MAX3762EEP中文资料
MAX471MAX472的中文资料大全
M A X471M A X472的中文资料大全(总4页)-本页仅作为预览文档封面,使用时请删除本页-MAX471/MAX472的特点、功能美国美信公司生产的精密高端电流检测放大器是一个系列化产品,有MAX471/MA X472、 MAX4172/MAX4173等。
它们均有一个电流输出端,可以用一个电阻来简单地实现以地为参考点的电流/电压的转换,并可工作在较宽电压内。
MAX471/MAX472具有如下特点:●具有完美的高端电流检测功能;●内含精密的内部检测电阻(MAX471);●在工作温度范围内,其精度为2%;●具有双向检测指示,可监控充电和放电状态;●内部检测电阻和检测能力为3A,并联使用时还可扩大检测电流范围;●使用外部检测电阻可任意扩展检测电流范围(MAX472);●最大电源电流为100μA;●关闭方式时的电流仅为5μA;●电压范围为3~36V;●采用8脚DIP/SO/STO三种封装形式。
MAX471/MAX472的引脚排列如图1所示,图2所示为其内部功能框图。
表1为MAX471/MAX472的引脚功能说明。
MAX471的电流增益比已预设为500μA/A,由于2kΩ的输出电阻(ROUT)可产生1V/A的转换,因此±3A时的满度值为3V.用不同的ROUT电阻可设置不同的满度电压。
但对于MAX471,其输出电压不应大于VRS+。
对于MAX472,则不能大于。
MAX471引脚图如图1所示,MAX472引脚图如图2所示。
MAX471/MAX472的引脚功能说明引脚名称功能MAX471MAX47211SHDN关闭端。
正常运用时连接到地。
当此端接高电平时,电源电流小于5μA2,3-RS+内部电流检测电阻电池(或电源端)。
“+”仅指示与SIGN输出有关的流动方向。
封装时已将2和3连在了一起-2空脚-3RG1增益电阻端。
通过增益设置电阻连接到电流检测电阻的电池端44GND地或电池负端55SIGN集电极开路逻辑输出端。
MAX3232ECPE中文资料
MAX3222EEPN -40°C to +85°C 18 Plastic DIP —
MAX3232ECAE 0°C to +70°C 16 SSOP
—
MAX3232ECWE 0°C to +70°C 16 Wide SO —
MAX3232ECPE 0°C to +70°C 16 Plastic DIP —
Next-Generation Device Features
♦ For Space-Constrained Applications MAX3228E/MAX3229E: ±15kV ESD-Protected, +2.5V to +5.5V, RS-232 Transceivers in UCSP
*Dice are tested at TA = +25°C, DC parameters only. **EP = Exposed paddle.
Ordering Information continued at end of data sheet.
Pin Configurations, Selector Guide, and Typical Operating Circuits appear at end of data sheet.
MAX3222EETP
20 Thin QFN-40°C to +85°C EP** (5mm x
5mm)
T2055-5
MAX3222EEUP -40°C to +85°C 20 TSSOP
—
MAX3222EEAP -40°C to +85°C 20 SSOP
—
MAX3222EEWN -40°C to +85°C 18 Wide SO —
SP202EEP中文资料
■Operates from Single +5V Power Supply ■Meets All RS-232D and ITU V.28Specifications■Operates with 0.1µF to 10µF Capacitors ■High Data Rate – 120Kbps Under Load ■Low Power Shutdown ≤1µA (Typical)■3-State TTL/CMOS Receiver Outputs ■Low Power CMOS – 3mA Operation ■Improved ESD Specifications:±15kV Human Body Model±15kV IEC1000-4-2 Air Discharge ±8kV IEC1000-4-2 Contact DischargeDESCRIPTION…The SP202E/232E/233E/310E/312E devices are a family of line driver and receiver pairs that meet the specifications of RS-232 and V.28 serial protocols with enhanced ESD performance.The ESD tolerance has been improved on these devices to over ±15KV for both Human Body Model and IEC1000-4-2 Air Discharge Method. These devices are pin-to-pin compatible with Sipex's SP232A/233A/310A/312A devices as well as popular industry standards. As with the initial versions, the SP202E/232E/233E/310E/312E devices feature at least 120Kbps data rate under load, 0.1µF charge pump capacitors, and overall ruggedness for commercial applications.This family also features Sipex's BiCMOS design allowing low power operation without sacrificing performance. The series is available in plastic and ceramic DIP and SOIC packages operating over the commercial, industrial and military temperature ranges.Number of RS232No. of Receivers No. of ExternalModel Drivers Receivers Active in Shutdown 0.1µF CapacitorsShutdown WakeUp TTL Tri–StateSP202E 2204No No No SP232E 2204No No No SP233E 2200No No No SP310E 2204Yes No Yes SP312E2224Yes Yes YesABSOLUTE MAXIMUM RATINGS This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.Vcc .................................................................................................................................................................+6VV+....................................................................................................................(Vcc-0.3V) to +11.0V V-............................................................................................................................................................-11.0V Input VoltagesT IN .........................................................................................................................-0.3 to (Vcc +0.3V)RIN ............................................................................................................................................................±15VOutput VoltagesT OUT ....................................................................................................(V+, +0.3V) to (V-, -0.3V)ROUT ................................................................................................................-0.3V to (Vcc +0.3V)Short Circuit DurationT OUT .........................................................................................................................................ContinuousPower DissipationCERDIP..............................................................................675mW(derate 9.5mW/°C above +70°C)Plastic DIP..........................................................................375mW(derate 7mW/°C above +70°C)Small Outline......................................................................375mW(derate 7mW/°C above +70°C)SPECIFICATIONS元器件交易网元器件交易网PERFORMANCE CURVES+Figure 1. Typical Circuit using the SP202E or SP232E.FEATURES…The SP202E/232E/233E/310E/312E devices are a family of line driver and receiver pairs that meet the specifications of RS-232 and V.28serial protocols with enhanced ESD perfor-mance. The ESD tolerance has been improved on these devices to over ±15KV for both Human Body Model and IEC1000-4-2 Air Discharge Method. These devices are pin-to-pin compat-ible with Sipex's 232A/233A/310A/312A devices as well as popular industry standards.As with the initial versions, the SP202E/232E/233E/310E/312E devices feature10V/µs slew rate, 120Kbps data rate under load, 0.1µF charge pump capacitors, overall ruggedness for commercial applications, and increased drive current for longer and more flexible cable configurations. This family also features Sipex's BiCMOS design allowing low power operation without sacrificing performance.The SP202E/232E/233E/310E/312E devices have internal charge pump voltage converters which allow them to operate from a single +5V supply. The charge pumps will operate with polarized or non-polarized capacitors ranging from 0.1 to 10 µF and will generate the ±10V needed to generate the RS-232 output levels.Both meet all EIA RS-232 and ITU V.28specifications.The SP310E provides identical features as the SP232E with a single control line which simultaneously shuts down the internal DC/DC converter and puts all transmitter and receiver outputs into a high impedance state. The SP312E is identical to the SP310E with separate tri-state and shutdown control lines.THEORY OF OPERATIONThe SP232E , SP233E , SP310E and SP312Edevices are made up of three basic circuit blocks –1) a driver/transmitter, 2) a receiver and 3) a charge pump. Each block is described below.Driver/TransmitterThe drivers are inverting transmitters, which ac-cept TTL or CMOS inputs and output the RS-232signals with an inverted sense relative to the input logic levels. Typically the RS-232 output voltage swing is ±9V. Even under worst case loading conditions of 3kOhms and 2500pF, the output is guaranteed to be ±5V, which is consistent with the RS-232 standard specifications. The transmitter outputs are protected against infinite short-circuits to ground without degradation in reliability.元器件交易网The instantaneous slew rate of the transmitteroutput is internally limited to a maximum of 30V/µs in order to meet the standards [EIA RS-232-D 2.1.7, Paragraph (5)]. However, the transition re-gion slew rate of these enhanced products is typi-cally 10V/µs. The smooth transition of the loaded output from V OL to V OH clearly meets the mono-tonicity requirements of the standard [EIA RS-232-D 2.1.7, Paragraphs (1) & (2)].ReceiversThe receivers convert RS-232 input signals to inverted TTL signals. Since the input is usually from a transmission line, where long cable lengthsand system interference can degrade the signal, theinputs have a typical hysteresis margin of 500mV.This ensures that the receiver is virtually immune to noisy transmission lines.The input thresholds are 0.8V minimum and 2.4V maximum, again well within the ±3V RS-232requirements. The receiver inputs are also pro-tected against voltages up to ±15V. Should an input be left unconnected, a 5KOhm pulldown resistor to ground will commit the output of the receiver to a high state.Figure 2. Typical Circuits using the SP233ECP and SP233ECTFigure 3. Typical Circuits using the SP310E and SP312EFigure 4. Charge Pump — Phase 1Figure 5. Charge Pump — Phase 2In actual system applications, it is quite possible for signals to be applied to the receiver inputs before power is applied to the receiver circuitry.This occurs, for example, when a PC user attempts to print, only to realize the printer wasn’t turned on.In this case an RS-232 signal from the PC will appear on the receiver input at the printer. When the printer power is turned on, the receiver will operate normally. All of these enhanced devices are fully protected.Charge PumpThe charge pump is a Sipex –patented design (5,306,954) and uses a unique approach com-pared to older less–efficient designs. The charge pump still requires four external capacitors, but uses a four–phase voltage shifting technique to attain symmetrical 10V power supplies. There is a free–running oscillator that controls the four phases of the voltage shifting. A description of each phase follows.Phase 1— V SS charge storage —During this phase of the clock cycle, the positive side of capacitors C 1 and C 2 are initially charged to +5V. C l + is then switched to ground and the charge in C 1– is transferred to C 2–. Since C 2+ is connected to +5V, the voltage potential across capacitor C 2 is now 10V.Phase 2— V SS transfer — Phase two of the clock con-nects the negative terminal of C 2 to the V SS storage capacitor and the positive terminal of C 2to ground, and transfers the generated –l0V to C 3. Simultaneously, the positive side of capaci-tor C 1 is switched to +5V and the negative side is connected to ground.Phase 3— V DD charge storage — The third phase of the clock is identical to the first phase — the charge transferred in C 1 produces –5V in the negative terminal of C 1, which is applied to the negative side of capacitor C 2. Since C 2+ is at +5V, the voltage potential across C 2 is l0V.Phase 4— V DD transfer — The fourth phase of the clock connects the negative terminal of C 2 to ground,and transfers the generated l0V across C 2 to C 4,the V DD storage capacitor. Again, simultaneously with this, the positive side of capacitor C 1 is switched to +5V and the negative side is con-nected to ground, and the cycle begins again.Since both V + and V – are separately generated from V CC ; in a no–load condition V + and V – willFigure 6. Charge Pump Waveforms+10Va) C 2+GND GNDb) C 2––10VFigure 7. Charge Pump — Phase 3Figure 8. Charge Pump — Phase 4be symmetrical. Older charge pump approachesthat generate V – from V + will show a decrease in the magnitude of V – compared to V + due to the inherent inefficiencies in the design.The clock rate for the charge pump typically operates at 15kHz. The external capacitors can be as low as 0.1µF with a 16V breakdown voltage rating.Shutdown (SD) and Enable (EN) for the SP310E and SP312EBoth the SP310E and SP312E have a shutdown/standby mode to conserve power in battery-pow-ered systems. To activate the shutdown mode,which stops the operation of the charge pump, a logic “0” is applied to the appropriate control line.For the SP310E , this control line is ON/OFF (pin 18). Activating the shutdown mode also puts theSP310E transmitter and receiver outputs in a high impedance condition (tri-stated). The shutdown mode is controlled on the SP312E by a logic “0”on the SHUTDOWN control line (pin 18); this also puts the transmitter outputs in a tri–state mode. The receiver outputs can be tri–stated separately during normal operation or shutdown by a logic “1” on the ENABLE line (pin 1).Wake–Up Feature for the SP312EThe SP312E has a wake–up feature that keeps all the receivers in an enabled state when the device is in the shutdown mode. Table 1 defines the truth table for the wake–up function.With only the receivers activated, the SP312E typically draws less than 5µA supply current. In the case of a modem interfaced to a computer in power down mode, the Ring Indicator (RI) signal from the modem would be used to "wake up" the computer, allowing it to accept data transmission.After the ring indicator signal has propagated through the SP312E receiver, it can be used to trigger the power management circuitry of the computer to power up the microprocessor, and bring the SD pin of the SP312E to a logic high, taking it out of the shutdown mode. The receiver propagation delay is typically 1µs. The enable time for V+ and V– is typically 2ms. After V+ and V– have settled to their final values, a signal can be sent back to the modem on the data terminal ready (DTR) pin signifying that the computer is ready to accept and transmit data.Pin Strapping for the SP233ECTThe SP233E packaged in the 20–pin SOIC pack-age (SP233ECT) has a slightly different pinout than the SP233E in other package configurations. To operate properly, the following pairs of pins must be externally wired together:the two V– pins (pins 10 and 17)the two C2+ pins (pins 12 and 15)the two C2– pins (pins 11 and 16)All other connections, features, functions and performance are identical to the SP233E as specified elsewhere in this data sheet.ESD TOLERANCEThe SP202E/232E/233E/310E/312E devices incorporates ruggedized ESD cells on all driver output and receiver input pins. The ESD struc-ture is improved over our previous family for more rugged applications and environments sen-sitive to electro-static discharges and associated transients. The improved ESD tolerance is at least ±15KV without damage nor latch-up. There are different methods of ESD testing applied:a) MIL-STD-883, Method 3015.7b) IEC1000-4-2 Air-Dischargec) IEC1000-4-2 Direct ContactThe Human Body Model has been the generally accepted ESD testing method for semiconductors. This method is also specified in MIL-STD-883, Method 