TS36.211中文版
LTE覆盖半径相关参数解释
TD-LTE覆盖半径相关参数总结1.CP配置对覆盖距离的影响OFDM技术能有效克服频域上自身的干扰问题,但是无法克服由于多径时延造成的符号间干扰(ISI)和子载波正交性破坏问题。
多径时延表现为信号经过无线信道后发生的较大时延及幅度衰减。
对此,在TD-LTE系统中,在每个OFDM符号之前加入循环前缀CP。
只要各径的多径时延与定时误差之和不超过CP长度,就能保证接收机积分区间内包含的各子载波在各径下的整数波形,从而消除多径带来的符号间干扰和子载波间的干扰(ICI)。
正常CP:正常CP有7个OFDM符号,第1个OFDM符号的CP长度是5.21μs,第2到第7个OFDM符号的CP长度是4.69μs。
正常CP可以在1.4km的时延扩展范围内提供抗多径保护能力,适合于市区、郊区、农村以及小区半径小于5km的山区环境。
扩展CP:扩展CP有6个OFDM符号,每个OFDM符号的CP长度均是16.67μs。
扩展CP可以在10km的时延扩展范围内提供抗多径保护能力,适合于覆盖距离大于5km的山区环境以及需要超远距离覆盖的海面和沙漠等环境。
2. GP配置对覆盖距离的影响TD-LTE系统利用时间上的间隔完成双工转换,但为避免干扰,需预留一定的保护间隔(GP)。
GP的大小与系统覆盖距离有关,GP越大,覆盖距离也越大。
GP主要由传输时延和设备收发转换时延构成,即:GP=2×传输时延+T(1)Rx-Tx,Ue最大覆盖距离=传输时延*c (2)为UE从下行接收到上行发送的转换时间,该值与输出功率的精其中c是光速。
TRx-Tx,Ue确度有关,典型值是10μs~40μs,在本文中假定为20μs。
TD-LTE覆盖距离见表7。
DwPTS用于传输下行链路控制信令和下行数据,因此GP越大,则DwPTS越小,系统容量下降。
在系统设计中,常规CP的特殊子帧配置7即10:2:2是典型配置,该配置下理论覆盖距离达到18.4km,既能保证足够的覆盖距离,同时下行容量损失又有限。
LTE物理层协议分析001_同步过程
L TE 物理层协议分析——同步过程本文主要分析物理层的同步过程,其主要源于协议TS36.213。
一、概述同步过程用于保证UE 与ENB 之间的上行链路的时间和频率的同步。
同步过程主要分为两类场景:一是入网场景下的同步,此时UE 通过PSS 和SSS 完成下行链路的同步,通过PRACH 和TA 命令(RAR 中)完成上行链路链路的同步;二是在网场景下的同步,此时UE 通过PSS 和SSS 信号维护下行链路的同步,通过PRACH 、DMRS/SRS 和TA 命令(RAR 或其他PDSCH 数据中)维护上行链路的同步。
需要特别注意的是,在网场景下若无上行数据传输,允许ENB 和UE 之间的上行链路不同步——即上行同步只在有上行数据传输时才被需要。
二、上行链路同步过程TA (Time Advanced )命令指示了上行所有信道和信号的发送时间提前量,用于支持所有UE 发送的上行信号能够同时到达eNodeB ,以便eNodeB 正确接收上行信号。
eNodeB 通过MAC 层的MCE 或RAR 数据单元将TA 信息以TA Command 的形式发送给UE ,TA Command 表示发送时间提前量的基本单位为16Ts 。
物理层不提供相关控制字段接口。
因此,严格意义来讲,TA 并非无线传输资源,但却决定了UE 发送的上行信号是否能够正确接收。
TA 基于上行参考信号(DMRS 、SRS 和PRACH )测量得到,如下图1-1所示, UEENB DMRS(PUSCH)/SRS/PRACHObtain the transmissiondelay by measuring SRSand DMRS MCE_TA/RARPUSCHDetermine the timeadvanced of transmittingPUSCH by MCE_TA图1-1 TA 分配示意图其中RAR 下发的TA Command 为绝对TA 命令,即UE 发送上行信号的绝对提前时间,长度11bit ;MCE_TA 下发的TA Command 为相对TA 命令,即UE 发送上行信号相对于上一次发送时刻的提前时间,此时绝对提前时间为N TA,new = N TA ,old + (TA −31)×16。
LTE覆盖半径相关参数解释
LTE覆盖半径相关参数解释TD-LTE覆盖半径相关参数总结1.CP配置对覆盖距离的影响OFDM技术能有效克服频域上自身的干扰问题,但是无法克服由于多径时延造成的符号间干扰(ISI)和子载波正交性破坏问题。
多径时延表现为信号经过无线信道后发生的较大时延及幅度衰减。
对此,在TD-LTE系统中,在每个OFDM符号之前加入循环前缀CP。
