=132°,∴∠ACB=180°-132°=48°,故选D.3.答案:B解析:A由∠A=12∠B=13C,可以推出∠A=30°,∠B=60°,∠C=90°,所以本选项能确定.C.由∠A=∠B=12∠C,可以推出∠C=90°,∠A=∠B=45°,所以本选项能确定.D.由∠A=2∠B=2∠C,可以推出∠A=90°,∠B=∠C=45°,所以本选项能确定.故选B.4.答案:60°解析:∵∠ABC=50°,∠ACB=70°,∴∠BAC=60°,又∵AD平分∠BAC,∴∠BAD=30°,又∵DE⊥AB,∴∠AED=90°,∴在R△ADE中,∠ADE=60°.5.答案:40°解析:∵BE平分∠ABC,∴∠ABE=∠EBC=30°,∵∠AEB=∠EBC+∠C,∴∠C=80°-30°=50°,∵AD⊥BC,∴∠ADC=90°,∴∠CAD=90°-50°=40°.6.解:∵∠AOB=125°,∴∠OAB+∠OBA=55°,∵AE,BF分别是∠BAC和∠ABC的平分线,∴∠BAC+∠ABC=2(∠OAB+∠OBA)=110°,∴∠C=70°,∵AD是BC边上的高,∴∠ADC=90°,∴∠CAD=20°,即∠CAD的度数是20°.7.答案:B解析:∵DE⊥AB,∠A=35°,∴∠AFE=∠CFD=90°-∠A=55°,∴∠ACB=∠D+∠CFD=15°+55°=70°.故选B.8.答案:C解析:∵∠B=30°,∠ADC=70°,∴∠BAD=∠ADC-∠B=70°-30°=40°.∵AD平分∠BAC,∴∠BAC=2∠BAD=80°,∴∠C=180°-∠B-∠BAC=180°-30°-80°=70°,故选C.9.答案:C解析:如图,∵∠ACD=90°,∠F=45°,∴∠CGF=∠DGB=45°,则∠ =∠D+∠DGB=30°+45°=75°,故选C.10.答案:B解析:∵BE是∠ABC的平分线,∴∠EBM=12∠ABC,∵CE是∠ACM的平分线,∴ECM=12∠ACM,则∠BEC=∠ECM-∠EBM=12(∠ACM-∠ABC)=12∠A=30°,故选B.11.答案:D解析:由题意知∠A+∠B+∠C=180①,不妨设∠A=∠C-∠B②,把②代入①,得2∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故选D.12.答案:40°解析:∵BO、CO分别平分∠ABC、∠ACB,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∵∠BOC+∠OBC+∠OCB=180°,∴∠BOC=180°-(∠OBC+∠OCB)=180°-12(∠ABC+∠ACB),∵∠A+∠ABC+∠ACB=180°,∴∠ABC+∠ACB=180°-∠A,∴∠BOC=180°-12(180°-∠A)=90°+12∠A,∵∠BOC=110°,∴90°+12∠A=110°,∴∠A=40°.13.解:(1)∵在R△ABC中,∠ACB=90°,∠A=40°,∴∠ABC=90°-∠A=50°,∴∠CBD=130°.∵BE平分∠CBD,∴∠CBE=12∠CBD=65°.(2)∵∠BCE=90°,∠CBE=65°,∴∠CEB=90°-65°=25°.∵DF∥BE,∴∠F=∠CEB=25°.14.解:(1)∵高BD、CE相交于点H,∴∠BEH=∠ADH=90°,在Rt△ABD中,∵∠ABD+∠A=90°,∴∠ABD=90°-∠A,∵∠BHC是Rt△BEH的外角,∴∠BHC=90°+∠ABD=180°-∠A,∴∠BHC+∠A=180°.(2)如图所示.结论一致,∠BHC+∠BAC=180°.理由:∵高BD、CE所在的直线相交于点H,∴∠ADH=∠AEH=90°,在四边形ADHE中,∵∠AEH+∠ADH+∠DAE+∠EHD=360°,∴∠EHD+∠DAE=180°,∵∠BAC=∠DAE,∴∠BHC+∠BAC=180°.15.解:(1)130:90:40.(2)∵90°+(∠ABP+∠ACP)+∠A=180°,∴∠ABP+∠ACP+∠A=90°,∴∠ABP+∠ACP=90°-∠A.(3)不成立.结论:∠ACP-∠ABP=90°-∠A.具体过程如下:在△ABC中,∠ABC+∠ACB=180°-∠A,∵∠MPN=90°,∴∠PBC+∠PCB=90°,∴(∠ABC+∠ACB)-(∠PBC+∠PCB)=180°-∠A-90°,即∠ABC+∠ACP+∠PCB-∠ABP-∠ABC-∠PCB=90°-∠A,∴∠ACP-∠ABP=90°-∠A.。

中考数学第三轮冲刺解答题:解直角三角形 专题复习(含答案)

中考数学第三轮冲刺解答题:解直角三角形 专题复习(含答案)
20、有一种升降熨烫台如图1所示,其原理是通过改变两根支撑杆夹角的度数来调整熨烫台的高度.图2是这种升降熨烫台的平面示意图. 和 是两根相同长度的活动支撑杆,点 是它们的连接点, , 表示熨烫台的高度.
(1)如图 .若 , ,求 的值;
(2)爱动脑筋的小明发现,当家里这种升降熨烫台的高度为 时,两根支撑杆的夹角 是 (如图 .求该熨烫台支撑杆 的长度(结果精确到 .
3、襄阳卧龙大桥横跨汉江,是我市标志性建筑之一.某校数学兴趣小组在假日对竖立的索塔在桥面以上的部分(上塔柱BC和塔冠BE)进行了测量.如图所示,最外端的拉索AB的底端A到塔柱底端C的距离为121m,拉索AB与桥面AC的夹角为37°,从点A出发沿AC方向前进23.5m,在D处测得塔冠顶端E的仰角为45°.请你求出塔冠BE的高度(结果精确到0.1m.参考数据sin37°≈0.60,cos37°≈0.80,tan37°≈0.75, ≈1.41).
参考答案
2021年中考数学第三轮冲刺解答题:解直角三角形 专题复习
1、图①是放置在水平面上的台灯,图②是其侧面示意图(台灯底座高度忽略不计),其中灯臂AC=40cm,灯罩CD=30cm,灯臂与底座构成的∠CAB=60°.CD可以绕点C上下调节一定的角度.使用发现:当CD与水平线所成的角为30°时,台灯光线最佳.现测得点D到桌面的距离为49.6cm.请通过计算说明此时台灯光线是否为最佳?(参考数据: 取1.73).
16、我市在凤城河风景区举办了端午节赛龙舟活动,小亮在河畔的一幢楼上看到一艘龙舟迎面驶来,他在高出水面 的 处测得在 处的龙舟俯角为 ;他登高 到正上方的 处测得驶至 处的龙舟俯角为 ,问两次观测期间龙舟前进了多少?(结果精确到 ,参考数据: , , ,
17、某市为了加快5G网络信号覆盖,在市区附近小山顶架设信号发射塔,如图所示.小军为了知道发射塔 高度,从地面上的一点A测得发射塔顶端P点的仰角是45°,向前走60米到达B点测得P点的仰角是60°,测得发射塔底部Q点的仰角是30°.请你帮小军计算出信号发射塔PQ的高度.(结果精确到0.1 米, )

2020年中考数学教案人教版专题复习:与三角形有关的线段

2020年中考数学教案人教版专题复习:与三角形有关的线段

2020年中考数学人教版专题复习:与三角形有关的线段一、学习目标:1. 了解与三角形有关的线段(边、高、中线、角平分线);2. 理解三角形两边的和大于第三边,会根据三条线段的长度判断它们能否构成三角形.3. 会画出任意三角形的高、中线、角平分线.4. 了解三角形的稳定性.二、重点、难点:重点:三角形的有关概念和性质. 难点:三角形两边的和大于第三边.三、考点分析:本讲内容在中考中非常重要,但难度不大,要求理解三角形、三角形的高、中线和角平分线的概念,掌握三边关系及按边分类,认识三角形的稳定性并能灵活应用于实际,主要以填空题、选择题、计算题的形式出现. 知识梳理1. 三角形的边(1)三角形的概念和表示方法由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形,组成三角形的线段叫做三角形的边,相邻两边的公共端点叫做三角形的顶点,相邻两边所组成的图形叫做三角形的内角,简称三角形的角.三角形有六个元素:三条边和三个角.ABCabc(2)三角形的分类三角形⎩⎪⎨⎪⎧不等边三角形等腰三角形⎩⎨⎧底边和腰不相等的等腰三角形等边三角形AB C AB C AB C(3)三角形三边之间的关系:三角形两边的和大于第三边. 2. 三角形的高、中线和角平分线 (1)三角形的高从三角形的一个顶点向它的对边画垂线,顶点和垂足之间的线段叫做三角形的高.画三角形的高时,只需向对边或对边的延长线作垂线,连结顶点与垂足的线段就是该边上的高;三角形的高是线段;三角形的高线(高所在的直线)交于一点.ABC DEF ABC D EFA BCD EF(1)(2)(3)(2)三角形的中线在三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线.一个三角形有三条中线,且都在三角形的内部,并相交于一点.三角形的中线是一条线段.(3)三角形的角平分线三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段,叫做三角形的角平分线.一个三角形有三条角平分线,并且都在三角形的内部,相交于一点.三角形的角平分线是一条线段,而角的平分线是一条射线.3. 三角形的稳定性三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性.三角形的稳定性在生活和生产中应用很广,有很多需要稳定的东西都制成三角形的形状,四边形等其他的多边形不具有稳定性.典例精析知识点一:三角形的有关概念例1. 如图所示,在△ABC 中,∠1=∠2,G 为AD 中点,延长BG 交AC 于E .F 为AB 上一点,CF ⊥AD 于H ,下列判断正确的有( )①AD 是△ABE 的角平分线;②BE 是△ABD 边AD 上的中线;③CH 是△ACD 边AD 上的高.A .0个B .1个C .2个D .3个A BCDEFGH12思路分析:题意分析:本题考查对三角形的高、中线和角平分线定义的理解.解题思路:由∠1=∠2知AD 平分∠BAE ,但AD 不是△ABE 内的线段,所以①错;同理,BE 经过△ABD 边AD 的中点G ,但BE 不是△ABD 中的线段,故②不正确;③符合三角形的高的定义,是正确的. 解答过程:B解题后的思考:解答本题的关键是正确理解三角形的高、中线和角平分线的定义,三角形的高、中线和角平分线是线段,是三角形的一个顶点与这个顶点对边上某点所连的线段.例2. 如图所示,在△ABC 中,AD 、CE 是△ABC 的两条高,且BC =5cm ,AD =3cm ,CE =4cm ,求AB 的长.A BCE思路分析:题意分析:本题考查对三角形的高的定义的理解.解题思路:在解答时,首先要弄清三角形的边与边上的高的对应关系,然后利用三角形面积公式建立等式求解即可.解答过程:在△ABC 中,AD 、CE 分别是BC 、AB 边上的高,所以S △ABC =12AB ·CE =12BC ·AD , 即12AB ×4=12×5×3,AB =154(cm ).解题后的思考:利用面积相等来求线段的长度是一种特殊方法,这种方法可用于已知三角形的两边和这两边上的高(四条线段中的三条)求第四条线段的长度.例3. 如图,是一个正五边形木架,那么至少需要加钉几根木条才能固定该正五边形木架?思路分析:题意分析:此题考查三角形稳定性的应用.解题思路:这是一个五边形,要把它的各边都分割到三角形中才能将其固定,这样的木条至少需要2根.解答过程:至少需要加钉2根木条.解题后的思考:由于三角形具有稳定性,而其他图形不具有稳定性.因此要确定至少需要几根木条才能固定多边形木架,只需确定该多边形至少能分割成几个互不重叠的三角形.例4. 解答下列问题:(1)△ABC 的中线AD ,把△ABC 分成△ABD 和△ACD ,这两个三角形的面积有什么关系?证明你的结论.(2)你能把一块三角形的土地分成面积相等的四部分分别种西红柿、黄瓜、茄子和土豆吗?画出你的设计图. 思路分析:题意分析:本题考查三角形中线的性质.解题思路:被中线AD 分成的两个三角形△ABD 和△ACD 的边BD =DC ,且这两个三角形中,BD 、DC 边上的高相同,所以这两个三角形面积相等.应用这一结论可将一个三角形分成面积相等的四部分,但应注意分法可能有多种. 解答过程:(1)如图所示,因为AD 是△ABC 的中线,所以BD =DC .过点A 作AE ⊥BC 于E , 则AE 是△ABD 的高,也是△ADC 的高. 所以S △ABD =12BD ·AE ,S △ADC =12DC ·AE . 所以S △ABD =S △ADC .ABCD E(2)方法不唯一,如下图所示.在图①中BE =DE =DF =FC ;在图②中BD =DC ,AE =BE ,AF =FC ;在图③中BD =DC ,AE =DE .还有一些其他分法,原理是一样的.AAABBBC C CD D D EFEFE①②③解题后的思考:三角形的中线把一边平分,并且把这个三角形的面积平分.我们常用这个结论来说明两个三角形面积相等.小结:在三角形的有关概念中,应重点掌握三角形的角平分线、中线和高的定义与性质.如:三角形的中线把三角形分成面积相等的两部分,三角形的边与该边上的高的积相等.知识点二:三角形的三边关系例5.已知三角形的三边长分别为3、8、x,若x的值为偶数,则x的值有()A.6个B.5个C.4个D.3个思路分析:题意分析:本题考查三角形的三边关系.解题思路:x的取值不能太大,因为有3+8>x,即x<11.x的取值也不能太小,因为有3+x>8,即x>5,在这个范围内的偶数有6、8、10,共3个.解答过程:D解题后的思考:解答这个问题要注意两点:①对于x的取值要保证3、8、x能组成三角形,也就是要满足任意两边之和大于第三边.②x的值为偶数.学了不等式的知识后解答本题会更容易一些.例6.以下列长度的三条线段为边,哪些可以构成一个三角形,哪些不能构成三角形?(1)6cm,8cm,10cm;(2)3cm,8cm,11cm;(3)3cm,4cm,10cm;(4)三条线段之比为4∶6∶7.思路分析:题意分析:前三个小题所给线段长度是确定的数值,容易进行决断,第(4)小题的三条线段是比例关系,可以设其长度分别为4x、6x、7x,其中x是任意大于0的常数,再进行判断.解题思路:要构成一个三角形,必须满足任意两边之和大于第三边,在运用时,习惯于检查较小的两边之和是否大于第三边.解答过程:(1)因为6cm+8cm>10cm,所以6cm、8cm、10cm能构成三角形.(2)因为3cm+8cm=11cm,所以3cm、8cm、11cm不能构成三角形.(3)因为3cm+4cm<10cm,所以3cm、4cm、10cm不能构成三角形.(4)设三条线段之比为4x、6x、7x,因为:4x+6x>7x,所以三条线段之比为4∶6∶7时,此三条线段能构成三角形.解题后的思考:判断以三条线段为边能否构成三角形的简易方法是:(1)判断出较长的一边;(2)看较短的两边之和是否大于较长的一边,若是,则能构成三角形,若不是,则不能构成三角形.例7. 在△ABC 中,AB =AC ,AC 边上的中线BD 把△ABC 的周长分为12cm 和15cm 两部分,求三角形的各边长. 思路分析:题意分析:△ABC 是一个等腰三角形,它的周长被BD 分成AB +AD 和BC +DC 两部分,这两部分的长度分别12cm 和15cm .解题思路:因为中线BD 的端点D 是AC 边的中点,所以AD =CD ,造成两部分周长不等的原因是BC 边与AB 、AC 边不等,故应分类讨论.ABCDABC D(1)(2)① ②解答过程:如图①所示,设AB =x ,AD =CD =12x .(1)若AB +AD =12,即x +12x =12,所以x =8, 即AB =AC =8,则CD =4. 故BC =15-4=11.此时AB +AC >BC ,所以三边长为8、8、11.(2)如图②所示,若AB +AD =15,即x +12x =15,所以x =10. 即AB =AC =10,则CD =5. 故BC =12-5=7.显然此时三角形存在,所以三边长为10、10、7.综上所述,此三角形的三边长分别为8、8、11或10、10、7.解题后的思考:由于等腰三角形的腰和底边的长度不相等,所以在求其边长或周长的时候,常要分类讨论.例8. 如图所示,草原上有四口油井,位于四边形ABCD 的四个顶点,现要建一个维修站O ,为了使维修站到四口油井的距离之和最小,试问这个维修站O 建在AC 、BD 的交点处的理由是什么?ABC DO思路分析:题意分析:本题中到A 、B 、C 、D 四个点的距离之和的最小的位置已经给出,要求说出理由. 解题思路:说明这个维修站O 建在AC 、BD 的交点处的理由,就是说明交点O 到A 、B 、C 、D 四点的距离之和最小.可以用举反例的方法说明,取不同于点O 的任意一点O’,说明O’到四个点的距离之和不是最小的就可以了.解答过程:取异于点O 的点O’,根据三角形的两边之和大于第三边有:O’D +O’B >OD +OB ,O’A +O’C >OA +OC . 所以O’D +O’B +O’A +O’C >OD +OB +OA +OC . 即OD +OB +OA +OC 为最小.ABC DOO'解题后的思考:解答实际应用问题的关键是如何将其转化成所学的数学问题.另外,本题还可从另外一个角度思考,因为两点之间,线段最短,所以对于点A 和点C 来说,只有点O 在线段AC 上时,OA +OC 才是最小的,同理,点O 也必须在线段BD 上,所以维修站O 一定要建在AC 和BD 的交点处.小结:三角形的三边关系是三角形的重要性质,也是构成三角形的必要条件,它与不等式的知识是紧密联系在一起的,以后学不等式的时候,同学们要注意记得将它们进行综合学习.提分技巧1.在运用“三角形任意两边的和大于第三边”时,一般情况下,找出较短的两边和最长的边,只判断较短两边的和大于最长的边就可以了,不必一一验证.2.对于三角形的角平分线、中线和高,我们探究出了一些重要性质.如三角形的中线把三角形分成面积相等的两部分;三角形中如果有两条高,在求高或边长时常用等积法.。

专题02 全等三角形模型解题九年级数学中考复习专题训练模型解题高分攻略(教师版)

专题02 全等三角形模型解题九年级数学中考复习专题训练模型解题高分攻略(教师版)

