自动控制原理MATLAB实验报告

合集下载

《自动控制原理》MATLAB中的传递函数模型实验

《自动控制原理》MATLAB中的传递函数模型实验

《自动控制原理》MATLAB中的传递函数模型实验一、实验目的1、熟练运用matlab软件,求解控制系统数学模型2、掌握传递函数在matlab中的表达方法3、掌握matlab求解拉氏变换和反变换4、掌握matlab求系统极值点和零点判断系统稳定性二、实验仪器Matlab2014b版三、实验原理(一)MATLAB中的传递函数模型传递函数在matlab中的表达方法控制系统的传递函数模型为:在MATLAB中,分子/分母多项式通过其系数行向量表示,即:num = [b0 b1 … bm]den = [a0 a1 … an]此时,系统的传递函数模型用tf函数生成,句法为:sys=tf(num, den) 其中,sys为系统传递函数。

如:num = [1 5 0 2]; den = [2 3 15 8];则:sys=tf(num, den)输出为:Transfer function:若控制系统的模型形式为零极点增益形式:此时,系统的传递函数模型用zpk函数生成,句法为:sys=zpk(z, p, k)。

zpk函数也可用于将传递函数模型转换为零极点增益形式,句法为:zpksys=zpk(sys)如:z=[-0.5 -1 -3]; p=[1 -2 -1.5 -5]; k=10;sys=zpk(z, p, k)传递函数的转换[num,den]=zp2tf(z,p,k)[z,p,k]=tf2zp(num,den)实际系统往往由多个环节通过串联、并联及反馈方式互连构成。

MATLAB提供的三个用于计算串联、并联及反馈连接形成的新系统模型的函数。

series函数计算两子系统串联后的新系统模型。

句法:sys = series(sys1, sys2)sys1, sys2分别为两子系统模型parallel函数计算两子系统并联后的新系统模型。

句法: sys = parallel(sys1, sys2)feedback函数计算两子系统反馈互联后的新系统模型。

(最新版)自动控制原理MATLAB仿真实验报告

(最新版)自动控制原理MATLAB仿真实验报告

实验一 MATLAB及仿真实验(控制系统的时域分析)一、实验目的学习利用MATLAB进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性;二、预习要点1、系统的典型响应有哪些?2、如何判断系统稳定性?3、系统的动态性能指标有哪些?三、实验方法(一)四种典型响应1、阶跃响应:阶跃响应常用格式:1、;其中可以为连续系统,也可为离散系统。

2、;表示时间范围0---Tn。

3、;表示时间范围向量T指定。

4、;可详细了解某段时间的输入、输出情况。

2、脉冲响应:脉冲函数在数学上的精确定义:其拉氏变换为:所以脉冲响应即为传函的反拉氏变换。

脉冲响应函数常用格式:①;②③(二)分析系统稳定性有以下三种方法:1、利用pzmap绘制连续系统的零极点图;2、 利用tf2zp 求出系统零极点;3、 利用roots 求分母多项式的根来确定系统的极点 (三) 系统的动态特性分析Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.四、实验内容 (一) 稳定性1. 系统传函为()27243645232345234+++++++++=s s s s s s s s s s G ,试判断其稳定性2. 用Matlab 求出的极点。

%Matlab 计算程序num=[3 2 5 4 6];den=[1 3 4 2 7 2];G=tf(num,den);pzmap(G);p=roots(den) 运行结果: p =-1.7680 + 1.2673i -1.7680 - 1.2673i 0.4176 + 1.1130i 0.4176 - 1.1130i -0.2991P ole-Zero MapReal AxisI m a g i n a r y A x i s-2-1.5-1-0.500.5-1.5-1-0.50.511.5图1-1 零极点分布图由计算结果可知,该系统的2个极点具有正实部,故系统不稳定。

自动控制原理 matlab实验报告

自动控制原理 matlab实验报告

自动控制原理实验(二)一、实验名称:基于MATLAB的控制系统频域及根轨迹分析二、实验目的:(1)、了解频率特性的测试原理及方法;(2)、理解如何用MATLAB对根轨迹和频率特性进行仿真和分析;(3)、掌握控制系统的根轨迹和频率特性两大分析和设计方法。

三、实验要求:(1)、观察给定传递函数的根轨迹图和频率特性曲线;(2)、分析同一传递函数形式,当K值不同时,系统闭环极点和单位阶跃响应的变化情况;(3)、K值的大小对系统的稳定性和稳态误差的影响;(4)、分析增加系统开环零点或极点对系统的根轨迹和性能的影响。

四、实验内容及步骤(1)、实验指导书:实验四(1)、“rlocus”命令来计算及绘制根轨迹。

会出根轨迹后,可以交互地使用“rlocfind”命令来确定点击鼠标所选择的根轨迹上任意点所对应的K值,K值所对应的所有闭环极点值也可以使用形如“[K, PCL] = rlocfind(G1)”命令来显示。

(2)、波特图:bode(G1, omga)另外,bode图还可以通过下列指令得出相位和裕角:[mag,phase,w] = bode(sys)(3)、奈奎斯特图:nuquist(G, omega)(2)课本:例4-1、4-2、4-7五实验报告要求(1)、实验指导书:实验四思考题请绘制下述传递函数的bode图和nyquist图。