只要各径的多径时延与定时误差之和不超过CP长度,就能保证接收机积分区间内包含的各子载波在各径下的整数波形,从而消除多径带来的符号间干扰和子载波间的干扰(ICI)。
正常CP:正常CP有7个OFDM符号,第1个OFDM符号的CP长度是5.21μs,第2到第7个OFDM符号的CP长度是4.69μs。
正常CP可以在1.4km的时延扩展范围内提供抗多径保护能力,适合于市区、郊区、农村以及小区半径小于5km的山区环境。
扩展CP:扩展CP有6个OFDM符号,每个OFDM符号的CP长度均是16.67μs。
扩展CP可以在10km的时延扩展范围内提供抗多径保护能力,适合于覆盖距离大于5km的山区环境以及需要超远距离覆盖的海面和沙漠等环境。
2. GP配置对覆盖距离的影响TD-LTE系统利用时间上的间隔完成双工转换,但为避免干扰,需预留一定的保护间隔(GP)。
GP的大小与系统覆盖距离有关,GP越大,覆盖距离也越大。
GP主要由传输时延和设备收发转换时延构成,即:GP=2×传输时延+TRx-Tx,Ue (1)最大覆盖距离=传输时延*c (2)其中c是光速。
TRx-Tx,Ue为UE从下行接收到上行发送的转换时间,该值与输出功率的精确度有关,典型值是10μs~40μs,在本文中假定为20μs。
TD-LTE覆盖距离见表7。
DwPTS用于传输下行链路控制信令和下行数据,因此GP越大,则DwPTS越小,系统容量下降。
在系统设计中,常规CP的特殊子帧配置7即10:2:2是典型配置,该配置下理论覆盖距离达到18.4km,既能保证足够的覆盖距离,同时下行容量损失又有限。
LTE物理层协议分析005_随机接入过程
2个TTI
图1-4 RAR 接收窗口示意图 k2 与 RAR 中的 UL delay 字段相关,其若为 0,k2 需要保证不小于 6ms;否者,k2 取值 需要保证 MSG3 在 RAR 之后的第一个 U 帧上传输。 如果收到的 RAR 中不包含本 UE 的响应信息或有收到的 RAR,UE 需要重发 preamble, 记重发 MSG 1(preamble)的时间间隔记为 k3。 对于第一种情况,k3 表示收到 RAR 到重发 MSG 1(preamble)的时间间隔,需要小于 5ms;对于第二种情况,k3 表示 RAR 窗超时到重发 MSG 1(preamble)的时间间隔,需要 小于 4ms。 注: 除入网过程外, ENB 还可通过 PDCCH order 指示 UE 主动发起随机接入, PDCCH order 承载在 PDCCH 上,使用 CRNTI 加扰,固定使用 DCI 1A 格式。
TPC 命令对应功控中的 δ msg 2 ,含义如下表 1-2, 表1-2 RAR 中的 TPC 命令 TPC Command 0 1 2 3 4 5 6 7 Value (in dB) -6 -4 -2 0 2 4 6 8
(本文完) 本系列文档针对 LTE 物理层相关协议进行分析,力求使用图表示例等方式更好地分析协议 内容, 追溯协议背后的设计思想。 主要涉及的协议为 3GPP, TS36.201、 TS36.211、 TS36.212、 TS36.213 和 TS36.300,参考协议版本为 R13。 本文档纯属自我学习总结,只做学习交流用途! Pilot lb19861022@
*1
三、RRC Signal 的发送和接收
ENB 可以通过下发 RRC Signal 指示 UE 在目标小区主动发起随机接入。其承载在 PDSCH 上,物理层不识别。
MIMO资料整理-2014
个平坦的窄带子信道,每个子信道上的信号带宽小于信道的相关带宽, 所以每个子信道上的频率选择性衰落可以看作是平坦性衰落。
• 而MIMO多天线技术能在不增加带宽的情况下,在每一个窄带平坦子信
道上获得更大的信道容量,可以成倍地提高通信系统的容量和频谱效率, 是一种利用空间资源换取频谱资源的技术。
Taking LTE MIMO from Standards to Starbucks Moray Rumney 30th April 2009
通过声音来理解预编码(Precoding)
• 为了使接收机侧的不同流更加隔离,
可以采用预编码码技术。
• 声音的例子中,Precoding可以看成对
立体声进行”balance”
MIMO+OFDM系统,通过在OFDM传输系统中采用天线阵列来实现空 间分集,以提高信号质量,是MIMO与OFDM相结合而产生的一种新 技术。它采用了时间、频率结合空间三种分集方法,使无线系统 对噪声、干扰、多径的容限大大增加。
LTE发送端信号流程
(0) (0) a0 , a1 ,..., a(0) A1
LTE 下行MIMO简介
2014-10
常见问题
1. 什么是MIMO? 2. LTE中为什么使用MIMO? 3. MIMO的如何理解和解释?