3015.7 for ESD testing. The premise of this ESD test is to simulate the human body’s potential to store electro-static energy and discharge it to an integrated circuit. The simulation is performed by using a test model as shown in Figure 9. This method will test the IC’s capability to withstand an ESD transient during normal handling such as in manufacturing areas where the ICs tend to be handled frequently.The IEC-1000-4-2, formerly IEC801-2, is generally used for testing ESD on equipment and systems. For system manufacturers, they must guarantee a certain amount of ESD protection since the system itself is exposed to the outside environment and human presence. The premise元器件交易网Table 1. Wake-up Function Truth Table.Figure 9. ESD Test Circuit for Human Body ModelFigure 10. ESD Test Circuit for IEC1000-4-2with IEC1000-4-2 is that the system is required to withstand an amount of static electricity when ESD is applied to points and surfaces of the equipment that are accessible to personnel during normal usage. The transceiver IC receives most of the ESD current when the ESD source is applied to the connector pins. The test circuit for IEC1000-4-2 is shown on Figure 10. There are two methods within IEC1000-4-2, the Air Discharge method and the Contact Discharge method.With the Air Discharge Method, an ESD voltage is applied to the equipment under test (EUT)through air. This simulates an electrically charged person ready to connect a cable onto the rear of the system only to find an unpleasant zap just before the person touches the back panel. The high energy potential on the person discharges through an arcing path to the rear panel of the system before he or she even touches the system.This energy, whether discharged directly or through air, is predominantly a function of theSP202E HUMAN BODY IEC1000-4-2FamilyMODEL Air Discharge Direct Contact LevelDriver Outputs ±15kV ±15kV ±8kV 4Receiver Inputs ±15kV±15kV±8kV4Figure 11. ESD Test Waveform for IEC1000-4-2t=0nst=30ns0A15A30At ➙i ➙Table 2. Transceiver ESD Tolerance Levelsdischarge current rather than the discharge voltage. Variables with an air discharge such as approach speed of the object carrying the ESD potential to the system and humidity will tend to change the discharge current. For example, the rise time of the discharge current varies with the approach speed.The Contact Discharge Method applies the ESD current directly to the EUT. This method was devised to reduce the unpredictability of the ESD arc. The discharge current rise time is constant since the energy is directly transferred without the air-gap arc. In situations such as hand held systems, the ESD charge can be directlydischarged to the equipment from a person already holding the equipment. The current is transferred on to the keypad or the serial port of the equipment directly and then travels through the PCB and finally to the IC.The circuit models in Figures 9 and 10 represent the typical ESD testing circuit used for all three methods. The C S is initially charged with the DC power supply when the first switch (SW1) is on.Now that the capacitor is charged, the second switch (SW2) is on while SW1 switches off. The voltage stored in the capacitor is then applied through R S , the current limiting resistor, onto the device under test (DUT). In ESD tests, the SW2switch is pulsed so that the device under test receives a duration of voltage.For the Human Body Model, the current limiting resistor (R S ) and the source capacitor (C S ) are 1.5k Ω an 100pF, respectively. For IEC-1000-4-2, the current limiting resistor (R S ) and the source capacitor (C S ) are 330Ω an 150pF, respectively.The higher C S value and lower R S value in the IEC1000-4-2 model are more stringent than the Human Body Model. The larger storage capacitor injects a higher voltage to the test point when SW2 is switched on. The lower current limiting resistor increases the current charge onto the test point.元器件交易网ORDERING INFORMATIONModel.......................................................................................Temperature Range................................................................................Package SP202ECN.....................................................................................0°C to +70°C...........................................................................16–pin N–SOIC SP202ECP.....................................................................................0°C to +70°C.......................................................................16–pin Plastic DIP SP202ECT.....................................................................................0°C to +70°C................................................................................16–pin SOIC SP202EEN...................................................................................–40°C to +85°C..........................................................................16–pin N-SOIC SP202EEP...................................................................................–40°C to +85°C.....................................................................16–pin Plastic DIP SP202EET...................................................................................–40°C to +85°C..............................................................................16–pin SOICSP232ECN.....................................................................................0°C to +70°C...........................................................................16–pin N–SOIC SP232ECP.....................................................................................0°C to +70°C.......................................................................16–pin Plastic DIP SP232ECT.....................................................................................0°C to +70°C................................................................................16–pin SOIC SP232EEN...................................................................................–40°C to +85°C..........................................................................16–pin N-SOIC SP232EEP...................................................................................–40°C to +85°C.....................................................................16–pin Plastic DIP SP232EET...................................................................................–40°C to +85°C..............................................................................16–pin SOIC SP233ECP.....................................................................................0°C to +70°C.......................................................................20–pin Plastic DIP SP233ECT.....................................................................................0°C to +70°C................................................................................20–pin SOIC SP233EEP...................................................................................–40°C to +85°C.....................................................................20–pin Plastic DIP SP233EET...................................................................................–40°C to +85°C..............................................................................20–pin SOICSP310ECP.....................................................................................0°C to +70°C.......................................................................18–pin Plastic DIP SP310ECT.....................................................................................0°C to +70°C................................................................................18–pin SOIC SP310ECA.....................................................................................0°C to +70°C...............................................................................20–pin SSOP SP310EEP...................................................................................–40°C to +85°C.....................................................................18–pin Plastic DIP SP310EET...................................................................................–40°C to +85°C..............................................................................18–pin SOIC SP310EEA...................................................................................–40°C to +85°C.............................................................................20–pin SSOP SP312ECP.....................................................................................0°C to +70°C.......................................................................18–pin Plastic DIP SP312ECT.....................................................................................0°C to +70°C................................................................................18–pin SOIC SP312ECA.....................................................................................0°C to +70°C...............................................................................20–pin SSOP SP312EEP...................................................................................–40°C to +85°C.....................................................................18–pin Plastic DIP SP312EET...................................................................................–40°C to +85°C..............................................................................18–pin SOIC SP312EEA...................................................................................–40°C to +85°C.............................................................................20–pin SSOPPlease consult the factory for pricing and availability on a Tape-On-Reel option.CorporationSIGNAL PROCESSING EXCELLENCESipex CorporationHeadquarters andSales Office22 Linnell CircleBillerica, MA 01821TEL: (978) 667-8700FAX: (978) 670-9001e-mail: sales@Sales Office233 South Hillview DriveMilpitas, CA 95035TEL: (408) 934-7500FAX: (408) 935-7600Sipex Corporation reserves the right to make changes to any products described herein. Sipex does not assume any liability arising out of the application or use of any product or circuit described hereing; neither does it convey any license under its patent rights nor the rights of others.。
MAX3267ESA中文资料
19-4796; Rev 1; 6/00
KIT ATION EVALU E L B A IL AVA
1.25Gbps/2.5Gbps, +3V to +5.5V, Low-Noise Transimpedance Preamplifiers for LANs
General Description
Features
o 200nA Input-Referred Noise (MAX3266) 500nA Input-Referred Noise (MAX3267) o 920MHz Bandwidth (MAX3266) 1900MHz Bandwidth (MAX3267) o 1mA Input Overload o +3.0V to +5.5V Single-Supply Voltage
VCC 0.01µF 1.5k CFILTER 400pF FILTER PHOTODIODE IN OUT+ VCC 0.1µF
100Ω OUT-
MAX3266 MAX3267
GND
0.1µF
LIMITING AMPLIFIER
________________________________________________________________ Maxim Integrated Products
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
MAX3222E中文材料
MAX3222E/MAX3232E/MAX3237E/MAX3241E/MAX3246E为+3.0V供电的EIA/TIA-232和V.28/V.24通信接口芯片,具有低功耗、高数据速率、增强型ESD保护等特性。
增强型ESD结构为所有发送器输出和接收器输入提供保护,可承受±15kV IEC 1000-4-2气隙放电、±8kV IEC 1000-4-2接触放电(MAX3246E为±9kV)和±15kV人体放电模式。
MAX3237E的逻辑引脚及接收器I/O引脚均提供上述保护,而它的发送器输出引脚提供±15kV人体放电模式的保护。
采用专有的低压差发送输出级,+3.0V至+5.5V供电时利用内部双电荷泵提供真正的RS-232性能。
工作于+3.3V电源时,荷泵仅需要四个0.1µF的小电容。
每款器件保证在250kbps数据速率下维持RS-232输出电平。
MAX3237E确保标准工作模式下提供250kbps的数据速率、在MegaBaud™工作模式下速率高达1Mbps。
MAX3222E/MAX3232E包括两个发送器和两个接收器;MAX3222E具有1µA关断模式,可降低电池供电便携式系统的功耗。
关断模式下,MAX3222E接收器仍保持有效状态,允许监视外设,而且仅消耗1µA的电源电流。
MAX3222E和MAX3232E的引脚、封装和功能分别兼容于工业标准的MAX242和MAX232。
MAX3241E/MAX3246E提供完备的串口(3个驱动器/5个接收器),专为笔记本电脑和亚笔记本电脑设计。
MAX3237E (5个驱动器/3个接收器)非常适合要求高速数据传输的外围设备。
这些器件都具有关断模式,此模式下所有接收器仍保持有效状态,而且仅消耗1µA (MAX3241E/MAX3246E)或10nA (MAX3237E)的电流。
MAX3222E、MAX3232E和MAX3241E都具有节省空间的SO、SSOP、TQFN及TSSOP封装,MAX3237E提供SSOP封装,MAX3246E提供超小型6 x 6 UCSP™封装。
DSC-CN3762
参数
符号
测试条件
输入电压范围
VCC
低电压锁存阈值
UVLO
芯片工作电流 恒压充电电压
电流检测
流入 BAT 管脚电流
涓流充电阈值 涓流充电阈值迟滞 充电结束阈值 再充电阈值 过压阈值
IVCC VREG
VCS
IBAT1 IBAT2 VPRE HPRE Iterm VRE Vov
VBAT>VREG 恒压充电,FB 连接到 BAT VBAT>VPRE,VCSP-VBAT VBAT<VPRE,VCSP-VBAT 充电结束模式,VBAT=7.4V 睡眠模式,VBAT=7.4V BAT管脚电压上升 BAT管脚电压下降 充电电流下降 BAT管脚电压下降 BAT 管脚电压上升
超出以上所列的极限参数可能造成器件的永久损坏。以上给出的仅仅是极限范围,在这样的极限条件下工作, 器件的技术指标将得不到保证,长期在这种条件下还会影响器件的可靠性。
3
Rev 1.0
如韵电子 CONSONANCE
电气特性:
(VCC=15V,TA=-40℃ 到 85℃,除非另有注明)
调整恒压充电电压
如果在CN3762的FB管脚和BAT管脚之间接一个电阻,可以提高恒压充电电压,以抵消电池内阻和连线电阻的 电压降,使得电池充电更饱满,如图3所示。
输入电压 9 VIN
FB 6
CN3762
Rx
GND BAT 7
如果采用图3中的连接方式,那么恒压充电电压典型值VREG为:
的正极。同时,此管脚和CSP管脚测量电流检测电阻RCS两端的
电压,并将此电压信号反馈给CN3762进行电流调制。 充电电流检测正输入端。此管脚和BAT管脚测量电流检测电阻
2N3763L中文资料
2N3763* 2N3765
60 60
Unit
Vdc Vdc Vdc Adc
TO-39* (TO-205AD) 2N3762, 2N3763
2N3762* 1 2N3763*
1.0
2N3764 2 2N3765
0.5 W
0
Total Power Dissipation @ TA = +250C Operating & Storage Junction Temp. Range
Output Capacitance VCB = 10 Vdc, IE = 0, 100 kHz ≤ f ≤ 1.0 MHz Input Capacitance VEB = 0.5 Vdc, IC = 0, 100 kHz ≤ f ≤ 1.0 MHz
SWITCHING CHARACTERISTICS
Street, Lawrence, MA 01841 1-800-446-1158 / (978) 794-1666 / Fax: (978) 689-0803
120101 Page 1 of 2
元器件交易网
2N3762, L, 2N3763, L, 2N3764, 2N3765 JAN SERIES
ELECTRICAL CHARACTERISTICS (con’t)
Characteristics Collector-Emitter Cutoff Current VEB = 2.0 Vdc, VCE = 20 Vdc VEB = 2.0 Vdc, VCE = 30 Vdc Emitter-Base Cutoff Current VEB = 2.0 Vdc VEB = 5.0 Vdc Symbol 2N3762, 2N3764 2N3763, 2N3765 All Types 2N3762, 2N3764 2N3763, 2N3765 ICEX Min. Max. 100 100 200 10 10 Unit ηAdc
MAX2682中文资料
元器件交易网
o <0.1µA Low-Power Shutdown Mode
o Ultra-Small Surface-Mount Packaging
Ordering Information
PART
TEMP. RANGE
PINPACKAGE
SOT TOP MARK
MAX2680EUT-T -40°C to +85°C 6 SOT23-6 AAAR
General Description
The MAX2680/MAX2681/MAX2682 miniature, low-cost, low-noise downconverter mixers are designed for lowvoltage operation and are ideal for use in portable communications equipment. Signals at the RF input port are mixed with signals at the local oscillator (LO) port using a double-balanced mixer. These downconverter mixers operate with RF input frequencies between 400MHz and 2500MHz, and downconvert to IF output frequencies between 10MHz and 500MHz.