1. 根据实验所测数据分别作出相应的幅频和相频特性曲线;2. 将思考题的解题过程(含源程序)写在实验报告中。

幅频特性曲线相频特性曲线Gs = zpk([10], [-5; -16; 9], 200)subplot(1, 2, 1)bode(Gs)gridsubplot(1, 2, 2)nyquist(Gs)grid(2)课本:例4-1、4-2、4-7图像结果:程序:Gs = zpk([-1], [0; -2; -3],1) rlocus(Gs)图像结果:程序:Gs = zpk([-2], [-1-j; -1+j],1) rlocus(Gs)程序:K=[0.5 1 2]for i=1:1:3num=[1,1,0,0]; den=[1,1,K(i)]; sys=tf(num,den); rlocus(sys); hold ongrid onend图像结果:目标:改变增益K和转折频率依次调节源程序:k1=[4.44,10,20];num=[1,2];den=conv([1,1],[1,2,4]);%一阶转折频率 1/T(wn1=2,wn2=1)二阶转折频率 wn3=wn'=2,伊布西塔=1/2 num1=[1,1];den1=conv([1,2],[1,2,4]);%一阶转折频率 1/T(wn1=1,wn2=2)二阶转折频率 wn3=wn'=2,伊布西塔=1/2 t=[0:0.1:7]; %for i=1:3g0=tf(k1(i)*num,den);g=feedback(g0,1);[y,x]=step(g,t);c(:,i)=y;g1=tf(k1(i)*num1,den1);g(1)=feedback(g1,1);[y1,x]=step(g(1),t);c1(:,i)=y1;endplot(t,c(:,1),'-',t,c(:,2),'-',t,c(:,3),'-',t,c1(:,1),'-',t,c1(:,2), '-',t,c1(:,3),'-');gridxlabel('Time/sec'),ylabel('out')结果分析:在本题中(1)改变k值:k值越大,超调量越大,调节时间越长,峰值时间越短,稳态误差越小(2)改变转折频率:超调量,调节时间,峰值时间,稳态误差同样有相应的变化。

自动控制原理MATLAB实验报告

自动控制原理MATLAB实验报告

实验一 典型环节的MATLAB 仿真一、实验目的1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。

2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。

3.定性了解各参数变化对典型环节动态特性的影响。

二、实验原理1.比例环节的传递函数为 K R K R R R Z ZsG 200,1002)(211212==-=-=-=其对应的模拟电路及SIMULINK 图形如图1所示。

2.惯性环节的传递函数为uf C K R K R s C R R R Z Z s G 1,200,10012.021)(121121212===+-=+-=-=其对应的模拟电路及SIMULINK 图形如图2所示。

图1 比例环节的模拟电路及SIMULINK 图形3.积分环节(I)的传递函数为uf C K R s s CR Z Z s G 1,1001.011)(111112==-=-=-=其对应的模拟电路及SIMULINK 图形如图3所示。

4.微分环节(D)的传递函数为uf C K R s s C R Z Z s G 10,100)(111112==-=-=-= uf C C 01.012=<<其对应的模拟电路及SIMULINK 图形如图4所示。

5.比例+微分环节(PD )的传递函数为)11.0()1()(111212+-=+-=-=s s C R R R Z Z s G uf C C uf C K R R 01.010,10012121=<<===其对应的模拟电路及SIMULINK 图形如图5所示。

图3 积分环节的模拟电路及及SIMULINK 图形图4 微分环节的模拟电路及及SIMULINK 图形6.比例+积分环节(PI )的传递函数为 )11(1)(11212sR s C R Z Z s G +-=+-=-= uf C K R R 10,100121=== 其对应的模拟电路及SIMULINK 图形如图6所示。

自动控制原理MATLAB仿真实验报告

自动控制原理MATLAB仿真实验报告

实验一 MATLAB 及仿真实验(控制系统的时域分析)一、实验目的学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性; 二、预习要点1、 系统的典型响应有哪些2、 如何判断系统稳定性3、 系统的动态性能指标有哪些 三、实验方法(一) 四种典型响应1、 阶跃响应:阶跃响应常用格式:1、)(sys step ;其中sys 可以为连续系统,也可为离散系统。

2、),(Tn sys step ;表示时间范围0---Tn 。

3、),(T sys step ;表示时间范围向量T 指定。

4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。

2、 脉冲响应:脉冲函数在数学上的精确定义:0,0)(1)(0〉==⎰∞t x f dx x f其拉氏变换为:)()()()(1)(s G s f s G s Y s f ===所以脉冲响应即为传函的反拉氏变换。

脉冲响应函数常用格式: ① )(sys impulse ; ②);,();,(T sys impulse Tn sys impulse③ ),(T sys impulse Y =(二) 分析系统稳定性 有以下三种方法:1、 利用pzmap 绘制连续系统的零极点图;2、 利用tf2zp 求出系统零极点;3、 利用roots 求分母多项式的根来确定系统的极点 (三) 系统的动态特性分析Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.四、实验内容 (一) 稳定性1. 系统传函为()27243645232345234+++++++++=s s s s s s s s s s G ,试判断其稳定性2. 用Matlab 求出253722)(2342++++++=s s s s s s s G 的极点。

%Matlab 计算程序num=[3 2 5 4 6];den=[1 3 4 2 7 2];G=tf(num,den);pzmap(G);p=roots(den)运行结果: p =+ - + -P ole-Zero MapReal AxisI m a g i n a r y A x i s-2-1.5-1-0.500.5-1.5-1-0.50.511.5图1-1 零极点分布图由计算结果可知,该系统的2个极点具有正实部,故系统不稳定。

自动控制原理实验报告根轨迹分析法

自动控制原理实验报告根轨迹分析法

相关根轨迹知识
根轨迹的概念 根轨迹是开环系统某一参数从零变化到无穷大时, 闭环系 统特征根在 s 平面上变化的轨迹。 增设零、极点对根轨迹的影响 (1)增加开环零点对根轨迹的影响 第一,加入开环零点,改变渐近线的条数和渐近线的倾角; 第二,增加开环零点,相当于增加微分作用,使根轨迹向左 移动或弯曲,从而提高了系统的相对稳定性。系统阻尼增加,过 渡过程时间缩短; 第三,增加的开环零点越接近坐标原点,微分作用越强,系 统的相对稳定性越好。 (2)增加开环极点对根轨迹的影响 第一,加入开环极点,改变渐近线的条数和渐近线的倾角; 第二,增加开环极点,相当于增加积分作用,使根轨迹向右 移动或弯曲,从而降低了系统的相对稳定性。系统阻 尼减小,过渡过程时间加长;
-4-
五、实验过程
第一题 Gc=1:
Gc=s+5:
Gc=(s+2)(s+3):
-5-
Gc=1/(s+5):
第二题 第 一 步 : 在 MATLAB 的 命 令 窗 口 中 键 入 “ num=[1 3];den=[1 2 0];rlocus(num,den)” ,得图如下:
第二步: 第三步:
第三题 第一步:由已知条件 ts(△=2%)≤4s,超调量≤40%得
s ( s 2)
1 。作 s5
确定系统具有最大的超调量时的根轨迹增益,并作时域 仿真验证;(2)确定系统阶跃响应无超调时的根轨迹取值 范围,并作时域仿真验证 3、已知一单位反馈系统的开环传递函数为 ss 0.8试加入一 个串联超前校正控制(其中,|z|<|p|) ,使得闭环系统 的 ts(△=2%)≤4s,超调量≤40%。
-7-
本为图标的切线与 K 的横坐标的交点所得的纵坐标再减去延迟时间。 随后按图慢慢调整数值,一定要有耐心。 第二题中,Step 的属性不能忘改,否则横轴(0,1)处恒为 1。 分母出 S 前的系数必须小于 1(阻尼比小于 1) ,之后改改分子,调整 调整 S 前的系数并保持 S^2 前的系数不变 (因为分子分母都可约分) , 曲线即可得出。