4. MIMO如何作用?
5. MIMO模式如何区分? 6. MIMO中的基本概念和作用过程? 7. MIMO各模式的特点如何? 8. MIMO对性能的影响如何?
Taking LTE MIMO from Standards to Starbucks Moray Rumney 30th April 2009
36系列各版本协议说明
规范撤销
TR 36.800 TR 36.801 TR 36.803 TR 36.804 TR 36.805 TR 36.806 TR 36.807 TR 36.808 TR 36.809 TR 36.810 TR 36.811
规范撤销 规范撤销 规范撤销
LTE 中的射频(RF)模式匹配定位方法
UTRA 和 E-UTRA,欧洲的在 800 MHz 下的 UMTS/ LTE E-UTRA, 为移动卫星服务 (MSS) 的辅助地面组件 (ATC) 添加 2 GHz 频段 LTE 频分复用(FDD)(Band 23) E-UTRA,美国工作项目技术报告中的 LTE TDD 2600MHz E-UTRA,LTE L 波段技术报告 E-UTRA,对于 E-UTRA 物理层方面的进一步进展 E-UTRA,RAN WG4 下 LTE-Advanced 的可行性研究 E-UTRA,对设备共存信令和程序干扰避免的研究 E-UTRA,上行链路多天线传输;基站(BS)无线电发射和接收 扩展 1900MHz
E-UTRA,位于频带 38 的 LTE-Advanced 带间连续载波聚合(CA) E-UTRA,位于频带 39 的 LTE-Advanced 带间连续载波聚合(CA) E-UTRA,位于频带 41 的 LTE-Advanced 带间连续载波聚合(CA) E-UTRA,位于频带 42 的 LTE-Advanced 带间连续载波聚合(CA) E-UTRA,位于频带 2 的 LTE-Advanced 带间非连续载波聚合(CA) E-UTRA,位于频带 3 的 LTE-Advanced 带间非连续载波聚合(CA) E-UTRA,位于频带 4 的 LTE-Advanced 带间非连续载波聚合(CA) E-UTRA,位于频带 7 的 LTE-Advanced 带间非连续载波聚合(CA) E-UTRA,位于频带 23 的 LTE-Advanced 带间非连续载波聚合(CA) E-UTRA,位于频带 25 的 LTE-Advanced 带间非连续载波聚合(CA) E-UTRA,位于频带 42 的 LTE-Advanced 带间非连续载波聚合(CA) E-UTRA,对于 2 个上行链路(2UL)的 LTE-Advanced 带间非连续 载波聚合(CA) ;架构 E-UTRA,对于 2 个上行链路(2UL)的位于频带 4 的 LTE-Advanced 带间非连续载波聚合(CA) E-UTRA, 对于 3 个下行链路 (3DL) 的位于频带 40 的 LTE-Advanced 带间非连续载波聚合(CA) E-UTRA, 对于 3 个下行链路 (3DL) 的位于频带 41 的 LTE-Advanced 带间非连续载波聚合(CA) E-UTRA, 对于 3 个下行链路 (3DL) 的位于频带 42 的 LTE-Advanced 带间非连续载波聚合(CA) E-UTRA, 对于 3 个下行链路 (3DL) 的位于频带 41 的 LTE-Advanced 带间非连续载波聚合(CA) E-UTRA, 对于 3 个下行链路 (3DL) 的位于频带 42 的 LTE-Advanced 带间非连续载波聚合(CA) E-UTRA, 对于 4 个下行链路 (4DL) 的位于频带 42 的 LTE-Advanced 带间非连续载波聚合(CA) E-UTRA, 对于 4 个下行链路 (4DL) 的位于频带 41 的 LTE-Advanced 带间非连续载波聚合(CA) 位于频带 3 的 LTE-Advanced 带间连续载波聚合(CA) 位于频带 1 的带间连续载波聚合(CA) E-UTRA,移动中继的研究
TS 36.211-910中文
3GPP TS 36.211 V9.1.01概述LTE 采用了与3G 不同的空中接口技术,采用基于OFDM 技术的空中接口设计。
在系统中采用了基于分组交换的设计思想,即使用共享信道,物理层不再提供专用信道。
系统支持FDD和TDD两种双工方式。
2多址方式LTE 采用OFDMA 作为下行多址方式;采用SC-FDMA作为上行多址方式。
在LTE 中,之所以选择SC-FDMA(单载波)作为上行多址方式,是因为与OFDM 相比,SC-FDMA具有单载波的特性,因而其发送信号峰均比较低,在上行功放要求相同的情况下,可以提到上行的功率效率。
3无线帧结构LTE 在空中接口上支持两种帧结构:Type1和Type2,分别对应两种双工方式,其中Type1用于FDD;Type2用于TDD,无线帧长度为10ms。
3.1Type1 FDD 帧结构(FS1)在FDD中,10ms的无线帧分为10个长度为1ms的子帧(subframe),每个子帧由两个长度为0.5ms的时隙(slot)组成。
其结构如下:特别地,在半双工FDD(H-FDD)中,基站仍采用全双工FDD方式,终端的发送信号和接收信号,虽然分别在不同的频带上传输,采用成对频谱,但其接收信号和发送信号不能同时进行,即:终端的发送信号和接收信号的方式同TDD 相似。
也就是说:在同一时间,终端对同一用户不能同时接收和发送信号,但对不同用户可以。
3.2Type2 TDD 帧结构(FS2)在TDD中,10ms的无线帧由两个长度为5ms的半帧(half Frame)组成,每个半帧由5个长度为1ms的子帧组成,其中有4个常规子帧和1个特殊子帧。
普通子帧由两个0.5ms的时隙组成,特殊子帧由3个特殊时隙:上行导频时隙(UpPTS)、保护间隔(GP)和下行导频时隙(DwPTS)组成。
其结构如下:GP S DwPTSGP SDwPTS DwPTS 的长度可配置为3~12 个OFDM 符号,其中,主同步信号位于第三个符号,相应的,在这个特殊子帧中PDCCH 的最大长度为两个符号。
36.214-中文版本
中国通信标准化协会目次目次 (II)前言.............................................................................................................................................................. I VLTE FDD数字蜂窝移动通信网 Uu接口技术要求第4部分:物理层测量 (6)1 范围62 规范性引用文件 (6)3定义,符号与缩略语 (6)3.1定义 (6)3.2符号 (6)3.3缩略语 (6)4UE/E-UTRAN测量控制 (7)5E-UTRA的测量能力 (7)5.1UE 测量能力 (7)5.1.1参考信号接收功率 (RSRP) (8)5.1.2Void (8)5.1.3参考信号接收质量 (RSRQ) (8)5.1.4公共导頻信道接收信号码功率(UTRA FDD CPICH RSCP) (8)5.1.5UTRA FDD 载波接收信号强度指示(UTRA FDD carrier RSSI) (9)5.1.6UTRA FDD 公共导頻信道每码片信噪比(UTRA FDD CPICH Ec/No) (9)5.1.7GSM 载波接收信号强度指示(GSM carrier RSSI) (9)5.1.10CDMA2000 1x 无线传输技术导頻强度(CDMA2000 1x RTT Pilot Strength) (9)5.1.11CDMA2000 高速分组数据导頻强度(CDMA2000 HRPD Pilot Strength) (9)5.1.12参考信号时间差(RSTD) (10)5.1.13UE 定位的小区帧UE GNSS定时 (10)5.1.14UE GNSS码测量 (10)5.1.15UE 收发时间差 (10)5.2E-UTRAN 测量能力 (10)5.2.1下行参考信号发射功率(DL RS TX power ) (11)5.2.2接收的干扰功率 (11)5.2.3 热噪声 115.2.4定时提前(T ADV) (11)5.2.5eNB 收发时间差 (11)5.2.6UE 定位的小区帧UE GNSS定时 (12)5.2.7到达角(AoA) (13)前言YDB XXXX-XXXX 《LTE FDD数字蜂窝移动通信网 Uu接口技术要求》分为九个部分:─ 第1部分:物理层概述;─ 第2部分:物理信道和调制─ 第3部分:物理层复用和信道编码─ 第4部分:物理层过程─ 第5部分:物理层测量─ 第6部分:MAC协议─ 第7部分:RLC协议─ 第8部分:PDCP协议─ 第9部分:RRC协议本部分是第4部分。
LTE系统标准与产业发展
3GPP LTE版本规划
3GPP LTE已经在Release 8的 36系列规范中发布
3GPP Release 8包含了LTE的 绝大部分特性
LTE-Advanced将作为 Release 10的主要内容
R5/6/7
R8
R9
R10
HSPA MBMS
完善和增强LTE系统 少量在Rel 8中未能支
持的特性,可能会在Rel 9 中经过讨论而支持
Relay 上行增加OFDM选项 增强MBMS
NR
NR
NR
NR
29
TD-LTE
主要内容
LTE系统与标准概述
LTE系统标准演进
LTE系统产业现状
LTE产业发展概况 LTE产业链现状 LTE端到端产品解决方案