MAX232中文资料.pdf
________________________________MAX220–MAX249 / Lj EIA/TIA-232E V.28/V.24 Lj ±12V ăӼ Lj 5μW ăMAX225ĂMAX233ĂMAX235 MAX245/MAX246/MAX247ԥ ԩ Lj ғ ă________________________________ӯRS-232 RS-232_______________________♦ Ă ESD үMAX3222E/MAX3232E/MAX3237E/MAX3241E/MAX3246E ǖ+3.0V +5.5V Ă Ă 1Mbps Ă 0.1μFRS-232 (MAX3246E UCSP TM )♦ ӊMAX221E ǖ±15kV ESD ү Ă+5V Ă1μA ĂAutoShutdown TM RS-232MAX220–MAX249+5V Ă RS-232/_____________________________________________________________________ ӹ19-4323; Rev 15; 1/06_____________________________ࢾ৪ቧᇦ)ኚ*Ᏼၫᓾ೯ࡼᔢઁ߲ă*ൡຢਖৃLj༿ᎧޣೊᇹăAutoShutdown UCSP Maxim Integrated Products, Inc. Ӷă۾ᆪဵNbyjnᑵါ፞ᆪᓾ೯ࡼፉᆪLjNbyjnݙ࣪डፉᒦࡀᏴࡼތፊᎅࠥޘညࡼࡇᇙঌᐊă༿ᓖፀፉᆪᒦభถࡀᏴᆪᔊᔝᒅडፉࡇᇙLjྙኊཀྵཱྀྀੜࠤᎫࡼᓰཀྵቶLj༿ݬఠNbyjnᄋࡼ፞ᆪۈᓾ೯ăჃནॅዹອਜ਼ᔢቤۈࡼၫᓾ೯Lj༿षᆰNbyjnࡼᓍǖxxx/nbyjn.jd/dpn/doăM A X 220–M A X 249+5V Ă RS-232 / 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGS—MAX220/222/232A/233A/242/243ELECTRICAL CHARACTERISTICS—MAX220/222/232A/233A/242/243(V CC = +5V ±10%, C1–C4 = 0.1μF‚ MAX220, C1 = 0.047μF, C2–C4 = 0.33μF, T A = T MIN to T MAX ‚ unless otherwise noted.)Note 1:For the MAX220, V+ and V- can have a maximum magnitude of 7V, but their absolute difference cannot exceed 13V.Note 2:Input voltage measured with T OUT in high-impedance state, SHDN or V CC = 0V.Note 3:Maximum reflow temperature for the MAX233A is +225°C.Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Supply Voltage (V CC )...............................................-0.3V to +6V V+ (Note 1)..................................................(V CC - 0.3V) to +14V V- (Note 1).............................................................+0.3V to +14V Input VoltagesT IN ..............................................................-0.3V to (V CC - 0.3V)R IN (Except MAX220)........................................................±30V R IN (MAX220).....................................................................±25V T OUT (Except MAX220) (Note 2).......................................±15V T OUT (MAX220)...............................................................±13.2V Output VoltagesT OUT ...................................................................................±15V R OUT .........................................................-0.3V to (V CC + 0.3V)Driver/Receiver Output Short Circuited to GND.........Continuous Continuous Power Dissipation (T A = +70°C)16-Pin Plastic DIP (derate 10.53mW/°C above +70°C).842mW18-Pin Plastic DIP (derate 11.11mW/°C above +70°C)..889mW 20-Pin Plastic DIP (derate 8.00mW/°C above +70°C)..440mW 16-Pin Narrow SO (derate 8.70mW/°C above +70°C)...696mW 16-Pin Wide SO (derate 9.52mW/°C above +70°C)......762mW 18-Pin Wide SO (derate 9.52mW/°C above +70°C)......762mW 20-Pin Wide SO (derate 10.00mW/°C above +70°C)....800mW 20-Pin SSOP (derate 8.00mW/°C above +70°C)..........640mW 16-Pin CERDIP (derate 10.00mW/°C above +70°C).....800mW 18-Pin CERDIP (derate 10.53mW/°C above +70°C).....842mW Operating Temperature RangesMAX2_ _AC_ _, MAX2_ _C_ _.............................0°C to +70°C MAX2_ _AE_ _, MAX2_ _E_ _..........................-40°C to +85°C MAX2_ _AM_ _, MAX2_ _M_ _.......................-55°C to +125°C Storage Temperature Range.............................-65°C to +160°C Lead Temperature (soldering, 10s) (Note 3)...................+300°CMAX220–MAX249+5V Ă RS-232/_______________________________________________________________________________________3OUT IN ELECTRICAL CHARACTERISTICS—MAX220/222/232A/233A/242/243 (continued)(V CC = +5V ±10%, C1–C4 = 0.1μF‚ MAX220, C1 = 0.047μF, C2–C4 = 0.33μF, T A = T MIN to T MAX ‚ unless otherwise noted.)M A X 220–M A X 249+5V Ă RS-232 / 4_______________________________________________________________________________________________________________________________________________________MAX220/MAX222/MAX232A/MAX233A/MAX242/MAX243108-1051525OUTPUT VOLTAGE vs. LOAD CURRENT-4-6-8-2642LOAD CURRENT (mA)O U T P U T V O L T A G E (V )1002011104104060AVAILABLE OUTPUT CURRENTvs. DATA RATE65798DATA RATE (kb/s)O U T P U T C U R R E N T (m A )203050+10V-10VMAX222/MAX242ON-TIME EXITING SHUTDOWN+5V +5V 0V0V 500μs/div V +, V - V O L T A G E (V )ELECTRICAL CHARACTERISTICS—MAX220/222/232A/233A/242/243 (continued)(V CC = +5V ±10%, C1–C4 = 0.1μF‚ MAX220, C1 = 0.047μF, C2–C4 = 0.33μF, T A = T MIN to T MAX ‚ unless otherwise noted.)MAX220–MAX249+5V Ă RS-232/_______________________________________________________________________________________5V CC ...........................................................................-0.3V to +6V V+................................................................(V CC - 0.3V) to +14V V-............................................................................+0.3V to -14V Input VoltagesT IN ............................................................-0.3V to (V CC + 0.3V)R IN ......................................................................................±30V Output VoltagesT OUT ...................................................(V+ + 0.3V) to (V- - 0.3V)R OUT .........................................................-0.3V to (V CC + 0.3V)Short-Circuit Duration, T OUT ......................................Continuous Continuous Power Dissipation (T A = +70°C)14-Pin Plastic DIP (derate 10.00mW/°C above +70°C)....800mW 16-Pin Plastic DIP (derate 10.53mW/°C above +70°C)....842mW 20-Pin Plastic DIP (derate 11.11mW/°C above +70°C)....889mW 24-Pin Narrow Plastic DIP(derate 13.33mW/°C above +70°C)..........1.07W24-Pin Plastic DIP (derate 9.09mW/°C above +70°C)......500mW 16-Pin Wide SO (derate 9.52mW/°C above +70°C).........762mW20-Pin Wide SO (derate 10.00mW/°C above +70°C).......800mW 24-Pin Wide SO (derate 11.76mW/°C above +70°C).......941mW 28-Pin Wide SO (derate 12.50mW/°C above +70°C) .............1W 44-Pin Plastic FP (derate 11.11mW/°C above +70°C).....889mW 14-Pin CERDIP (derate 9.09mW/°C above +70°C)..........727mW 16-Pin CERDIP (derate 10.00mW/°C above +70°C)........800mW 20-Pin CERDIP (derate 11.11mW/°C above +70°C)........889mW 24-Pin Narrow CERDIP(derate 12.50mW/°C above +70°C)..............1W24-Pin Sidebraze (derate 20.0mW/°C above +70°C)..........1.6W 28-Pin SSOP (derate 9.52mW/°C above +70°C).............762mW Operating Temperature RangesMAX2 _ _ C _ _......................................................0°C to +70°C MAX2 _ _ E _ _...................................................-40°C to +85°C MAX2 _ _ M _ _................................................-55°C to +125°C Storage Temperature Range.............................-65°C to +160°C Lead Temperature (soldering, 10s) (Note 4)...................+300°CABSOLUTE MAXIMUM RATINGS—MAX223/MAX230–MAX241ELECTRICAL CHARACTERISTICS—MAX223/MAX230–MAX241(MAX223/230/232/234/236/237/238/240/241, V CC = +5V ±10%; MAX233/MAX235, V CC = 5V ±5%‚ C1–C4 = 1.0μF; MAX231/MAX239,V CC = 5V ±10%; V+ = 7.5V to 13.2V; T A = T MIN to T MAX ; unless otherwise noted.)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Note 4:Maximum reflow temperature for the MAX233/MAX235 is +225°C.M A X 220–M A X 249+5V Ă RS-232 / 6_______________________________________________________________________________________ELECTRICAL CHARACTERISTICS—MAX223/MAX230–MAX241 (continued)(MAX223/230/232/234/236/237/238/240/241, V CC = +5V ±10%; MAX233/MAX235, V CC = 5V ±5%‚ C1–C4 = 1.0μF; MAX231/MAX239,V CC = 5V ±10%; V+ = 7.5V to 13.2V; T A = T MIN to T MAX ; unless otherwise noted.)MAX220–MAX249+5V Ă RS-232/_______________________________________________________________________________________7_______________________________________________________________MAX223/MAX230–MAX2418.56.54.55.5TRANSMITTER OUTPUT VOLTAGE (V OH ) vs. V CC7.08.0V CC (V)V O H (V )5.07.57.46.02500TRANSMITTER OUTPUT VOLTAGE (V OH )vs. LOAD CAPACITANCE AT DIFFERENT DATA RATES6.46.27.27.0LOAD CAPACITANCE (pF)V O H (V )1500100050020006.86.612.04.02500TRANSMITTER SLEW RATE vs. LOAD CAPACITANCE6.05.011.09.010.0LOAD CAPACITANCE (pF)S L E W R A T E (V /μs )1500100050020008.07.0-6.0-9.04.55.5TRANSMITTER OUTPUT VOLTAGE (V OL ) vs. V CC-8.0-8.5-6.5-7.0V CC (V)V O L (V )5.0-7.5-6.0-7.62500TRANSMITTER OUTPUT VOLTAGE (V OL )vs. LOAD CAPACITANCE AT DIFFERENT DATA RATES-7.0-7.2-7.4-6.2-6.4LOAD CAPACITANCE (pF)V O L (V )150010005002000-6.6-6.810-105101520253035404550TRANSMITTER OUTPUT VOLTAGE (V+, V-)vs. LOAD CURRENT-2-6-4-886CURRENT (mA)V +, V - (V )420*SHUTDOWN POLARITY IS REVERSED FOR NON MAX241 PARTSV+, V- WHEN EXITING SHUTDOWN(1μF CAPACITORS)MAX220-13SHDN*V-O V+500ms/divM A X 220–M A X 249+5V Ă RS-232 / 8_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGS—MAX225/MAX244–MAX249ELECTRICAL CHARACTERISTICS—MAX225/MAX244–MAX249(MAX225, V CC = 5.0V ±5%; MAX244–MAX249, V CC = +5.0V ±10%, external capacitors C1–C4 = 1μF; T A = T MIN to T MAX ; unless oth-erwise noted.)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Supply Voltage (V CC )...............................................-0.3V to +6V Input VoltagesT IN ‚ ENA , ENB , ENR , ENT , ENRA ,ENRB , ENTA , ENTB ..................................-0.3V to (V CC + 0.3V)R IN .....................................................................................±25V T OUT (Note 5).....................................................................±15V R OUT ........................................................-0.3V to (V CC + 0.3V)Short Circuit (one output at a time)T OUT to GND............................................................Continuous R OUT to GND............................................................ContinuousContinuous Power Dissipation (T A = +70°C)28-Pin Wide SO (derate 12.50mW/°C above +70°C).............1W 40-Pin Plastic DIP (derate 11.11mW/°C above +70°C)...611mW 44-Pin PLCC (derate 13.33mW/°C above +70°C)...........1.07W Operating Temperature RangesMAX225C_ _, MAX24_C_ _ ..................................0°C to +70°C MAX225E_ _, MAX24_E_ _ ...............................-40°C to +85°C Storage Temperature Range.............................-65°C to +160°C Lead Temperature (soldering,10s) (Note 6)....................+300°CNote 5:Input voltage measured with transmitter output in a high-impedance state, shutdown, or V CC = 0V.Note 6:Maximum reflow temperature for the MAX225/MAX245/MAX246/MAX247 is +225°C.MAX220–MAX249+5V Ă RS-232/_______________________________________________________________________________________9Note 7:The 300Ωminimum specification complies with EIA/TIA-232E, but the actual resistance when in shutdown mode or V CC =0V is 10M Ωas is implied by the leakage specification.ELECTRICAL CHARACTERISTICS—MAX225/MAX244–MAX249 (continued)(MAX225, V CC = 5.0V ±5%; MAX244–MAX249, V CC = +5.0V ±10%, external capacitors C1–C4 = 1μF; T A = T MIN to T MAX ; unless oth-erwise noted.)M A X 220–M A X 249+5V Ă RS-232 / 10_____________________________________________________________________________________________________________________________________________________MAX225/MAX244–MAX24918212345TRANSMITTER SLEW RATE vs. LOAD CAPACITANCE86416LOAD CAPACITANCE (nF)T R A N S M I T T E R S L E W R A T E (V /μs )14121010-105101520253035OUTPUT VOLTAGEvs. LOAD CURRENT FOR V+ AND V--2-4-6-88LOAD CURRENT (mA)O U T P U T V O L T A G E (V )64209.05.012345TRANSMITTER OUTPUT VOLTAGE (V+, V-)vs. LOAD CAPACITANCE AT DIFFERENT DATA RATES6.05.58.5LOAD CAPACITANCE (nF)V +, V (V )8.07.57.06.5MAX220–MAX249+5V RS-232/1. 