专题二全等三角形模型解题解题模型一平移模型针对训练1.(2018•桂林)如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌△DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.解题模型二对称模型针对训练2.(2018•南充)如图,已知AB=AD,AC=AE,∠BAE=∠DAC.求证:∠C=∠E.3.(2018•广州)如图,AB与CD相交于点E,AE=CE,DE=BE.求证:∠A=∠C.图示:图示:4.(2018•乐山)如图,已知∠1=∠2,∠3=∠4,求证:BC=BD.5.(2018•武汉)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.6.(2017•郴州)已知△ABC中,∠ABC=∠ACB,点D,E分别为边AB、AC的中点,求证:BE=CD.7.(2018•泰州)如图,∠A=∠D=90°,AC=DB,AC、DB相交于点O.求证:OB=OC.8.(2018•镇江)如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC.(1)求证:△ABE≌△ACF;(2)若∠BAE=30°,则∠ADC=°.解题模型三旋转模型针对训练8.(2018•昆明)如图,在△ABC和△ADE中,AB=AD,∠B=∠D,∠1=∠2.求证:BC=DE.10.(2018•柳州)如图,AE和BD相交于点C,∠A=∠E,AC=EC.求证:△ABC≌△EDC.11.(2017•常州)如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.图示:12.(2017•恩施州)如图,△ABC、△CDE均为等边三角形,连接BD、AE交于点O,BC与AE交于点P.求证:∠AOB=60°.解题模型四平移+旋转模型针对训练13.(2018•菏泽)如图,AB∥CD,AB=CD,CE=BF.请写出DF与AE的数量关系,并证明你的结论.14.(2018•铜仁)已知:如图,点A、D、C、B在同一条直线上,AD=BC,AE=BF,CE=DF,求证:AE∥FB.15.(2017•孝感)如图,已知AB=CD,AE⊥BD,CF⊥BD,垂足分别为E,F,BF=DE,求证:AB∥CD.图示:16.(2018•怀化)已知:如图,点A,F,E,C在同一直线上,AB∥DC,AB=CD,∠B=∠D.(1)求证:△ABE≌△CDF;(2)若点E,G分别为线段FC,FD的中点,连接EG,且EG=5,求AB的长.解题模型五角平分线模型针对训练17.(2016•咸宁)证明命题“角的平分线上的点到角的两边的距离相等”,要根据题意,画出图形,并用符号表示已知和求证,写出证明过程,下面是小明同学根据题意画出的图形,并写出了不完整的已知和求证.已知:如图,∠AOC=∠BOC,点P在OC上,.求证:.请你补全已知和求证,并写出证明过程.图示:解题模型六三垂直模型针对训练18.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,求证:DE=AD+BE.19.如图,将等腰直角三角形ABC的直角顶点置于直线l上,且过A,B两点分别作直线l的垂线,垂足分别为D,E,请你在图中找出一对全等三角形,并写出证明它们全等的过程.图示:解题模型一平移模型针对训练1.(2018•桂林)如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌△DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.【分析】(1)求出AC=DF,根据SSS推出△ABC≌△DEF.(2)由(1)中全等三角形的性质得到:∠A=∠EDF,进而得出结论即可.【点睛】本题考查了全等三角形的性质和判定的应用,注意:全等三角形的对应角相等.解题模型二对称模型图示:针对训练2.(2018•南充)如图,已知AB=AD,AC=AE,∠BAE=∠DAC.求证:∠C=∠E.【分析】由∠BAE=∠DAC可得到∠BAC=∠DAE,再根据“SAS”可判断△BAC≌△DAE,根据全等的性质即可得到∠C=∠E.【点睛】本题考查了全等三角形的判定与性质:判断三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应角相等,对应边相等.图示:3.(2018•广州)如图,AB与CD相交于点E,AE=CE,DE=BE.求证:∠A=∠C.【分析】根据AE=EC,DE=BE,∠AED和∠CEB是对顶角,利用S AS证明△ADE≌△CBE即可.【解答】证明:在△AED和△CEB中,,∴△AED≌△CEB(SAS).∴∠A=∠C(全等三角形对应角相等).【点睛】此题主要考查学生对全等三角形的判定与性质这一知识点的理解和掌握,此题难度不大,要求学生应熟练掌握.4.(2018•乐山)如图,已知∠1=∠2,∠3=∠4,求证:BC=BD.【分析】由∠3=∠4可以得出∠ABD=∠ABC,再利用ASA就可以得出△ADB≌△ACB,就可以得出结论.【点睛】本题考查了等角的补角相等的性质的运用,全等三角形的判定与性质的运用,解答时证明三角形全等是关键.5.(2017•郴州)已知△ABC中,∠ABC=∠ACB,点D,E分别为边AB、AC的中点,求证:BE=CD.【分析】由∠ABC=∠ACB可得AB=AC,又点D、E分别是AB、AC的中点.得到AD=AE,通过△ABE≌△ACD,即可得到结果.【点睛】本题考查了等腰三角形的性质,全等三角形的判定与性质,熟记定理是解题的关键.6.(2018•武汉)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.【分析】求出BF=CE,根据SAS推出△ABF≌△DCE,得对应角相等,由等腰三角形的判定可得结论.【解答】证明:∵BE=CF,∴BE+EF=CF+EF.∴BF=CE.在△ABF和△DCE中,[来源:]∴△ABF≌△DCE(SAS).∴∠GEF=∠GFE.∴EG=FG.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.7.(2018•泰州)如图,∠A=∠D=90°,AC=DB,AC、DB相交于点O.求证:OB=OC.【分析】因为∠A=∠D=90°,AC=BD,BC=BC,知Rt△BAC≌Rt△CDB(HL),所以AB=CD,证明△ABO 与△CDO全等,所以有OB=OC.【点睛】此题主要考查了全等三角形的判定,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.8.(2018•镇江)如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC.(1)求证:△ABE≌△ACF;(2)若∠BAE=30°,则∠ADC=75°.【分析】(1)要证明△ABE≌△ACF,由题意可得AB=AC,∠B=∠ACF,BE=CF,从而可以证明结论成立;(2)根据(1)中的结论和等腰三角形的性质可以求得∠ADC的度数.【点睛】本题考查全等三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.¥解题模型三旋转模型针对训练9.(2018•柳州)如图,AE和BD相交于点C,∠A=∠E,AC=EC.求证:△ABC≌△EDC.【分析】依据两角及其夹边分别对应相等的两个三角形全等进行判断.【解答】证明:∵在△ABC和△EDC中,图示:,∴△ABC≌△EDC(ASA).【点睛】本题主要考查了全等三角形的判定,两角及其夹边分别对应相等的两个三角形全等.10.(2018•昆明)如图,在△ABC和△ADE中,AB=AD,∠B=∠D,∠1=∠2.求证:BC=DE.【点睛】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.11.(2017•常州)如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.【分析】(1)根据同角的余角相等可得到∠3=∠5,结合条件可得到∠1=∠D,再加上BC=CE,可证得结论;(2)根据∠ACD=90°,AC=CD,得到∠2=∠D=45°,根据等腰三角形的性质得到∠4=∠6=67.5°,由平角的定义得到∠DEC=180°﹣∠6=112.5°.【点睛】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.12.(2017•恩施州)如图,△ABC、△CDE均为等边三角形,连接BD、AE交于点O,BC与AE交于点P.求证:∠AOB=60°.【分析】利用“边角边”证明△ACD和△BCE全等,可得可得∠CAE=∠CBD,根据“八字型”证明∠AOP=∠PCB=60°即可.【点睛】本题考查等边三角形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.解题模型四平移+旋转模型针对训练13.(2018•菏泽)如图,AB∥CD,AB=CD,CE=BF.请写出DF与AE的数量关系,并证明你的结论.【分析】结论:DF=AE.只要证明△CDF≌△BAE即可;【解答】解:结论:DF=AE.理由:∵AB∥CD,∴∠C=∠B.∵CE=BF,图示:∴CF=BE.又∵CD=AB,∴△CDF≌△BAE(SAS).∴DF=AE.【点睛】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.14.(2017•孝感)如图,已知AB=CD,AE⊥BD,CF⊥BD,垂足分别为E,F,BF=DE,求证:AB∥CD.[来源:Z|xx|]【分析】根据全等三角形的判定与性质,可得∠B=∠D,根据平行线的判定,可得答案.【点睛】本题考查了全等三角形的判定与性质,利用等式的性质得出BE=DF是解题关键,又利用了全等三角形的判定与性质.15.(2018•铜仁)已知:如图,点A、D、C、B在同一条直线上,AD=BC,AE=BF,CE=DF,求证:AE∥FB.【分析】可证明△ACE≌△BDF,得出∠A=∠B,即可得出AE∥BF;【点睛】本题考查了全等三角形的判定及性质以及平行线的判定问题,关键是SSS证明△ACE≌△BDF.16.(2018•怀化)已知:如图,点A,F,E,C在同一直线上,AB∥DC,AB=CD,∠B=∠D.(1)求证:△ABE≌△CDF;(2)若点E,G分别为线段FC,FD的中点,连接EG,且EG=5,求AB的长.【分析】(1)根据平行线的性质得出∠A=∠C,进而利用全等三角形的判定证明即可;(2)利用全等三角形的性质和中点的性质解答即可.【解答】证明:(1)∵AB∥DC,∴∠A=∠C.在△ABE与△CDF中,,∴△ABE≌△CDF(ASA).(2)∵点E,G分别为线段FC,FD的中点,∴ED=CD.∵EG=5,∴CD=10.∵△ABE≌△CDF,∴AB=CD=10.【点睛】此题考查全等三角形的判定和性质,关键是根据平行线的性质得出∠A=∠C.解题模型五角平分线模型针对训练17.(2016•咸宁)证明命题“角的平分线上的点到角的两边的距离相等”,要根据题意,画出图形,并用符号表示已知和求证,写出证明过程,下面是小明同学根据题意画出的图形,并写出了不完整的已知和求证.已知:如图,∠AOC=∠BOC,点P在OC上,.求证:.请你补全已知和求证,并写出证明过程.【分析】根据图形写出已知条件和求证,利用全等三角形的判定得出△PDO≌△PEO,由全等三角形的性质可得结论.【点睛】本题主要考查了角平分线的性质和全等三角形的性质及判定,利用图形写出已知条件和求证是解图示:答此题的关键.解题模型六三垂直模型针对训练18.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,求证:DE=AD+BE.【分析】先证明∠BCE=∠CAD,再证明△ADC≌△CEB,可得到AD=CE,DC=EB,等量代换,可得出DE=AD+BE.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.证明两线段的和等于一条线段常常借助三角形全等来证明,要注意运用这种方法图示:19.如图,将等腰直角三角形ABC的直角顶点置于直线l上,且过A,B两点分别作直线l的垂线,垂足分别为D,E,请你在图中找出一对全等三角形,并写出证明它们全等的过程.【分析】分析图可知,全等三角形为:△ACD≌△CBE.根据这两个三角形中的数量关系选择ASA证明全等.【点睛】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.。

21年中考数学第三轮冲刺:三角形的综合 专题复习(含答案)

21年中考数学第三轮冲刺:三角形的综合 专题复习(含答案)

2021年中考数学第三轮冲刺:三角形的综合 专题复习练习1、如图,在等边三角形ABC 中,6BC cm =,射线AG BC ∥,点E 从点A 出发沿射线AG 以1/cm s 的速度运动,同时点F 从点B 出发沿射线BC 以2/cm s 的速度运动,设运动时间为()t s(1)连接EF ,当EF 经过AC 边的中点D 时,求证:ADE CDF ≅ (2)填空:①当t 为 s 时,四边形ACFE 是菱形;②当t 为 s 时,以,,,A F C E 为顶点的四边形是直角梯形。

2、在Rt △ABC 中,∠ACB =90°,AB =,AC =2,过点B 作直线m ∥AC ,将△ABC 绕点C 顺时针旋转得到△A ′B ′C (点A ,B 的对应点分别为A ',B ′),射线CA ′,CB ′分别交直线m 于点P ,Q .(1)如图1,当P 与A ′重合时,求∠ACA ′的度数;(2)如图2,设A ′B ′与BC 的交点为M ,当M 为A ′B ′的中点时,求线段PQ 的长;(3)在旋转过程中,当点P ,Q 分别在CA ′,CB ′的延长线上时,试探究四边形PA 'B ′Q 的面积是否存在最小值.若存在,求出四边形PA ′B ′Q 的最小面积;若不存在,请说明理由.3、阅读理解:我们把满足某种条件的所有点所组成的图形,叫做符合这个条件的点的轨迹.例如:角的平分线是到角的两边距离相等的点的轨迹.问题:如图1,已知EF为△ABC的中位线,M是边BC上一动点,连接AM交EF 于点P,那么动点P为线段AM中点.理由:∵线段EF为△ABC的中位线,∴EF∥BC,由平行线分线段成比例得:动点P为线段AM中点.由此你得到动点P的运动轨迹是:.知识应用:如图2,已知EF为等边△ABC边AB、AC上的动点,连结EF;若AF=BE,且等边△ABC的边长为8,求线段EF中点Q的运动轨迹的长.拓展提高:如图3,P为线段AB上一动点(点P不与点A、B重合),在线段AB的同侧分别作等边△APC和等边△PBD,连结AD、BC,交点为Q.(1)求∠AQB的度数;(2)若AB=6,求动点Q运动轨迹的长.4、(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE 填空:(1)∠AEB的度数为;(2)线段BE之间的数量关系是。

中考数学专题复习:几何综合题

中考数学专题复习:几何综合题

【考点总结】四、全等三角形的性质与判定
1.概念:能够完全重合的两个三角形叫做全等三角形. 2.性质:全等三角形的对应边、对应角分别相等. 3.判定:(1)有三边对应相等的两个三角形全等,简记为(SSS); (2)有两边和它们的夹角对应相等的两个三角形全等,简记为(SAS); (3)有两角和它们的夹边对应相等的两个三角形全等,简记为(ASA); (4)有两角和其中一角的对边对应相等的两个三角形全等,简记为(AAS); (5)有斜边和一条直角边对应相等的两个直角三角形全等,简记为(HL).
三角形专题
1,掌握三角形相关基础知识(2课时)
目标
2,掌握三角形有关模型的全等或相似证明(3课时) 3,完成三角形有关模型的全等或相似证明(3课时)
三角形
模型
手拉手模型
三垂直模型
相似模型
三角形有关的知识
【考点总结】一、三角形中的重要线段 1.三角形的高线:从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做 三角形的高线,简称高. 特性:三角形的三条高线相交于一点. 2.三角形的中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.特性:三角 形的三条中线交于一点. 3.三角形的中位线:连接三角形两边中点的线段叫做三角形的中位线. 定理:三角形的中位线平行于第三边,且等于它的一半 4.三角形的角平分线:三角形一个角的平分线和这个角的对边相交,这个角的顶点和交点之间的线 段叫做三角形的角平分线. 特性:三角形的三条角平分线交于一点,这点叫做三角形的内心. 性质:角平分线上的点到角的两边的距离相等.
小组合作
1.在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D.
(1)如图1,点M,N分别在AD,AB上,且∠BMN=90°,当∠AMN=30°,AB=2时,求线段