LTE网络发展介绍
30
TD-LTE
TD-LTE产业发展概况
LTE FDD
2007
2008
2009
知识产权的成果。
TDD和FDD的融合
有关LTE FDD/TDD的融合问题已经引起了移动通信领域各方的密切关注。 从一方面来说,TDD与FDD的融合将有利于整个LTE产业的规模化发展;从 另一方面来说,作为基本的双工方式,TDD与FDD之间存在着本质的差别。
对融合的考虑 标准,频谱,系统设备,终端,网规网优技术,业务;
LTE
4G Version
3GPP(R99/R4) Voice/Data
3GPP(R5/6/7/8)
HSPA/MBMS HSPA+
3GPP(R8/R9)
FDD LTE TD-LTE
1998--2002
2003---2008
2005--2009
3GPP TS 36.214 V9.2.0 (2010-06)
3GPP TS 36.214 V9.2.0 (2010-06)Technical Specification3rd Generation Partnership Project;Technical Specification Group Radio Access Network;Evolved Universal Terrestrial Radio Access (E-UTRA);Physical layer;Measurements(Release 9)The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP. The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification. Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners‟ Publications Offices.KeywordsUMTS, radio, layer 13GPPPostal address3GPP support office address650 Route des Lucioles – Sophia AntipolisValbonne – Franc eTel. : +33 4 92 94 42 00 Fax : +33 4 93 65 47 16Internethttp ://Copyright NotificationNo part may be reproduced except as authorized by written permission.The copyright and the foregoing restriction extend to reproduction in all media.© 2010, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC).All rights reserved.UMTS™ is a Trade Mark of ETSI registered for the benefit of its members3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational PartnersLTE™ is a Trade Mark of ETSI currently being registered for the benefit of i ts Members and of the 3GPP Organizational Partners GSM® and the GSM logo are registered and owned by the GSM AssociationContentsForeword (4)1Scope (5)2References (5)3Definitions, symbols and abbreviations (6)3.1Definitions (6)3.2Symbols (6)3.3Abbreviations (6)4Control of UE/E-UTRAN measurements (6)5Measurement capabilities for E-UTRA (7)5.1UE measurement capabilities (7)5.1.1Reference Signal Received Power (RSRP) (7)5.1.2Void (8)5.1.3Reference Signal Received Quality (RSRQ) (8)5.1.4UTRA FDD CPICH RSCP (8)5.1.5UTRA FDD carrier RSSI (8)5.1.6UTRA FDD CPICH Ec/No (9)5.1.7GSM carrier RSSI (9)5.1.8UTRA TDD carrier RSSI (9)5.1.9UTRA TDD P-CCPCH RSCP (9)5.1.10CDMA2000 1x RTT Pilot Strength (9)5.1.11CDMA2000 HRPD Pilot Strength (10)5.1.12Reference signal time difference (RSTD) (10)5.1.13UE GNSS Timing of Cell Frames for UE positioning (10)5.1.14UE GNSS code measurements (10)5.1.15UE Rx – Tx time difference (10)5.2E-UTRAN measurement abilities (11)5.2.1DL RS TX power (11)5.2.2Received Interference Power (11)5.2.3Thermal noise power (11)5.2.4Timing advance (T ADV) (12)5.2.5eNB Rx – Tx time difference (12)5.2.6E-UTRAN GNSS Timing of Cell Frames for UE positioning (12)5.2.7Angle of Arrival (AoA) (12)Annex A (informative): Change history (13)ForewordThis Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:Version x.y.zwhere:x the first digit:1 presented to TSG for information;2 presented to TSG for approval;3 or greater indicates TSG approved document under change control.Y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.z the third digit is incremented when editorial only changes have been incorporated in the document.1 ScopeThe present document contains the description and definition of the measurements done at the UE and network in order to support operation in idle mode and connected mode.2 ReferencesThe following documents contain provisions which, through reference in this text, constitute provisions of the present document.∙References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.∙For a specific reference, subsequent revisions do not apply.∙For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (includinga GSM document), a non-specific reference implicitly refers to the latest version of that document in the sameRelease as the present document.[1] 3GPP TR 21.905: “Vocabulary for 3GPP Specifications”.[2] 3GPP TS 36.201: “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Layer –General Description “.[3] 3GPP TS 36.211: “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels andmodulation”.