2.3. 4.M A X 220–M A X 249+5V RS-232 / ENT ENR OPERATION STATUS TRANSMITTERSRECEIVERS00Normal Operation All Active All Active 01Normal Operation All Active All 3-State10Shutdown All 3-State All Low-Power Receive Mode 11ShutdownAll 3-StateAll 3-Stateӹ1a. MAX245ENT ENR OPERATION STATUS TRANSMITTERS RECEIVERSTA1–TA4TB1–TB4RA1–RA5RB1–RB500Normal Operation All Active All Active All Active All Active 01Normal Operation All Active All Active RA1–RA4 3-State,RA5 Active RB1–RB4 3-State,RB5 Active 1ShutdownAll 3-StateAll 3-StateAll Low-Power Receive Mode All Low-Power Receive Mode 11Shutdown All 3-State All 3-StateRA1–RA4 3-State,RA5 Low-Power Receive ModeRB1–RB4 3-State,RB5 Low-Power Receive Modeӹ1b. MAX245ӹ1c. MAX246ENA ENB OPERATION STATUS TRANSMITTERS RECEIVERSTA1–TA4TB1–TB4RA1–RA5RB1–RB500Normal Operation All Active All Active All Active All Active 01Normal Operation All Active All 3-State All Active RB1–RB4 3-State,RB5 Active 1ShutdownAll 3-StateAll ActiveRA1–RA4 3-State,RA5 Active All Active 11Shutdown All 3-State All 3-StateRA1–RA4 3-State,RA5 Low-Power Receive ModeRB1–RB4 3-State,RA5 Low-Power Receive ModeMAX220–MAX249+5V RS-232/M A X 220–M A X 249____________________________MAX220–MAX249Ҫ 4 ԩ ǖ ӏDC-DC ĂRS-232 ĂRS-232 Lj ăӏMAX220–MAX249 ԩ ӏLj +5V ±10V ( )Lj RS-232 ă C1 +5V ӂLj V+ C3 +10V Ǘ C2 +10V V- C4 -10V ă+10V (V+) -10V (V-) Lj ԩ (Ը ԩ )Ǘ MAX225 MAX245–MAX247 Lj ԥ ăV+ V- Lj ă V+ĂV- ԩ Lj ԥ V+ĂV- EIA/TIA-232E ±5V ăMAX222ĂMAX225ĂMAX230ĂMAX235ĂMAX236ĂMAX240ĂMAX241 MAX245–MAX249 Lj Ө V+ V- ԩ ă LjV- 0V LjV+ +5V ă +10V ԩ V+ ( ԥ ԩ ӏ դ +10V) Lj ԥ Ѡ C1LjԌ Ӥ SHDN V CC Lj V+Ӈ ԩ V CC ăRS-232Ӷ 5kΩ RS-232 LjԌ V CC =+5V Lj ҈ ±8V ă ҈ ү EIA/TIA-232E V.28 Lj ±5V Lj Ҫ 3kΩ ĂV CC = +4.5V ă (V +-1.3V) (V- +0.5V)ăTTL CMOS ă ԥ Lj Ă V CC 400kΩ (MAX220 )ă Lj ă Ӈ Lj ԩ ի 12μA ă Ă ӇLj ӡLjԌ Lj ի Ѡ( 25μA)ă Ӈ ±15V ă Lj ի 8μA ăMAX220ԥ ӄ ԩ Lj ԥ Lj GND V CC ăMAX239 Lj MAX223ĂMAX225ĂMAX235ĂMAX236ĂMAX240 MAX241 ӄ ăӹ2 ă( MAX225/MAX235/MAX236/MAX239–MAX241)Lj TTL/CMOS Ă Ǘ Lj Lj ăLj Ӈ ӡLj 1μA Lj Ӈ ă 1μA Lj ӯ Ӈ 0V (V CC +6V)ă -0.5V Lj Lj 1kΩ ă Ӈ V CC +6V Lj 1kΩ ă҈ 30V/μs Lj EIA/TIA-232E V.28 ă҈ ǖ 24V/μs Lj3Ω 2500pF 10V/μs ăRS-232EIA/TIA-232E V.28 3V 0Lj Lj ă 0.8V 2.4V Lj TTL Lj EIA/TIA-232E V.28 ă±25V LjԌ Ӷ 5kΩ ă V.28 EIA/TIA-232E ă+5V RS-232 /ӹMAX220–MAX249+5V RS-232/0.5V LjԌ ү0.2V ă Lj Ӱ դ ӰLj ă 600ns Lj ҈ ăMAX223ĂMAX242 MAX245–MAX249 Lj IC Lj ă ի ă Lj Lj ӄ Ă ă Ճ ă—MAX243MAX243 MAX232A Lj Ӽ RS-232 ү ă CTS RTS Ӈ Lj ԥ ăԥӤ ԥ ԥ ӄăү -0.8V Lj ԥ +1.4V ă Lj ԯӰ ă Lj 0Lj Đ đ ă իLjMAX243 (+1.4V ) (TD RD)Lj (DTR ĂDTS ĂCTS ĂRTS ) ăRS-232 դ Ѣ EIA/TIA-232E LjԳ ү ă Ӈ Ă Lj Ӱ ă IC ă Ө Lj Ӥ Ӈ Lj ă—MAX222–MAX242LjMAX222ĂMAX235ĂMAX236ĂMAX240 MAX241 Ӈ ă LjMAX223 MAX242 ү ă Lj ӰLj 2.5μs ă Lj CMOS ăMAX223 MAX242 ( MAX242 EN ĂMAX223 EN)Lj SHDN ( MAX241 SHDN) ă SHDN ( MAX241 SHDN ) ăMAX225 5 5 ǗMAX245 10 8 ă ă ENT Lj ӏ ӡԌ ă Lj 25μA Lj ү Lj ( )ăMAX225 5 ENR ăMAX245 8 ENR Lj (RA5 RB5) ү ă ENR LjRA1–RA4 RB1–RB4 ăMAX225 MAX245–MAX249 ăǖ ( ի )Ă ( ) ( ү )ă ă ǖ ( ի ) ( )ă Ӈ ă Ӈ Lj ă Lj ăM A X 220–M A X 249ӹ1a–1d ăMAX244 Lj Ҫ ӹ ăMAX246 10 8 Lj Lj Ӽ ՊăA Պ (ENA ) Lj 4 A Պ Ǘ LjB Պ (ENB ) 4 B Պ ă MAX245 Lj A Պ B Պ (RA5 RB5) ү ă A ՊĂB Պ Ӈ (ENA =ENB =+5V) Lj ăMAX247 9 8 Lj 4 ăENRA ĂENRB Lj Ӽ 4 ăENTA ĂENTB Lj Ӽ 4 ă 9 (RB5) ă ENTA ENTB ăMAX248 8 8 Lj 4 ăENRA ĂENRB Lj Ӽ 4ăENTA ĂENTB Lj Ӽ 4 ă ă ENTA ĂENTB Lj ăMAX249 10 6 Lj 4 ăENRA ĂENRB Lj Ӽ 5 ăENTA ĂENTB Lj Ӽ 3 ă ă ENTA ĂENTB Lj ă Ljү Lj 20kb/s ă____________________________5 25 ă LjV CC C1ĂC2 Lj ҈ ă+5V RS-232 /MAX220–MAX249+5V RS-232/5. MAX220/MAX232/MAX232A6. MAX222/MAX242M A X 220–M A X 249+5V RS-232 /7. MAX225MAX220–MAX249+5V RS-232/8. MAX223/MAX241M A X 220–M A X 249+5V RS-232 /9. MAX23010. MAX231MAX220–MAX249+5V RS-232/12. MAX23411. MAX233/MAX233AM A X 220–M A X 249+5V RS-232 /13. MAX235MAX220–MAX249+5V RS-232/14. MAX236M A X 220–M A X 249+5V RS-232 /15. MAX237MAX220–MAX249+5V RS-232/16. MAX238M A X 220–M A X 249+5V RS-232 /17. MAX239MAX220–MAX249+5V RS-232/18. MAX240M A X 220–M A X 249+5V RS-232 /19. MAX243MAX220–MAX249+5V RS-232/20. MAX244M A X 220–M A X 249+5V RS-232 /21. MAX245MAX220–MAX249+5V RS-232/______________________________________________________________________________________3122. MAX246M A X 220–M A X 249+5V RS-232 / 32______________________________________________________________________________________23. MAX247MAX220–MAX249+5V RS-232/______________________________________________________________________________________3324. MAX248M A X 220–M A X 249+5V RS-232 / 34______________________________________________________________________________________25. MAX249MAX220–MAX249+5V RS-232/______________________________________________________________________________________35_____________________________________________________________________ ( )*ൡຢਖৃLj༿ᎧޣೊᇹăM A X 220–M A X 249+5V RS-232 / _____________________________________________________________________ ( )*ൡຢਖৃLj༿Ꭷޣೊᇹă____________________________Lj Փ /packages ă_____________________________Rev 15 ǖ2–5Ă8Ă9Ă36ăNbyjnݙ࣪Nbyjnޘອጲᅪࡼྀੜ࢟വဧঌᐊLjጐݙᄋᓜಽభăNbyjnۣഔᏴྀੜဟମĂᎌྀੜᄰۨࡼ༄ᄋሆኀখޘອᓾ೯ਜ਼ਖৃࡼཚಽă36____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©2006 Maxim Integrated ProductsNbyjn ဵNbyjn!Joufhsbufe!Qspevdut-!Jod/ࡼᓖݿܪăNbyjn ۱யێူࠀ۱ய9439ቧረᎆᑶܠ൩211194ॅ࢟જǖ911!921!1421࢟જǖ121.732262::ࠅᑞǖ121.732263::。
Woodward SPM-D2-10系列产品规范37622B 2 3相AC生成机同步器说明书
SPM-D2-10 SeriesProduct Specification37622BSynchronizersfor 2/3-phase AC Gen-Sets∙Synchronization for one or two circuit breakers ∙Frequency, Phase and Voltage Matching ∙Selectable control out-puts for speed and volt-age biasing∙Compatible with a wide range of GOVs and AVRs∙Circuit breaker time compensation ∙Two lines bright LCD display for generator and bus values ∙Front face synchrono-scope for easy commis-sioning∙True RMS measurement for reliable operation∙Configurable through HMI or PC∙Wide range power sup-ply available ∙Switchable parameter sets available ∙CE Marked (RoHS 2compliant)∙UL/cUL ListedDESCRIPTIONWoodward understands the time-intensive nature of Power Generation projects. Ensuring the lon-gevity of components is one way we can make our customers successful. Woodward has supplied and supported the well-established SPM-D line of synchronizers for 20+ years. With the state of the art Drop-In replacement successor, SPM-D2 the life of this synchronizer line is now extended. All of the SPM-D2 synchronizers are password protected and are configurable either through HMI as before or through ToolKit configuration tool with USB connectivity.The SPM-D2-10 series are microprocessor-based synchronizers designed for use on two or three phase AC generators equipped with Woodward or other compatible speed controls and automatic voltage regulators. The SPM-D2-10 synchronizers provide automatic frequency, phase and voltage matching using either analog- or discrete output bias signals. These synchronizers are applied to a wide range of prime movers and generators, as its control signals may be set to fit several types of gensets - from fast reacting diesel engines to soft reacting gas turbines.The SPM-D2-10 synchronizers are available in 3 base models:∙SPM-D2-10 … : provides 1-phase / 2-wire voltage measurement with options for analog and/or discrete biasing signals and wide range power supply ∙SPM-D2-10 …/YB : provides 3-phase / 4-wire voltage measurement with discrete biasing signals and option for wide range power supply ∙SPM-D2-10 …/PSY5: provides 1-phase / 2-wire voltage measurement with discrete biasing sig-nals, option for wide range power supply and 2 sets of switchable parameter set.FEATURES∙Phase match or slip frequency synchronization with voltage matching∙Two-Phase or three-phase true RMS voltage sensing of generator and bus with Class I accuracy ∙Selectable operating modes like SPM-A (Run, Check, Permissive and Off)∙Synch-Check and synchronization time monitoring ∙Dead bus closing of CB on demand∙ 2 setting blocks, each containing 7 configurable parameters (in PSY5 variants) selectable through DI: Frequency/Voltage control dead-band, Frequency/Voltage control time pulse, Fre-quency/Voltage control gain, Circuit breaker time compensation∙Control outputs: Discrete raise/lower for speed and voltage in all variants, | X and XN variants:also configurable analog signals (Voltage, Current and PWM)∙Voltage and frequency control in isolated operation∙Two line bright liquid crystal display for operation, alarm, measuring values visualization and parametrization∙Front face with synchronoscope and indication of breaker state/control activity ∙Multi-level password protection of parameters∙Woodward ToolKit™ software for configuration via USB ∙Two built-in languages: English, GermanNew Features✓USB connectivity to PC✓ToolKit configuration support✓Password protection to all variants ✓Same look & feel as SPM-D ✓Drop-In replacementSPECIFICATIONSPower supply[Standard] ..........................................................12/24 V DC (9.5 to 32 V DC) [N, XN and NYB Packages] .................... 90 to 250Vac / 120 to 375 Vdc; ............................................ 100 to 240 Vac -15%/+10% (UL rating only) Intrinsic consumption ................................................................. max. 10 W Ambient temperature (operation) ............................................. -20 to 70 °C[N, XN and NYB Packages] -20 to 60 °C Ambient temperature (storage) ................................................ -30 to 80 °C Ambient humidity....................................................... 95%, non-condensing Voltage .............................................................................................. ( / )[1] 100 Vac Rated (V rated) ............................................ 66/115 V ACMax. value (V max) ................................................. 150 V AC or [4] 400 Vac Rated (V rated) .......................................... 230/400 V AC Max. value (V max) ................................................. 300 V AC Rated surge volt. (V surge) .............................. [1] 2.5kV, [4] 4.0 kV Accuracy .......................................................................................... C lass 1 Measuring frequency............................................... 50/60 Hz (40 to 70 Hz) Linear measuring range ........................................................... 1.3 x Vrated Input resistance ...................................... [1]0.21 MOhms, [4]0.696 MOhms Current Rated (I rated) .................................................. [1].../1A,[5] (5)Linear measuring range ................................................................. 