2020年中考数学九年级三轮冲刺《三角形综合》

2020年中考数学九年级三轮冲刺《三角形综合》

三轮冲刺:《三角形综合》1.已知:在△ABC中,BA=BC,点D在BC边上,△ADE中,DA=DE,∠ADE=∠B.(1)如图1,当∠B=60°时,请直接写出线段BD,CE的数量关系;(2)如图2,当∠B=90°时,(1)中的结论是否成立;如果成立,请说明理由,如果不成立,请写出它们的数量关系,并说明理由;(3)如图3,当∠B=α(0°<α<180°)时,请直接写出线段BD,CE的数量关系.2.已知点I为△ABC的内心.(1)如图1,若AB=AC=6,BC=4,求AI的长;(2)如图2,过点I作直线交AB于点M,交AC于点N.①若MN⊥AI,求证:MI2=BM•CN;②如图3,∠BAC=90°,AB=8,BC=10,若△AMN与△ABC相似,则MN的值为.3.如图,△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若点P从点A出发,以每秒lcm 的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)当点P在AC上,且满足PA=PB时,求出此时t的值;(2)当点P在∠BAC的角平分线上时,求出此时t的值;(3)当P在运动过程中,求出t为何值时,△BCP为等腰三角形.(直接写出结果)(4)若M为AC上一动点,N为AB上一动点,是否存在M、N使得BM+MN的值最小?如果有请求出最小值,如果没有请说明理由.4.如图1,在平面直角坐标系中,已知A(a,0),B(0,a),C(b,3),且a,b满足b=6﹣+.(1)试判断△ABC的形状并说明理由;(2)如图2,若点P为AC上一动点,AE⊥BP于E,CD⊥BP交BP的延长线于D,求证:AE=DE;(3)如图3,在(2)的条件下若BP平分∠ABC,且BP=2+2,求PD的长.5.已知:如图,在Rt△ABC和Rt△ABD中,∠ACB=90°,∠ABD=90°,AB=BD,BC=4,(点A、D分别在直线BC的上下两侧),点G是Rt△ABD的重心,射线BG交边AD于点E,射线BC交边AD于点F.(1)求证:∠CAF=∠CBE;(2)当点F在边BC上,AC=1时,求BF的长;(3)若△BGC是以BG为腰的等腰三角形,试求AC的长.6.在△ABC中,AB=AC,点O在BC边上,且OB=OC,在△DEF中,DE=DF,点O在EF边上,且OE=OF,∠BAC=∠EDF,连接AD,BE.(1)如图1,当∠BAC=90°时,连接AO,DO,则线段AD与BE的数量关系是,位置关系是;(2)如图2,当∠BAC=60°时,(1)中的结论还成立吗?请说明理由;(3)如图3,AC=3,BC=6,DF=5,当点B在直线DE上时,请直接写出sin∠ABD 的值.7.已知:如图1,△ABC中,AB=AC,BC=6,BE为中线,点D为BC边上一点,BD=2CD,DF⊥BE于点F,EH⊥BC于点H.(1)CH的长为;(2)求BF•BE的值;(3)如图2,连接FC,求证:∠EFC=∠ABC.8.(1)问题发现如图1,在Rt△ABC和Rt△DBE中,∠ABC=∠DBE=90°,∠ACB=∠BED=45°,点E 是线段AC上一动点,连接DE.填空:①则的值为;②∠EAD的度数为.(2)类比探究如图2,在Rt△ABC和Rt△DBE中,∠ABC=∠DBE=90°,∠ACB=∠BED=60°,点E 是线段AC上一动点,连接DE.请求出的值及∠EAD的度数;(3)拓展延伸如图3,在(2)的条件下,取线段DE的中点M,连接AM、BM,若BC=4,则当△ABM是直角三角形时,求线段AD的长.9.如图,在△ABC中,点D为BC边的中点,以点D为顶点的∠EDF的两边分别与边AB,AC 交于点E,F,且∠EDF与∠A互补.(1)如图1,若AB=AC,且∠A=90°,请直接写出:线段DE与DF的数量关系;(2)如图2,若AB=AC,请直接写出:线段DE与DF的数量关系;(3)如图3,若AB:AC=m:n,探索线段DE与DF的数量关系,并证明你的结论.10.如图,点A、B分别是x、y轴正半轴上的点,OA=OB,点C在第一象限,C到点O、A 和B的距离分别为1、2、,以OC为腰作等腰直角△OCD,∠COD=90°,连接AD.过A作AP⊥OA交直线OC于P点.(1)求证:BC=AD;(2)求∠ACP的大小;(3)求P点的坐标.参考答案1.解:(1)线段BD,CE的数量关系为:BD=CE;理由如下:∵BA=BC,DA=DE,∠ADE=∠B=60°,∴△ABC与△ADE都是等边三角形,∴AB=AC,∠BAC=∠DAE=60°,AD=AE,∴∠BAD+∠DAC=∠CAE+∠DAC,∴∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE;(2)不成立,CE=BD;理由如下:∵∠ABC=∠ADE=90°,BA=BC,DA=DE,∴△ABC与△ADE都是等腰直角三角形,∴∠BCA=∠DEA=∠BAC=∠DAE=45°,∴△ABC∽△ADE,∴=,∵∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,∵∠BCA=∠DEA,∴A、B、C、D四点共圆,∴∠ACE=∠ADE,∴∠ABD=∠ACE,∴△BAD∽△CAE,∴=,∵△ADE是等腰直角三角形,∴AE=AD,∴=,∴=,∴CE=BD;(3)CE=BD•2sin,理由如下:过点D作DF⊥AE于F,如图3所示:∵∠ABC=∠ADE=α,BA=BC,DA=DE,∴△ABC与△ADE都是等腰三角形,∴∠BCA=∠DEA=∠BAC=∠DAE,∴△ABC∽△ADE,∴=,∵∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,∵∠BCA=∠DEA,∴A、B、C、D四点共圆,∴∠ACE=∠ADE,∴∠ABD=∠ACE,∴△BAD∽△CAE,∴=,∵△ADE是等腰三角形,∴AF=AE,∠ADF=∠ADE=,∴sin∠ADF==,∴AE=2AD•sin,∴=,∴=,∴CE=BD•2sin.2.解:(1)设AI与BC交于点D,过点I作IE⊥AB于E,∵点I为△ABC的内心.∴AI平分∠BAC,BI平分∠ABC,∵AB=AC=6,BC=4,∴BD=CD=2,∴AD==4,∵BI平分∠ABC,∴∠ABI=∠CBI,且BI=BI,∠IEB=∠IDB=90°,∴△IBE≌△IBD(AAS)∴IE=ID,BD=BE=2,∴AE=4,∵AI2=IE2+AE2,∴AI2=(4﹣AI)2+16,∴AI=3;(2)如图2中,连接BI、CI.∵I是内心,∵AI⊥MN,∴∠AIM=∠AIN=90°,∵AI=AI,∴△AMI≌△ANI(ASA),∴∠AMN=∠ANM,∴∠BMI=∠CNI,设∠BAI=∠CAI=α,∠ACI=∠BCI=β,∴∠NIC=90°﹣α﹣β,∵∠ABC=180°﹣2α﹣2β,∴∠MBI=90°﹣α﹣β,∴∠MBI=∠NIC,∴△BMI∽△INC,∴,∴NI2=BM•CN,∵NI=MI,∴MI2=BM•CN.(3)∵∠BAC=90°,AB=8,BC=10,∴AC===6,如图3,连接BG,CG,作IG⊥BC于G,IE⊥AC于E,ID⊥AB于D,延长AI交BC于H,作HF⊥AB于F,∵I是△ABC的内心,∴AI平分∠BAC,BI平分∠ABC,CI平分∠ACB,又∵IG⊥BC,IE⊥AC,ID⊥AB,∵S△ABC =S△ABI+S△ACI+S△BCI,∴×AB×AC=×AB×DI+×AC×EI+×BC×IG,∴6×8=(6+8+10)×DI,∴DI=2=IE=IG,∵∠BAC=90°,AI平分∠BAC,∴∠BAI=45°,且HF⊥AB,∴∠BAH=∠AHF=45°,∴AF=FH,∵tan∠ABC==,∴∴FH=∵△AMN与△ABC相似,∴△AMN∽△ACB或△AMN∽△ABC,若△AMN∽△ACB,∴,∠ANM=∠ABC,且∠BAH=∠NAI,∴△ANI∽△ABH,∴,∴,∴∴MN=,若△AMN∽△ABC,∴,∠AMN=∠ABC,且∠BAH=∠BAH,∴△AMI∽△ABH,∴,∴∴∴MN=,综上所述:MN=,故答案为:.3.解:(1)∵△ABC中,∠ACB=90°,AB=10,BC=6,∴由勾股定理得AC==8,连接BP,如图所示:当PA=PB时,PA=PB=t,PC=8﹣t,在Rt△PCB中,PC2+CB2=PB2,即(8﹣t)2+62=t2,解得:t=,∴当t=秒时,PA=PB;(2)如图1,过P作PE⊥AB,又∵点P恰好在∠BAC的角平分线上,且∠C=90°,AB=10,BC=6,∴CP=EP,在Rt△ACP和Rt△AEP中,,∴Rt△ACP≌Rt△AEP(HL),∴AC=AE=8,∴BE=2,设CP=EP=x,则BP=6﹣x,在Rt△BEP中,BE2+PE2=BP2,即22+x2=(6﹣x)2,解得x=,∴CP=,∴CA+CP=8+=,∴t=;当点P沿折线A﹣C﹣B﹣A运动到点A时,点P也在∠BAC的角平分线上,此时,t=10+8+6=24;综上,若点P恰好在∠BAC的角平分线上,t的值为秒或24秒;(3)①如图2,点P在CA上,当CP=CB=6时,△BCP为等腰三角形,则t=8﹣6=2;②如图3,当BP=BC=6时,△BCP为等腰三角形,∴AC+CB+BP=8+6+6=20,∴t=20;③如图4,若点P在AB上,当CP=CB=6时,△BCP为等腰三角形;作CD⊥AB于D,则根据面积法求得:CD==4.8,在Rt△BCD中,由勾股定理得,BD==3.6,∴PB=2BD=7.2,∴CA+CB+BP=8+6+7.2=21.2,此时t=21.2;④如图5,当PC=PB时,△BCP为等腰三角形,作PD⊥BC于D,则D为BC的中点,∴PD为△ABC的中位线,∴AP=BP=AB=5,∴AC+CB+BP=8+6+5=19,∴t=19;综上所述,t为2s或20s或21.2s或19s时,△BCP为等腰三角形.(4)存在M、N使得BM+MN的值最小,理由如下:作点B关于AC的对称点B',过B'作AB的垂线交AC于M,交AB于N,连接BM,如图6所示:则B'C=BC=6,B'M=BM,∠B'NB=90°,BM+MN=B'M+MN=B'N,∴BB'=2BC=12,∵∠ACB=∠B'NB=90°,∠B'BN=∠ABC,∴△B'BN∽△ABC,∴===,∴B'N=AC=×8=9.6,综上所述,存在M、N使得BM+MN的值最小,BM+MN的最小值为9.6.4.(1)解:△ABC是等腰直角三角形,理由如下:作CM⊥OA于M,如图1所示:则CM∥OB,∵b=6﹣+.∴,∴,∴a=3,b=6,∴A(3,0),B(0,3),C(6,3),∴OA=OB=CM=3,∴OM=BC=6,AM=OM﹣OA=3,∴AB2=32+32=18,AC=32+32=18,∴AB=AC=3,AB2+AC2=36=BC2,∴∠BAC=90°,∴△ABC是等腰直角三角形;(2)证明:连接AD,作AH⊥AD交BD于H,如图2所示:则∠DAH=90°,∴∠DAH=∠BAC=90°,∴∠DAC=∠HAB,∵CD⊥BP,∴∠CDP=90°,∴∠DCA+∠CPD=90°,∵∠BAC=90°,∴∠ABH+∠APB=90°,∵∠CPD=∠APB,∴∠DCP=∠ABH,在△ABH和△ACD中,,∴△ABH≌△ACD(ASA),∴AH=AD,∵AE⊥BD,∴EH=DE=DH,∵∠DAH=90°,∴AE=DH,∴AE=DE;(3)解:∵BP平分∠ABC,∴∠ABP=∠CBP,∵AE⊥BD,CD⊥BP,∴∠AEB=∠D=90°,∴△ABE∽△CBD,∴===,∴CD=AE,∵∠BAC=90°,∴△ABC的面积=×3×3=9,∵△ABC的面积=△ABP的面积+△BCP的面积=×BP×AE+×BP×CD=(2+2)(AE+CD)=(+1)(AE+CD)=9,∴AE+CD==9(﹣1),∴AE+AE=9(﹣1),解得:AE=27﹣18,∴DE=AE=27﹣18,∵AE⊥BD,CD⊥BP,∴AE∥CD,∴△AEP∽△CDP,∴=,∴=,解得:PD=90﹣63.5.证明:(1)(1)∵点G是Rt△ABD的重心,∴BE是Rt△ABD的中线,又∵在Rt△ABC中,∠ABD=90°,AB=BD,∴BE⊥AD,即∠AEB=90°,∵∠AFB=∠ACF+∠FAC=∠FBE+∠BEF,且∠ACF=∠BEF=90°,∴∠CAF=∠CBE;(2)过点D作DH⊥BC于H,∵∠ABD=90°,∴∠ABC+∠DBC=90°,且∠ABC+∠BAC=90°,∴∠BAC=∠DBC,且AB=BD,∠ACB=∠BHD,∴△ABC≌△BDH(AAS)∴AC=BH=1,HD=BC=4,∴HC=3,∵∠ACB=∠DHC=90°,∠AFC=∠DFH,∴△AFC∽△DFH,∴=∴CF=HF,∴HF==,∴BF=BH+HF=1+=;(3)当GC=GB时,如图,连接DG并延长交BC于H,交AB于N,连接NC,∵点G是Rt△ABD的重心,∴AN=BN,∵∠ACB=90°,∴BN=NC=AN,∴点N在BC的垂直平分线上,∵BG=GC,∴点G在BC的垂直平分线上,∴DN垂直平分BC,∴BH=HC=2,DH⊥BC,∵∠ABD=90°,∴∠ABC+∠DBC=90°,且∠ABC+∠BAC=90°,∴∠BAC=∠DBC,且AB=BD,∠ACB=∠BHD,∴△ABC≌△BDH(AAS)∴AC=BH=2;若BG=BC=4,如图,∵点G是Rt△ABD的重心,∴BG=2GE,∴GE=2,∴BE=6,∵∠ABD=90°,AB=BD,BE⊥AD∴BE=AE=6,∴AB=AE=6,∴AC===2,综上所述:AC=2或2.6.解:(1)如图1,延长AD,BE交于点H,∵AB=AC,DE=DF,∠BAC=∠EDF=90°,OB=OC,OE=OF,∴AO=BO,DO=EO,∠AOB=∠DOE=90°,∴∠BOE=∠AOD,∴△BOE≌△AOD(SAS),∴AD=BE,∠OBE=∠OAD,∵∠OAB+∠OBA=90°=∠OBE+∠ABE+∠OAB,∴∠OAB+∠OAD+∠ABE=90°,∴∠AHB=90°,∴AD⊥BE,故答案为:AD=BE,AD⊥BE;(2)AD=BE不成立,AD⊥BE仍然成立,理由如下:如图2,连接AO,DO,∵AB=AC,DE=DF,∠BAC=∠EDF=60°,∴△ABC和△DEF是等边三角形,∵OB=OC,OE=OF,∴∠DOE=90°=∠AOB,DO=EO,AO=BO,∴∠AOD=∠BOE,,∴△AOD∽△BOE,∴=,∠OAD=∠OBE,∴AD=BE,∵∠OAB+∠OBA=90°=∠OBE+∠ABE+∠OAB,∴∠OAB+∠OAD+∠ABE=90°,∴∠AHB=90°,∴AD⊥BE,(3)如图3,当点E在线段BD上时,连接AO,DO,∵AC=3=AB,OB=OC,BC=6,∴AO⊥BC,BO=3,∴AO===6,由(2)可知:△BEO∽△ADO,AD⊥BE,∴==2,∴AD=2BE,∵AB2=AD2+BD2,∴45=4BE2+(5+BE)2,∴BE=﹣1,∴AD=2﹣2,∴sin∠ABD==;如图,当点B在线段DE上时,连接AD,AO,DO,同理可求:AD=2BE,AD⊥BE,∵AB2=AD2+BD2,∴45=4BE2+(5﹣BE)2,∴BE=+1,∴AD=2+2,∴sin∠ABD===,综上所述:sin∠ABD的值为或.7.解:(1)如图1,作AG⊥BC于点G,∵AB=AC,BC=6,∴CG=3,∵AE=EC,EH⊥BC,∴EH∥AG,∴CH=CG=;故答案为:.(2)∵BD=2CD,∴CD=BC==2,∴BD=4,∴DH=CD﹣CH=2﹣1.5=0.5,∴BH=4+0.5=4.5,∵DF⊥BE,EH⊥BC,∴∠DFB=∠EHB,∵∠DBF=∠EBH,∴△DFB∽△EHB,∴,∴BF•BE=BH•BD==18.(3)如图2,过点A作AM∥BC交BE延长线于点M,∴∠M=∠EBC,∠AEM=∠CEB,又∵AE=EC,∴△AEM≌△CEB(AAS),∴AM=BC=6,BM=2BE,∴BF•BM=BF•2BE=2×18=36,∵AM•BC=6×6=36,∴BF•BM=AM•BC,∴,∵∠FBC=∠M,∴△FBC∽△AMB,∴∠ABM=∠BCF,∵∠EFC=∠FBC+∠BCF,∴∠EFC=∠FBC+∠ABM,∴∠EFC=∠ABC.8.解:(1)∵∠ABC=∠DBE=90°,∴∠ABC﹣∠ABE=∠DBE﹣∠ABE即∠CBE=∠ABD,∵∠ACB=∠BED=45°,∴∠ABC=∠CAB=45°,∠BED=∠BDE=45°,∴AB=BC,DB=BE,∴△ABD≌△CBE(SAS),∴AD=CE,∠DAB=∠ECB=45°,∴=1,∠EAD=45°+45°=90°.故答案为:1,90°.(2),∠EAD=90°.理由如下:∵∠ABC=∠DBE=90°,∠ACB=∠BED=60°,∴∠ABD=∠EBC,∠BAC=∠BDE=30°,∴在Rt△ABC中,tan∠ACB==tan60°=,在Rt△DBE中,tan∠BED==tan60°=,∴=,又∵∠ABD=∠EBC,∴△ABD∽△∠CBE,∴==,∠BAD=∠ACB=60°.∵∠BAC=30°,∴∠EAD=∠BAD+∠BAC=60°+30°=90°.(3)如图,由(2)知:==,∠EAD=90°,∴AD=CE,在Rt△ABC中,∠BAC=30°,BC=4,∴AC=8,AB=4,∵∠EAD=∠EBD=90°,且点M是DE的中点,∴AM=BM=DE,∵△ABM为直角三角形,∴AM2+BM2=AB2=(4)2=48,∴AM=BM=2,∴DE=4,设EC=x,则AD=x,AE=8﹣x,Rt△ADE中,AE2+AD2=DE2,∴(8﹣x)2+(x)2=(4)2,解之得:x=2+2(负值舍去).∴EC=2+2.∴AD=CE=2+6.∴线段AD的长为(2+6).9.解:(1)DE=DF,理由如下:连接AD.如图1所示:∵AB=AC,∠BAC=90°,D为BC中点,∴AD=BC=BD,∠B=∠DAF=45°,∵∠EDF+∠BAC=180°,∴∠AED+∠AFD=180°,∴∠BED=∠AFD,在△BED和△AFD中,,∴△BED≌△AFD(AAS),∴DE=DF.故答案为:DE=DF,(2)DE=DF,理由如下:过点D作DM⊥AB于M,作DN⊥AC于N,连接AD.如图2所示:则∠EMD=∠FND=90°.∵AB=AC,点D为BC中点,∴AD平分∠BAC,∴DM=DN.∵在四边形AMDN中,∠DMA=∠DNA=90°,∴∠MAN+∠MDN=180°.∵∠EDF+∠MAN=180°,∴∠MDN=∠EDF,∴∠MDE=∠NDF,在△DEM和△DFN中,,∴△DEM≌△DFN(ASA),∴DE=DF.故答案为:DE=DF;(3)结论DE:DF=n:m,理由如下:过点D作DM⊥AB于M,作DN⊥AC于N,连接AD,如图3所示:由(2)得∠MDE=∠NDF,∵∠EMD=∠FND=90°,∴△DEM∽△DFN.∴.∵点D为BC的中点,∴S△ABD =S△ADC.∴,∴,∵,∴,即DE:DF=n:m.10.解:(1)∵∠AOC+∠BOC=∠AOB=90°,∠AOC+∠AOD=∠COD=90°∴∠BOC=∠AOD,且AO=BO,CO=DO,∴△BOC≌△AOD(SAS)∴BC=AD=;(2)∵OC=OD=1,∠COD=90°,∴CD=,∠OCD=∠ODC=45°,∵CD2+CA2=2+8=10,AD2=10,∴CD2+CA2=AD2,∴∠ACD=90°,且∠OCD=45°,∴∠ACP=45°;(3)如图,过点A作AH⊥OP,∵AH⊥OP,∠ACP=45°,∴∠HAC=∠ACP=45°,∴CH=AH,∵AH2+CH2=AC2=8,∴AH=CH=2,∴OH=OC+CH=3,∴OA===,∵∠AOP=∠AOH,∠AHO=∠PAO=90°,∴△AOH∽△POA,∴∴AP=,∴点P坐标(,)、最困难的事就是认识自己。

(优)中考一轮复习专题数学人教版第四章三角形的有关概念及性质

(优)中考一轮复习专题数学人教版第四章三角形的有关概念及性质

A)
(2020·烟台)如图,点G为△ABC的重心,连接CG,AG并延长分别交
_____∥BC且DE
离相等,可过角平分线上的点
2
D.
2
D.
5,7,2
D.
(2019·浙江杭州)在△ABC中,若一个内角等于另外两个内角的差,
必有一个内角等于30° B.
AB,BC于点E,F,连接EF.
第2课时 三角形的有关概念及性质
三角形的外角通常和三角形的内角、平行线一起考查,在解题时要注意一个外角与它不相邻的两个内角之和的关系.
8
C.
则该三角形的周长为(
)
边长可以是 ________________________________(写出一个即可).
如图,△ABC中,AB=4,AC=3,AD,AE分别是其角平分线和中线,
80°
1
=__2 _BC
结论
高线不一定在三角形内,遇到 高线问题应注意分类讨论
见到中点则常寻找同一三角形 中的另一边的中点并连接(常 作辅助线之一)
三角形的重要线段是常考的知识点,单独考查的频次不高,常在几何图形 综合题中进行考查
注意,“三条角平分线”的交点、“三条中线”的交点一定在三角形内, 但“三条高线”的交点可能在三角形内,也可能是三角形的顶点,也可能 在三角形外.
必有一个内角等于60° D.
(2)三角形任意两边之差小于第三边
“两边的和”“两边的差”中的“两边”可以是三角形中的任意两条边,不能用指定的或特殊的两边作和或差来判断.
按边分:不等边三角形、等腰三角形、等边三角形
DE⊥AB,垂足恰好是边AB的中点E.
如图,△ABC中,AB=4,AC=3,AD,AE分别是其角平分线和中线,

备考2022年中考数学二轮复习-图形的性质_三角形_三角形的角平分线、中线和高-单选题专训及答案

备考2022年中考数学二轮复习-图形的性质_三角形_三角形的角平分线、中线和高-单选题专训及答案

备考2022年中考数学二轮复习-图形的性质_三角形_三角形的角平分线、中线和高-单选题专训及答案三角形的角平分线、中线和高单选题专训1、(2019泰州.中考真卷) 如图所示的网格由边长相同的小正方形组成,点、、、、、、在小正方形的顶点上,则的重心是()A . 点B . 点C . 点D . 点2、(2017石家庄.中考模拟) 如图,△ABC中BC边上的高是()A . BDB . AEC . BED . CF3、(2017路南.中考模拟) 已知△ABC在正方形网格中的位置如图所示,点A、B、C、P均在格点上,则点P叫做△ABC的()A . 内心B . 重心C . 外心D . 无法确定4、(2017迁安.中考模拟) 已知△ABC在正方形网格中的位置如图所示,则点P是△ABC的()A . 外心B . 内心C . 三条高线的交点D . 三条中线的交点5、(2017大石桥.中考模拟) 下列四个图形中,线段BE是△ABC的高的是()A . B . C . D .6、(2018浙江.中考模拟) 如图,正方形ABCD和正△AEF都内接于⊙O,EF与BC、CD分别相交于点G、H,则的值是()A .B .C .D . 27、(2017道外.中考模拟) 如图,在△ABC中,BD,CE分别为AC,AB边上的中线,BD⊥CE,若BD=4,CE=6,则△ABC的面积为()A . 12B . 24C . 16D . 328、(2017.中考模拟) 如图,△ABC的两条中线AD、CE交于点G,且AD⊥CE,联结BG并延长与AC交于点F,如果AD=9,CE=12,那么下列结论不正确的是()A . AC=10B . AB=15C . BG=10D . BF=159、(2019无锡.中考模拟) 如图,在△ABC中,BD,CE分别为AC,AB边上的中线,BD⊥CE.若BD=3,CE=2,则△ABC的面积为()A . 4B . 8C . 12D . 1610、(2017如皋.中考模拟) 下列尺规作图,能判断AD是△ABC边上的高是()A .B .C .D .11、(2019城.中考模拟) 在△ABC中,D是BC边上的点(不与B,C重合),连接AD,下列表述错误的是()A . 若AD是BC边的中线,则BC=2CDB . 若AD是BC边的高线,则AD<AC C . 岩AD是∠BAC的平分线,则△ABD与△ACD的面积相等D . 若AD是∠BAC的平分线又是BC边的中线,则AD为BC边的高线12、(2019定兴.中考模拟) 如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D等于()A . 2B . 3C .D .13、(2019永定.中考模拟) 在△ABC中,若O为BC边的中点,则必有:AB2+AC2=2AO2+2BO2成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE =4,EF=3,点P在以DE为直径的半圆上运动,则PF2+PG2的最小值为()A .B .C . 34D . 1014、(2019.中考模拟) G为△ABC的重心,△ABC的三边长满足AB>BC>CA,记△GAB,△GBC,△GCA的面积分别为S1、S2、S3,则有()A . S1>S2>S3B . S1=S2=S3C . S1<S2<S3D . S1、S2、S3的大小关系不确定15、(2020海淀.中考模拟) 小红不小心把家里的一块圆形玻璃打碎了,需要配制一块同样大小的玻璃镜,工人师傅在一块如图所示的玻璃镜残片的边缘描出了点A,B,C,给出三角形ABC,则这块玻璃镜的圆心是()A . AB,AC边上的中线的交点B . AB,AC边上的垂直平分线的交点C . AB,AC边上的高所在直线的交点D . ∠BAC与∠ABC的角平分线的交点16、(2018惠阳.中考模拟) 如图,△ABC中,AB=AC=5,BC=6,点D在BC上,且AD 平分∠BAC,则AD的长为()A . 6B . 5C . 4D . 317、(2018深圳.中考模拟) 如图,在△ABC中,AB=5,AC=4,BC=3,分别以点A,点B为圆心,大于AB的长为半径画弧,两弧相交于点M,N,作直线MN交AB于点O,连接CO,则CO的长是()A . 1.5B . 2C . 2.4D . 2.518、(2018百色.中考真卷) 顶角为30°的等腰三角形三条中线的交点是该三角形的()A . 重心B . 外心C . 内心D . 中心19、(2017河池.中考真卷) 三角形的下列线段中能将三角形的面积分成相等两部分的是()A . 中线B . 角平分线C . 高D . 中位线20、(2012梧州.中考真卷) 如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=128°,∠C=36°,则∠DAE的度数是()A . 10°B . 12°C . 15°D . 18°21、(2015.中考真卷) 三角形三条中线的交点叫做三角形的()A . 内心B . 外心C . 中心D . 重心22、(2019大渡口.中考模拟) 下列命题是假命题的是()A . 三角形的三条高交于一点B . 直角三角形有三条高C . 三角形的一条中线把三角形的面积分成相等的两部分D . 三角形的三条中线交于一点23、(2019仁寿.中考模拟) 如图,AB∥CD,点EF平分∠BED,若∠1=30°,∠2=40°,则∠BEF的度数是()A . 70°B . 60°C . 50°D . 35°24、(2016广安.中考真卷) 下列说法:①三角形的三条高一定都在三角形内②有一个角是直角的四边形是矩形③有一组邻边相等的平行四边形是菱形④两边及一角对应相等的两个三角形全等⑤一组对边平行,另一组对边相等的四边形是平行四边形其中正确的个数有()A . 1个B . 2个C . 3个D . 4个25、(2018曲靖.中考模拟) 已知△ABC如图1,嘉淇同学进行如下作图(如图2):( 1 )分别以点B,C为圆心,AC,AB长为半径作弧,两弧相交于P点;(2)作直线AP,AP与BC交于D点,则线段AD就是△ABC的()A . 中线B . 角平分线C . 高线D . 中位线26、(2019上海.中考模拟) 如图,在△ABC中,AB=AC,BC=4,tan B=2,以AB 的中点D为圆心,r为半径作⊙D,如果点B在⊙D内,点C在⊙D外,那么r 可以取()A . 2B . 3C . 4D . 527、(2020长春.中考模拟) 如图,用三角板作△ABC的边AB上的高,下列三角板的摆放位置正确的是( )A .B .C .D .28、(2020绍兴.中考模拟) 已知△ABC的两条中线的长分别为5、10,若第三条中线的长也是整数,则第三条中线长的最大值()A . 7B . 8C . 14D . 1529、(2021兴平.中考模拟) 如图,CM 是的中线,的周长比的周长大,,则 AC 的长为()A .B .C .D .30、(2021无锡.中考真卷) 在中,,,,点P是所在平面内一点,则取得最小值时,下列结论正确的是()A . 点P是三边垂直平分线的交点B . 点P是三条内角平分线的交点C . 点P是三条高的交点D . 点P是三条中线的交点三角形的角平分线、中线和高单选题答案1.答案:A2.答案:B3.答案:B4.答案:D5.答案:C6.答案:C7.答案:C8.答案:B9.答案:A10.答案:D11.答案:C12.答案:A13.答案:D14.答案:B15.答案:B16.答案:C17.答案:D18.答案:A19.答案:A20.答案:A21.答案:D22.答案:A23.答案:D24.答案:A25.答案:A26.答案:B27.答案:A28.答案:C29.答案:30.答案:。