自动控制原理MATLAB仿真实验一(控制系统地时域分析报告)

自动控制原理MATLAB仿真实验一(控制系统地时域分析报告)

实验一 MATLAB 及仿真实验(控制系统的时域分析)一、实验目的 学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性;二、实验容(一) 稳定性1. 系统传函为()27243645232345234+++++++++=s s s s s s s s s s G ,试判断其稳定性num1=[0 3 2 5 4 6];den1=[1 3 4 2 7 2];sys1=tf(num1,den1);figure(1);hold on[gm,pm,wcp,wcg]=margin(sys1);margin(sys1);title('对数频率特性图');xlabel('频率rad/sec');ylabel('Gain dB');2. 用Matlab 求出253722)(2342++++++=s s s s s s s G 的极点。

a=[0 0 1 2 2];b=[1 7 3 5 2];[z,p,k]=tf2zpk(a,b) ;(二)阶跃响应1. 二阶系统()102102++=s s s G1)键入程序,观察并记录单位阶跃响应曲线num1=[10];den1=[1 2 10];step(num1,den1);grid on ;2)计算系统的闭环根、阻尼比、无阻尼振荡频率,并记录 wn=sqrt(10);%自然振荡频率zunibi=2/wn;%阻尼比syms s ;S=solve(s^2+2*s+10);%求闭环根3)修改参数,分别实现1=ζ和2=ζ的响应曲线,并记录 n0=10;d0=[1 2 10]; step(n0,d0);%原响应曲线hold on ;n1=10;d1=[1 6.32 10];step(n1,d1);n2=10;d2=[1 12.64 10];step(n2,d2);4)修改参数,分别写出程序实现0121w w n =和022w w n =的响应曲线,并记录 n0=10;d0=[1 2 10];step(n0,d0);%原响应曲线hold on ;n1=2.5;d1=[1 1 2.5];step(n1,d1);n2=40;d2=[1 4 40];step(n2,d2);2. 作出以下系统的阶跃响应,并分析结果 (1)()10210221+++=s s s s G (2)()102105.0222++++=s s s s s G (3)()1025.0222+++=s s s s s G (4)()10222++=s s ss Gn0=[2 10];d0=[1 2 10];step(n0,d0);hold on ;n1=[1 0.5 10];d1=[1 2 10];step(n1,d1);hold on ;n2=[1 0.5 0];d2=[1 2 10];step(n2,d2);hold on ;n3=[1 0];d3=[1 2 10]; step(n3,d3);3. 25425)()(2++=s s s R s C 求该系统单位阶跃响应曲线,并在所得图形上加网格线和标题 num0=[25];den0=[1 4 25]; step(num0,den0); grid on ;xlabel('X'); ylabel('Y ');title('单位阶跃曲线');(三)系统动态特性分析 用Matlab 求二阶系统12012120)(2++=s s s G 和01.0002.001.0)(2++=s s s G 的峰值时间p t ,上升时间r t ,调整时间s t ,超调量%σ。

MATLAB自动控制原理实验

MATLAB自动控制原理实验

实验七 控制系统的MATLAB 分析一、 实验目的1)、掌握如何使用Matlab 进行系统的时域分析 2)、掌握如何使用Matlab 进行系统的频域分析 3)、掌握如何使用Matlab 进行系统的根轨迹分析 4)、掌握如何使用Matlab 进行系统的稳定性分析 5)、掌握使用Bode 图法进行控制系统设计的方法 二、 实验内容 1、时域分析法根据下面传递函数模型:绘制其单位阶跃响应曲线并从图上读取最大超调量,绘制系统的单位脉冲响应、零输入响应曲线。

1)、某单位负反馈系统传递函数为:8106)65(5)(232+++++=s s s s s s Gt (seconds)c (t )t (seconds)c (t )结论:2)、典型二阶系统传递函数为:2222)(nn nc s s s G ωξωω++= 当ζ=0.7,ωn 取2、4、6、8、10、12的单位阶跃响应。

Step ResponseTime (seconds)00.51 1.52 2.53 3.54结论:3)、典型二阶系统传递函数为:2222)(nn nc s s s G ωξωω++= 当ωn =6,ζ取0.2、0.4、0.6、0.8、1.0、1.5、2.0的单位阶跃响应。

Time (seconds)结论:2、频率分析法根据下面传递函数模型,绘制出系统的频率响应曲线,包括Bode 图和Nyquist 图,并从图上读取相角交接频率、截止频率,并求出幅值裕度和相角裕度。

1)、典型二阶系统传递函数为:2222)(nn nc s s s G ωξωω++= 当ζ=0.7,ωn 取2)、4)、6)、8、1)0、1)2)的伯德图和奈奎斯特图。

Wn=2M a g n i t u d e (d B )10101010P h a s e (d e g )Bode DiagramGm = Inf dB (at Inf rad/s) , Pm = 164 deg (at 0.4 rad/s)Frequency (rad/s)Real AxisI m a g i n a r y A x i sWn=4M a g n i t u d e (d B )10101010P h a s e (d e g )Bode DiagramFrequency (rad/s)Real AxisI m a g i n a r y A x i sWn=6M a g n i t u d e (d B )1010101010P h a s e (d e g )Bode DiagramFrequency (rad/s)Real AxisI m a g i n a r y A x i sWn=8M a g n i t u d e (d B )1010101010P h a s e (d e g )Bode DiagramFrequency (rad/s)Real AxisI m a g i n a r y A x i sWn=10M a g n i t u d e (d B )1010101010P h a s e (d e g )Bode DiagramFrequency (rad/s)Real AxisI m a g i n a r y A x i sWn=12M a g n i t u d e (d B )1010101010P h a s e (d e g )Bode DiagramFrequency (rad/s)Real AxisI m a g i n a r y A x i s2)、典型二阶系统传递函数为:2222)(nn nc s s s G ωξωω++= 当ωn =6,ζ取0.2、0.4、0.6、0.8、1.0、1.5、2.0的伯德图和奈奎斯特图。