3.0×I rated Burden .......................................................................................... < 0.15 VA Rated short-time overcurrent (1 s) ..........................[1] 50×I rated, [5] 10×I rated Discrete inputs .............................................................................. i solated Input range ...................................................12/24 V DC or 18 to 250 Vac/dc Input resistance ........................................ a pprox. 6.8 kOhms or 68 kOhms Relay outputs .................................................................................... isolated Contact material ................................................................................... A gCdO Load (GP) (V cont, relay output) AC:.......................................... 2.00 A AC@250 V AC DC: 2.00 A DC@24 V DC / 0.36 A DC@125 V DC / 0.18 A DC@250 V DC Pilot Duty (PD) AC: ................................................................................. B300 DC: 1.00 A DC@24 V DC / 0.22 A DC@125 V DC / 0.10 A DC@250 V DC Analog Outputs (isolated)......................................................freely scalable Type ......................................................................... ± 10 V / ± 20 mA / PWM Insulation voltage (continuously, AVR out) ......................................... 300 V AC Insulation voltage (continuously, Gov out) .......................................... 100 V AC Resolution .............................................................................................. 12 Bit ± 10 V (scalable) .............................................. i nternal resistance 500 Ohms ± 20 mA (scalable) ................................................ maximum load 500 Ohms Housing Front panel flush mounting ............. Type APRANORM DIN 43 700 Dimensions WxHxD .......................................... 144 × 72 × 122 mm Front cutout WxH .................................... 138 [+1.0] × 68 [+0.7] mm Connection (screw/plug terminals depending on connector) .. 1.5 mm² or 2.5 mm² Front .................................................................................... insulating surface Protection System / Sealing .............................................................................Front ................................. I P42 with correct installationFront ....................... IP54 (with gasket P/N 8923-1037)Back ...................................................................... IP20 Weight ........................................................................................approx. 800 g Listings tested according to applicable IEC standards .................................. ......................................................... C E, UL/cUL listing for ordinary locationsMarine (Pending)........................ LR (Type Approval), ABS (Type Approval) DIMENSIONSTERMINAL DIAGRAMNOTE The terminals used for connection depend on the implemented functionality of each package.The drawing below gives an overview with sample package XN– for details please see the dedicated Technical Manual listed in the features table at the rear page.RELATED PRODUCTS∙Load Share Synchronizer SPM-D2-11 (Product Specification # 37623)∙Digital Synchronizer and Load Control DSLC-2 (Product Specification # 37493)∙Master Synchronizer and Load Control MSLC-2 (Product Specification # 37494)∙Load Share speed control 2301E (Product Specification # 03404)∙Load Sharing Module LSM (Product Specification # 82686)∙SPM-A Synchronizer (Product Specification # 82383)∙Power Generation Learning Module (Product Specification # 03412): P/N 8447-1012CONTACTSubject to technical modifications. This document is distributed for informa-tional purposes only. It is not to be con-strued as creating or becoming part of any Woodward Company contractual or warranty obligation unless expressly stated in a written sales contract.We appreciate your comments about the content of our publications. Please send comments including the document num-ber below to*********************© WoodwardAll Rights Reserved 37622B - 2017/01/Stuttgart FEATURES OVERVIEW#1 Dead bus start functionalityOn-Demand: Closing of CB on demandEnhanced: Black start (closing to de-energized second side of a breaker for followingconditions):- dead system 1 - live system 2- live system 1 - dead system 2- dead system 1 - dead system 2#2 Switch from Parameter set #A to #B by activating DI #6#3 Configurable to either speed or voltage#4 Analog bias outputs for voltage and speed freely configurable for all levels (+/-1 V, +/-3 V,0 to 5 V, 0.5 to 4.5 V, +/-10 V +/-5 V, 0 to 20 mA, +/-20 mA, and much more)#5 Speed bias output configurable as 500 Hz PWM output with adjustable voltage level#6 All units with 400 V measuring inputs can also be used for 100 V system voltage AvKgenerátoryul.4.kvetna75501 Vsetintel:+420 571 413322fax+420 571 413322email:info@woodward-seg.czwww.woodward-seg.cz。
Woodward SPM-D2-11 系列 产品规格 CN37623 负载共享 同步器说明书
SPM-D2-11 系列产品规格CN37623负载共享 同步器适用于三相交流发电机组∙ 针对一个断路器的 同步 ∙ 有功功率(kW) / 无功功率(VAR)共享 (模拟) ∙ 发电机保护 ∙ 有功功率及功率因数控制 ∙ 频率、相位及电压 匹配 ∙ 兼容广泛的GOV 和AVR ∙ 模拟输入以外部控制有功功率设置点 ∙ 断路器时间补偿 ∙ 用于显示发电机和总线值的两线清晰LCD 显示屏 ∙ 前部同步指示器以方便调试 ∙ 可通过HMI 或PC 配置 ∙ 带有 CE 标记 (符合 RoHS2) ∙ UL/cUL 列表说明Woodward 了解发电项目的时间紧迫性。
努力延长部件的使用寿命,这是我们确保客户业务成功的方式之一。
Woodward 已稳定供应和支持 SPM-D 系列同步器长达 20 余年之久。
通过采用先进的简易更换部件,目前 SPM-D2 系列同步器的使用寿命得以延长。
所有 SPM-D2 同步器均设密码保护,可如 之前一样通过 HMI 配置或使用 USB 接口通过工具包配置工具配置。
SPM-D2-11 是一款基于微处理器的同步器,专用于配备 Woodward 或者其它可兼容的速度控制器和自动化电压调节器的两相或三相交流发电机。
SPM-D2-11 同步器可使用模拟或离散输出偏置信号提供自动频率、相位和电压匹配。
它整合了一个断路器同步、负载和功率因数控制或同步负载共享及发电机保护功能。
这款同步器适用于广泛的原动机和发电机,因为可设置其控制信号以适应几种发电机组类型,包括从发动快速的柴油发动机到发动缓慢的燃气轮机。
SPM-D2-11 同步器现提供 1 种基本型号:∙ SPM-D2-11 …/LSXR :提供一相/两线电压测量,具有模拟或离散偏置信号、模拟有功和无功负载共享线路和发电机保护。
特性∙ 电压匹配的相位匹配或转差频率同步∙ 具有 I 级精确度的两相发电机和总线真实 RMS 电压感应 ∙ 可选择操作模式,如 SPM-A (运行、检查、允许和关闭) ∙ 同步检查和同步时间监控 ∙ 按需 CB 失效母线关闭∙ 两个模拟负载共享线路,用于负载/无功功率共享 ∙ 电源并行运行中的有功功率和功率因数控制 ∙ 孤网运行中的电压和频率控制∙ 根据参数(2 个值)或通过 0/4 到 20 mA 模拟输入的发电机真实功率设置点 ∙ 柔性卸载和继电器输出的功率限制值∙ 控制输出:离散提高/降低所有变型中的速度和电压或模拟信号(电压、电流和 PWM ) ∙ 发电机一相 CT 感应,具有功率、过载、电压和频率保护 ∙ 用于操作、警报和测量值显示和参数化的两线清晰液晶显示屏 ∙ 前部配有同步指示器,可指示断路器状态/控制活动 ∙ 参数的多级密码保护∙可通过 USB 配置的 Woodward ToolKit™ 软件 ∙ 两种内置语言:英文、德文新特性 ✓可通过 USB 连接至 PC ✓支持工具包配置✓针对所有变型的密码保护✓与 SPM-D 具有相同的外观和界面 ✓轻松更换option (please order brackets P/N 8923-1023)Front view2008-04-28 | SPM-D Dimensions spmdww-0818-ab.SKFBottom view722735Back view with connecting terminalsConfiguration portConfiguration portSPM-D11The presence of the terminal strips depends on the Package configuration规格(更多详细信息请参阅特定手册)电源 ........................ 12/24 V DC (9.5 到 32 V DC ) 固有消耗 .................................... 最大 8 W 环境温度(运行) ....................... -20 到 70 °C 环境湿度 ................................. 95%,不凝结 电压 ................. (both ranges within one unit ondifferent terminals, /)[1] 100 Vac 额定 (V 额定) .................. 63/110 V AC 最大值 (V 最大值) .................... 150 V AC 及 [4] 400 Vac 额定 (V 额定) ............... 230/400 V AC 最大值 (V 最大值) .................... 300 V AC 额定冲击电压(V 冲击) .... [1] 2.5 kV 、[4] 4.0 kV 精确度 ........................................ 等级 1 测量频率 ..................... 50/60 Hz (40 到 70 Hz ) 线性测量范围 .............................. 1.25 x V 额定 输入电阻 ............. [1]0.21 兆欧姆、[4]0.696 兆欧姆 电流 额定 (I 额定) [1]…/1 A、[5] … /5 A 线性测量范围 ................................ 3.0×I 额定 负荷 ....................................... < 0.15 VA 额定短时过载电流 (1 s) ...... [1] 50×I 额定、[5] 10×I 额定 离散输入 ........................................ 孤网 输入范围 .................................... 12/24 V DC 输入电阻 ............................... 约 6.8 千欧姆 模拟输入 .................................. 可自由扩展 分辨率 ......................................... 10 位 0/4 mA 到 20 mA 输入 ........................ 250 Ohms继电器输出 ........................................ 孤网 触点材料 ......................................... AgCdO 负载 (GP) (V 连续、继电输出) AC : ............... 2.00 A AC @250 V AC DC :2.00 A DC @24 V DC /0.36 A DC @125 V DC /0.18 A DC @250 V DC 控制器负荷 (PD) AC : .............................. B300 DC :1.00 A DC @24 V DC /0.22 A DC @125 V DC /0.10 A DC @250 V DC 模拟输出(孤网) ............................ 可自由扩展 类型 ............................. ± 10 V/± 20 mA/PWM 绝缘电压(连续,AVR 输出) ...................... 300 V AC 绝缘电压(连续,Gov 输出) ...................... 100 V AC Versions ........................ ±10 Vdc, ±20 mA, PWM 分辨率 ........................................... 12 位 ± 10 V(可扩展) ............................... 内电阻 ± 20 mA(可扩展) ................... 最大载荷 500 Ohms 外壳 前面板嵌入式安装 ......... 类型 APRANORM DIN 43 700 尺寸 WxHxD .............. 142 × 72 × 122 mm 前部剪切 WxH ......... 138 [+1.0] × 68 [+0.7] mm 连接 ............................... 螺丝/插头端子取决于 连接器 1.5 mm² 或 2.5 mm² 前部 .......................................... 绝缘表面 保护系统/密封 ............................... 正确安装时 前部 .............................. IP42 前部 ...... IP54(带垫圈 P/N 8923-1037) 后部 .............................. IP20 重量 .......................................... 约 800 g 扰动试验 (CE) ................. 根据适用 EN 指南进行试验 列表 ........................... CE 、UL/cUL 一般地区列表 船舶(待定) ........... LR (型号审批)、ABS (型号审批)尺寸端子图相关产品∙负载共享同步器SPM-D2-10(产品规格 # 37622)∙数字同步器和负载控制器 DSLC-2(产品规格 # 37493)∙主站同步器和负载控制器 MSLC-2(产品规格 # 37494)∙负载共享速度控制器2301E(产品规格 # 03404)∙负载共享模块LSM(产品规格 # 82686)∙SPM-A同步器(产品规格 # 82383)∙发电机组学习模块(产品规格 # 03412):P/N 8447-1012联系方式北美洲和中美洲电话:+1 970 962 7331 ✉*****************************南美洲电话:+55 19 3708 4800 ✉************************欧洲电话(斯图加特):+49 711 78954 510电话(肯彭):+49 2152 145 331✉****************************中东和非洲电话:+971 2 6275185 ✉*************************俄罗斯电话:+7 812 319 3007 ✉****************************中国电话:+86 512 8818 5515 ✉***************************印度电话:+91 124 4399 500 ✉***************************东盟和大洋洲电话:+49 711 78954 510 ✉***************************以变更为准,错误除外。
MB3763中文资料
s PACKAGE
8-pin plastic DIP 8-pin plastic SOP
(DIP-8P-M01)
(FPT-8P-M01)
元器件交易网
MB3763
s PIN ASSIGNMENT
(TOP VIEW) A-IN GND GND B-IN 1 2 3 4 8 7 6 5 A-OUT A-VCC B-VCC B-OUT
s CONTROL MODE
Control Block Diagram
A-IN B-IN
A-VCC Q1 A-OUT Q2 Control Logic Q4 Q3
B-VCC
B-OUT
GND
Mode A B C D Notes: 1: ≥ 2.4V 0: ≤ 0.4V
Input mode A-IN 1 1 0 0 B-IN 1 0 1 0 L L H —
(DIP-8P-M01) (FPT-8P-M01)
s B-VCC
Input Logic
A-OUT
B-OUT
A-IN
GND
B-IN
2
元器件交易网
MB3763
s ABSOLUTE MAXIMUM RATINGS
(Ta = +25°C) Parameter Power supply voltage Output current Maximum output current Power Dissipation Operating temperature Storage temperature *1: tON ≤ 1 s, Duty = 50% *2: Ta ≤ 60°C *3: t ≤ 5 ms WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings. I Symbol VCC IO
MAX232中文资料(官方版)
新一代 器件特性 ____________________________
♦ 对于低电压、集成 ESD 保护的应用 MAX3222E/MAX3232E/MAX3237E/MAX3241E/ MAX3246E:+3.0V 至 +5.5V、低功耗、速率高达 1Mbps、利用四个 0.1µF 电容实现真正的 RS-232 收发器 (MAX3246E 提供 UCSPTM 封装 )。 ♦ 对于低成本应用 MAX221E:±15kV ESD 保护、+5V、1µA、 具有 AutoShutdownTM 功能的单芯片 RS-232。
________________________________ 应用
便携式计算机 低功耗调制解调器 接口转换 电池供电 RS-232 系统 多点 RS-232 网络