中考数学备考专题复习三角形及其性质(含解析)

中考数学备考专题复习三角形及其性质(含解析)

三角形及其性质一、单选题(共12题;共24分)1、等腰三角形的两边长分别为3、6,则该三角形的周长为()A、12或15B、9C、12D、152、不一定在三角形内部的线段是()A、三角形的角平分线B、三角形的中线C、三角形的高D、三角形的中位线3、△ABC中,∠A、∠B、∠C的对边分别是a、b、c,下列说法中,错误的是()A、如果∠C﹣∠B=∠A,那么∠C=90°B、如果∠C=90°,那么c2﹣b2=a2C、如果(a+b)(a﹣b)=c2,那么∠C=90°D、如果∠A=30°∠B=60°,那么AB=2BC4、如图所示,AD是△ABC的中线,∠ADC=45°,把△ADC沿AD对折,使点C落在点C´的位置,则图中的一个等腰直角三角形是( )A、△ADC′B、△BDC′C、△ADCD、不存在5、如图,AD⊥BC,GC⊥BC,CF⊥AB,垂足分别是D、C、F,下列说法中,错误的是()A、△ABC中,AD是边BC上的高B、△ABC中,GC是边BC上的高C、△GBC中,GC是边BC上的高D、△GBC中,CF是边BG上的高6、如图,在△ABC中,已知点E、F分别是AD、CE边上的中点,且S△BEF=4cm2,则S△ABC的值为()A、1cm2B、2cm2C、8cm2D、16cm27、下列图形中具有稳定性的有()A、2个B、3个C、4个D、5个8、工人师傅要将边长为4m和3m的平行四边形框架固定,现有下列长度的木棒,在木棒的两端钉上达到固定平行四边形的目的,不符合要求的是()A、2mB、3mC、4mD、8m 9、(2016•滨州)如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为( )A、50°B、51°C、51。

5°D、52.5°10、(2016•自贡)如图,⊙O中,弦AB与CD交于点M,∠A=45°,∠AMD=75°,则∠B的度数是()A、15°B、25°C、30°D、75°11、(2016•北京)如图所示,用量角器度量∠AOB,可以读出∠AOB的度数为( )A、45°B、55°C、125°D、135°12、如图1,点E为矩形ABCD边AD上一点,点P,点Q同时从点B 出发,点P沿BE→ED→DC 运动到点C停止,点Q沿BC运动到点C 停止,它们运动的速度都是1cm/s,设P,Q出发t秒时,△BPQ的面积为ycm,已知y与t的函数关系的图形如图2(曲线OM为抛物线的一部分),则下列结论:①AD=BE=5cm;②当0<t≤5时,;③直线NH 的解析式为;④若△ABE与△QBP 相似,则t=秒.其中正确的结论个数为()A、4B、3C、2D、1二、填空题(共5题;共5分)13、半径等于12的圆中,垂直平分半径的弦长为________.14、在△ABC中,∠B,∠C的平分线交于点O,若∠BOC=132°,则∠A=________度。

(名师整理)最新数学中考二轮复习《三角形》专题冲刺精练(含答案)

(名师整理)最新数学中考二轮复习《三角形》专题冲刺精练(含答案)

最新模考分类冲刺小卷20:《三角形》一.选择题1.(2020•烟台一模)如图,在△ABC中,AB=AC,分别以点A、点B为圆心,以大于AB长为半径画弧,两弧交点的连线交AC于点D,交AB于点E,连接BD,若∠A=40°,则∠DBC=()A.40°B.30°C.20°D.10°2.(2020•宿松县模拟)在如图所示的三角形中,∠A=30°,点P和点Q分别是边AC和BC上的两个动点,分别连接BP和PQ,把△ABC分割成三个三角形△ABP,△BPQ,△PQC,若分割成的这三个三角形都是等腰三角形,则∠C有可能的值有多少个?()A.10 B.8 C.6 D.43.(2020•雁塔区校级二模)如图,在△ABC中,∠ABC=90°,∠C=52°,BE 为AC边上的中线,AD平分∠BAC,交BC边于点D,过点B作BF⊥AD,垂足为F,则∠EBF的度数为()A.19°B.33°C.34°D.43°4.(2020•河南模拟)如图,在Rt△ABC中,∠A=90°,∠ABC=2∠C,以顶点B为圆心,适当长为半径画弧,分别交边AB,BC于点E,F;再分别以E,F为圆心,以大于EF为半径作弧,两弧在∠ABC内交于点P;作射线BP,交边AC于点G,若AG=,则△GBC的面积为()A.3B.6C.2D.5.(2020•碑林区校级三模)一副三角板按如图所示的位置摆放,△BDE的直角边BD恰好经过Rt△ABC的斜边AC中点M,且BE交AC于点F,已知AB=1,则FM=()A.B.﹣1 C.D.6.(2020•长春模拟)如图,∠MON=60°.①以点O为圆心,2cm长为半径画弧,分别交OM、ON于点A、C;②在分别以A、C为圆心,2cm长为半径画弧,两弧交于点B;③连结AB、BC,则四边形OABC的面积为()A.4cm2B.2cm2C.4cm2D.2cm27.(2020•河北模拟)如图,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC,则图中等腰三角形的个数是()A.0 个B.1 个C.2 个D.3 个8.(2020•鼓楼区校级模拟)如图,在∠MON中,以点O为圆心,任意长为半径作弧,交射线OM于点A,交射线ON于点B,再分别以A,B为圆心,OA的长为半径作弧,两弧在∠MON的内部交于点C,作射线OC.若OA=10,AB=12,则点B到AC的距离为()A.B.C.10 D.129.(2020•陕西模拟)如图,在△ABC中,∠ACB=90°,D为AB边的中点,连接CD并延长至点E,使DE=CD.连接AE,过点B作BF∥DE交AE的延长线于点F,若BF=7,则AB的长为()A.3.5 B.7 C.10 D.1410.(2020•陕西模拟)如图,已知△ABC的面积为8,在BC上截取BD=BA,作∠ABC的平分线交AD于点P,连接PC,则△BPC的面积为()A.2 B.4 C.5 D.611.(2020•哈尔滨模拟)如图,AD是△ABC的角平分线,∠C=2∠B,F是BC 的中点,EF∥AD交AB于点E,且BE=4AE,若CD=4,则AB的长为()A.10 B.9 C.8 D.612.(2020•上城区模拟)我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”.如图是由弦图变化得到,它是用八个全等的直角三角形拼接而成,记图中正方形ABCD,正方形EFGH,正方形MNKT 的面积分别为S1,S2,S3.若S1+S2+S3=12,则下列关于S1、S2、S3的说法正确的是()A.S1=2 B.S2=3 C.S3=6 D.S1+S3=813.(2019秋•无棣县期末)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=36°,∠C=44°,则∠EAC的度数为()A.18°B.28°C.36°D.38°14.(2020•武汉模拟)在我国古代数学著作《九章算术》“勾股”章有一题:“今有开门去阃(kǔn)一尺,不合二寸,问门广几何.”大意是说:如图,推开双门(AD和BC),门边缘D、C两点到门槛AB距离为1尺(1尺=10寸),双门间的缝隙CD为2寸,那么门的宽度(两扇门的和)AB为()A.100寸B.101寸C.102寸D.103寸15.(2020•郑州模拟)如图,在△ABC中,BC=6,E,F分别是AB,AC的中点,动点P在射线EF上,BP交CE于点D,∠CBP的平分线交CE于点Q,当CQ=CE时,EP+BP的值为()A.6 B.9 C.12 D.18二.填空题16.(2020•丰台区模拟)如图所示的网格是正方形网格,点A,B,C均在格点上,则∠BAC+∠BCA=°.17.(2020•武昌区模拟)如图,△ABC和△ADE中,∠BAC=∠DAE=54°,AB =AC,AD=AE,连接BD,CE交于F,连接AF,则∠AFE的度数是.18.(2020•哈尔滨模拟)如图,在△ABC中,BD为△ABC的中线,∠DBA=2∠CAB,BD=25,CB=38,则AB的长为.19.(2020•江西模拟)如图,在等腰三角形ABC中,AB=AC,∠B=50°,D为BC的中点,点E在AB上,∠AED=70°,若点P是等腰三角形ABC的腰上的一点,则当△DEP是以∠EDP为顶角的等腰三角形时,∠EDP的度数是.20.(2020•闵行区一模)如果三角形的两个内角∠α与∠β满足2α+β=90°,那么,我们将这样的三角形称为“准互余三角形”.在△ABC中,已知∠C=90°,BC=3,AC=4(如图所示),点D在AC边上,联结BD.如果△ABD为“准互余三角形”,那么线段AD的长为(写出一个答案即可).21.(2020•长春模拟)如图,在Rt△ABC中,∠C=90°,AC=BC.将△ABC绕点A逆时针旋转15°得到Rt△AB′C′,B′C′交AB于点E,若图中阴影部分面积为2,则B′E的长为.22.(2020•新疆模拟)如图,在△ABC中,AB=AC,∠BAC=90°,点D为BC 中点,点E在边AB上,连接DE,过点D作DF⊥DE交AC于点F.连接EF.下列结论:①BE+CF=BC;②AD≥EF;③S四边形AEDF=AD2;④S△AEF≤,其中正确的是(填写所有正确结论的序号).三.解答题23.(2020•锦州模拟)问题情境:已知,在等边△ABC中,∠BAC与∠ACB的角平分线交于点O,点M、N分别在直线AC,AB上,且∠MON=60°,猜想CM、MN、AN三者之间的数量关系.方法感悟:小芳的思考过程是在CM上取一点,构造全等三角形,从而解决问题;小丽的思考过程是在AB取一点,构造全等三角形,从而解决问题;问题解决:(1)如图1,M、N分别在边AC,AB上时,探索CM、MN、AN三者之间的数量关系,并证明;(2)如图2,M在边AC上,点N在BA的延长线上时,请你在图2中补全图形,标出相应字母,探索CM、MN、AN三者之间的数量关系,并证明.24.(2020•武汉模拟)如图,在Rt△ABC中,=nM为BC上的一点,连接BM.(1)如图1,若n=1,①当M为AC的中点,当BM⊥CD于H,连接AH,求∠AHD的度数;②如图2,当H为CD的中点,∠AHD=45°,求的值和∠CAH的度数;(2)如图3,CH⊥AM于H,连接CH并延长交AC于Q,M为AC中点,直接写出tan∠BHQ的值(用含n的式子表示).25.(2020•江西模拟)如图,有一时钟,时针OA长为6cm,分针OB长为8cm,△OAB随着时间的变化不停地改变形状.求:(1)13点时,△OAB的面积是多少?(2)14点时,△OAB的面积比13点时增大了还是减少了?为什么?(3)问多少整点时,△OAB的面积最大?最大面积是多少?请说明理由.(4)设∠BOA=α(0°≤α≤180°),试归纳α变化时△OAB的面积有何变化规律(不证明)26.(2020•长春模拟)思维启迪:(1)如图①,A,B两点分别位于一个池塘的两端,小亮想用绳子测量A,B 间的距离,但绳子不够长,他出一个办法:先在地上取一个可以直接到达B 点的点C,连接BC,取BC的中点P(点P可以直接到达A点),利用工具过点C作CD∥AB交AP的延长线于点D,此时测得CD=200米,那么A,B间的距离是米.思维探索:(2)在△ABC和△ADE中,AC=BC=4,AE=DE=,∠ACB=∠AED=90°,将△ADE绕点A顺时针方向旋转,把点E在AC边上时△ADE的位置作为起始位置(此时点B和点D位于AC的两侧),设旋转角为α,连接BD,点P是线段BD的中点,连接PC,PE.①如图②,当△ADE在起始位置时,求证:PC⊥PE,PC=PE.②如图③,当α=90°时,点D落在AB边上,PC与PE的数量关系和位置关系分别为.③当α=135°时,直接写出PC的值.27.(2020•哈尔滨模拟)已知,等腰△ACD和△BCE,CA=CD,CB=CE,∠ACD =∠BCE,连接AE交CD于点M,连接BD交CE于点N,AE与BD交于点P.(1)如图1,求证:∠APD=∠ACD;(2)如图2,若∠DCA=60°,请直接写出图2中为60°的角(等边三角形内角除外).28.(2020•于都县模拟)通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比例相互唯一确定,因此,边长与角的大小之间可以相互转化.类似地,可以在等腰三角形中建立边角之间的关系.我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图①,在△ABC中,AB=AC,顶角A的正对记作sadA,这时sadA==.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题:(1)sad60°=.(2)对于0°<A<180°,∠A的正对值sadA的取值范围是.(3)如图②,已知∠C=90°,sin A=,其中∠A为锐角,试求sadA的值.29.(2020•武汉模拟)已知△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE =90°,M为CE中点.(1)如图1,若D点在BA延长线上,直接写出BM与DM的数量关系与位置关系不必证明.(2)如图2,当C,E,D在同直线上,连BE,探究BE与AB的的数量关系,并加以证明.(3)在(2)的条件下,若AB=AE=2.求BD的长.30.(2020•虹口区一模)如图,在Rt△ABC中,∠ACB=90°,BC=4,sin∠ABC=,点D为射线BC上一点,联结AD,过点B作BE⊥AD分别交射线AD、AC于点E、F,联结DF,过点A作AG∥BD,交直线BE于点G.(1)当点D在BC的延长线上时,如果CD=2,求tan∠FBC;(2)当点D在BC的延长线上时,设AG=x,S△DAF=y,求y关于x的函数关系式(不需要写函数的定义域);(3)如果AG=8,求DE的长.参考答案一.选择题1.解:∵AB=AC,∠A=40°,∴∠ABC=∠C=(180°﹣40°)=70°,∵AD=BD,∴∠ABD=∠A=40°,∴∠DBC=∠ABC﹣∠ABD=30°,故选:B.2.解:如图所示,共有4种情况,∠C的度数有3个,分别为40°,35°,20°.①当AB=AP,BQ=PQ,CP=CQ时;②当AB=AP,BP=BQ,PQ=QC时,③当APB,PB=BQ,PQ=CQ时;④AP=PB,PB=PQ,PQ=QC时.故选:D.3.解:∵∠ABC=90°,BE为AC边上的中线,∴∠BAC=90°﹣∠C=90°﹣52°=38°,BE=AC=AE=CE,∴∠EBC=∠C=52°,∵AD平分∠BAC,∴∠CAD=∠BAC=19°,∴∠ADB=∠C+∠DAC=52°+19°=71°,∵BF⊥AD,∴∠BFD=90°,∴∠FBD=90°﹣∠ADB=19°,∴∠EBF=∠EBC﹣∠FBD=52°﹣19°=33°;故选:B.4.解:作GH⊥BC于H,如图,由作法得BP平分∠ABC,∴GA=GH=,∵∠A=90°,∠ABC=2∠C,∴∠ABC=60°,∠C=30°,在Rt△ABG,∵∠ABG=∠ABC=30°,∴AB=AG=3,在Rt△ABC中,BC=2AB=6,∴S△BCG=×6×=3.故选:A.5.解:过F作FH⊥BD于H,∵∠FBH=45°,∴FH=BH,∵∠ABC=90°,∠C=30°,AB=1,∴AC=2AB=2,∵点M是AC的中点,∴BM=CM=AC=1,∴∠MBC=∠C=30°,∴∠FMH=60°,∴FM=FM,FH=BH=FM,∴FM+FM=1,∴FM=﹣1,故选:B.6.解:由题意可知OB是∠MON的角平分线,∵∠MON=60°,∴∠BON=30°,作BD⊥ON于D,∵OC=BC=2,∴∠BOC=∠OBC=30°,∴∠BCN=60°,∴BD=BC=,∴S△BOC=OC×BD==,∴四边形OABC的面积=2S△BOC=2,故选:B.7.解:∵AB=AC,∴△ABC为等腰三角形,∴∠ABC=∠C=(180°﹣∠A)=(180°﹣36°)=72°,∵BD平分∠ABC,∴∠ABD=∠CBD=×72°=36°,∴∠ABD=∠A,∴△ABD为等腰三角形,∵∠BDC=∠A+∠ABD=72°,∴∠BDC=∠C,∴△BDC为等腰三角形.故选:D.8.解:作AH⊥OB于H,连接AB交OC于D,如图,由作法得OC平分∠AOB,而OA=OB=10,∴OD⊥AB,∴AD=BD=AB=6,在Rt△AOD中,OD==8,∵AH•OB=OD•AB,∴AH==,∵AO=AC,∴∠AOC=∠ACO,∴∠ACO=∠BOC,∴AC∥OB,∴点B到AC的距离为.故选:A.9.解:∵D为AB边的中点,∴AD=BD,在△BCD和△AED中,∵,∴△BCD≌△AED(SAS),∴∠CBD=∠EAD,∴BC∥AE,即BC∥EF,又∵BF∥CE,∴四边形BCEF是平行四边形,∴CE=BF=7,∴CD=CE=3.5,故选:A.10.解:∵BD=BA,BP是∠ABC的平分线,∴AP=PD,∴S△BPD=S△ABD,S△CPD=S△ACD,∴S△BPC=S△BPD+S△CPD=S△ABD+S△ACD=S△ABC,∵△ABC的面积为8,∴S△BPC=×8=4.故选:B.11.解:如图作DG⊥AC于G,DH⊥AB于H,在AB上截取AM=AC,∵DA平分∠BAC,∴DG=DH,∴===,设BF=FC=4a,∵EF∥AD,∴==4,∴FD=a,CD=3a=4,∴a=,BD=5a=,在△ADM和△ADC中,,∴△DAM≌△DAC(SAS),∴DM=DC,∠AMD=∠C,∵∠C=2∠B,∴∠AMD=∠B+∠MDB=2∠B,∴∠B=∠MDB,∴BM=MD=CD=4,设AC=AM=x,则有=,∴x=6,∴AB=BM+AC=4+6=10,故选:A.12.解:∵八个直角三角形全等,四边形ABCD,EFGH,MNKT是正方形,∴CG=NG,CF=DG=NF,∴S1=(CG+DG)2,=CG2+DG2+2CG•DG,=GF2+2CG•DG,S2=GF2,S3=(NG﹣NF)2=NG2+NF2﹣2NG•NF,∴S1+S2+S3=GF2+2CG•DG+GF2+NG2+NF2﹣2NG•NF=3GF2=12,∴GF2=4,∴S2=4,∵S1+S2+S3=12,∴S1+S3=8,故选:D.13.解:∵∠ABC=36°,∠C=44°,∴∠BAC=180°﹣36°﹣44°=100°,∵BD平分∠ABC,∴∠ABD=∠ABC=18°,∵AE⊥BD,∴∠BFA=90°,∴∠BAF=90°﹣18°=72°,∴∠EAC=∠BAC﹣∠BAF=100°﹣72°=28°,故选:B.14.解:设OA=OB=AD=BC=r,过D作DE⊥AB于E,则DE=10,OE=CD=1,AE=r﹣1.在Rt△ADE中,AE2+DE2=AD2,即(r﹣1)2+102=r2,解得2r=101.故门的宽度(两扇门的和)AB为101寸.故选:B.15.解:如图,延长BQ交射线EF于M,∵E、F分别是AB、AC的中点,∴EF∥BC,∴∠M=∠CBM,∵BQ是∠CBP的平分线,∴∠PBM=∠CBM,∴∠M=∠PBM,∴BP=PM,∴EP+BP=EP+PM=EM,∵CQ=CE,∴EQ=2CQ,由EF∥BC得,△MEQ∽△BCQ,∴=2,∴EM=2BC=2×6=12,即EP+BP=12.故选:C.二.填空题(共7小题)16.解:过点A作直线BC的垂线,垂足为D,则AD=BD,∵∠ADB=90°,∴∠ABD=45°,∴∠BAC+∠BCA=∠ABD=45°,故答案为:45.17.解:∵∠BAC=∠DAE,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴∠ADF=∠AEF,∴A,E,D,F四点共圆,∴∠AFE=∠ADE,∵∠DAE=54°,AD=AE,∴∠ADE=(180°﹣54°)=63°,∴∠AFE=63°,故答案为:63°.18.解:延长BD至E,使DE=DB,作∠ADF=∠CAB交AB于F,连接AE、DF,如图所示:则DF=AF,∠DFB=∠CAB+∠ADF=2∠CAB,∵∠DBA=2∠CAB,∴AF=DF=DB=25=DE=BE,∴∠BFE=90°,∴∠AFE=90°,∵BD为△ABC的中线,∴AD=CD,在△ADE和△CDB中,,∴△ADE≌△CDB(SAS),∴AE=CB=38,∴EF===3,∴BF===41,∴AB=AF+BF=66;故答案为:66.19.解:∵AB=AC,∠B=50°,∠AED=70°,∴∠EDB=20°,∵当△DEP是以∠EDP为顶角的等腰三角形,当点P在AB上,∵DE=DP1,∴∠DP1E=∠AED=70°,∴∠EDP1=180°﹣70°﹣70°=40°,当点P在AC上,∵AB=AC,D为BC的中点,∴∠BAD=∠CAD,过D作DG⊥AB于G,DH⊥AC于H,∴DG=DH,在Rt△DEG与Rt△DP2H中,,∴Rt△DEG≌Rt△DP2H(HL),∴∠AP2D=∠AED=70°,∵∠BAC=180°﹣50°﹣50°,∴∠EDP2=140°,故答案为:40°或140°.20.解:过点D作DM⊥AB于M.设∠ABD=α,∠A=β.①当2α+β=90°时,∵α+β+∠DBC=90°,∴∠DBC=∠DBA,∵DM⊥AB,DC⊥BC,∴DM=DC,∵∠DMB=∠C=90°,DM=DC,BD=BD,∴Rt△BDC≌Rt△BDM(HL),∴BM=BC=3,∵∠C=90°,BC=3,AC=4,∴AB==5,∴AM=5﹣3=2,设AD=x,则CD=DM=4﹣x,在Rt△ADM中,则有x2=(4﹣x)2+22,解得x=.∴AD=.②当α+2β=90°时,∵α+β+∠DBC=90°,∴∠DBC=β=∠A,∵∠C=∠C,∴△CBD∽△CAB,∴BC2=CD•CA,∴CD=,∴AD=AC﹣CD=4﹣=.故答案为或.21.解:∵将Rt△ACB绕点A逆时针旋转15°得到Rt△AB′C′,∴△ACB≌△AC′B′,∴AC=AC′,CB=C′B′,∠CAB=∠C′AB′,∵在Rt△ABC中,∠C=90°,AC=BC,∴∠CAB=45°,∵∠CAC′=15°,∴∠C′AE=30°,∴AE=2C′E,AC′=C′E,∵阴影部分面积为2,∴×C′E×C′E=2,∴C′E=2,∴C′B′=AC'=C′E=2,∴B′E=2﹣2,故答案为:2﹣2.22.解:∵AB=AC,∠BAC=90°,点D为BC中点,∴BD=CD=AD=BC,∠BAD=∠CAD=∠C=45°,AD⊥BC,BC=AB,∵DF⊥DE,∴∠EDF=∠ADC=90°,∴∠ADE=∠CDF,且AD=CD,∠BAD=∠C,∴△ADE≌△CDF(ASA),∴AE=CF,∴BE+CF=BE+AE=AB,且BC=AB,∴BE+CF=BC,故①正确;∵AE+AF≥EF,∴AF+CF≥EF,∴AC≥EF,∴AD≥EF,故②错误;∵△ADE≌△CDF,∴S△ADE=S△CDF,∴S四边形AEDF=S△ADF+S△CDF=S△ADC=×AD2,故③正确;∵S△AEF=×AE×AF,且AE+AF=AC,∴当AE=AF时,S△AEF的最大值=S△ABC,∴S△AEF≤,故④正确,故答案为:①③④三.解答题(共8小题)23.解:(1)CM=AN+MN,理由如下:在AC上截取CD=AN,连接OD,∵△ABC为等边三角形,∠BAC与∠ACB的角平分线交于点O,∴∠OAC=∠OCA=30°,∴OA=OC,在△CDO和△ANO中,,∴△CDO≌△ANO(SAS)∴OD=ON,∠COD=∠AON,∵∠MON=60°,∴∠COD+∠AOM=60°,∵∠AOC=120°,∴∠DOM=60°,在△DMO和△NMO中,,∴△DMO≌△NMO,∴DM=MN,∴CM=CD+DM=AN+MN;(2)补全图形如图2所示:CM=MN﹣AN,理由如下:在AC延长线上截取CD=AN,连接OD,在△CDO和△ANO中,,∴△CDO≌△ANO(SAS)∴OD=ON,∠COD=∠AON,∴∠DOM=∠NOM,在△DMO和△NMO中,,∴△DMO≌△NMO(SAS)∴MN=DM,∴CM=DM﹣CD=MN﹣AN.24.解:(1)①如图1中,作AK⊥CD交CD的延长线于K.∵CD⊥BM,AK⊥CK,∠ACB=90°,∴∠CHB=∠K=90°,∠CBH+∠BCH=90°,∠BCH+∠ACK=90°,∴∠CBH=∠ACK,∵CB=CA,∴△CHB≌△AKC(AAS),∴AK=CH,∵∠CHM=∠K=90°,∴MH∥AK,∵AM=BM,∴CH=KH,∴AK=KH,∵∠K=90°,∴∠AHD=45°.②如图2中,作AK⊥CD交CD的延长线于K,作CM⊥AB于M.设DH=CH=a.∵CA=CB,∠ACB=90°,∴∠CAB=45°,∵∠AHD=45°,∠AHD=∠ACH+∠CAH,∴∠ACH+∠CAH=∠CAH+∠DAH,∴∠DAH=∠ACD,∵∠ADH=∠CAD,∴△ADH∽△CDA,∴=,∴=,∴AD=a,∵CA=CB,∠ACB=90°,CM⊥AB,∴AM=BM,∴CM=AM=BM,设AM=CM=BM=x,在Rt△CMD中,∵CM2=DM2+CD2,∴x2+(x﹣a)2=4a2,解得x=a(负根已经舍弃).∴BD=AB﹣AD=(+)a﹣a=a,∴==.∵△ADH∽△CDA,∴==,设AH=m,则AC=m,AK=KH=m,∴tan∠ACK==,∴∠ACH=30°,∴∠CAH=∠AHD﹣∠ACH=45°﹣30°=15°.(2)作AJ⊥BM交BM的延长线于J.设AM=CM=y,则BC=2yn.∵CH⊥BM,BM===•y,∴CH===•y,∴HM==•y,∵AJ⊥BJ,CH⊥BJ,∴∠J=∠CHM=90°,∵∠AMJ=∠CMH,AM=CM,∴△AMJ≌△CMH(AAS),∴AJ=CH=•y,HM=JM=•y,∵∠BHQ=∠AHJ,∴tan∠BHQ=tan∠AHJ===n.25.解:(1)如图①,过点B作BE⊥OA于点E.在13点时,∠BOA=30°,∴BE=OB=4(cm),∴S△OAB=OA•BE=×6×4=12(cm2);(2)如图②,过点B作BE⊥DA于点E.在14点时,∠BOA=60°,=sin60°,BE=8×=4(cm),∴S△OAB=×4×6=12(cm2).∵12>12,∴14点时比13点时△OAB的面积增大了;(3)3点时(即15时)或9点时(即21时)时△OAB的面积最大,如图③④.∵此时BE最长,BE=OB=8 cm,而OA不变,∴S=OA•OB=×6×8=24(cm2);(4)当α=0°、180°时不构成三角形;当0°<α≤90°时,S△OAB的值随α增大而增大;当90°<α<180°时,S△OAB的值随α增大而减小.26.(1)解:∵CD∥AB,∴∠ABP=∠C,∵P是BC的中点,∴PB=PC,在△ABP和△DCP中,,∴△ABP≌△DCP(ASA),∴AB=CD=200米;故答案为:200;(2)①证明:延长EP交BC于F,如图②所示:∵∠ACB=∠AED=90°,∴DE∥BC,∴∠EDP=∠FBP,∠DEP=∠BFP,∵点P是线段BD的中点,∴PB=PD,在△FBP和△EDP中,,∴△FBP≌△EDP(AAS),∴PF=PE,BF=DE,∵AC=BC,AE=DE,∴FC=EC,又∵∠ACB=90°,∴△EFC是等腰直角三角形,∵PE=PF,∴PC⊥EF,PC=EF=PE;②解:PC⊥PE,PC=PE;理由如下:延长ED交BC于H,如图③所示:由旋转的性质得:∠CAE=90°,∵∠AED=∠ACB=90°,∴四边形ACHE是矩形,∴∠BHE=∠CHE=90°,AE=CH,∵AE=DE,∴CH=DE,∠ADE=45°,∴∠EDP=135°,∵∠ACB=90°,AC=BC,∴∠ABC=45°,∵∠BHE=90°,点P是线段BD的中点,∴PH⊥BD,PH=BD=PD,△BPH是等腰直角三角形,∴∠BHP=45°,∴∠CHP=135°=∠EDP,在△CPH和△EPD中,,∴△CPH≌△EPD(SAS),∴PC=PE,∠CPH=∠EPD,∴∠CPE=∠HPD=90°,∴PC⊥PE;故答案为:PC⊥PE,PC=PE;③解:当α=135°时,AD⊥AC,过点D作DF⊥BC于F,连接CD,过点C作CN⊥BD于N,如图④所示:则四边形ACFD是矩形,∴CF=AD=AE=2,DF=AC=4,∴CD===2,BF=BC﹣CF=4﹣2=2,∴BD===2,∵DF•BC=CN•BD,∴CN===,BN===,∴PN=BD﹣BN=×2﹣=,∴PC===.27.(1)证明:∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,又∵CA=CD,CE=CB,在△ACE和△DCB中,,∴△ACE≌△DCB(SAS),∴∠CAM=∠PDM,∵∠AMC=∠DMP,∴∠ACM=∠DPM,即∠AMD=∠APD.(2)解:∵∠ACD=∠BCE=60°,∴∠DCE=60°,由(1)可知∠APD=∠ACD=60°,∴∠EPB=∠APD=60°,∴图中60°角为∠DCE,∠APD,∠EPB.28.解:(1)根据正对定义,当顶角为60°时,等腰三角形底角为60°,则三角形为等边三角形,则sad60°==1.故答案为:1.(2)当∠A接近0°时,sadA接近0,当∠A接近180°时,等腰三角形的底接近于腰的二倍,故sadA接近2.于是sadA的取值范围是0<sadA<2.故答案为:0<sadA<2.(3)在AB上取点D,使AD=AC,过点D作DE⊥AC于E,连接CD,如图.∵在Rt△ADE中,=sin A=,设AD=AC=5x,则DE=3x,AE=4x.∴CE=x.∴在Rt△CDE中,CD==x.∴sad A===.29.解:(1)BM=DM,BM⊥DM;如图1,连接AM,∵△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,∴∠BAC=∠EAD=45°,∴∠CAE=90°,∵M为CE中点.∴CM=AM,∵BM=BM,BC=BA,∴△BCM≌△BAM(SSS),∴∠CBM=∠MBA=45°,同理可得∠MDA=45°,∴∠BMD=90°,∴BM=DM,BM⊥DM;(2)如图2,延长BM到N,使BM=MN,连EN,DN,BD,BE,∵∠CMB=∠EMN,CM=ME,∴△CBM≌△ENM(SAS),∴BC=EN,∠BCM=∠MEN,∴EN=AB,∵∠CBA=∠ADE=90°,∴∠BCM+∠BAD=180°,∵∠NED+∠MEN=180°,∴∠NED=∠BAD,又∵AD=DE,∴△END≌△ABD(SAS),∴DB=DN,∠NDE=∠BDA,∵∠BDA+∠BDE=90°,∴∠NDE+∠BDE=90°,∴∠NDB=90°,∴DB⊥DN,∴DM⊥BN,∴BE=EN=BC=AB;(3)如图3,连BE,BD交AE于N,在(2)的条件下,CM=ME,DM⊥BM,∴BE=BC=AE=AB=2,DE=DA=2,∴BD为AE的垂直平分线,∴EN=DN=AN=,∴BN==,∴BD=+.30.解:(1)∵∠ACB=90°,BC=4,sin∠ABC=,∴设AC=3x,AB=5x,∴(3x)2+16=(5x)2,∴x=1,即AC=3,∵BE⊥AD,∴∠AEF=90°,∵∠AFE=∠CFB,∴∠DAC=∠FBC,∴tan∠FBC=tan∠DAC==;(2)∵AG∥BD,∴∠AGF=∠CBF,∴tan∠AGF=tan∠CBF,∴,,∴,∴.∴=.∵∠EAF=∠CBF,∴,∴,∴S△DAF==;(3)①当点D在BC的延长线上时,如图1,∵AG=8,BC=4,AG∥BD,∴,∴AF=2CF,∵AC=3,∴AF=2,CF=1,∴,∴,设AE=x,GE=4x,∴x2+16x2=82,解得x=,即AE=.同理tan∠DAC=tan∠CBF,∴,∴DC=,∴AD===.∴=.②当点D在BC的边上时,如图2,∵AG∥BD,AG=8,BC=4,∴.∴AF=6,∵∠EAF=∠CBF=∠ABC,∴cos∠EAF=cos∠ABC,∴,∴,同理,∴,∴.∴DE=AE﹣AD=.综合以上可得DE的长为或.。