[4] 3GPP TS 36.212: “Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing andchannel coding “.[5] 3GPP TS 36.213: “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layerprocedures “.[6] 3GPP TS 36.321: “Evolved Universal Terrestrial Radio Access (E-UTRA); Medium AccessControl (MAC) protocol specification“.[7] 3GPP TS 36.331: “Evolved Universal Terrestrial Radio Access (E-UTRA); Radio ResourceControl (RRC); Protocol specification “.[8] 3GPP2 CS.0005-D v1.0 “Upper Layer (Layer 3) Signaling Standard for CDMA2000 SpreadSpectrum Systems Release D”.[9] 3GPP2 CS.0024-A v3.0 “cdma2000 High Rate Packet Data Air Interface Specification”[10] 3GPP TS 36.104: “Evolved Universal Terr estrial Radio Access (E-UTRA); Base Station (BS)radio transmission and reception “.[11] 3GPP TS 36.355: “Evolved Universal Terrestrial Radio Access (E-UTRA); LTE PositioningProtocol (LPP)”[12] 3GPP TS 36.455: “Evolved Universal Terrestrial Radio Access (E-UTRA); LTE PositioningProtocol A (LPPa)”3 Definitions, symbols and abbreviations3.1 DefinitionsFor the purposes of the present document, the terms and definitions given in TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [1]. 3.2 SymbolsFor the purposes of the present document, the following symbols apply:Ec/No Received energy per chip divided by the power density in the band3.3 AbbreviationsFor the purposes of the present document, the abbreviations given in TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [1].1x RTT CDMA2000 1x Radio Transmission TechnologyCPICH Common Pilot ChannelE-SMLC Enhanced Serving Mobile Location CentreE-UTRA Evolved UTRAE-UTRAN Evolved UTRANFDD Frequency Division DuplexGNSS Global Navigation Satellite SystemGSM Global System for Mobile communicationHRPD CDMA2000 High Rate Packet DataP-CCPCH Primary Common Control Physical ChannelRSCP Received Signal Code PowerRSRP Reference Signal Received PowerRSRQ Reference Signal Received QualityRSSI Received Signal Strength IndicatorRSTD Reference Signal Time DifferenceTDD Time Division DuplexUTRA Universal Terrestrial Radio AccessUTRAN Universal Terrestrial Radio Access Network4 Control of UE/E-UTRAN measurementsIn this chapter the general measurement control concept of the higher layers is briefly described to provide an understanding on how L1 measurements are initiated and controlled by higher layers.With the measurement specifications L1 provides measurement capabilities for the UE and E-UTRAN. These measurements can be classified in different reported measurement types: intra-frequency, inter-frequency, inter-system, traffic volume, quality and UE internal measurements (see the RRC Protocol [7]).In the L1 measurement definitions, see chapter 5, the measurements are categorised as measurements in the UE (the messages for these will be described in the MAC Protocol [6] or RRC Protocol [7] or LPP Protocol [11]) or measurements in the E-UTRAN (the messages for these will be described in the Frame Protocol or LPPa Protocol [12]). To initiate a specific measurement, the E-UTRAN transmits a …RRC connection reconfiguration message' to the UE including a measurement ID and type, a command (setup, modify, release), the measurement objects, the measurement quantity, the reporting quantities and the reporting criteria (periodical/event-triggered), see [7] or E-SMLC transmits an …LPP Request Location Information message‟ to UE, see [11].When the reporting criteria are fulfilled the UE shall answer with a 'measurement report message' to the E-UTRAN including the measurement ID and the results or an …LPP Provide Location Information message‟ to the E-SMLC, see [11].For idle mode, the measurement information elements are broadcast in the System Information.5 Measurement capabilities for E-UTRAIn this chapter the physical layer measurements reported to higher layers are defined.5.1 UE measurement capabilitiesThe structure of the table defining a UE measurement quantity is shown below.5.1.1 Reference Signal Received Power (RSRP)measurement period that are used by the UE to determine RSRP is left up to the UE implementation with the limitation