《自动控制原理》Matlab求解控制系统频域分析实验

《自动控制原理》Matlab求解控制系统频域分析实验
频率分析法在自动控制系统的分析中具有许多优点,频域分析不仅可以分析线性定常系统,还可以推广到非线性系统,借助于MATLAB软件来分析系统的频率特性,可以简化分析中的大量计算,直接可以得到需要的性能参数,结合参数和相应的曲线来对系统进行分析。使用MATLAB软件可以精确地绘制出系统的bode图、nyquist曲线和Nichols曲线,使得对系统的分析带来很大的方便
《自动控制原理》Matlab求解控制系统频域分析实验
一、实验目的
1、加深了解系统频率特性的概念。
2、学习使用Matlab软件绘制Nyquist图、Bode图的基本方法。
3、掌握典型环节的频率特性。
二、实验仪器
Matlab2014b版
三、实验原理
1.奈奎斯特图(幅相频率特性图)
MATLAB为用户提供了专门用于绘制奈奎斯特图的函数nyquist
axis([-2,0.4,-1.5,1.5]);
k=500;
num=[1,10];
den=conv([1,0],conv([1,1],conv([1,20],[h,50])));
w=logspace(-1,3,200)
bode(k*num,den,w);
grid;
五、实验原始数据记录与数据处理
六、实验结果与分析讨论
范围是自动确定的。当需要指定幅值范围和相角范围时,则需用下面的功能指令:
[mag,phase,w]=bode(num,den,w)
四、实验内容及步骤
z=[]:
p=[0,-1,-2]:
k=5;
g=zpk(z,p,k):
nyquist(g);
w=0.5:0.1:10:
figure(2):
nyquist(g:w);

自动控制原理MATLAB分析与设计仿真实验报告(最终版)

自动控制原理MATLAB分析与设计仿真实验报告(最终版)

兰州理工大学《自动控制原理》MATLAB分析与设计仿真实验报告学院:电气工程与信息工程学院专业班级: 13级自动化3班姓名:学号:时间: 2015年12月Step ResponseTime (seconds)A m p l i t u d e1234567891000.511.5System: sys1Rise time (seconds): 1.17System: sys1P eak amplitude: 1.41Overshoot (%): 40.6At time (seconds): 2.86System: sys1Final value: 1第三章 线性系统的时域分析法一、教材第三章习题3.5设单位反馈系统的开环传递函数为G(s)=0.41(0.6)s s s ++(1)试求系统在单位阶跃输入下的动态性能。

(2)忽略闭环零点的系统在单位阶跃输入下的动态性能。

(3)对(1) 和(2)的动态性能进行比较并分析仿真结果。

(1)A :程序如下。

B :系统响应曲线如下图。

Step Response Time (seconds)A m p l i t u d e01234567891000.20.40.60.811.21.4System: sys1Final value: 1System: sys1Settling time (seconds): 8.08System: sys1P eak amplitude: 1.16Overshoot (%): 16.3At time (seconds): 3.63System: sys1Rise time (seconds): 1.64(2)A :程序如下。

B :系统响应曲线如下图。

(3) A :程序如下。

B 响应曲线如下图。

阶跃响应t (sec)c (t )0123456789100.20.40.60.811.21.4System: sysRise Time (sec): 1.46System: sys1Rise Time (sec): 1.64System: sys1P eak amplitude: 1.16Overshoot (%): 16.3At time (sec): 3.63System: sys P eak amplitude: 1.18Overshoot (%): 18At time (sec): 3.16System: sys1Final Value: 1System: sys1Settling Time (sec): 8.08System: sysSettling Time (sec): 7.74120,0.1ττ==120.1,0ττ==分析:忽略闭环零点时,系统的峰值时间,调节时间,上升时间均为增大的,而超调量减小。

自动控制原理MATLAB仿真实验报告

自动控制原理MATLAB仿真实验报告

实验一 典型环节的MATLAB 仿真 一、实验目的1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。

2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。

3.定性了解各参数变化对典型环节动态特性的影响。

二、实验内容① 比例环节1)(1=s G 和2)(1=s G ;Simulink 图形实现:示波器显示结果:② 惯性环节11)(1+=s s G 和15.01)(2+=s s GSimulink 图形实现:示波器显示结果:③ 积分环节s s G 1)(1Simulink 图形实现:示波器显示结果:④ 微分环节s s G )(1Simulink 图形实现:波器显示结果:⑤ 比例+微分环节(PD )2)(1+=s s G 和1)(2+=s s G1)、G1(s )=s+2Simulink 图形实现:示波器显示结果:2)、G2(s)=s+1 Simulink图形实现:示波器显示结果:⑥ 比例+积分环节(PI )s s G 11)(1+=和s s G 211)(2+=1)、G1(1)=1+1/sSimulink 图形实现:示波器显示结果:2)G2(s)=1+1/2s Simulink图形实现:示波器显示结果:三、心得体会通过这次实验我学到了很多,对课本内容加深了理解,熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法,加深对各典型环节响应曲线的理解,这为对课程的学习打下了一定基础。

实验二线性系统时域响应分析一、实验目的1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。

2.通过响应曲线观测特征参量ζ和nω对二阶系统性能的影响。

3.熟练掌握系统的稳定性的判断方法。

二、实验内容1.观察函数step( )的调用格式,假设系统的传递函数模型为243237()4641s s G s s s s s ++=++++绘制出系统的阶跃响应曲线?2.对典型二阶系统222()2n n n G s s s ωζωω=++1)分别绘出2(/)n rad s ω=,ζ分别取0,0.25,0.5,1.0和2.0时的单位阶跃响应曲线,分析参数ζ对系统的影响,并计算ζ=0.25时的时域性能指标,,,,p r p s ss t t t e σ。

自动控制原理实验报告MATHLAB建模.doc

自动控制原理实验报告MATHLAB建模.doc

自动控制原理实验报告学院:机电工程学院班级:姓名:学号:指导老师:实验一:在MATLAB中创建系统模型一、实验目的:1.熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法。