2021年中考数学三轮综合复习:三角形综合 专题冲刺练习二

2021年中考数学三轮综合复习:三角形综合 专题冲刺练习二

2021年中考数学三轮综合复习:三角形综合专题冲刺练习二1.(1)如图1,等腰△ABC和等腰△ADE中,∠BAC=∠DAE=90°,B,E,D三点在同一直线上,求证:∠BDC=90°;(2)如图2,等腰△ABC中,AB=AC,∠BAC=90°,D是△ABC外一点,且∠BDC=90°,求证:∠ADB=45°;(3)如图3,等边△ABC中,D是△ABC外一点,且∠BDC=60°,①∠ADB的度数;②DA,DB,DC之间的关系.2.如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P,Q是△ABC边上的两个动点,点P从点A开始沿A→B方向运动,且速度为1cm/s,点Q从点B开始沿B→C→A 方向运动,且速度为2cm/s,它们同时出发,设运动的时间为ts.(1)当t=2时,PQ=.(2)求运动几秒时,△APC是等腰三角形?(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.(直接写答案)3.如图,在△ABC中,AB=AC,以AB为直径作半圆O,交BC于点D,交AC于点E.(1)求证:BD=CD.(2)若弧DE=50°,求∠C的度数.(3)过点D作DF⊥AB于点F,若BC=8,AF=3BF,求弧BD的长.4.在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D.过射线AD上一点M作BM的垂线,交直线AC于点N.(I)如图1,点M在AD上,若∠N=15°,BC=2,则线段AM的长为;(2)如图2,点M在AD上,求证:BM=NM;(3)若点M在AD的延长线上,则AB,AM,AN之间有何数量关系?直接写出你的结论,不证明.5.如图,在Rt△ABC中,∠ACB=90°,BC=4,sin∠ABC=,点D为射线BC上一点,联结AD,过点B作BE⊥AD分别交射线AD、AC于点E、F,联结DF,过点A作AG∥BD,交直线BE于点G.(1)当点D在BC的延长线上时,如果CD=2,求tan∠FBC;(2)当点D在BC的延长线上时,设AG=x,S=y,求y关于x的函数关系式(不△DAF需要写函数的定义域);(3)如果AG=8,求DE的长.6.如图,在△ABC中.(1)如图①,分别以AB、AC为边作等边△ABD和等边△ACE,连接BE,CD;①猜想BE与CD的数量关系是;②若点M,N分别是BE和CD的中点,求∠AMN的度数;(2)如图②,若分别以AB、AC为边作△ABD和△ACE,且AD=AB,AC=AE,∠DAB =∠CAE=α,DC、BE交于点P,连接AP,请直请接写出∠APC与α的数量关系7.如图1,在等边△ABC中,AB=2,点D是直线BC上一点,在射线DA上取一点E,使AD=AE,以AE为边作等边△AEF,连接EC.(1)若点D是BC的中点,则EA=,EC=;(2)如图2,连接BF,当点D由BC中点向点C运动时,请判断BF和EC的数量关系,并说明理由;(3)如图3,点D在BC延长线上,连接BF,BE,当BE∥AC时,求BF的长.8.如图,△ABC为等边三角形,点D、E分别是边AB、BC所在直线上的动点,若点D、E以相同的速度,同时从点A、点B出发,分别沿AB、BC方向运动,直线AE、CD交于点O.(1)如图1,求证:△ABE≌△CAD;(2)在点D、点E运动过程中,∠COE=°;(3)如图2,点P为边AC中点,连接BO,PO,当点D、E分别在线段AB、BC上运动时,判断BO与PO的数量关系,并证明你的结论.9.如果三角形的两个内角差为90°,那么我们称这样的三角形为“准直角三角形”.(1)若△ABC是“准直角三角形”,∠C>90°.①若∠A=60°,则∠B=°;②若∠A=20°,则∠B=°.(2)如图1,在Rt△ABC中,∠ACB=90°,BC=1,AB=3,点D在AC边上,若△ABD是“准直角三角形”,求CD的长.(3)如图2,在四边形ABCD中,CD=CB,∠ABD=∠BCD,AB=5,BD=6,且△ABC 是“准直角三角形”,求△BCD的面积.10.【背景】在△ABC中,分别以边AB、AC为底,向△ABC外侧作等腰直角三角形ABD 和等腰直角三角形ACE,∠ADB=∠AEC=90°.【研究】点M为BC的中点,连接DM,EM,研究线段DM与EM的位置关系与数量关系.(1)如图(1),当∠BAC=90°时,延长EM到点F,使得MF=ME,连接BF.此时易证△EMC≌△FMB,D、B、F三点在一条直线上.进一步分析可以得到△DEF是等腰直角三角形,因此得到线段DM与EM的位置关系是,数量关系是;(2)如图(2),当∠BAC≠90°时,请继续探究线段DM与EM的位置关系与数量关系,并证明你的结论;(3)【应用】如图(3),当点C,B,D在同一直线上时,连接DE,若AB=2,AC =4,求DE的长.11.如图1,△ABC中,点D,E,F分别在边AB,BC,AC上,BE=CE,点G在线段CD 上,CG=CA,GF=DE,∠AFG=∠CDE.(1)填空:与∠CAG相等的角是;(2)用等式表示线段AD与BD的数量关系,并证明;(3)若∠BAC=90°,∠ABC=2∠ACD(如图2),求的值.12.如图,在△ABC中,AB=AC,∠BAC=90°,BC=14,过点A作AD⊥BC于点D,E 为腰AC上一动点,连接DE,以DE为斜边向左上方作等腰直角△DEF,连接AF.(1)如图1,当点F落在线段AD上时,求证:AF=EF;(2)如图2,当点F落在线段AD左侧时,(1)中结论是否仍然成立?若成立,请证明;若不成立,请说明理由;(3)在点E的运动过程中,若AF=,求线段CE的长.13.已知在△ABC中,AB=AC,过点B引一条射线BM,D是BM上一点.(1)如图1,∠ABC=60°,射线BM在∠ABC内,∠ADB=60°,求证:∠BDC=60°.请根据以下思维框图,写出证明过程.(2)如图2,已知∠ABC=∠ADB=30°.①当射线BM在∠ABC内,求∠BDC的度数.②当射线BM在BC下方,请问∠BDC的度数会变吗?若不变,请说明理由;若改变,请直接写出∠BDC的度数.(3)在第(2)题的条件下,作AF⊥BD于点F,连接CF,已知BD=6,CD=2,求△CDF的面积.14.如图,在△ABC中,AB=AC,∠BAC=120°,AD⊥BC,垂足为G,且AD=AB,∠EDF=60°,其两边分别交AB,AC于点E,F.(1)求证:△ABD是等边三角形;(2)若DG=2,求AC的长;(3)求证:AB=AE+AF.15.【问题】如图1,在Rt△ABC中,∠ACB=90°,AC=BC,过点C作直线l平行于AB.∠EDF=90°,点D在直线L上移动,角的一边DE始终经过点B,另一边DF与AC交于点P,研究DP和DB的数量关系.【探究发现】(1)如图2,某数学兴趣小组运用从特殊到一般的数学思想,发现当点D移动到使点P与点C重合时,通过推理就可以得到DP=DB,请写出证明过程;【数学思考】(2)如图3,若点P是AC上的任意一点(不含端点A、C),受(1)的启发,这个小组过点D作DG⊥CD交BC于点G,就可以证明DP=DB,请完成证明过程.。