_____________________________ 定购信息
PART MAX220CPE MAX220CSE MAX220CWE MAX220C/D MAX220EPE MAX220ESE MAX220EWE MAX220EJE MAX220MJE TEMP RANGE 0°C to +70°C 0°C to +70°C 0°C to +70°C 0°C to +70°C -40°C to +85°C -40°C to +85°C -40°C to +85°C -40°C to +85°C -55°C to +125°C PIN-PACKAGE 16 Plastic DIP 16 Narrow SO 16 Wide SO Dice* 16 Plastic DIP 16 Narrow SO 16 Wide SO 16 CERDIP 16 CERDIP
MAX211EEAI+中文资料
________________________________________________________________Maxim Integrated Products 1General DescriptionThe MAX202E–MAX213E, MAX232E/MAX241E line drivers/receivers are designed for RS-232 and V.28communications in harsh environments. Each transmitter output and receiver input is protected against ±15kV electrostatic discharge (ESD) shocks, without latchup.The various combinations of features are outlined in the Selector Guide.The drivers and receivers for all ten devices meet all EIA/TIA-232E and CCITT V.28specifications at data rates up to 120kbps, when loaded in accordance with the EIA/TIA-232E specification.The MAX211E/MAX213E/MAX241E are available in 28-pin SO packages, as well as a 28-pin SSOP that uses 60% less board space. The MAX202E/MAX232E come in 16-pin TSSOP, narrow SO, wide SO, and DIP packages. The MAX203E comes in a 20-pin DIP/SO package, and needs no external charge-pump capacitors. The MAX205E comes in a 24-pin wide DIP package, and also eliminates external charge-pump capacitors. The MAX206E/MAX207E/MAX208E come in 24-pin SO, SSOP, and narrow DIP packages. The MAX232E/MAX241E operate with four 1µF capacitors,while the MAX202E/MAX206E/MAX207E/MAX208E/MAX211E/MAX213E operate with four 0.1µF capacitors,further reducing cost and board space.________________________ApplicationsNotebook, Subnotebook, and Palmtop Computers Battery-Powered Equipment Hand-Held EquipmentNext-Generation Device Featureso For Low-Voltage ApplicationsMAX3222E/MAX3232E/MAX3237E/MAX3241E/MAX3246E: ±15kV ESD-Protected Down to10nA, +3.0V to +5.5V, Up to 1Mbps, True RS-232Transceivers (MAX3246E Available in a UCSP™Package)o For Low-Power ApplicationsMAX3221/MAX3223/MAX3243: 1µA SupplyCurrent, True +3V to +5.5V RS-232 Transceivers with Auto-Shutdown™o For Space-Constrained ApplicationsMAX3233E/MAX3235E: ±15kV ESD-Protected,1µA, 250kbps, +3.0V/+5.5V, Dual RS-232Transceivers with Internal Capacitorso For Low-Voltage or Data Cable ApplicationsMAX3380E/MAX3381E: +2.35V to +5.5V, 1µA,2Tx/2Rx RS-232 Transceivers with ±15kV ESD-Protected I/O and Logic PinsMAX202E–MAX213E, MAX232E/MAX241E±15kV ESD-Protected, +5V RS-232 TransceiversSelector Guide19-0175; Rev 6; 3/05Pin Configurations and Typical Operating Circuits appear at end of data sheet.YesPARTNO. OF RS-232DRIVERSNO. OF RS-232RECEIVERSRECEIVERS ACTIVE IN SHUTDOWNNO. OF EXTERNAL CAPACITORS(µF)LOW-POWER SHUTDOWNTTL TRI-STATE MAX202E 220 4 (0.1)No No MAX203E 220None No No MAX205E 550None Yes Yes MAX206E 430 4 (0.1)Yes Yes MAX207E 530 4 (0.1)No No MAX208E 440 4 (0.1)No No MAX211E 450 4 (0.1)Yes Yes MAX213E 452 4 (0.1)Yes Yes MAX232E 220 4 (1)No No MAX241E454 (1)YesFor pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .AutoShutdown and UCSP are trademarks of Maxim Integrated Products, Inc.Ordering InformationOrdering Information continued at end of data sheet.2_______________________________________________________________________________________M A X 202E –M A X 213E , M A X 232E /M A X 241EABSOLUTE MAXIMUM RATINGSV CC ..........................................................................-0.3V to +6V V+................................................................(V CC - 0.3V) to +14V V-............................................................................-14V to +0.3V Input VoltagesT_IN............................................................-0.3V to (V+ + 0.3V)R_IN...................................................................................±30V Output VoltagesT_OUT.................................................(V- - 0.3V) to (V+ + 0.3V)R_OUT......................................................-0.3V to (V CC + 0.3V)Short-Circuit Duration, T_OUT....................................Continuous Continuous Power Dissipation (T A = +70°C)16-Pin Plastic DIP (derate 10.53mW/°C above +70°C)....842mW 16-Pin Narrow SO (derate 8.70mW/°C above +70°C).....696mW 16-Pin Wide SO (derate 9.52mW/°C above +70°C)......762mW 16-Pin TSSOP (derate 9.4mW/°C above +70°C)...........755mW20-Pin Plastic DIP (derate 11.11mW/°C above +70°C)...889mW 20-Pin SO (derate 10.00mW/°C above +70°C).............800mW 24-Pin Narrow Plastic DIP(derate 13.33mW/°C above +70°C) ...............................1.07W 24-Pin Wide Plastic DIP(derate 14.29mW/°C above +70°C)................................1.14W 24-Pin SO (derate 11.76mW/°C above +70°C).............941mW 24-Pin SSOP (derate 8.00mW/°C above +70°C)..........640mW 28-Pin SO (derate 12.50mW/°C above +70°C)....................1W 28-Pin SSOP (derate 9.52mW/°C above +70°C)..........762mW Operating Temperature RangesMAX2_ _EC_ _.....................................................0°C to +70°C MAX2_ _EE_ _...................................................-40°C to +85°C Storage Temperature Range.............................-65°C to +165°C Lead Temperature (soldering, 10s).................................+300°CELECTRICAL CHARACTERISTICS(V CC = +5V ±10% for MAX202E/206E/208E/211E/213E/232E/241E; V CC = +5V ±5% for MAX203E/205E/207E; C1–C4 = 0.1µF for MAX202E/206E/207E/208E/211E/213E; C1–C4 = 1µF for MAX232E/241E; T A = T MIN to T MAX ; unless otherwise noted. Typical values are at T A = +25°C.)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.ELECTRICAL CHARACTERISTICS (continued)MAX202E–MAX213E, MAX232E/MAX241E (V CC= +5V ±10% for MAX202E/206E/208E/211E/213E/232E/241E; V CC= +5V ±5% for MAX203E/205E/207E; C1–C4 = 0.1µF forMAX202E/206E/207E/208E/211E/213E; C1–C4 = 1µF for MAX232E/241E; T A= T MIN to T MAX; unless otherwise noted. Typical valuesare at T A= +25°C.)Note 1:MAX211EE_ _ tested with V CC= +5V ±5%._______________________________________________________________________________________34______________________________________________________________________________________M A X 202E –M A X 213E , M A X 232E /M A X 241E__________________________________________Typical Operating Characteristics(Typical Operating Circuits, V CC = +5V, T A = +25°C, unless otherwise noted.)5.00MAX211E/MAX213ETRANSMITTER OUTPUT VOLTAGEvs. LOAD CAPACITANCELOAD CAPACITANCE (pF)V O H , -V O L (V )5.56.06.57.07.58.0100020003000400050000MAX211E/MAX213E/MAX241E TRANSMITTER SLEW RATE vs. LOAD CAPACITANCELOAD CAPACITANCE (pF)S L E W R A T E ( V /µs )5101520253010002000300040005000_______________________________________________________________________________________5MAX202E–MAX213E, MAX232E/MAX241E____________________________Typical Operating Characteristics (continued)(Typical Operating Circuits, V CC = +5V, T A = +25°C, unless otherwise noted.)2MAX202E/MAX203E/MAX232E TRANSMITTER SLEW RATE vs. LOAD CAPACITANCELOAD CAPACITANCE (pF)S L E W R A T E ( V /µs )468101214100020003000400050005.07.5-7.53000MAX205E–MAX208ETRANSMITTER OUTPUT VOLTAGEvs. LOAD CAPACITANCE-5.02.5LOAD CAPACITANCE (pF)O U T P U T V O L T A G E (V )10002000400050000-2.54550203000MAX205E–MAX208E SUPPLY CURRENT vs. LOAD CAPACITANCE2540LOAD CAPACITANCE (pF)S U P P L Y C U R R E N T (m A )100020004000500035302.55.0-10.0180MAX205E –MAX208EOUTPUT VOLTAGE vs. DATA RATE-7.50DATA RATE (kbps)O U T P U T V O L T A G E (V )601202401503090210-2.5-5.010.07.56_______________________________________________________________________________________M A X 202E –M A X 213E , M A X 232E /M A X 241EMAX203EMAX205E_____________________________________________________________Pin DescriptionsMAX202E/MAX232E_______________________________________________________________________________________7MAX202E–MAX213E, MAX232E/MAX241EMAX208E________________________________________________Pin Descriptions (continued)MAX206EMAX207E8_______________________________________________________________________________________M A X 202E –M A X 213E , M A X 232E /M A X 241EMAX211E/MAX213E/MAX241E)(MAX205E/MAX206E/MAX211E/MAX213E/MAX241E)________________________________________________Pin Descriptions (continued)MAX211E/MAX213E/MAX241EFigure 3. Transition Slew-Rate Circuit_______________Detailed Description The MAX202E–MAX213E, MAX232E/MAX241E consist of three sections: charge-pump voltage converters, drivers (transmitters), and receivers. These E versions provide extra protection against ESD. They survive ±15kV discharges to the RS-232 inputs and outputs, tested using the Human Body Model. When tested according to IEC1000-4-2, they survive ±8kV contact-discharges and ±15kV air-gap discharges. The rugged E versions are intended for use in harsh environments or applications where the RS-232 connection is frequently changed (such as notebook computers). The standard (non-“E”) MAX202, MAX203, MAX205–MAX208, MAX211, MAX213, MAX232, and MAX241 are recommended for applications where cost is critical.+5V to ±10V Dual Charge-PumpVoltage Converter The +5V to ±10V conversion is performed by dual charge-pump voltage converters (Figure 4). The first charge-pump converter uses capacitor C1 to double the +5V into +10V, storing the +10V on the output filter capacitor, C3. The second uses C2 to invert the +10V into -10V, storing the -10V on the V- output filter capacitor, C4.In shutdown mode, V+ is internally connected to V CC by a 1kΩpull-down resistor, and V- is internally connected to ground by a 1kΩpull up resistor.RS-232 Drivers With V CC= 5V, the typical driver output voltage swing is ±8V when loaded with a nominal 5kΩRS-232 receiver. The output swing is guaranteed to meet EIA/TIA-232E and V.28 specifications that call for ±5V minimum output levels under worst-case conditions. These include a 3kΩload, minimum V CC, and maximum operating temperature. The open-circuit output voltage swings from (V+ - 0.6V) to V-.Input thresholds are CMOS/TTL compatible. The unused drivers’ inputs on the MAX205E–MAX208E, MAX211E, MAX213E, and MAX241E can be left unconnected because 400kΩpull up resistors to V CC are included on-chip. Since all drivers invert, the pull up resistors force the unused drivers’ outputs low. The MAX202E, MAX203E, and MAX232E do not have pull up resistors on the transmitter inputs._______________________________________________________________________________________9MAX202E–MAX213E, MAX232E/MAX241E10______________________________________________________________________________________M A X 202E –M A X 213E , M A X 232E /M A X 241E±15kV ESD-Protected, +5V RS-232 Transceivers When in low-power shutdown mode, the MAX205E/MAX206E/MAX211E/MAX213E/MAX241E driver outputs are turned off and draw only leakage currents—even if they are back-driven with voltages between 0V and 12V. Below -0.5V in shutdown, the transmitter output is diode-clamped to ground with a 1k Ωseries impedance.RS-232 ReceiversThe receivers convert the RS-232 signals to CMOS-logic output levels. The guaranteed 0.8V and 2.4V receiver input