2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。

二、实验过程:1.传递函数模型的建立1)多项式形式的传递函数①课本例2.23上机操作过程如下:②课本P62,习题2-3上机操作过程如下:2)零、极点形式的传递函数课本例2.24上机操作过程如下:3)分子、分母为因式乘积形式的传递函数课本例2.25上机操作过程如下:2.Simulink 建模①课本例题上机操作如下:设单位反馈系统的开环传递函数为:)1(1)(+=s s s G将其转换成Simulink 框图,输入为阶跃信号,它的Simulink 框图如下所示:② 比例环节1)(1=s G 和2)(1=s G 的SIMULINK 图形建模操作如下;比例环节1)(1=s G 的SIMULINK 图形如下图所示:比例环节2)(1=s G 的SIMULINK 图形3.课后练习用matlab求下列函数的拉氏变换(习题2-1),上机操作过程如图所示:实验二:在MATLAB中算特征根及绘制根轨迹图一、实验目的:1.掌握MATLAB下的根轨迹绘制方法;2.学会利用根轨迹进行系统分析。

二、实验过程:1)例3-21 试利用MATLAB函数求例3.1中k=2.k=20时系统的特征根,并分别判定稳定性。

上机操作过程如下:>> num=[2];den=conv([1 0],conv([0.1 1],[0.25 1]));g=tf(num,den);sys=feedback(g,1);>> pzmap(sys)p=pole(sys)p =-11.0314-1.4843 + 2.2470i-1.4843 - 2.2470i2)例3-22 二阶系统如图3.13所示,设Wn=1,试研究系统的单位阶跃响应与参数ξ的关系。

自动控制原理matlab实验报告

自动控制原理matlab实验报告

自动控制原理matlab实验报告1.由题意得:C(s)=R(s)*(11s+K)/(s2+12s+K)-N(S)/(S2+12S+k)该系统显然是稳定的。

为了减少扰动的影响,希望增益K>0。

扰动引起的稳态误差e ssn=1/K,现使扰动引起的稳态误差小于0.05,最大超调量小于0.1,则K的取值范围是:20<k<100。

实验中,选取K=20,25,30,40,100进行五次实验,实验结果记录如下:由表中数据可得,使扰动引起的稳态误差较小,且使单位阶跃输入下超调量也相对小的情况下,本系统应选取K=25。

实验中K取不同值时的响应如下:K=20 K=25K=30 K=40K=1002.C(s)=R(s)*Ka/(s2+k1s+Ka)-N(S)/(S2+k1S+ka)(1)在阶跃指令r(t)作用下,系统输出的超调量小于或等于10%; 由解得:代入σ=0.1,求出 ζ=0.59,取ζ=0.6。

因而,在满足σ%≤10%指标要求下,应选(2)在斜坡输入作用下,稳态误差达到最小; 令斜坡输入为r(t)=Bt,可得斜坡输入作用下的稳态误差:结合要求(1)可得此式表明K a 应取尽可能大(3)减小单位阶跃扰动的影响。

阶跃扰动作用下的稳态误差22)(ln 11σπ+=ζaa 1K 2.1K 2K =ζ=a 1ssrK BK K B e ==assrK B 2.1e =)s (sC )s (sEe n 0s ns ssn l i m l i m →→-==aa 12s 00s K 1s1K s K s 1s)s (N )s (G 1)s (G s l i m l i m -=++-=+-=→→%e100%21 / ζ- πζ - =σ可见,增大K a可以同时减小e ssn及e ssr。

在实际系统中,K a的选取必须受到限制,以使系统工作在线性区。

实验中选取以下几组数据进行仿真。

KA=100,K1=12 KA=576,K1=30KA=625,K1=30 KA=900,K1=40KA=1000,K1=45由上表及仿真图分析可知应取K a =1000,K 1=45.3. 此系统的特征方程为:s 4+8s 3+17s 2+(10+K 1)s+aK 1=0 由题目要求可得: 斜坡输入下的稳态误差:K K )a 64116(12600aK 126K 21111>--+><令斜坡输入为r(t)=At令稳态误差等于输入指令幅度的24%。

自动控制原理matlab仿真实验实验严进宁

自动控制原理matlab仿真实验实验严进宁

实验一系统的数学模型一、实验目的和任务1、学会使用 MATLAB的命令;2、掌握MATLAB有关传递函数求取及其零、极点计算的函数。

3、掌握用 MATLAB 求取系统的数学模型二、实验仪器、设备及材料1、计算机2、MATLAB软件三、实验原理1、MATLAB软件的使用2、使用MATLAB软件在计算机上求取系统的传递函数四、实验报告要求1、将各实验内容的要求写入实验报告。

2、写出要求的实验程序。

3、记录各命令运行后的结果五、实验内容例1-3、设置传递函数6(5)s( )G s ,时间延迟常数τ 42 3 1)2(s s方式1:set(G,'ioDelay',4) % 为系统的ioDelay 属性设定值G % 显示传递函数解:该传递函数模型可以通过下面的语句输入到MATLAB工作空间为:>> num=6*[1,5];den=conv([1,3,1],[1,3,1]);G=tf(num,den);set(G,'ioDelay',4)G运行结果为:Transfer function:6 s + 30exp(-4*s) * ------------------------------s^4 + 6 s^3 + 11 s^2 + 6 s + 16(5)s( )例 1-4 、已知传递函数G s 2 2 ,提取系统的分子和分母多项式(实验)( 3 1)s s解:提取系统的分子和分母多项式程序为:>> num=6*[1,5];den=conv([1,3,1],[1,3,1]);G=tf(num,den)[num den]=tfdata(G,'v')运行结果为:Transfer function:6 s + 30------------------------------s^4 + 6 s^3 + 11 s^2 + 6 s + 1num =0 0 0 6 30den =1 6 11 6 1例 1-5 例 1-5 某系统的零极点模型为:G(s) 6( s 1)( s2)( (ss225)2 j)( s 2 2 j)方法2:利用算子(实验)>>s=zpk('s')G=6*(s+5)^2/((s+1)*(s+2)*(s+2+2)*(s+2-2)) 运行结果为:Zero/pole/gain:6 (s+5)^2-------------------s (s+1) (s+2) (s+4)例 1-7 已知系统传递函数24 11s sG ,求零极点及增益,并绘制系统2 2( 6 3)( 2 )s s s s零极点分布图。