人教版九年级数学专题复习:和三角形有关的角

人教版九年级数学专题复习:和三角形有关的角

2020年中考数学人教版专题复习:与三角形有关的角一、学习目标:1. 了解与三角形有关的角(如内角、外角);2. 会用平行线的性质与平角的定义证明三角形内角和等于180°;3. 了解三角形的一个外角等于与它不相邻的两个内角的和.二、重点、难点:重点:三角形内角和定理的运用和三角形内角与外角的关系.难点:证明的必要性和添加辅助线的方法.三、考点分析:三角形的内角和定理及三角形外角的性质在中考中多以填空题、选择题和计算题的形式出现,有时和其他知识结合在一起考查,一般情况下,题目的难度都不大.知识梳理知识点一:三角形的内角和定理三角形的内角和等于180°.证明三角形内角和定理的几种辅助线的作法:(1)如图①,过点A 作DE ∥BC ;(2)如图②,过BC 上任意一点,作DE ∥AC ,DF ∥AB ;(3)如图③,过点C 作射线CD ∥AB .A BC AB C A B C D E D EF D ①②③知识点二:三角形的外角及其性质三角形的一边与另一边的延长线组成的角,叫做三角形的外角.性质1:三角形的一个外角等于与它不相邻的两个内角的和.性质2:三角形的一个外角大于与它不相邻的任何一个内角.ADBC典型例题知识点一:三角形的内角和定理例1.已知一个三角形三个内角的度数比是1∶5∶6,则其最大内角的度数为()A. 60°B. 75°C. 90°D. 120°思路分析:题意分析:看到题目中出现比例关系时,要想到按比例关系设未知数.解题思路:由于题目中出现比例“1∶5∶6”,我们可设三角形三个内角分别为x°、5x°、6x°,根据三角形内角和定理,三个内角的和为180°,列方程求解即可.解答过程:设三角形三个内角分别为x°、5x°、6x°,根据题意得:x°+5x°+6x°=180°解得x=15.则最大内角的度数为6x°=90°.故选C.解题后的思考:出现与三角形的内角有关的题目时,注意题目中隐含着一个相等关系——三角形三个内角的和为180°.例2.如图所示,D是△ABC的BC边上一点,∠B=∠BAD,∠ADC=80°,∠BAC=70°,求:(1)∠B的度数;(2)∠C的度数.AB CD思路分析:题意分析:本题考查三角形内角和定理的应用.解题思路:由∠ADB 与∠ADC 互补可先求出∠ADB ,再根据三角形内角和定理在△ABD 中求出∠B ,在△ABC 中求出∠C .解答过程:(1)因为∠ADC =80°,所以∠ADB =180°-∠ADC =100°.在△ABD 中,∠B +∠BAD +∠ADB =180°,则∠B =∠BAD =12(180°-∠ADB )=40°.(2)在△ABC 中,因为∠BAC =70°,所以∠C =180°-∠BAC -∠B =70°.解题后的思考:解答这类问题时注意角的多重属性(即属于一个三角形的内角还属于另一个三角形的内角).例3. 如图所示,在△ABC 中,∠B =60°,∠C =40°,AD 是BC 边上的高,AE 平分∠BAC ,求∠DAE 的度数.AB CE思路分析:题意分析:此题综合考查了三角形的内角和定理、三角形角平分线和高的定义以及直角三角形两个锐角互余等知识.解答过程:因为AE 平分∠BAC ,∠B =60°,∠C =40°,所以∠CAE =12∠BAC =12(180°-∠B -∠C )=40°.又因为AD 是BC 边上的高,所以∠C +∠DAC =90°,所以∠DAC =90°-∠C =50°,所以∠DAE =∠DAC -∠CAE =10°.解题后的思考:通过本例题可以得出一个重要结论:从三角形一个顶点作高线和角平分线,它们所夹的角等于三角形另两个角的差的一半.例4. 如图所示,已知在△ABC 中,∠A =60°,∠B 与∠C 的角平分线相交于点D .求∠BDC 的度数.AB C D思路分析:题意分析:本题综合考查三角形内角和定理、三角形角平分线的性质.解题思路:要求∠BDC 的度数,需要利用三角形的内角和定理,设法沟通已知和未知的关系. 解答过程:如图所示,在△BDC 中,∠BDC =180°-(∠DBC +∠DCB ).因为∠DBC =12∠ABC ,∠DCB =12∠ACB ,所以∠DBC +∠DCB =12(∠ABC +∠ACB ).在△ABC 中,∠ABC +∠ACB =180°-∠A =180°-60°=120°,所以∠DBC +∠DCB =12×120°=60°.所以∠BDC =180°-(∠DBC +∠DCB )=180°-60°=120°.解题后的思考:在三角形中,两内角的平分线相交构成的钝角等于90°加上第三个角的一半,即∠BDC =90°+12∠A .小结:三角形内角和等于180°,揭示了三角形三个内角之间的关系,同时为求角的问题提供了一个应用的平台,灵活而有技巧性地运用它,可以解决很多问题.知识点二:三角形的外角例5. 如图所示,△ABC 中,∠A =90°,∠D 是∠B 、∠C 的外角平分线的夹角,求∠D 的度数.ABCD EF 1234思路分析:题意分析:可用邻补角的性质解答.解题思路:要求∠D 的度数,只需要知道∠3+∠4的度数,因为∠3、∠4不可能分别求出,故应将∠3+∠4视为一个整体进行整体求值.解答过程:因为BD 和CD 分别是∠CBE 和∠BCF 的角平分线,所以2∠3+∠1=180°,2∠4+∠2=180°,又因为∠1+∠2=90°,所以∠3+∠4=135°.所以∠D =180°-135°=45°.解题后的思考:本题还可以应用三角形的外角性质来解答.例6. 如图所示,∠C =48°,∠E =25°,∠BDF =140°,求∠A 与∠EFD 的度数.ABC DE F思路分析:题意分析:∠BDF是△BCD的外角,也是△DEF的外角,无论运用哪种关系都可以求解.解题思路:由∠BDF是△BCD的一个外角,且∠C已知,可求∠CBD的度数.通过∠CBD是△ABE的外角,可求∠A,通过∠EFD是△ACF的外角可求∠EFD.解答过程:因为∠BDF=∠C+∠CBD,∠C=48°,∠BDF=140°,所以∠CBD=92°,因为∠CBD=∠A+∠E,∠E=25°,所以∠A=67°,∠EFD=∠A+∠C=115°.解题后的思考:求一个角的度数,应该首先弄清这个角在哪个三角形中,是外角还是内角,跟已知的角有什么联系.例7.如图所示,已知CE是△ABC外角∠ACD的平分线,CE交BA延长线于点E.求证:∠BAC>∠B.ABCD E12思路分析:题意分析:解答涉及角的不等关系的问题时,要想到利用“三角形的一个外角大于与它不相邻的任何一个内角”的性质.解题思路:要证∠BAC>∠B,由于∠BAC、∠B在同一三角形中,没有直接的定理可用,必须通过其他的角进行转换.解答过程:在△ACE中,∠BAC>∠1(三角形的一个外角大于与它不相邻的任何一个内角).同理在△BCE中,∠2>∠B,因为∠1=∠2,所以∠BAC>∠B.解题后的思考:本题中∠1=∠2的作用非常关键,它把∠B和∠2的不等关系与∠BAC和∠1的不等关系联系起来了.例8.(1)如图①所示,CD是直角三角形斜边AB上的高,图中有与∠A相等的角吗?为什么?(2)如图②所示,把图①中的CD 平移得到ED ,图中还有与∠A 相等的角吗?为什么?(3)如图③所示,把图①中的CD 平移得到ED ,交BC 的延长线于E .图中还有与∠A 相等的角吗?为什么?A B C AB CA B C EE ①②③思路分析:题意分析:无论CD 移动到什么位置,与AB 的垂直关系不变.且△ABC 各内角的度数、∠BC (E )D 的度数保持不变.解题思路:无论高CD 怎样移动,因为∠ACB =90°,∠BDC (E )=90°,所以总有∠A +∠B =90°,∠B +∠BC (E )D =90°,根据同角的余角相等,可得∠A =∠BC (E )D . 解答过程:(1)有∠BCD =∠A .理由:因为∠ACB =90°,所以∠A +∠B =90°.因为CD ⊥AB ,所以∠BCD +∠B =90°,所以∠A =∠BCD .(2)有∠A =∠BED .理由:因为∠ACB =90°,所以∠A +∠B =90°.因为DE ⊥AB ,所以∠BED +∠B =90°,所以∠A =∠BED .(3)有∠BED =∠A .理由:因为∠ACB =90°,所以∠A +∠B =90°.因为DE ⊥AB ,所以∠BED +∠B =90°,所以∠A =∠BED .解题后的思考:当图形中有线段运动时,要从变化中寻找不变量,这是解答此题的关键. 小结:在有关三角形角度的计算中“外角等于和它不相邻的两个内角的和”这一性质经常起到桥梁的作用,它把三角形的内角和外角联系起来了.提分技巧和三角形有关的角的度数问题一般有两类:一类是求角的度数,解答这类问题时,通常要综合运用三角形的内角和定理、三角形外角的性质等.另一类是求证角之间的不等关系,解答这类问题时,应该依据“三角形的一个外角大于与它不相邻的任何一个内角”这一性质求解.分析解答这两类问题的共同之处是要分清已知角或所求角是哪一个三角形的内角,或是哪一个三角形的外角.同步测试一、选择题1. 在△ABC 中,∠A =2∠B =80°,则∠C 的度数为( )A . 30°B . 40°C . 50°D . 60°2. 一个三角形的三个内角中至多有( )A . 一个锐角B . 两个锐角C . 一个钝角D . 两个直角3. 如图所示,∠A +∠B +∠C +∠D +∠E +∠F 等于( )A . 480°B . 360°C . 240°D . 180°A BC D E F4. 三角形的一个外角小于与它相邻的内角,这个三角形是( )A . 直角三角形B . 锐角三角形C . 钝角三角形D . 不确定5. 如图所示,已知直线AB ∥CD ,∠C =115°,∠A =25°,则∠E =( )A . 70°B . 80°C . 90°D . 100° A BC D EF6. 如图所示,已知D 是△ABC 中BC 边上的一点,连接AD ,E 是AD 上的任意一点,连接CE ,则∠ADB 和∠DCE 的大小关系是( )A . ∠ADB =∠DCEB . ∠ADB >∠DCEC . ∠ADB <∠DCED . 大小关系不确定B C D E*7. 如图所示,∠C =∠ABC =2∠A ,BD 是AC 边上的高,则∠DBC 等于( )A . 36°B . 18°C . 72°D . 28°AB C D**8. 如图所示,在直角△ADB 中,∠D =90°,C 为AD 上一点,则x 可能是()A . 10°B . 20°C . 30°D . 40°ABD C 6x二、填空题9. 如图所示,l 1∥l 2,∠α=__________度.l 1l 2α25°120°10. 如图所示,用大于号“>”表示∠A 、∠1、∠2三者的关系是__________.B C 1211. 在△ABC 中,∠A ∶∠B =2∶1,∠C =60°,那么∠A =__________.12. 如图所示,∠1+∠2+∠3+∠4=__________度.40°1234**13. 三角形中至少有一个角不小于__________度.**14. 在△ABC 中,若∠A -∠B =50°,最小角为30°,则最大角为__________.三、解答题15. 在△ABC 中,∠A +∠B =100°,∠C =2∠B .求∠A 、∠B 、∠C 的度数.16. 如图所示,∠BAF 、∠CBD 、∠ACE 是△ABC 的三个外角,试求∠BAF +∠CBD +∠ACE 的度数.123ABC E FD*17. 如图所示,P 是△ABC 中∠B 的角平分线与△ABC 的外角∠ACE 平分线的交点,则∠A =2∠P ,试说明理由.AB C EP18. 已知:如图所示,∠1是△ABC 的一个外角,E 为边AC 上一点,延长BC 到D ,连接DE .试说明∠1>∠2的理由.AB C DE F 12345四、拓广探索19. (1)如图甲所示,在五角星中,求∠A +∠B +∠C +∠D +∠E 的度数.(2)把图乙、丙、丁叫做蜕化的五角星形,问它们的五角之和与五角星形的五角之和仍相等吗?A B CD E 甲A BC D E 乙A B C D E 丙ABC DE 丁试题答案一、选择题1. D2. C3. B 解析:∠A+∠B+∠C+∠D+∠E+∠F=180°×3-180°=360°.4. C5. C6. B7. B 解析:因为∠A+∠ABC+∠C=180°,所以∠A+2∠A+2∠A=180°,解得∠A=36°.所以∠C=2∠A=72°.在△BCD中,∠DBC=180°-90°-∠C=18°.8. B 解析:因为∠ACB是△BCD的外角,所以∠ACB=6x>90°,即x>15°.又因为∠ACB是一个钝角,所以6x<180°,即x<30°.所以x在15°到30°之间,故选B.二、填空题9. 3510.∠1>∠2>∠A11.80°解析:设∠B=x,则∠A=2x,则x+2x+60°=180°,解得x=40°,则∠A=2x=80°.12. 280解析:因为∠1+∠2+40°=180°,∠3+∠4+40°=180°,所以∠1+∠2=140°,∠3+∠4=140°,所以∠1+∠2+∠3+∠4=280°.13. 60解析:因为三角形的三个内角之和等于180°,如果三角形的每个内角都小于60°,则三角形的三个内角之和一定小于180°,这就与定理矛盾了,所以三角形中至少有一个角不小于60°.14. 80°或100°解析:因为∠A-∠B=50°,所以最小角有可能是∠B或是∠C.(1)若∠B是最小角,则∠A-30°=50°,得∠A=80°,则∠C=180°-80°-30°=70°,这个三角形的三个内角分别是80°、30°、70°,则最大角是80°.(2)若∠C是最小角,则∠A+∠B=180°-30°=150°,又因为∠A-∠B=50°,所以∠A=50°+∠B,即50°+∠B+∠B=150°,解得∠B=50°,所以∠A=100°,这个三角形的三个内角分别是100°、50°、30°,则最大角是100°.综上所述,最大角为80°或100°.三、解答题15.解:因为∠A+∠B+∠C=180°,∠A+∠B=100°,所以∠C=180°-100°=80°,所以2∠B=80°,所以∠B=40°,所以∠A=180°-40°-80°=60°.16.解:由三角形的外角的性质可知:∠BAF=∠2+∠3,∠CBD=∠1+∠3,∠ACE=∠1+∠2.由此可将求三角形的三个外角和的问题转化为求三角形的内角和.解题过程如下:因为∠BAF、∠CBD、∠ACE是△ABC的三个外角,所以∠BAF=∠2+∠3,∠CBD=∠1+∠3,∠ACE=∠1+∠2,所以∠BAF+∠CBD+∠ACE=2(∠1+∠2+∠3).又因为∠1+∠2+∠3=180°,所以∠BAF+∠CBD+∠ACE=360°.17.解:因为BP、CP分别是∠ABC、∠ACE的平分线,所以∠ABC=2∠PBC,∠ACE=2∠PCE.又因为∠A=∠ACE-∠ABC,所以∠A=2(∠PCE-∠PBC).又因为∠P=∠PCE-∠PBC,所以∠A=2∠P.18.解:因为∠1是△ABC的一个外角,所以∠1>∠3.因为∠3是△DCE的一个外角,所以∠3>∠2,所以∠1>∠2.四、拓广探索19.解:(1)如图所示,标注两个字母.因为∠CGD是△ACG的一个外角,所以∠CGD=∠A+∠C,因为∠EFD是△EFB的一个外角,所以∠EFD=∠B+∠E.所以∠CGD+∠EFD=∠A+∠B+∠C+∠E.又因为∠CGD+∠EFD+∠D=180°,所以∠A+∠B+∠C+∠D+∠E=180°.(2)仍然相等,用类似于(1)中的方法可以证明.AB EGF。

2021年九年级数学中考复习分类专题练习:等边三角形的判定与性质(二)

2021年九年级数学中考复习分类专题练习:等边三角形的判定与性质(二)