thresholds are significantly tighter than the ±3V thresholds required by the EIA/TIA-232E specification.This allows the receiver inputs to respond to TTL/CMOS-logic levels, as well as RS-232 levels.The guaranteed 0.8V input low threshold ensures that receivers shorted to ground have a logic 1 output. The 5k Ωinput resistance to ground ensures that a receiver with its input left open will also have a logic 1 output. Receiver inputs have approximately 0.5V hysteresis.This provides clean output transitions, even with slow rise/fall-time signals with moderate amounts of noise and ringing.In shutdown, the MAX213E’s R4 and R5 receivers have no hysteresis.Shutdown and Enable Control (MAX205E/MAX206E/MAX211E/MAX213E/MAX241E)In shutdown mode, the charge pumps are turned off,V+ is pulled down to V CC , V- is pulled to ground, and the transmitter outputs are disabled. This reduces supply current typically to 1µA (15µA for the MAX213E).The time required to exit shutdown is under 1ms, as shown in Figure 5.ReceiversAll MAX213E receivers, except R4 and R5, are put into a high-impedance state in shutdown mode (see Tables 1a and 1b). The MAX213E’s R4 and R5 receivers still function in shutdown mode. These two awake-in-shutdown receivers can monitor external activity while maintaining minimal power consumption.The enable control is used to put the receiver outputs into a high-impedance state, to allow wire-OR connection of two EIA/TIA-232E ports (or ports of different types) at the UART. It has no effect on the RS-232 drivers or the charge pumps.N ote: The enabl e control pin is active l ow for the MAX211E/MAX241E (EN ), but is active high for the MAX213E (EN). The shutdown control pin is active high for the MAX205E/MAX206E/MAX211E/MAX241E (SHDN), but is active low for the MAX213E (SHDN ).Figure 4. Charge-Pump DiagramMAX202E–MAX213E, MAX232E/MAX241EV+V-200µs/div3V 0V 10V 5V 0V -5V -10VSHDNMAX211EFigure 5. MAX211E V+ and V- when Exiting Shutdown (0.1µF capacitors)X = Don't care.*Active = active with reduced performanceSHDN E N OPERATION STATUS Tx Rx 00Normal Operation All Active All Active 01Normal Operation All Active All High-Z 1XShutdownAll High-ZAll High-ZTable 1a. MAX205E/MAX206E/MAX211E/MAX241E Control Pin ConfigurationsTable 1b. MAX213E Control Pin ConfigurationsThe MAX213E’s receiver propagation delay is typically 0.5µs in normal operation. In shutdown mode,propagation delay increases to 4µs for both rising and falling transitions. The MAX213E’s receiver inputs have approximately 0.5V hysteresis, except in shutdown,when receivers R4 and R5 have no hysteresis.When entering shutdown with receivers active, R4 and R5 are not valid until 80µs after SHDN is driven low.When coming out of shutdown, all receiver outputs are invalid until the charge pumps reach nominal voltage levels (less than 2ms when using 0.1µF capacitors).±15kV ESD ProtectionAs with all Maxim devices, ESD-protection structures are incorporated on all pins to protect against electrostatic discharges encountered during handling and assembly. The driver outputs and receiver inputs have extra protection against static electricity. Maxim’s engineers developed state-of-the-art structures to protect these pins against ESD of ±15kV without damage. The ESD structures withstand high ESD in all states: normal operation, shutdown, and powered down. After an ESD event, Maxim’s E versions keep working without latchup, whereas competing RS-232products can latch and must be powered down to remove latchup.ESD protection can be tested in various ways; the transmitter outputs and receiver inputs of this product family are characterized for protection to the following limits:1)±15kV using the Human Body Model2)±8kV using the contact-discharge method specifiedin IEC1000-4-23)±15kV using IEC1000-4-2’s air-gap method.ESD Test ConditionsESD performance depends on a variety of conditions.Contact Maxim for a reliability report that documents test set-up, test methodology, and test results.Human Body ModelFigure 6a shows the Human Body Model, and Figure 6b shows the current waveform it generates when discharged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest, which is then discharged into the test device through a 1.5k Ωresistor.S H D N ENOPERATION STATUS Tx 1–400Shutdown All High-Z 01Shutdown All High-Z 10Normal Operation 11Normal OperationAll ActiveAll Active Active1–34, 5High-Z ActiveHigh-Z High-Z High-Z Active*High-Z RxM A X 202E –M A X 213E , M A X 232E /M A X 241EIEC1000-4-2The IEC1000-4-2 standard covers ESD testing and performance of finished equipment; it does not specifically refer to integrated circuits. The MAX202E/MAX203E–MAX213E, MAX232E/MAX241E help you design equipment that meets level 4 (the highest level) of IEC1000-4-2, without the need for additional ESD-protection components.The major difference between tests done using the Human Body Model and IEC1000-4-2 is higher peak current in IEC1000-4-2, because series resistance is lower in the IEC1000-4-2 model. Hence, the ESD withstand voltage measured to IEC1000-4-2 is generally lower than that measured using the Human Body Model. Figure 7b shows the current waveform for the 8kV IEC1000-4-2 level-four ESD contact-discharge test.The air-gap test involves approaching the device with a charged probe. The contact-discharge method connects the probe to the device before the probe is energized.Machine ModelThe Machine Model for ESD tests all pins using a 200pF storage capacitor and zero discharge resistance. Its objective is to emulate the stress caused by contact that occurs with handling and assembly during manufacturing. Of course, all pins require this protection during manufacturing, not just RS-232 inputs and outputs. Therefore,after PC board assembly,theMachine Model is less relevant to I/O ports.Figure 7a. IEC1000-4-2 ESD Test ModelFigure 7b. IEC1000-4-2 ESD Generator Current WaveformFigure 6a. Human Body ESD Test ModelFigure 6b. Human Body Model Current Waveform__________Applications InformationCapacitor Selection The capacitor type used for C1–C4 is not critical for proper operation. The MAX202E, MAX206–MAX208E, MAX211E, and MAX213E require 0.1µF capacitors, and the MAX232E and MAX241E require 1µF capacitors, although in all cases capacitors up to 10µF can be used without harm. Ceramic, aluminum-electrolytic, or tantalum capacitors are suggested for the 1µF capacitors, and ceramic dielectrics are suggested for the 0.1µF capacitors. When using the minimum recommended capacitor values, make sure the capacitance value does not degrade excessively as the operating temperature varies. If in doubt, use capacitors with a larger (e.g., 2x) nominal value. The capacitors’ effective series resistance (ESR), which usually rises at low temperatures, influences the amount of ripple on V+ and V-.Use larger capacitors (up to 10µF) to reduce the output impedance at V+ and V-. This can be useful when “stealing” power from V+ or from V-. The MAX203E and MAX205E have internal charge-pump capacitors. Bypass V CC to ground with at least 0.1µF. In applications sensitive to power-supply noise generated by the charge pumps, decouple V CC to ground with a capacitor the same size as (or larger than) the charge-pump capacitors (C1–C4).V+ and V- as Power Supplies A small amount of power can be drawn from V+ and V-, although this will reduce both driver output swing and noise margins. Increasing the value of the charge-pump capacitors (up to 10µF) helps maintain performance when power is drawn from V+ or V-.Driving Multiple Receivers Each transmitter is designed to drive a single receiver. Transmitters can be paralleled to drive multiple receivers.Driver Outputs when Exiting Shutdown The driver outputs display no ringing or undesirable transients as they come out of shutdown.High Data Rates These transceivers maintain the RS-232 ±5.0V minimum driver output voltages at data rates of over 120kbps. For data rates above 120kbps, refer to the Transmitter Output Voltage vs. Load Capacitance graphs in the Typical Operating Characteristics. Communication at these high rates is easier if the capacitive loads on the transmitters are small; i.e., short cables are best.Table 2. Summary of EIA/TIA-232E, V.28 SpecificationsMAX202E–MAX213E, MAX232E/MAX241EM A X 202E –M A X 213E , M A X 232E /M A X 241E____________Pin Configurations and Typical Operating Circuits (continued)Table 3. DB9 Cable ConnectionsCommonly Used for EIA/TIAE-232E and V.24 Asynchronous Interfaces____________Pin Configurations and Typical Operating Circuits (continued)MAX202E–MAX213E, MAX232E/MAX241EM A X 202E –M A X 213E , M A X 232E /M A X 241E____________Pin Configurations and Typical Operating Circuits (continued)MAX202E–MAX213E, MAX232E/MAX241E____________Pin Configurations and Typical Operating Circuits (continued)M A X 202E –M A X 213E , M A X 232E /M A X 241E____________Pin Configurations and Typical Operating Circuits (continued)MAX202E–MAX213E, MAX232E/MAX241E____________Pin Configurations and Typical Operating Circuits (continued)M A X 202E –M A X 213E , M A X 232E /M A X 241E____________Pin Configurations and Typical Operating Circuits (continued)______________________________________________________________________________________21MAX202E–MAX213E, MAX232E/MAX241E Ordering Information (continued)*Dice are specified at T A= +25°C.M A X 202E –M A X 213E , M A X 232E /M A X 241E22________________________________________________________________________________________________________________________________________________Chip Topographies___________________Chip InformationC1-V+C1+V CC R2INT2OUT R2OUT0.117"(2.972mm)0.080"(2.032mm)V-C2+ C2-T2IN T1OUT R1INR1OUT T1INGNDR5INV-C2-C2+C1-V+C1+V CC T4OUTR3IN T3OUTT1OUT 0.174"(4.420mm)0.188"(4.775mm)T4IN R5OUT R4OUT T3IN R4IN EN (EN) SHDN (SHDN)R3OUT T2OUT GNDR1IN R1OUT T2IN R2OUTR2IN T1IN ( ) ARE FOR MAX213E ONLYTRANSISTOR COUNT: 123SUBSTRATE CONNECTED TO GNDTRANSISTOR COUNT: 542SUBSTRATE CONNECTED TO GNDMAX202E/MAX232EMAX211E/MAX213E/MAX241EMAX205E/MAX206E/MAX207E/MAX208E TRANSISTOR COUNT: 328SUBSTRATE CONNECTED TO GNDMAX202E–MAX213E, MAX232E/MAX241E Package InformationM A X 202E –M A X 213E , M A X 232E /M A X 241EPackage Information (continued)MAX202E–MAX213E, MAX232E/MAX241E±15kV ESD-Protected, +5V RS-232 TransceiversMaxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________25©2005 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products, Inc.Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to /packages .)。
MAX4702EUE中文资料
ELECTRICAL CHARACTERISTICS—Single +3V Supply
(V+ = +2.7V to +3.3V, GND = 0, VIH = +1.4V, VIL = +0.5V, (VL = +1.5V, VIH = +1.0V, VIL = +0.4V for MAX4702 only), TA = -40°C to +85°C. Typical values are at V+ = +3V and TA = +25°C, unless otherwise noted.) (Notes 2, 3)
V+ = +2.7V, ICOM_ = 10mA; RFLAT (ON) VNO_ or VNC_ = +1V,
+1.5V, +2V
+25°C TMIN to TMAX
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at .