that corresponding measurement accuracy requirements have to be fulfilled.Note 2: The power per resource element is determined from the energy received during the useful part of the symbol, excluding the CP.5.1.2 Void5.1.3 Reference Signal Received Quality (RSRQ)5.1.4 UTRA FDD CPICH RSCP5.1.5 UTRA FDD carrier RSSI5.1.6 UTRA FDD CPICH Ec/No5.1.7 GSM carrier RSSI5.1.8 UTRA TDD carrier RSSI5.1.9 UTRA TDD P-CCPCH RSCP5.1.10 CDMA2000 1x RTT Pilot Strength5.1.11 CDMA2000 HRPD Pilot Strength5.1.12 Reference signal time difference (RSTD)5.1.13 UE GNSS Timing of Cell Frames for UE positioning5.1.14 UE GNSS code measurements5.1.15 UE Rx – Tx time difference5.2 E-UTRAN measurement abilitiesThe structure of the table defining a E-UTRAN measurement quantity is shown below.The term "antenna connector" used in this sub-clause to define the reference point for the E-UTRAN measurements refers to the "BS antenna connector" test port A and test port B as described in [10]. The term "antenna connector" refers to Rx or Tx antenna connector as described in the respective measurement definitions.5.2.1 DL RS TX power5.2.2 Received Interference Power5.2.3 Thermal noise power5.2.4 Timing advance (T ADV)5.2.5 eNB Rx – Tx time difference5.2.6 E-UTRAN GNSS Timing of Cell Frames for UE positioning5.2.7 Angle of Arrival (AoA)Annex A (informative): Change history。
【精品】LTE中文协议LTE3GPP中文版
文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.【关键字】精品3GPP TS 36.213 V8.6.0 (2009-03)Technical Specification3rd Generation Partnership Project;Technical Specification Group Radio Access Network;Evolved Universal Terrestrial Radio Access (E-UTRA);Physical layer procedures(Release 8)The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.The present document has not been subject to any approval process by the 3GPP Organisational Partners and shall not be implemented.ContentsKeywordsUMTS, radio, layer 1 Foreword (5)1 Scope (6)2 References (6)3 Definitions, symbols, and abbreviations (7)3.1 Symbols (7)3.2 Abbreviations (7)4 Synchronisation procedures (8)4.1 Cell search (8)4.2 Timing synchronisation (8)4.2.1 Radio link monitoring (8)3GPPPostal address3GPP support office address650 Route des Lucioles – Sophia AntipolisValbonne – FranceTel.: +33 4 92 94 42 00 Fax: +33 4 93 65 4716Internet4.2.2 Inter-cell synchronisation (8)4.2.3 Transmission timing adjustments (8)5 Power control (9)5.1 Uplink power control (9)5.1.1 Physical uplink shared channel (9)5.1.1.1 UE behaviour (9)5.1.1.2 Power headroom (12)Copyright NotificationNo part may be reproduced except as authorized by written permission.The copyright and the foregoing restriction extend to reproduction in all media.© 2009, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC).All rights reserved.UMTS™ is a Trade Mark of ETSI registered for the benefit of its members3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational PartnersLTE™is a Trade Mark of ETSI currently being registered for the benefit of its Members and of the 3GPP Organizational PartnersGSM® and the GSM logo are registered and owned by the GSM Association5.1.2 Physical uplink control channel (12)5.1.2.1 UE behaviour (12)5.1.3 Sounding Reference Symbol (14)5.1.3.1 UE behaviour (14)5.2 Downlink power allocation (15)5.2.1 eNodeB Relative Narrowband TX Power restrictions (16)6 Random access procedure (16)6.1 Physical non-synchronized random access procedure (16)6.1.1 Timing (17)6.2Random Access Response Grant (17)7 Physical downlink shared channel related procedures (18)7.1UE procedure for receiving the physical downlink shared channel (19)7.1.1 Single-antenna port scheme (21)7.1.2Transmit diversity scheme (21)7.1.3Large delay CDD scheme (22)7.1.4Closed-loop spatial multiplexing scheme (22)7.1.5Multi-user MIMO scheme (22)7.1.6Resource allocation (22)7.1.6.1Resource allocation type 0 (22)7.1.6.2Resource allocation type 1 (23)7.1.6.3Resource allocation type 2 (24)7.1.7Modulation order and transport block size determination (25)7.1.7.1Modulation order determination (25)7.1.7.2Transport block size determination (26)7.1.7.2.1Transport blocks not mapped to two-layer spatial multiplexing (27)7.1.7.2.2Transport blocks mapped to two-layer spatial multiplexing (32)7.1.7.2.3Transport blocks mapped for DCI Format 1C (33)7.1.7.3Redundancy Version determination for Format 1C (33)7.2UE procedure for reporting channel quality indication (CQI), precoding matrix indicator (PMI) and rankindication (RI) (33)7.2.1Aperiodic CQI/PMI/RI Reporting using PUSCH (36)7.2.2Periodic CQI/PMI/RI Reporting using PUCCH (40)7.2.3Channel quality indicator (CQI) definition (46)7.2.4Precoding Matrix Indicator (PMI) definition (48)7.3UE procedure for reporting ACK/NACK (49)8Physical uplink shared channel related procedures (52)8.1Resource Allocation for PDCCH DCI Format 0 (54)8.2UE sounding procedure (55)8.3UE ACK/NACK procedure (57)8.4UE PUSCH Hopping procedure (58)8.4.1 Type 1 PUSCH Hopping (59)8.4.2 Type 2 PUSCH Hopping (59)8.5UE Reference Symbol procedure (60)8.6Modulation order, redundancy version and transport block size determination (60)8.6.1Modulation order and redundancy version determination (60)8.6.2Transport block size determination (61)8.6.3Control information MCS offset determination (61)8.7UE Transmit Antenna Selection (63)9Physical downlink control channel procedures (64)9.1UE procedure for determining physical downlink control channel assignment (64)9.1.1 PDCCH Assignment Procedure (64)9.1.2 PHICH Assignment Procedure (65)9.2PDCCH validation for semi-persistent scheduling (66)10Physical uplink control channel procedures (67)10.1UE procedure for determining physical uplink control channel assignment (67)10.2Uplink ACK/NACK timing (72)Annex A (informative): Change history (74)ForewordThis Technical Specification (TS) has been produced by the 3rd Generation Partnership Project (3GPP).The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of this present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:Version x.y.zwhere:x the first digit:1 presented to TSG for information;2 presented to TSG for approval;3 or greater indicates TSG approved document under change control.y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.z the third digit is incremented when editorial only changes have been incorporated in the document.1 ScopeThe present document specifies and establishes the characteristics of the physicals layer procedures in the FDD and TDD modes of E-UTRA.2 ReferencesThe following documents contain provisions which, through reference in this text, constitute provisions of the present document.• References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.• For a specific reference, subsequent revisions do not apply.• For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document .[1] 3GPP TR 21.905: “Vocabulary for 3GPP Specifications”[2] 3GP P TS 36.201: “Evolved Universal Terrestrial Radio Access (E -UTRA); Physical Layer –General Description”[3] 3GPP TS 36.211: “Evolved Universal Terrestrial Radio Access (E -UTRA); Physical channelsand modulation”[4] 3GPP TS 36.212: “Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing andchannel coding”[5] 3GPP TS 36.214: “Evolved Universal Terrestrial Radio Access (E -UTRA); Physical layer –Measurements”[6] 3GPP TS 36.101: “Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment(UE) radio transmission and reception”[7] 3GPP TS 36.104: “Evolved Universal Terrestrial Radio Access (E -UTRA); Base Station (BS)radio transmission and reception”[8] 3GPP TS36.321, “Evolved Universal Terrestrial Radio Access (E -UTRA); Medium AccessControl (MAC) protocol specification”[9] 3GPP TS36.423, “Evolved Universal Terrestrial Radio Access (E -UTRA); X2 ApplicationProtocol (X2AP)”[10] 3GPP TS36.133, “Evolved Universal Terrestrial Radio Access (E -UTRA); Requirements forsupport of radio resource management”[11] 3GPP TS36.331, “Evolved Universal Terrestrial Radio Access (E -UTRA); Radio ResourceControl (RRC) protocol specification”3 Definitions, symbols, and abbreviations 3.1Symbols For the purposes of the present document, the following symbols apply:DL RB NDownlink bandwidth configuration, expressed