2021年九年级数学中考复习分类专题:等边三角形的判定与性质(二)一.选择题1.如图,△ABC是等边三角形,DE∥BC,若AB=5,BD=3,则△ADE的周长为()A.2 B.6 C.9 D.152.在下列结论中:①有一个外角是120°的等腰三角形是等边三角形;②有两个外角相等的等腰三角形是等边三角形;③有一边上的高也是这边上的中线的等腰三角形是等边三角形;④有一个角是60°,且是轴对称的三角形是等边三角形.其中正确的个数是()A.4个B.3个C.2个D.1个3.如图,在直角三角形ABC中,∠BAC=90°,将△ABC沿直线BC向右平移得到△DEF,连结AD、AE,则下列结论中不成立的是()A.AD∥BE,AD=BE B.∠ABE=∠DEFC.ED⊥AC D.△ADE为等边三角形4.如图,在四边形ABCD中,AB=AC,∠ABD=60°,∠ADB=78°,∠BDC=24°,则∠DBC =()A.18°B.20°C.25°D.15°5.如图,在平面直角坐标系中,点A的坐标为(﹣1,0),点B的坐标为(2,0),点P 为线段AB外一动点且PA=1,以PB为边作等边△PBM,则当线段AM的长取到最大值时,点P的横坐标为()A.﹣1 B.C.D.6.如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,则cos∠AOB=()A.B.C.D.7.如图,在△ABC中,AB=AC,D、E是△ABC内的两点,AD平分∠BAC,∠EBC=∠E=60°.若BE=6cm,DE=2cm,则BC的长为()A.4cm B.6cm C.8cm D.12cm8.如图,在平面直角坐标系中,O为坐标原点,A(0,),B(﹣1,0),平行于AB的直线l交y轴于点C,若直线l上存在点P,使得△PAB是等边三角形,则点C的坐标为()A.(1,0)或(﹣3,0)B.(0,1)或(0,﹣)C.(0,﹣)或(0,3)D.(﹣,0)或(3,)9.如图是两块完全一样的含30°角的三角板,分别记作△ABC和△A1B1C1,现将两块三角板重叠在一起,较长直角边的中点为M,绕中点M转动上面的三角板ABC,直角顶点C恰好落在三角板△A1B1C1的斜边A1B1上.当∠A=30°,B1C=2时,则此时AB的长为()A.6 B.8 C.9 D.1010.如图,P是等边三角形ABC内的一点,且PA=3,PB=4,PC=5,以BC为边在△ABC外作△BQC≌△BPA,连接PQ,则以下结论错误的是()A.△BPQ是等边三角形B.△PCQ是直角三角形C.∠APB=150°D.∠APC=135°11.如图,等边三角形ABC中,AD是BC上的高,∠BDE=∠CDF=60°,图中与BD相等的线段有()A.5条B.6条C.7条D.8条12.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC=()A.B.2 C.D.2二.填空题13.如图,AB=AC,DB=DC,若∠ABC为60°,BE=3cm,则AB=cm.14.如图,在四边形ABCD中,AD=CD,∠D=60°,∠A=105°,∠B=120°,则的值为.15.如图,在△ABC中,∠B=60°,∠EDC=∠BAC,且D为BC中点,DE=CE,则AE:AB 的值为.16.已知如图等腰△ABC ,AB =AC ,∠BAC =120°,AD ⊥BC 于点D ,点P 是BA 延长线上一点,点O 是线段AD 上一点,OP =OC ,下面结论:①∠APO +∠DCO =30°;②△OPC 是等边三角形;③AC =AO +AP ;④S △ABC =S 四边形ADCP ;其中正确的有 (填上所有正确结论的序号)17.如图,已知△ABC 是等边三角形,D 是BC 边上的一个动点(异于点B 、C ),过点D 作DE ⊥AB ,垂足为E ,DE 的垂直平分线分别交AC 、BC 于点F 、G ,连接FD ,FE .当点D 在BC 边上移动时,有下列三个结论:①△DEF 一定为等腰三角形,②△CFG 一定为等边三角形,③△FDC 可能为等腰三角形.其中正确的是 .(填写序号)三.解答题18.如图,△ABC 为等边三角形,BD 平分∠ABC 交AC 于点D ,DE ∥BC 交AB 于点E . (1)求证:△ADE 是等边三角形. (2)求证:AE =AB .19.如图①,在凸四边形中,∠ABC =30°,∠ADC =60°,AD =DC .(1)如图②,若连接AC,则△ADC的形状是三角形.你是根据哪个判定定理?答:.(请写出定理的具体内容)(2)如图③,若在四边形ABCD的外部以BC为一边作等边△BCE,并连接AE,请问:BD 与AE相等吗?若相等,请加以证明;若不相等,请说明理由.(3)在第(2)题的前提下,请你说明BD2=AB2+BC2成立的理由.20.如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)点M、N运动几秒时,M、N两点重合?(2)点M、N运动几秒时,可得到等边三角形△AMN?(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.21.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=1.将三角板中30°角的顶点D 放在AB边上移动,使这个30°角的两边分别与△ABC的边AC,BC相交于点E,F,且使DE始终与AB垂直.(1)△BDF是什么三角形?请说明理由;(2)设AD=x,CF=y,试求y与x之间的函数关系式;(不用写出自变量x的取值范围)(3)当移动点D使EF∥AB时,求AD的长.22.已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD和△BCE,且CA =CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于点F,(1)如图1,若∠ACD=60°,则∠AFB=;如图2,若∠ACD=90°,则∠AFB =;如图3,若∠ACD=120°,则∠AFB=;(2)如图4,若∠ACD=α,则∠AFB=(用含α的式子表示);(3)将图4中的△ACD绕点C顺时针旋转任意角度(交点F至少在BD、AE中的一条线段上),变成如图5所示的情形,若∠ACD=α,则∠AFB与α的有何数量关系?并给予证明.参考答案一.选择题1.解:∵△ABC为等边三角形,∴∠A=∠B=∠C=60°,∵DE∥BC,∴∠ADE=∠AED=∠B=∠C=60°,∴△ADE为等边三角形,∵AB=5,BD=3,∴AD=AB﹣BD=2,∴△ADE的周长为6,故选:B.2.解:①有一个外角是120°的等腰三角形是等边三角形,正确;②有两个外角相等的等腰三角形不一定是等边三角形,错误;③有一边上的高也是这边上的中线的等腰三角形不一定是等边三角形,错误;④有一个角是60°,且是轴对称的三角形是等边三角形,正确.故选:C.3.解:∵△ABC沿直线BC向右平移得到△DEF,∴AD∥BE,AD=BE,A选项的结论正确;∠ABC=∠DEF,B选项的结论正确;∵△ABC沿直线BC向右平移得到△DEF,∴AB∥DE,而AB⊥AC,∴DE⊥AC,C选项的结论正确;∵AB=DE,AD=BE,没有条件得出DE=AD,D选项的结论错误.故选:D.4.解:如图延长BD到M使得DM=DC,∵∠ADB=78°,∴∠ADM=180°﹣∠ADB=102°,∵∠ADB=78°,∠BDC=24°,∴∠ADC=∠ADB+∠BDC=102°,∴∠ADM=∠ADC,在△ADM和△ADC中,,∴△ADM≌△ADC,∴AM=AC=AB,∵∠ABD=60°,∴△AMB是等边三角形,∴∠M=∠DCA=60°,∵∠DOC=∠AOB,∠DCO=∠ABO=60°,∴∠BAO=∠ODC=24°,∵∠CAB+∠ABC+∠ACB=180°,∴24°+2(60°+∠CBD)=180°,∴∠CBD=18°,故选:A.5.解:如图,将△MPA绕点P顺时针旋转60°,得到△BPN,连接AN.根据旋转不变性可知:PA=PN,∠MPB=∠APN=60°,AM=BN,∴△PAN是等边三角形,∴AN=PA=1,∵BN≤AN+AB,∴当N,A,B共线时,BN的值最大,此时点N在BA的延长线上,可得点P的横坐标为﹣1﹣=﹣,故选:C.6.解:根据题意得:OA=OB=AB,∴△OAB是等边三角形,∴∠AOB=60°,∴cos∠AOB=cos60°=.故选:B.7.解:延长ED交BC于M,延长AD交BC于N,∵AB=AC,AD平分∠BAC,∴AN⊥BC,BN=CN,∵∠EBC=∠E=60°,∴△BEM为等边三角形,∵BE=6cm,DE=2cm,∴DM=4cm,∵△BEM为等边三角形,∴∠EMB=60°,∵AN⊥BC,∴∠DNM=90°,∴∠NDM=30°,∴NM=2cm,∴BN=4cm,∴BC=2BN=8cm.故选:C.8.解:如图,∵A(0,),B(﹣1,0),∴OA=,OB=1,∴tan∠ABO=,∴∠ABO=60°,∴AB=2OB=2,在x轴正半轴上取一点P(1,0),连接PA,则△APB是等边三角形,∵直线AB的解析式为y=x+,∴直线PC的解析式为y=x﹣,∴C(0,﹣),作点P关于直线AB的对称点P′(﹣2,),过P′平行AB的直线的解析式为y=x+3,∴可得C′(0,3),综上所述,满足条件的点C坐标为(0,﹣)或(0,3).故选:C.9.解:连接C1C,∵M是AC的中点,△ABC,△A1B1C1是两块完全一样的含30°角三角板重叠在一起的,∴AM=CM=A1C1,即CM=A1M=C1M,∴∠A1=∠1,∠2=∠3,∴∠A1+∠3=∠1+∠2=90°=∠A1CC1,∴△B1C1C为直角三角形,∵∠A1=30°,∴∠B1=60°,∴∠B1C1C=30°,∴BC=B1C1=2B1C=4,∵∠A=30°,∴AB=2BC=8.故选:B.10.解:∵△ABC是等边三角形,∴∠ABC=60°,∵△BQC≌△BPA,∴∠BPA=∠BQC,BP=BQ=4,QC=PA=3,∠ABP=∠QBC,∴∠PBQ=∠PBC+∠CBQ=∠PBC+∠ABP=∠ABC=60°,∴△BPQ是等边三角形,∴PQ=BP=4,∵PQ2+QC2=42+32=25,PC2=52=25,∴PQ2+QC2=PC2,∴∠PQC=90°,即△PQC是直角三角形,∵△BPQ是等边三角形,∴∠BOQ=∠BQP=60°,∴∠BPA=∠BQC=60°+90°=150°,∴∠APC=360°﹣150°﹣60°﹣∠QPC=150°﹣∠QPC,∵∠PQC=90°,PQ≠QC,∴∠QPC≠45°,即∠APC≠135°,∴选项A、B、C正确,选项D错误.故选:D.11.解:如图,连接EF.∵等边△ABC中,AD是BC边上的高,∴∠BAD=∠CAD=30°,∵∠BDE=∠CDF=60°,∴∠ADE=∠ADF=30°,△AEF、△BDE、△CDF、△DEF都是全等的等边三角形,∴∴BD=DC=DE=BE=AE=AF=FC=FD,即图中与BD相等的线段有7条.故选:C.12.解:如图1,∵AB=BC=CD=DA,∠B=90°,∴四边形ABCD是正方形,连接AC,则AB2+BC2=AC2,∴AB=BC===,如图2,∠B=60°,连接AC,∴△ABC为等边三角形,∴AC=AB=BC=.二.填空题(共5小题)13.解:在△ABD和△ACD中,∴△ABD≌△ACD.∴∠BAD=∠CAD.又∵AB=AC,∴BE=EC=3cm.∴BC=6cm.∵AB=AC,∠ABC=60°,∴△ABC为等边三角形.∴AB=6cm.故答案为:6.14.解:如图,连接AC,作CE⊥AB的延长线于点E,∵AD=CD,∠D=60°,∴△ADC是等边三角形,∴AC=AD,∠DAC=60°,∵∠DAB=105°,∴∠CAE=105°﹣60°=45°,∴∠ACE=45°,∴AE=CE,∴=,∴AC=AD=,∵∠ABC=120°,∴∠CBE=60°,∴=,BC=,∴==.故答案为.15.解:∵DE=CE∴∠EDC=∠C,∵∠EDC=∠BAC,∴∠EDC=∠BAC=∠C,∵∠B=60°,∴△ABC及△DCE是等边三角形,∵D为BC中点,∴DE是△ABC的中位线,∴AE:AB=1:2.故答案为:1:2.16.解:如图,①连接OB,∵AB=AC,BD=CD,∴AD是BC垂直平分线,∴OB=OC=OP,∴∠APO=∠ABO,∠DBO=∠DCO,∵∠ABO+∠DBO=30°,∴∠APO+∠DCO=30°.故①正确;②∵△OBP中,∠BOP=180°﹣∠OPB﹣∠OBP,△BOC中,∠BOC=180°﹣∠OBC﹣∠OCB,∴∠POC=360°﹣∠BOP﹣∠BOC=∠OPB+∠OBP+∠OBC+∠OCB,∵∠OPB=∠OBP,∠OBC=∠OCB,∴∠POC=2∠ABD=60°,∵PO=OC,∴△OPC是等边三角形,故②正确;③在AB上找到Q点使得AQ=OA,则△AOQ为等边三角形,则∠BQO=∠PAO=120°,在△BQO和△PAO中,,∴△BQO≌△PAO(AAS),∴PA=BQ,∵AB=BQ+AQ,∴AC=AO+AP,故③正确;④作CH⊥BP,∵∠HCB =60°,∠PCO =60°,∴∠PCH =∠OCD ,在△CDO 和△CHP 中,,∴△CDO ≌△CHP (AAS ),∴S △OCD =S △CHP∴CH =CD ,∵CD =BD ,∴BD =CH ,在Rt △ABD 和Rt △ACH 中,,∴Rt △ABD ≌Rt △ACH (HL ),∴S △ABD =S △AHC ,∵四边形OAPC 面积=S △OAC +S △AHC +S △CHP ,S △ABC =S △AOC +S △ABD +S △OCD∴四边形OAPC 面积=S △ABC .故④错误.故答案为:①②③.17.解:∵DE 的垂直平分线分别交AC 、BC 于点F 、G ,∴FE =FD ,∴△DEF 为等腰三角形,故①正确;∵DE ⊥AB ,DE ⊥FG ,∴AB ∥FG ,∴∠FGC =∠B =60°,又∵△ABC 是等边三角形,∴∠C =60°,∴△CFG中,∠C=∠CFG=∠CGF,∴△CFG是等边三角形,故②正确;∵∠FDC>∠FGC=60°,∠C=60°,∠CFD<∠CFG=60°,∴△CDF不可能是等腰三角形,故③错误;故答案为:①②.三.解答题(共5小题)18.证明:(1)∵△ABC为等边三角形,∴∠A=∠ABC=∠C=60°.∵DE∥BC,∴∠AED=∠ABC=60°,∠ADE=∠C=60°.∴△ADE是等边三角形.(2)∵△ABC为等边三角形,∴AB=BC=AC.∵BD平分∠ABC,∴AD=AC.∵△ADE是等边三角形,∴AE=AD.∴AE=AB.19.解:(1)∵在△ADC中,AD=AC,∴△ADC是等腰三角形,又∵∠ADC=60°,∴△ADC是等边三角形(一个内角为60°的等腰三角形是等边三角形);故答案是:等边;一个内角为60°的等腰三角形是等边三角形;(2)∵由(1)知,△ADC是等边三角形,∴DC=AC,∠DCA=60°;又∵△BCE是等边三角形,∴CB=CE,∠BCE=60°,∴∠DCA+∠ACB=∠ECB+∠ACB,即∠DCB=∠ACE,∴△BDC≌△EAC(SAS),∴BD=EA(全等三角形的对应边相等);(3)证明:∵由(2)知,△BCE是等边三角形,则BC=CE,∠CBE=60°.∴∠ABE=∠ABC+∠CBE=90°.在Rt△ABE中,由勾股定理得AE2=AB2+BE2.又∵BD=AE,∴BD2=AB2+BC2.20.解:(1)设点M、N运动x秒时,M、N两点重合,x×1+12=2x,解得:x=12;(2)设点M、N运动t秒时,可得到等边三角形△AMN,如图①,AM=t×1=t,AN=AB﹣BN=12﹣2t,∵三角形△AMN是等边三角形,∴t=12﹣2t,解得t=4,∴点M、N运动4秒时,可得到等边三角形△AMN.(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,由(1)知12秒时M、N两点重合,恰好在C处,如图②,假设△AMN是等腰三角形,∴AN=AM,∴∠AMN=∠ANM,∴∠AMC=∠ANB,∵AB=BC=AC,∴△ACB是等边三角形,∴∠C=∠B,在△ACM和△ABN中,∵,∴△ACM≌△ABN(AAS),∴CM=BN,设当点M、N在BC边上运动时,M、N运动的时间y秒时,△AMN是等腰三角形,∴CM=y﹣12,NB=36﹣2y,CM=NB,y﹣12=36﹣2y,解得:y=16.故假设成立.∴当点M、N在BC边上运动时,能得到以MN为底边的等腰三角形AMN,此时M、N运动的时间为16秒.21.解:(1)△BDF是等边三角形,证明如下:∵ED⊥AB,∠EDF=30°,∴∠FDB=60°,∵∠A=30°,∠ACB=90°,∴∠B=60°,∴∠DFB=60°,∴△BDF是等边三角形.(2)∵∠A=30°,∠ACB=90°,∴AB=2BC=2,∵CF=y,∴BF=1﹣y,又△BDF是等边三角形,∴BD=BF=1﹣y,∴x=2﹣(1﹣y)=1+y,∴y=x﹣1,(3)当EF∥AB时,∠CEF=30°,∠FED=∠EDA=90°,∴CF=EF,EF=DF,∵DF=BF=1﹣y,∴y=(1﹣y),∴y=,∴x=y+1=,即AD=.22.解:(1)如图1,CA=CD,∠ACD=60°,所以△ACD是等边三角形.∵CB=CE,∠ACD=∠BCE=60°,所以△ECB是等边三角形.∵AC=DC,∠ACE=∠ACD+∠DCE,∠BCD=∠BCE+∠DCE,又∵∠ACD=∠BCE,∴∠ACE=∠BCD.∵AC=DC,CE=BC,∴△ACE≌△DCB.∴∠EAC=∠BDC.∠AFB是△ADF的外角.∴∠AFB=∠ADF+∠FAD=∠ADC+∠CDB+∠FAD=∠ADC+∠EAC+∠FAD=∠ADC+∠DAC=120°.如图2,∵AC=CD,∠ACE=∠DCB=90°,EC=CB,∴△ACE≌△DCB.∴∠AEC=∠DBC,又∵∠FDE=∠CDB,∠DCB=90°,∴∠EFD=90°.∴∠AFB=90°.如图3,∵∠ACD=∠BCE,∴∠ACD﹣∠DCE=∠BCE﹣∠DCE.∴∠ACE=∠DCB.又∵CA=CD,CE=CB,∴△ACE≌△DCB.∴∠EAC=∠BDC.∵∠BDC+∠FBA=180°﹣∠DCB=180°﹣(180﹣∠ACD)=120°,∴∠FAB+∠FBA=120°.∴∠AFB=60°.故填120°,90°,60°.(2)∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE.∴∠ACE=∠DCB.∴∠CAE=∠CDB.∴∠DFA=∠ACD.∴∠AFB=180°﹣∠DFA=180°﹣∠ACD=180°﹣α.(3)∠AFB=180°﹣α;证明:∵∠ACD=∠BCE=α,则∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB.在△ACE和△DCB中,则△ACE≌△DCB(SAS).则∠CBD=∠CEA,由三角形内角和知∠EFB=∠ECB=α.∠AFB=180°﹣∠EFB=180°﹣α.。

中考数学冲刺——三角形中的边和角

中考数学冲刺——三角形中的边和角

专题课三角形中的边和角模块一角度问题角度问题主要是根据三角形内角和为180°来进行相关角度的计算.当角度不在一个三角形中时,可以进行适当的等量转换,把所有角度移到一个三角形中进行计算.【经典例题】1. 如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=( )A.118°B.119°C.120°D.121°2.如图,直线a//b,一块含60°角的直角三角板ABC(∠A=60°)按如图所示放置.若∠1=55°,则∠2的度数为()A.105°B.110°C.115°D.120°3.如图,在△ABC中,∠B=40°,三角形的外角∠DAC和∠ACF的平分线交于点E.则∠AEC的度数为()A.40°B.50°C.60°D.70°4.如果一个三角形的三个外角之比为2:3:4,则与之对应的三个内角度数之比为()A.4:3:2B.3:2:4C.5:3:1D.3:1:55.如图,已知∠1=60°,则∠A+∠B+∠C+∠D+∠E+∠F=().7.如图,已知∠ABC=30°,∠1=∠2,求∠3= .8.如图,△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF= .9.(1)如图,△ABC中,∠ABC,∠ACB的角分线交于点O,求证:∠BOC=90°+1∠A.2∠A.(2)如图,△ABC中,内角∠ABC,外角∠ACD的角分线交于点O,求证:∠BOC=12(3)如图,△ABC中,外角∠CBD,∠BCE的角分线交于点O,求证:∠BOC=90°-1∠A.210. 如图,在△ABC中,∠A:∠B:∠C=3:4:5,BD,CE分别是边AC,AB上的高,BD,CE相交于H,求∠BHC的度数.11.如图,把△ABC纸片任意折叠,但要使A落在另一部分纸片上,设折痕为DE. 无论怎样折叠,∠A 与∠l+∠2之间有一种始终保持不变的数量关系,请你探索出这个关系,并说明为什么.12.如图所示,已知AE是△ABC中∠BAC的平分线,AD⊥BC ,D为垂足,AB<AC.求证:2∠DAE=∠B-∠C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

与三角形有关的角三角形内角和定理:三角形的三个内角的和为180°. 已知:△ABC ,求证: . 已知,Rt ABC ∆中,90C∠=o ,则A B ∠+∠= .定理:直角三角形的两个锐角互余.已知,ABC ∆中,A B ∠+∠=90°,则90C∠=o .练习:(1)在△ABC 中,∠A=50°,∠B=∠C ,求∠B=? (2)在△ABC 中,∠C=50°,∠A=30°,求∠B=?(3)如图,AC ⊥BC,CD ⊥AB,图中有几对互余的角?有几对相等的锐角?问:△ABC 中,∠A=70°,∠B=60°, 求∠ACD.三角形外角的性质(1) 三角形的一个外角等于与它不相邻的两个内角的和. (2) 三角形的一个外角大于与它不相邻的任何一个内角. 练习:说出下列图中∠1和∠2的度数.例1、 已知,如图 ,在△ABC 中,∠C=∠ABC=2∠A ,BD 是AC 边上的 高,求∠DBC 的度数。

180A B C ∠+∠+∠=o练习:在△ABC中,∠A -∠C=25°,∠B-∠A=10°,求∠B .例2、(1)如图,AB和CD交于点O,求证:∠A+∠C=∠B+∠D .(2)如图,求证:∠D=∠A+∠B +∠C.重要结论:(不作为定理,用时请给出证明)例3、如图,在锐角三角形ABC中,CD、BE分别是AB、AC边上的高,且CD、BE交于一点P,若∠A=50º,求∠BPC的度数.例4、如图,在△ABC中,AE⊥BC于E,AD为∠BAC的平分线,∠B=50º,∠C=70º,求∠DAE .2019-2020学年中考数学模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知二次函数y =ax 2+bx+c 的图象如图所示,有以下结论:①a+b+c <0;②a ﹣b+c >1;③abc >0;④4a ﹣2b+c <0;⑤c ﹣a >1,其中所有正确结论的序号是( )A .①②B .①③④C .①②③⑤D .①②③④⑤2.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为( ) A .180元B .200元C .225元D .259.2元3.下列计算或化简正确的是( ) A .234265+= B .842= C .2(3)3-=-D .2733÷=4.如图,AD 是半圆O 的直径,AD =12,B ,C 是半圆O 上两点.若»»»AB BCCD ==,则图中阴影部分的面积是( )A .6πB .12πC .18πD .24π5.有理数a 、b 在数轴上的位置如图所示,则下列结论中正确的是( )A .a+b >0B .ab >0C .a ﹣b <oD .a÷b >06.如图,在直角坐标系中,有两点A(6,3)、B(6,0).以原点O 为位似中心,相似比为13,在第一象限内把线段AB 缩小后得到线段CD ,则点C 的坐标为( )A .(2,1)B .(2,0)C .(3,3)D .(3,1)7.下列图形中,线段MN 的长度表示点M 到直线l 的距离的是( )A .B .C .D .8.下列几何体中,主视图和左视图都是矩形的是( )A .B .C .D .9.解分式方程12x -﹣3=42x -时,去分母可得( )A .1﹣3(x ﹣2)=4B .1﹣3(x ﹣2)=﹣4C .﹣1﹣3(2﹣x )=﹣4D .1﹣3(2﹣x )=410.宾馆有50间房供游客居住,当每间房每天定价为180元时,宾馆会住满;当每间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的每间房每天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价比定价180元增加x 元,则有( )A .(x ﹣20)(50﹣18010x -)=10890 B .x (50﹣18010x -)﹣50×20=10890 C .(180+x ﹣20)(50﹣10x)=10890D .(x+180)(50﹣10x)﹣50×20=10890 11.二次函数2y x =的对称轴是( ) A .直线y 1=B .直线x 1=C .y 轴D .x 轴12.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用的时间为t (分钟),所走的路程为s (米),s 与t 之间的函数关系如图所示,下列说法错误的是( )A.小明中途休息用了20分钟B.小明休息前爬山的平均速度为每分钟70米C.小明在上述过程中所走的路程为6600米D.小明休息前爬山的平均速度大于休息后爬山的平均速度二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在平面直角坐标系中,点A的坐标为(a,3),点B的坐标是(4,b),若点A与点B关于原点O对称,则ab=_____.14.从“线段,等边三角形,圆,矩形,正六边形”这五个图形中任取一个,取到既是轴对称图形又是中心对称图形的概率是_____.15.甲乙两人进行飞镖比赛,每人各投5次,所得平均环数相等,其中甲所得环数的方差为15,乙所得环数如下:0,1,5,9,10,那么成绩较稳定的是_____(填“甲”或“乙”).16.如图,直线y1=kx+n(k≠0)与抛物线y2=ax2+bx+c(a≠0)分别交于A(﹣1,0),B(2,﹣3)两点,那么当y1>y2时,x的取值范围是_____.17.如图,在平面直角坐标系中,Rt△ABO的顶点O与原点重合,顶点B在x轴上,∠ABO=90°,OA与反比例函数y=kx的图象交于点D,且OD=2AD,过点D作x轴的垂线交x轴于点C.若S四边形ABCD=10,则k的值为.18.如图,宽为(1020)m m <<的长方形图案由8个相同的小长方形拼成,若小长方形的边长为整数,则m 的值为__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某校数学综合实践小组的同学以“绿色出行”为主题,把某小区的居民对共享单车的了解和使用情况进行了问卷调查.在这次调查中,发现有20人对于共享单车不了解,使用共享单车的居民每天骑行路程不超过8千米,并将调查结果制作成统计图,如下图所示:本次调查人数共 人,使用过共享单车的有 人;请将条形统计图补充完整;如果这个小区大约有3000名居民,请估算出每天的骑行路程在2~4千米的有多少人?20.(6分)某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.不妨设该种品牌玩具的销售单价为x 元(x >40),请你分别用x 的代数式来表示销售量y 件和销售该品牌玩具获得利润w 元,并把结果填写在表格中: 销售单价(元)x销售量y(件)销售玩具获得利润w(元)(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元.在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?21.(6分)某校为选拔一名选手参加“美丽邵阳,我为家乡做代言”主题演讲比赛,经研究,按图所示的项目和权数对选拔赛参赛选手进行考评(因排版原因统计图不完整).下表是李明、张华在选拔赛中的得分情况:项目服装普通话主题演讲技巧选手李明85 70 80 85张华90 75 75 80结合以上信息,回答下列问题:求服装项目的权数及普通话项目对应扇形的圆心角大小;求李明在选拔赛中四个项目所得分数的众数和中位数;根据你所学的知识,帮助学校在李明、张华两人中选择一人参加“美丽邵阳,我为家乡做代言”主题演讲比赛,并说明理由.22.(8分)如图,△ABC内接于⊙O,过点C作BC的垂线交⊙O于D,点E在BC的延长线上,且∠DEC =∠BAC.求证:DE是⊙O的切线;若AC∥DE,当AB=8,CE=2时,求⊙O直径的长.23.(8分)如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA 和DB 与水平路面AB 所成的夹角∠DAN 和∠DBN 分别是37°和60°(图中的点A 、B 、C 、D 、M 、N 均在同一平面内,CM ∥AN ).求灯杆CD 的高度;求AB 的长度(结果精确到0.1米).(参考数据:3=1.1.sin37°≈060,cos37°≈0.80,tan37°≈0.75)24.(10分)雾霾天气严重影响市民的生活质量。