自动控制原理Matlab实验1(初步认识MATLAB和系统仿真)

自动控制原理Matlab实验1(初步认识MATLAB和系统仿真)

《自动控制原理》课程实验报告实验名称初步认识MATLAB和系统仿真专业班级 ********* 学************号姓名**指导教师李离学院名称电气信息学院2012 年 11 月 5 日Lab1_1_1.m程序:y0=0.15;wn=sqrt(2);zeta=1/(2*sqrt(2));t=[0:0.1:10];c=(y0/sqrt(1-zeta^2));y=c*exp(-zeta*wn*t).*sin(wn*sqrt(1-zeta^2)*t+acos(zeta)); bu=c*exp(-zeta*wn*t);bl=-bu;plot(t,y,t,bu,'k--',t,bl,'k--'),gridxlabel('Time (sec)'),ylabel('y(t) (meters)')legend(['\omega_n=',num2str(wn),' \zeta=',num2str(zeta)])仿真结果:(1)零输入响应曲线理论分析:0<ζ<1,对于二阶响应,其瞬态响应应该是一个按照指数衰减的振荡过程,ζ越小,衰减越慢,该系统是欠阻尼系统。

从图中也可以看出,系统是零输入响应,是个震荡衰减的过程,符合理论判断。

Lab1_1_2.m程序:y0=0.15;wn=sqrt(2);zeta=1;t=[0:0.1:10];y=y0*(exp(-wn*t)+wn*t.*exp(-wn*t));plot(t,y),gridxlabel('Time (sec)'),ylabel('y(t) (meters)')legend(['\omega_n=',num2str(wn),' \zeta=',num2str(zeta)])仿真结果:(2)零输入响应曲线理论分析:在图中可以看到,随着时间的增加,响应在逐渐减小。

matlab在自控理论中的应用实验报告

matlab在自控理论中的应用实验报告

自动控制理论实验报告一、实验名称MATLAB在自动控制理论中的应用二、实验目的熟悉并掌握MATLAB在自动控制理论中的数学计算和绘图功能、simulink仿真功能等。

三、实验内容(所有)1、传递函数的描述法2、自动控制系统结构框图的模型表示3、线性系统的时域分析4、线性系统的频域分析5、线性系统的根轨迹分析6、状态空间描述法四、实验步骤(部分)【实验一】实验目的:观察二阶振荡环节中,参数ζ和Wn分别变化时对输出波形的影响。

实验内容:二阶标准传递函数:(1)令Wn不变,ζ取不同的值。

(0<ζ<1)练习:令Wn=5不变,ζ等于0.2和0.707结论:Wn相同,ζ等于0.707时响应更快(2)令ζ不变,Wn取不同的值。

练习:令ζ=0.25,Wn等于1和10结论:ζ相同,Wn越大响应越快实验代码:>> num=[25];>> den=[1,2,25];>> G1=tf(num,den);>> den2=[1,7.07,25];>> G2=tf(num,den2);>> num2=[1];>> den3=[1,0.5,1];>> den4=[1,5,100];>> G3=tf(num2,den3);>> num3=[100];>> G4=tf(num3,den4);>> step(G1);hold on>> step(G2);hold on>> step(G3);hold on>> step(G4);hold on实验结果:ζ=0.2ζ=0.707Wn=10Wn=1实验结论:我们可以很直观的看到,当Wn相同,ζ等于0.707时比ζ等于0.2时响应更快;ζ相同,Wn越大响应越快。

但是因为ζ范围是0到1,而ζ的取值到底是怎么样影响系统输出的,是否是越大响应越快,就可以通过下面一个实验来进行验证。

自控原理实验报告1

自控原理实验报告1

自动控制原理实验——第一次实验姓名:乔佳楠班级:06110901学号:20091419一、实验目的了解MATLAB在自动控制原理课程中的应用,学习MATLAB的基本使用方法。

通过上机实验操作学习线性系统的分析与设计,学习传递函数的描述方法,自控系统结构框图的模型表示以及线性系统的时域分析。

其中本节重点掌握结构框图中的串联,并联和反馈结构的模型表示方法,并能正确分析不同结构模型之间的关系。

二、实验要求运用MATLAB软件解决下列三个问题,并绘制出每个函数的单位阶跃响应图像,标出其上升时间,过渡过程时间,计算出超调量。

三、实验内容1.给出下列两个函数,分别求出在串联,并联和反馈结构中的系统传递函数,并画出阶跃响应曲线,标出上升时间,过渡过程时间以及超调量。

①G1=tf(10,[1,2,3]) ②G2=tf(1,[1,2])Step1:串联结构,即G=G1*G2>> G1=tf(10,[1,2,3]);>> G2=tf(1,[1,2]);>> G=series(G1,G2)Transfer function:10---------------------s^3 + 4 s^2 + 7 s + 6>> step(G)起调量:(1.77-1.66)/1.66*100%=6.63% 上升时间: 2.97 sec过渡过程时间:5.89 secStep2:并联结构,即G=G1+G2>> G1=tf(10,[1,2,3]);>> G2=tf(1,[1,2]);>> G=parallel(G1,G2)Transfer function:s^2 + 12 s + 23---------------------s^3 + 4 s^2 + 7 s + 6>> step(G)起调量:(4.19-3.83)/3.83*100%=9.40% 上升时间: 2.23 sec过渡过程时间:5.78 secStep3:反馈结构,即G=G1/(1+G1G2)>> G1=tf(10,[1,2,3]);>> G2=tf(1,[1,2]);>> G=feedback(G1,G2,-1)Transfer function:10 s + 20----------------------s^3 + 4 s^2 + 7 s + 16 >> step(G)起调量:(2.25-1.25)/1.25*100%=80.0%上升时间: 1.29 sec过渡过程时间:16.7 sec2.根据系统的结构框图,求出系统总的传递函数。

自动控制原理 - Matlab实验分析完整报告【优秀版】

自动控制原理 - Matlab实验分析完整报告【优秀版】

利用MATLAB 进行自动控制原理的一些分析来自:我是痕痕的弟弟1、已知三阶系统开环传递函数为G (S )=)232(2723+++s s s ,利用MATLAB 程序,画出系统的奈圭斯特图,求出相应的幅值裕量和相位裕量。