元器件交易网
PIN-PACKAGE 16 TQFN (4mm x 4mm) 16 TSSOP 16 TQFN (3mm x 3mm) 16 TSSOP 16 TQFN (3mm x 3mm)
Pin Configurations
TOP VIEW
COM1 NO1 V+ NC4
16
15
14
13
COM1 NO1 V+ NC4
MAX3490摘出资料(部分中文)
MAX3488,MAX3490,MAX3491功能,全双工通信,而MAX3483,MAX3485,MAX3486是专为半双工通信。
单一的3.3V电源供应,没有电荷注入;具有+5V逻辑电源互操作;最大偏斜为8ns;2ns低电流掉电模式;共模输入电压范围:-7~+12V,总线上允许多达32个收发器;全双工和半双工版本;具有电流限制和热关机驱动器过载保护
驱动器具有短路电流限制和对功耗过大的保护,热关断电路,驱动器输出置于高阻抗状态。
接收器输入具有故障安全功能,保证逻辑高输出,如果两个输入端开路。
选择MAX3490做RS-422,下图为MAX3490引脚图
1——VCC 3.3V
2——RO 接收器输出
3——DI 驱动器输入
4——GND
5——Y 同相驱动器输出
6——Z 反相驱动器输出
7——B 反相接收器输入
8——A 同相接收器输入
保证数据传输速率(Mbps)10
电源电压(V) 3.0 to 3.6
半/全双工全双工
摆率限制无
驱动器/接收器使无
关断电流(NA)关断时无
引脚数8
频率大,高频谐波明显
MAX3490没有接收器发送器使能,控制逻辑如下图
MAX3490(无RE、DE引脚)绝对最大额定值如下图:
MAX3490驱动器的开关特性如下图:
MAX3490型号及封装如下图
MAX3490引脚配置与典型工作电路,如下图
MAX3490封装尺寸。
MAX3235EEWP中文资料
CHARGE PUMP
_______________Ordering Information
R1IN
PART MAX3233ECWP MAX3233ECPP MAX3233EEWP MAX3233EEPP
TEMP. RANGE 0°C to +70°C 0°C to +70°C -40°C to +85°C -40°C to +85°C
元器件交易网
±15kV ESD-Protected, 1µA, 250kbps, 3.3V/5V, Dual RS-232 Transceivers with Internal Capacitors MAX3233E/MAX3235E
ABSOLUTE MAXIMUM RATINGS
T2OUT GND VC2C2+ C1C1+ V+ V+
________________________Applications
Subnotebook and Palmtop Computers Cellular Phones Battery-Powered Equipment Hand-Held Equipment Peripherals Embedded Systems
The MAX3233E/MAX3235E are EIA/TIA-232 and V.28/V.24 communications interfaces with automatic shutdown/ wake-up features, high data-rate capabilities, and enhanced electrostatic discharge (ESD) protection. All transmitter outputs and receiver inputs are protected to ±15kV using IEC 1000-4-2 Air-Gap Discharge, to ±8kV using IEC 1000-4-2 Contact Discharge, and to ±15kV using the Human Body Model. The MAX3233E operates from a +3.3V supply; the MAX3235E operates from +5.0V. All devices achieve a 1µA supply current using Maxim’s revolutionary AutoShutdown Plus™ feature. These devices automatically enter a low-power shutdown mode when the following two conditions occur: either the RS-232 cable is disconnected or the transmitters of the connected peripherals are inactive, and the UART driving the transmitter inputs is inactive for more than 30 seconds. They turn on again when they sense a valid transition at any transmitter or receiver input. AutoShutdown Plus saves power without changes to the existing BIOS or operating system. The MAX3233E/MAX3235E have internal dual charge pumps requiring no external capacitors. Both transceivers have a proprietary low-dropout transmitter output stage that enables true RS-232 performance from a +3.0V to +3.6V supply for the MAX3233E or a +4.5V to +5.5V supply for the MAX3235E. These devices are guaranteed to operate up to 250kbps. Both are available in space-saving 20-pin wide SO or plastic DIP packages.
732P中文资料
* Part Numbers listed are for a capacitance tolerance of ± 10%. To specify ± 5% tolerance, change the "X9" in the Part Number to "X5".
ORDERING INFORMATION
102
For technical questions, contaDC 1.0 2.0 3.0 5.0 10.0 20.0 30.0 732P105X9200L 732P205X9200L 732P305X9200L 732P505X9200L 732P106X9200L 732P206X9200L 732P306X9200L 0.531 x 0.750 [13.49 x 19.05] 0.596 x 0.938 [15.14 x 23.83] 0.717 x 0.938 [18.21 x 23.83] 0.733 x 1.250 [18.62 x 31.75] 0.898 x 1.500 [22.81 x 38.10] 1.000 x 2.250 [25.40 x 57.15] 1.200 x 2.250 [30.48 x 57.15] 15.0 12.0 11.0 10.0 9.0 8.0 6.0 9.2 10.8 12.1 13.8 15.0 15.0 15.0 8.5 10.0 11.2 12.7 15.0 15.0 15.0 7.8 9.1 10.3 11.6 14.2 15.0 15.0 7.0 8.2 9.4 10.4 12.7 15.0 15.0 6.0 7.0 8.0 9.0 11.0 13.6 15.0 4.9 5.8 6.5 7.4 9.0 11.1 12.4 4.5 5.3 5.9 8.7 8.2 10.0 11.4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Note 1: Dice are tested at TA = +25°C. Note 2: Outputs terminated with 50Ω to VCC - 2V. Note 3: Voltage measurements are relative to VCC.
2
_______________________________________________________________________________________
________________________Applications
622Mbps LAN/ATM LAN Receivers 155Mbps LAN/ATM LAN Receivers
*Dice are designed to operate from -40°C to +85°C, but are tested and guaranteed only at TA = +25°C. +Denotes a lead-free/RoHS-compliant package.
DC ELECTRICAL CHARACTERISTICS
(VCC = +4.5V to +5.5V, DISABLE = low, TA = -40°C to +85°C, unless otherwise noted. Typical values are at VCC = +5.0V, TA = +25°C.) (Note 1) PARAMETER Power-Supply Current LOS Output TTL High LOS Output TTL Low LOS Output PECL High LOS Output PECL Low DISABLE Input Current DISABLE Input High DISABLE Input Low DISABLE Input PECL High DISABLE Input PECL Low PECL Data Output Voltage High (VOH) PECL Data Output Voltage Low (VOL) Disabled Differential Output Disabled Common-Mode Output MAX3761, IVCC MAX3762, IVCC MAX3761 MAX3761 (TA = +25°C to +85°C) (TA = -40°C to +25°C) -1150 -1830 2.65 0.8 -1160 -1470 -1150 -1830 -100 VCC - 0.7 -880 -1555 100 VCC -1.2 2.8 0.40 0.44 -880 -1555 100 CONDITIONS MIN TYP 25 30 MAX 37 46 UNITS mA V V mV mV μA V V mV mV mV mV mV V
_______________General Description
The MAX3761/MAX3762 limiting amplifiers, with 4mV sensitivity and PECL data outputs, are optimized for operation in low-cost, 622Mbps, LAN/ATM LAN fiber optics applications. An integrated power detector senses the input signal’s amplitude. A received-signal-strength indicator (RSSI) gives an analog indication of the power level, while the complementary loss-of-signal (LOS) outputs indicate if the input power level exceeds the programmed threshold level. The LOS threshold can be adjusted to detect signal amplitudes between 3mVp-p and 100mVp-p, providing a 15dB LOS adjustment in fiber optic receivers. The LOS outputs have 3.5dB of hysteresis, which prevents chatter when input signal levels are small. The MAX3761’s LOS outputs are compatible with TTL-logic levels. The MAX3762 has PECL LOS outputs. DISABLE and LOS can be used to implement a squelch function, which turns off the data outputs when the input signal is below the programmed threshold.
+5V 10nF RSSI VCCO 100pF BYPASS SUPPLY CIN 5.6nF VIN+ CIN 5.6nF VINVCC EN CZP CZN DISABLE LOS+ LOSOUTOUT+ 50Ω 50Ω GNDO GND VTH SUB VCC - 2V CAZ 150pF
MAX3761 MAX3762
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
16 VCCO 15 OUT+ 14 OUT13 GNDO 12 VTH 11 INV
MAX3761
ห้องสมุดไป่ตู้
FILTER 100pF +VCC R1 100kΩ R2 22kΩ CFILTER INV
QSOP
MAX3762 at end of data sheet.
________________________________________________________________ Maxim Integrated Products 1
元器件交易网
Low-Power, 622Mbps Limiting Amplifiers with Chatter-Free Power Detect for LANs
♦ Chatter-Free Power Detector with Programmable Loss-of-Signal Outputs ♦ 4mV Input Sensitivity ♦ PECL Data Outputs ♦ Single 5V Power Supply ♦ 250ps Output Edge Speed ♦ Low 15ps Pulse-Width Distortion ♦ TTL Loss-of-Signal Interface Logic—MAX3761 ♦ PECL Loss-of-Signal Interface Logic—MAX3762
MAX3761/MAX3762
Ordering Information
PART MAX3761EEP+ MAX3761E/D MAX3762EEP+ MAX3762E/D TEMP RANGE -40°C to +85°C -40°C to +85°C -40°C to +85°C -40°C to +85°C PIN-PACKAGE 20 QSOP Dice* 20 QSOP Dice*
元器件交易网
19-1097; Rev 4; 8/08
KIT ATION EVALU LE B A IL A AV
Low-Power, 622Mbps Limiting Amplifiers with Chatter-Free Power Detect for LANs
____________________________Features
Low-Power, 622Mbps Limiting Amplifiers with Chatter-Free Power Detect for LANs
MAX3761/MAX3762
ABSOLUTE MAXIMUM RATINGS
VCC, VCCO............................................................-0.5V to +7.0V FILTER, RSSI, EN, VIN+, VIN-, CZP, CZN, DISABLE, LOS+, LOS-, INV, VTH...............-0.5V to (VCC + 0.5V) PECL Output Current (OUT+, OUT-, LOS+, LOS-) ............50mA Continuous Power Dissipation (TA = +85°C) QSOP (derate 9.1mW/°C above +85°C) .......................591mW Operating Junction Temperature Range ...........-40°C to +150°C Processing Temperature (die) .........................................+400°C Storage Temperature Range .............................-65°C to +160°C Lead Temperature (soldering, 10sec) .............................+300°C