在今年寒假期间,某校九年级一班的综合实践小组学生对“雾霾天气的主要成因”随机调查了所在城市部分市民,并对调查结果进行了整理,绘制了下图所示的不完整的统计图表: 组别 雾霾天气的主要成因 百分比 A 工业污染 45%B 汽车尾气排放 mC 炉烟气排放15%D其他(滥砍滥伐等)n请根据统计图表回答下列问题:本次被调查的市民共有多少人?并求m 和n 的值;请补全条形统计图,并计算扇形统计图中扇形区域D 所对应的圆心角的度数;若该市有100万人口,请估计市民认为“工业污染和汽车尾气排放是雾霾天气主要成因”的人数.25.(10分)已知2410x x --=,求代数式22(23)()()x x y x y y --+--的值.26.(12分)某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x 元时(x 为正整数),月销售利润为y 元.求y 与x 的函数关系式并直接写出自变量x 的取值范围.每件玩具的售价定为多少元时,月销售利润恰为2520元?每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?27.(12分)商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调査发现,每件商品每降价1元,商场平均每天可多售出2件.若某天该商品每件降价3元,当天可获利多少元?设每件商品降价x 元,则商场日销售量增加____件,每件商品,盈利______元(用含x 的代数式表示);在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】 【分析】根据二次函数的性质逐项分析可得解. 【详解】解:由函数图象可得各系数的关系:a <0,b <0,c >0, 则①当x=1时,y=a+b+c <0,正确; ②当x=-1时,y=a-b+c >1,正确; ③abc >0,正确;④对称轴x=-1,则x=-2和x=0时取值相同,则4a-2b+c=1>0,错误; ⑤对称轴x=-2ba=-1,b=2a ,又x=-1时,y=a-b+c >1,代入b=2a ,则c-a >1,正确. 故所有正确结论的序号是①②③⑤. 故选C 2.A 【解析】 【分析】设这种商品每件进价为x 元,根据题中的等量关系列方程求解. 【详解】设这种商品每件进价为x 元,则根据题意可列方程270×0.8-x =0.2x ,解得x =180.故选A. 【点睛】本题主要考查一元一次方程的应用,解题的关键是确定未知数,根据题中的等量关系列出正确的方程. 3.D 【解析】解:A .不是同类二次根式,不能合并,故A 错误;B =,故B 错误;C .3=,故C 错误;D 3===,正确.故选D . 4.A 【解析】 【分析】根据圆心角与弧的关系得到∠AOB=∠BOC=∠COD=60°,根据扇形面积公式计算即可. 【详解】∵AB BC CD ==u u u r u u u r u u u r,∴∠AOB=∠BOC=∠COD=60°. ∴阴影部分面积=2606=6360⨯ππ.故答案为:A. 【点睛】本题考查的知识点是扇形面积的计算,解题关键是利用圆心角与弧的关系得到∠AOB=∠BOC=∠COD=60°. 5.C 【解析】 【分析】利用数轴先判断出a 、b 的正负情况以及它们绝对值的大小,然后再进行比较即可.【详解】解:由a、b在数轴上的位置可知:a<1,b>1,且|a|>|b|,∴a+b<1,ab<1,a﹣b<1,a÷b<1.故选:C.6.A【解析】【分析】根据位似变换的性质可知,△ODC∽△OBA,相似比是13,根据已知数据可以求出点C的坐标.【详解】由题意得,△ODC∽△OBA,相似比是13,∴OD DC OB AB,又OB=6,AB=3,∴OD=2,CD=1,∴点C的坐标为:(2,1),故选A.【点睛】本题考查的是位似变换,掌握位似变换与相似的关系是解题的关键,注意位似比与相似比的关系的应用.7.A【解析】解:图B、C、D中,线段MN不与直线l垂直,故线段MN的长度不能表示点M到直线l的距离;图A中,线段MN与直线l垂直,垂足为点N,故线段MN的长度能表示点M到直线l的距离.故选A.8.C【解析】【分析】主视图、左视图是分别从物体正面、左面和上面看,所得到的图形.依此即可求解.【详解】A. 主视图为圆形,左视图为圆,故选项错误;B. 主视图为三角形,左视图为三角形,故选项错误;C. 主视图为矩形,左视图为矩形,故选项正确;D. 主视图为矩形,左视图为圆形,故选项错误.故答案选:C.【点睛】本题考查的知识点是截一个几何体,解题的关键是熟练的掌握截一个几何体.9.B【解析】【分析】方程两边同时乘以(x-2),转化为整式方程,由此即可作出判断.【详解】方程两边同时乘以(x-2),得1﹣3(x﹣2)=﹣4,故选B.【点睛】本题考查了解分式方程,利用了转化的思想,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键. 10.C【解析】【分析】设房价比定价180元増加x元,根据利润=房价的净利润×入住的房同数可得.【详解】解:设房价比定价180元增加x元,根据题意,得(180+x﹣20)(50﹣x10)=1.故选:C.【点睛】此题考查一元二次方程的应用问题,主要在于找到等量关系求解. 11.C【解析】【分析】根据顶点式y=a (x-h )2+k 的对称轴是直线x=h ,找出h 即可得出答案. 【详解】解:二次函数y=x 2的对称轴为y 轴. 故选:C . 【点睛】本题考查二次函数的性质,解题关键是顶点式y=a (x-h )2+k 的对称轴是直线x=h ,顶点坐标为(h ,k ). 12.C 【解析】 【分析】根据图像,结合行程问题的数量关系逐项分析可得出答案. 【详解】从图象来看,小明在第40分钟时开始休息,第60分钟时结束休息,故休息用了20分钟,A 正确; 小明休息前爬山的平均速度为:28007040=(米/分),B 正确; 小明在上述过程中所走的路程为3800米,C 错误;小明休息前爬山的平均速度为:70米/分,大于休息后爬山的平均速度:380028002510060-=-米/分,D 正确.故选C .考点:函数的图象、行程问题.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.1 【解析】【分析】直接利用关于原点对称点的性质得出a ,b 的值,进而得出答案.【详解】∵点A 的坐标为(a ,3),点B 的坐标是(4,b ),点A 与点B 关于原点O 对称,∴a=﹣4,b=﹣3, 则ab=1, 故答案为1.【点睛】本题考查了关于原点对称的点的坐标,熟知关于原点对称的两点的横、纵坐标互为相反数是解题的关键.14.45. 【解析】【详解】试题分析:在线段、等边三角形、圆、矩形、正六边形这五个图形中,既是中心对称图形又是轴对称图形的有线段、圆、矩形、正六边形,共4个,所以取到的图形既是中心对称图形又是轴对称图形的概率为4 5 .【点睛】本题考查概率公式,掌握图形特点是解题关键,难度不大. 15.甲.【解析】乙所得环数的平均数为:0159105++++=5,S2=1n[21x x(-)+22x x(-)+23x x(-)+…+2nx x(-)]=15[205(-)+215(-)+255(-)+295(-)+2105(-)]=16.4,甲的方差<乙的方差,所以甲较稳定.故答案为甲.点睛:要比较成绩稳定即比方差大小,方差越大,越不稳定;方差越小,越稳定.16.﹣1<x<2【解析】【分析】根据图象得出取值范围即可.【详解】解:因为直线y1=kx+n(k≠0)与抛物线y2=ax2+bx+c(a≠0)分别交于A(﹣1,0),B(2,﹣3)两点,所以当y1>y2时,﹣1<x<2,故答案为﹣1<x<2【点睛】此题考查二次函数与不等式,关键是根据图象得出取值范围.17.﹣1【解析】【详解】∵OD=2AD,∴23 ODOA=,∵∠ABO=90°,DC⊥OB,∴AB∥DC,∴△DCO∽△ABO,∴23 DC OC ODAB OB OA===,∴22439 ODCOABSS⎛⎫==⎪⎝⎭VV,∵S四边形ABCD=10,∴S△ODC=8,∴OC×CD=8,OC×CD=1,∴k=﹣1,故答案为﹣1.18.16【解析】【分析】设小长方形的宽为a,长为b,根据大长方形的性质可得5a=3b,m=a+b= a+53a=83a,再根据m的取值范围即可求出a的取值范围,又因为小长方形的边长为整数即可解答. 【详解】解:设小长方形的宽为a,长为b,由题意得:5a=3b,所以b=53a,m=a+b= a+53a=83a,因为1020m<<,所以10<83a<20,解得:154<a<152,又因为小长方形的边长为整数,a=4、5、6、7,因为b=53a,所以5a是3的倍数,即a=6,b=53a=10,m= a+b=16.故答案为:16.【点睛】本题考查整式的列式、取值,解题关键是根据矩形找出小长方形的边长关系.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)200,90 (2)图形见解析(3)750人【解析】试题分析:(1)用对于共享单车不了解的人数20除以对于共享单车不了解的人数所占得百分比即可得本次调查人数;用总人数乘以使用过共享单车人数所占的百分比即可得使用过共享单车的人数;(2)用使用过共享单车的总人数减去0~2,4~6,6~8的人数,即可得2~4的人数,再图上画出即可;(3)用3000乘以骑行路程在2~4千米的人数所占的百分比即可得每天的骑行路程在2~4千米的人数.试题解析:(1)20÷10%=200,200×(1-45%-10%)=90 ;(2)90-25-10-5=50,补全条形统计图(3)503000200=750(人)答: 每天的骑行路程在2~4千米的大约750人20.(1) 1000﹣x,﹣10x2+1300x﹣1;(2)50元或80元;(3)8640元.【解析】【分析】(1)由销售单价每涨1元,就会少售出10件玩具得销售量y=600﹣(x﹣40)x=1000﹣x,销售利润w=(1000﹣x)(x﹣30)=﹣10x2+1300x﹣1.(2)令﹣10x2+1300x﹣1=10000,求出x的值即可;(3)首先求出x的取值范围,然后把w=﹣10x2+1300x﹣1转化成y=﹣10(x﹣65)2+12250,结合x的取值范围,求出最大利润.【详解】解:(1)销售量y=600﹣(x﹣40)x=1000﹣x,销售利润w=(1000﹣x)(x﹣30)=﹣10x2+1300x﹣1.故答案为: 1000﹣x,﹣10x2+1300x﹣1.(2)﹣10x2+1300x﹣1=10000解之得:x1=50,x2=80答:玩具销售单价为50元或80元时,可获得10000元销售利润.(3)根据题意得100010x540 x44-≥⎧⎨≥⎩,解得:44≤x≤46 .w=﹣10x2+1300x﹣1=﹣10(x﹣65)2+12250∵a=﹣10<0,对称轴x=65,∴当44≤x≤46时,y随x增大而增大.∴当x=46时,W最大值=8640(元).答:商场销售该品牌玩具获得的最大利润为8640元.21.(1)服装项目的权数是10%,普通话项目对应扇形的圆心角是72°;(2)众数是85,中位数是82.5;(3)选择李明参加“美丽邵阳,我为家乡做代言”主题演讲比赛,理由见解析.【解析】【分析】(1)根据扇形图用1减去其它项目的权重可求得服装项目的权重,用360度乘以普通话项目的权重即可求得普通话项目对应扇形的圆心角大小;(2)根据统计表中的数据可以求得李明在选拔赛中四个项目所得分数的众数和中位数;(3)根据统计图和统计表中的数据可以分别计算出李明和张华的成绩,然后比较大小,即可解答本题.【详解】(1)服装项目的权数是:1﹣20%﹣30%﹣40%=10%,普通话项目对应扇形的圆心角是:360°×20%=72°;(2)明在选拔赛中四个项目所得分数的众数是85,中位数是:(80+85)÷2=82.5;(3)李明得分为:85×10%+70×20%+80×30%+85×40%=80.5,张华得分为:90×10%+75×20%+75×30%+80×40%=78.5,∵80.5>78.5,∴李明的演讲成绩好,故选择李明参加“美丽邵阳,我为家乡做代言”主题演讲比赛.【点睛】本题考查了扇形统计图、中位数、众数、加权平均数,明确题意,结合统计表和统计图找出所求问题需要的条件,运用数形结合的思想进行解答是解题的关键.22.(1)见解析;(2)⊙O直径的长是45.【解析】【分析】(1)先判断出BD是圆O的直径,再判断出BD⊥DE,即可得出结论;(2)先判断出AC⊥BD,进而求出BC=AB=8,进而判断出△BDC∽△BED,求出BD,即可得出结论.【详解】证明:(1)连接BD,交AC于F,∵DC⊥BE,∴∠BCD=∠DCE=90°,∴BD是⊙O的直径,∴∠DEC+∠CDE=90°,∵∠DEC=∠BAC,∴∠BAC+∠CDE=90°,∵弧BC=弧BC,∴∠BAC=∠BDC,∴∠BDC+∠CDE=90°,∴BD⊥DE,∴DE是⊙O切线;解:(2)∵AC∥DE,BD⊥DE,∴BD⊥AC.∵BD是⊙O直径,∴AF=CF,∴AB=BC=8,∵BD⊥DE,DC⊥BE,∴∠BCD=∠BDE=90°,∠DBC=∠EBD,∴△BDC∽△BED,∴BDBE=BCBD,∴BD2=BC•BE=8×10=80,∴BD=45.即⊙O直径的长是45.【点睛】此题主要考查圆周角定理,垂径定理,相似三角形的判定和性质,切线的判定和性质,第二问中求出BC=8是解本题的关键.23.(1)10米;(2)11.4米【解析】【分析】(1)延长DC交AN于H.只要证明BC=CD即可;(2)在Rt△BCH中,求出BH、CH,在Rt△ADH中求出AH即可解决问题.【详解】(1)如图,延长DC交AN于H,∵∠DBH=60°,∠DHB=90°,∴∠BDH=30°,∵∠CBH=30°,∴∠CBD=∠BDC=30°,∴BC=CD=10(米);(2)在Rt △BCH 中,CH=12BC=5,BH=53≈8.65, ∴DH=15,在Rt △ADH 中,AH=tan 37DH ︒≈150.75=20, ∴AB=AH ﹣BH=20﹣8.65=11.4(米).【点睛】本题考查解直角三角形的应用﹣坡度坡角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.24.(1)200人,30%,10%m n ==;(2)见解析,036;(3)75万人.【解析】【分析】(1)用A 类的人数除以所占的百分比求出被调查的市民数,再用B 类的人数除以总人数得出B 类所占的百分比m ,继而求出n 的值即可;(2)求出C 、D 两组人数,从而可补全条形统计图,用360度乘以n 即可得扇形区域D 所对应的圆心角的度数;(3)用该市的总人数乘以持有A 、B 两类所占的百分比的和即可.【详解】(1)本次被调查的市民共有:9045%200÷=(人),∴60100%30%200m =⨯=,145%15%30%10%n =---=; (2)C 组的人数是20015%30⨯=(人)、D 组的人数是20090603020---=(人), ∴6020100%30%,100%10%200200m n =⨯==⨯=; 补全的条形统计图如下图所示:扇形区域D 所对应的圆心角的度数为:0036010%36⨯=;(3)()10045%30%75⨯+=(万),∴若该市有100万人口,市民认为“工业污染和汽车尾气排放是雾霾天气主要成因”的人数约为75万人.【点睛】本题考查了条形统计图、扇形统计图、统计表,读懂图形,找出必要的信息是解题的关键.25.12【解析】解:∵2410x x --=,∴241x x -=.∴()22222222(23)()()4129312934931912x x y x y y x x x y y x x x x --+--=-+-+-=-+=-+=⨯+=.将代数式应用完全平方公式和平方差公式展开后合并同类项,将241x x -=整体代入求值.26.(1)y =﹣10x 2+130x+2300,0<x≤10且x 为正整数;(2)每件玩具的售价定为32元时,月销售利润恰为2520元;(3)每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.【解析】【分析】(1)根据题意知一件玩具的利润为(30+x-20)元,月销售量为(230-10x ),然后根据月销售利润=一件玩具的利润×月销售量即可求出函数关系式.(2)把y=2520时代入y=-10x 2+130x+2300中,求出x 的值即可.(3)把y=-10x 2+130x+2300化成顶点式,求得当x=6.5时,y 有最大值,再根据0<x≤10且x 为正整数,分别计算出当x=6和x=7时y 的值即可.【详解】(1)根据题意得:y =(30+x ﹣20)(230﹣10x )=﹣10x 2+130x+2300,自变量x 的取值范围是:0<x≤10且x 为正整数;(2)当y =2520时,得﹣10x 2+130x+2300=2520,解得x 1=2,x 2=11(不合题意,舍去)当x =2时,30+x =32(元)答:每件玩具的售价定为32元时,月销售利润恰为2520元.(3)根据题意得:y=﹣10x2+130x+2300=﹣10(x﹣6.5)2+2722.5,∵a=﹣10<0,∴当x=6.5时,y有最大值为2722.5,∵0<x≤10且x为正整数,∴当x=6时,30+x=36,y=2720(元),当x=7时,30+x=37,y=2720(元),答:每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.【点睛】本题主要考查了二次函数的实际应用,解题的关键是分析题意,找到关键描述语,求出函数的解析式,用到的知识点是二次函数的性质和解一元二次方程.27.(1)若某天该商品每件降价3元,当天可获利1692元;(2)2x;50﹣x.(3)每件商品降价1元时,商场日盈利可达到2000元.【解析】【分析】(1)根据“盈利=单件利润×销售数量”即可得出结论;(2)根据“每件商品每降价1元,商场平均每天可多售出2件”结合每件商品降价x元,即可找出日销售量增加的件数,再根据原来没见盈利50元,即可得出降价后的每件盈利额;(3)根据“盈利=单件利润×销售数量”即可列出关于x的一元二次方程,解之即可得出x的值,再根据尽快减少库存即可确定x的值.【详解】(1)当天盈利:(50-3)×(30+2×3)=1692(元).答:若某天该商品每件降价3元,当天可获利1692元.(2)∵每件商品每降价1元,商场平均每天可多售出2件,∴设每件商品降价x元,则商场日销售量增加2x件,每件商品,盈利(50-x)元.故答案为2x;50-x.(3)根据题意,得:(50-x)×(30+2x)=2000,整理,得:x2-35x+10=0,解得:x1=10,x2=1,∵商城要尽快减少库存,∴x=1.答:每件商品降价1元时,商场日盈利可达到2000元.【点睛】考查了一元二次方程的应用,解题的关键是根据题意找出数量关系列出一元二次方程(或算式).。

相关文档
最新文档