解: 程序如下:G=tf(3.5,[1,2,3,2]); %得到系统的传递函数 subplot(1,2,1);nyquist(G); %绘制奈圭斯特曲线gridxlabel('Real Axis')ylabel('Image Axis')[Gm,Pm,Weg,Wep]=margin(G) %求幅值和相角余度及对应的频率G_ c=feedback(G,1); %构造单位反馈系统subplot(1,2,2); %绘制单位阶跃响应曲线step(G_ c)gridxlabel('Time(secs)')ylabel('Amplitude')显示结果:Gm=1.1433 Pm=7.1688 Wcg=1.7323 Wcp=1.6541系统的奈圭斯特图如下(从MATLAB截图显示):2、绘制二阶环节的伯特图。

解:MATLAB程序如下:figure('pos',[30 100 260 400],'color','w');axes('pos',[0.15 0.2 0.7 0.7]);wn=1w=[0,logspace(-2,2,200)]; %得到对数频率数组for zeta=[0.1 0.5 1 2] %分别绘制阻尼系数为0.1、0.5、1、2的二阶环节bode 图G=tf(1,[wn^-2 2*zeta/wn 1]); bode(G ,w); hold on end;grid程序运行后得到如下图(MATLAB 截图显示):从图中可以看出,频率w 接近Wn 时产生谐振,阻尼比的大小确定谐振峰值的大小,阻尼比越小,谐振峰值越大。

《自动控制原理》实验报告-MATLAB分析与设计仿真

《自动控制原理》实验报告-MATLAB分析与设计仿真

兰州理工大学《自动控制原理》MATLAB分析与设计仿真实验报告院系:电信学院班级:姓名:学号:时间:2010 年11 月22 日电气工程与信息工程学院《自动控制原理》MATLAB分析与设计仿真实验任务书(2010)一.仿真实验内容及要求:1.MATLAB软件要求学生通过课余时间自学掌握MATLAB软件的基本数值运算、基本符号运算、基本程序设计方法及常用的图形命令操作;熟悉MATLAB仿真集成环境Simulink的使用。

2.各章节实验内容及要求1)第三章线性系统的时域分析法•对教材P136.3-5系统进行动态性能仿真,并与忽略闭环零点的系统动态性能进行比较,分析仿真结果;•对教材P136.3-9系统的动态性能及稳态性能通过的仿真进行分析,说明不同控制器的作用;•在MATLAB环境下完成英文讲义P153.E3.3。

•对英文讲义中的循序渐进实例“Disk Drive Read System”,在100=K时,试采a用微分反馈使系统的性能满足给定的设计指标。

2)第四章线性系统的根轨迹法•在MATLAB环境下完成英文讲义P157.E4.5;•利用MATLAB绘制教材P181.4-5-(3);•在MATLAB环境下选择完成教材第四章习题4-10或4-18,并对结果进行分析。

3)第五章线性系统的频域分析法利用MATLAB绘制本章作业中任意2个习题的频域特性曲线;4)第六章线性系统的校正利用MATLAB选择设计本章作业中至少2个习题的控制器,并利用系统的单位阶跃响应说明所设计控制器的功能。

5)第七章线性离散系统的分析与校正•利用MATLAB完成教材P383.7-20的最小拍系统设计及验证。

•利用MATLAB完成教材P385.7-25的控制器的设计及验证。

二.仿真实验时间安排及相关事宜1.依据课程教学大纲要求,仿真实验共6学时,教师可随课程进度安排上机时间,学生须在实验之前做好相应的准备,以确保在有限的机时内完成仿真实验要求的内容;2.实验完成后按规定完成相关的仿真实验报告;3.仿真实验报告请参照有关样本制作并打印装订;4.仿真实验报告必须在本学期第15学周结束之前上交授课教师。

自动控制原理MATLAB仿真实验报告

自动控制原理MATLAB仿真实验报告

实验一 MATLAB 及仿真实验(控制系统的时域分析)一、实验目的学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性; 二、预习要点1、 系统的典型响应有哪些?2、 如何判断系统稳定性?3、 系统的动态性能指标有哪些? 三、实验方法 (一) 四种典型响应1、 阶跃响应:阶跃响应常用格式:1、)(sys step ;其中sys 可以为连续系统,也可为离散系统。

2、),(Tn sys step ;表示时间范围0---Tn 。

3、),(T sys step ;表示时间范围向量T 指定。

4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。

2、 脉冲响应:脉冲函数在数学上的精确定义:0,0)(1)(0〉==⎰∞t x f dx x f其拉氏变换为:)()()()(1)(s G s f s G s Y s f ===所以脉冲响应即为传函的反拉氏变换。

脉冲响应函数常用格式: ① )(sys impulse ; ②);,();,(T sys impulse Tn sys impulse③ ),(T sys impulse Y =(二) 分析系统稳定性 有以下三种方法:1、 利用pzmap 绘制连续系统的零极点图;2、 利用tf2zp 求出系统零极点;3、 利用roots 求分母多项式的根来确定系统的极点 (三) 系统的动态特性分析Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.四、实验内容 (一) 稳定性1. 系统传函为()27243645232345234+++++++++=s s s s s s s s s s G ,试判断其稳定性2. 用Matlab 求出253722)(2342++++++=s s s s s s s G 的极点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一 典型环节得M AT LAB 仿真
一、实验目得
1.熟悉M ATLAB 桌面与命令窗口,初步了解SIM ULINK 功能模块得使用方法、 2.通过观察典型环节在单位阶跃信号作用下得动态特性,加深对各典型环节响应曲线得理解。

3、定性了解各参数变化对典型环节动态特性得影响、
二、实验原理
1、比例环节得传递函数为
其对应得模拟电路及SIMULI NK 图形如图1所示。

2.惯性环节得传递函数为
uf C K R K R s C R R R Z Z s G 1,200,10012.021)(121121212===+-=+-=-=
其对应得模拟电路及S IMULINK 图形如图2所示。

3.积分环节(I)得传递函数为
其对应得模拟电路及SI MULINK 图形如图3所示。

4.微分环节(D)得传递函数为
其对应得模拟电路及SIMULINK 图形如图4所示、 ﻩ
5.比例+微分环节(PD)得传递函数为
其对应得模拟电路及SIMUL INK 图形如图5所示。

6.比例+积分环节(PI)得传递函数为
其对应得模拟电路及SIMU LI NK 图形如图6所示。

图1 比例环节得模拟电路及SIMULINK 图形
图3 积分环节得模拟电路及及SIMULINK 图形 图4 微分环节得模拟电路及及SIMULINK 图形
图2惯性环节得模拟电路及SIMULINK 图形
图5比例+微分环节得模拟电路及SIMULINK 图形曲线
三、实验内容
按下列各典型环节得传递函数,建立相应得SIMULINK仿真模型,观察并记录其单位阶跃响应波形。

①比例环节与;
②惯性环节与
③积分环节
④微分环节
⑤比例+微分环节(PD)与
⑥比例+积分环节(PI)与
四、实验报告
记录各环节得单位阶跃响应波形,并分析参数对响应曲线得影响。

①比例环节:
(如图7所示)(如图8所示)
②惯性环节:
(如图9所示) (如图10所示)
③积分环节: (如图11所示)
④微分环节:(如图12所示)
⑤比例+微分环节(PD):
(如图13所示) (如图14所示)
⑥比例+积分环节(PI):
(如图15所示) (如图16所示)
实验二基于MATLAB控制系统单位阶跃响应分析
一、实验目得
1、学会使用MATLAB编程绘制控制系统得单位阶跃响应曲线。

2. 研究二阶控制系统中,ωn对系统阶跃响应得影响。

3。

掌握准确读取动态特性指标得方法、
4。

分析二阶系统闭环极点与闭环零点对系统动态性能得影响。

二、实验报告
已知单位负反馈前向通道得传递函数为:
1. 试作出其单位阶跃响应曲线,准确读出其动态性能指标,并记录数据、
2. 分析ωn不变时,改变阻尼比,观察闭环极点得变化及其阶跃响应得变化、
当ξ=0,0。

25,0、5,0.75,1,1、25时,求对应系统得闭环极点、自然振荡频率及阶跃响应曲线、
3. 保持ξ=0.25不变,分析ωn变化时,闭环极点对系统单位阶跃响应得影响、
当ωn=10,30,50时,求系统得阶跃响应曲线、
4。

分析系统零极点对系统阶跃响应得影响。

实验三基于MATLAB控制系统得根轨迹及其性能分析
一、实验目得
1、熟练掌握使用MATLAB绘制控制系统零极点图与根轨迹图得方法。

2. 学会分析控制系统根轨迹得一般规律。

3。

利用根轨迹图进行系统性能分析。

4. 研究闭环零、极点对系统性能得影响。

二、实验原理
1。

根轨迹与稳定性
当系统开环增益从变化时,若根轨迹不会越过虚轴进入s右半平面,那么系统对所有得K值都就是稳定得;若根轨迹越过虚轴进入s右半平面,那么根轨迹与虚轴交点处得K 值,就就是临界开环增益。

应用根轨迹法,可以迅速确定系统在某一开环增益或某一参数下得闭环零、极点位置,从而得到相应得闭环传递函数。

2. 根轨迹与系统性能得定性分析
1)稳定性。

如果闭环极点全部位于s左半平面,则系统一定就是稳定得,即稳定性只与闭环极点得位置有关,而与闭环零点位置无关。

2)运动形式。

如果闭环系统无零点,且闭环极点为实数极点,则时间响应一定就是单调得;如果闭环极点均为复数极点,则时间响应一般就是振荡得。

3)超调量。

超调量主要取决于闭环复数主导极点得衰减率,并与其它闭环零、极点接近坐标原点得程度有关。

4)调节时间、调节时间主要取决于最靠近虚轴得闭环复数极点得实部绝对值;如果实数极点距虚轴最近,并且它附近没有实数零点,则调节时间主要取决于该实数极点得模值、
5)实数零、极点影响。

零点减小闭环系统得阻尼,从而使系统得峰值时间提前,超调量增大;极点增大闭环系统得阻尼,使系统得峰值时间滞后,超调量减小、而且这种影响将其接近坐标原点得程度而加强。

三、实验报告
1。

已知系统得开环传递函数,绘制系统得零极点图。

2.若已知系统开环传递函数,绘制控制系统得根轨迹图,并分析根轨迹得一般规律、
ﻬ实验四线性系统得频域分析
一、实验目得
1.掌握用MATLAB语句绘制各种频域曲线。

2.掌握控制系统得频域分析方法。

二、实验报告
1.典型二阶系统
绘制出,,0.3,0.5,0。

8,2得bode图,记录并分析对系统bode图得影响。

2。

系统得开环传递函数为
绘制系统得Nyquist曲线、Bode图,说明系统得稳定性,并通过绘制阶跃响应曲线验证。

3、已知系统得开环传递函数为、求系统得开环截止频率、穿越频率、幅值裕度与相位裕度。

应用频率稳定判据判定系统得稳定性。

4。

根据频域分析方法分析系统,说明频域法分析系统得优点。

ﻬ实验五线性系统串联校正
一、实验目得
1。

熟练掌握用MATLAB语句绘制频域曲线。

2.加深理解串联校正装置对系统动态性能得校正作用、
二、实验内容
1)采用PI调节器串联校正
对于给定得单位反馈闭环系统,如图1所示:
图1原闭环系统结构图
串联校正装置得传递函数为,试画出原系统及各校正环节得模拟线路图及校正前后系统得闭环结构图,记录测试数据及响应波形,并分析校正前、后系统得性能、
2)采用PD调节器串联校正
对于给定得单位反馈闭环系统,如图2所示:
图2 原闭环系统结构图
串联校正装置得传递函数为,试画出原系统及各校正环节得模拟线路图及校正前后系统得闭环结构图,记录测试数据及响应波形,并分析校正前、后系统得性能。

3)采用PID调节器串联校正
对于给定得单位反馈闭环系统,如图3所示:
图3 原闭环系统结构图
串联校正装置得传递函数为,试画出原系统及各校正环节得模拟线路图及校正前后系统得闭环结构图,记录测试数据及响应波形,并分析校正前、后系统得性能。

相关文档
最新文档