in units of RB sc N as defined in [3] UL RB N Uplink bandwidth configuration, expressed in units of RB sc N as defined in [3] UL symb N Number of SC-FDMA symbols in an uplink slot as defined in [3]RBN Resource block size in the frequency domain, expressed as a number of subcarriers as scdefined in [3]T Basic time unit as defined in [3]s3.2 AbbreviationsFor the purposes of the present document, the following abbreviations apply.ACK AcknowledgementBCH Broadcast ChannelCCE Control Channel ElementCQI Channel Quality IndicatorCRC Cyclic Redundancy CheckDAI Downlink Assignment IndexDL DownlinkDTX Discontinuous TransmissionEPRE Energy Per Resource ElementMCS Modulation and Coding SchemeNACK Negative AcknowledgementPBCH Physical Broadcast ChannelPCFICH Physical Control Format Indicator ChannelPDCCH Physical Downlink Control ChannelPDSCH Physical Downlink Shared ChannelPHICH Physical Hybrid ARQ Indicator ChannelPRACH Physical Random Access ChannelPRB Physical Resource BlockPUCCH Physical Uplink Control ChannelPUSCH Physical Uplink Shared ChannelQoS Quality of ServiceRBG Resource Block GroupRE Resource ElementRPF Repetition FactorRS Reference SignalSIR Signal-to-Interference RatioSINR Signal to Interference plus Noise RatioSPS C-RNTI Semi-Persistent Scheduling C-RNTISRS Sounding Reference SymbolTA Time alignmentTTI Transmission Time IntervalUE User EquipmentUL UplinkUL-SCH Uplink Shared ChannelVRB Virtual Resource Block4 同步过程4.1 小区搜索小区搜索是指UE在小区中获取时间和频率同步并检测小区物理层Cell ID的过程。
3GPP-LTE物理层资源映射(36.211标准)
3GPP-LTE物理层资源映射(36.211标准)(中文版)目录1 幀结构 (5)1.1 幀结构1 (5)1.2 幀结构2 (5)2 上行 (6)2.1 概述62.1.1 物理信道 (6)2.1.2 物理信号 (7)2.2 时隙结构和物理资源 (7)2.2.1 资源网格 (7)2.2.2 资源元素 (8)2.2.3 资源块 82.3 物理上行共享信道PUSCH (9)2.3.1 扰码92.3.2 调制102.3.3 变换预编码 (10)2.3.4 物理资源映射 (10)2.4 物理上行控制信道 (11)2.4.1 PUCCH格式1/1a/1b (12)2.4.2 PUCCH格式2,2a和2b (14)2.4.3物理资源映射 (15)2.5 参考信号 (16)2.5.1参考信号序列的产生 (16)2.5.2 解调参考信号 (20)2.5.3探测参考信号(Sounding reference signal) (23)2.6 SC-FDMA基带信号产生 (27)2.7 物理随机接入信道 (27)2.7.1时间和频率结构 (27)2.7.2前导序列生成 (35)2.7.3基带信号生成 (39)2.8 调制和上变频 (39)3 下行 (40)3.1 概述403.1.1 物理信道 (40)3.1.2 物理信号 (40)3.2 时隙结构和物理资源元素 (40)3.2.1 资源网格 (40)3.2.2 资源元素 (41)3.2.3 资源块 (42)3.2.4资源元素组 (44)3.2.5 半双工FDD操作的保护周期 (45)3.2.6 TDD操作的保护周期 (45)3.3 下行物理信道的一般结构 (45)3.3.1 扰码463.3.2 调制463.3.3 层映射 463.3.4预编码483.3.5 物理资源映射 (51)3.4 物理下行共享信道 (51)3.5 物理多播信道 (52)3.6物理广播信道 (52)3.6.1扰码523.6.2调制523.6.3层映射和预编码 (52)3.6.4资源单元映射 (53)3.7物理控制格式指示信道 (53)3.7.1 扰码533.7.2调制543.7.3层映射与预编码 (54)3.7.4 映射到资源元素 (54)3.8物理下行控制信道 (55)3.8.1 PDCCH 格式 (55)3.8.2 PDCCH复用与加扰 (55)3.8.3 调制563.8.4 层映射和预编码 (56)3.9物理混合ARQ指示信道 (57)3.9.1调制583.9.2资源组调整,层映射和预编码 (59)3.9.3映射到资源元素 (60)3.10参考信号 (62)3.10.1特定小区参考信号 (62)3.10.2 MBSFN参考信号 (64)3.10.3 特定UE参考信号 (66)3.11同步信号 (68)3.11.1 主同步信号 (69)3.11.2次同步信号 (69)3.12 OFDM基带信号生成 (72)3.13调制和上变频 (73)4 通用函数 (73)4.1 调制映射 (73)4.1.1 BPSK 734.1.2 QPSK 734.1.3 16 QAM (74)4.1.4 64 QAM (75)4.2伪随机序列生成 (78)5 定时 (78)5.1 上下行幀定时 (78)3GPP-LTE 中的物理层资源映射1 幀结构TS.36.211规定了LTE 的物理信道及其调制,时间单元为()2048150001s ⨯=T s 。
lte,3gpp,物理层协议
lte,3gpp,物理层协议篇一:LTE协议对照表规范编号射频系列规范TS 36.101规范名称内容更新时间UE无线发送和接收描述FDD和TDD E-08-Oct-2010 UTRA UE的最小射频(RF)特性TS 36.104 BS无线发送与接收描述E-UTRA BS在成对频谱和非成对频谱的最小RF特性30-Sep-2010TS 36.106 FDD直放站无线发送与接收描述FDD直放站的射频要求和基本测试条件30-Sep-2010TS 36.113 BS与直放站的电磁兼容包含对E-UTRA基站、直放站和补充设备的电磁兼容(EMC)评估01-Oct-2010TS 36.124 移动终端和辅助设备的电磁兼容的要求建立了对于E-UTRA终端和附属设备的主要EMC要求,保证不对其他设备产生电磁干扰,并保证自身对电磁干扰有一定的免疫性。
定义了EMC测试方法、最小性能要求等01-Oct-2010TS 36.133 支持无线资源管理的要求描述支持FDD和TD08-Oct-2010 D E-UTRA的无线资源管理需求,包括对E-UTRAN和UE测量的要求,以及针对延迟和反馈特性的点对点动态性和互动的要求TS 36.141 BS一致性测试描述对FDD/TDD E-UTRA 基站的射频测试方法和一致性要求30-Sep-2010TS 36.143 FDD直放站一致性测试描述了FDD直放站的一致性规范,基于36.106中定义的核心要求和基本方法,对详细的测试方法、过程、环境和一致性要求等进行详细说明01-Oct-2010TS 36.171 支持辅助全球导航卫星系统(A-GNSS)的要求描述了基于UE和UE辅助FDD或TDD的辅助全球导航卫星系统终端的最低性能21-Jun-2010TS 36.307 UE支持零散频段的要求定义了终端支持与版本无关频段时所要满足的要求。
04-Oct-2010物理层系列规范TS 36.201物理层——总体描述物理层综述协议,主要包括物理层在协议结构中的位置和功能,包括物理层4个规范36.211、36.212、36.213、36.214的主要内容和相互关系等TS 36.211物理信道和调制主要描述物理层信道和调制方法。
第5章 LTE物理层协议
5.2.2 TDD帧结构(FS2)
5ms周期FS2支持的上/下行子帧比例如图5-8所示。
5.2.2 TDD帧结构(FS2)
10ms周期FS2支持的上/下行子帧比例如图5-9所示。
5.2.2 TDD帧结构(FS2)
例如,FS1的主同步信道(PSCH)和辅同步信道(SSCH)分别位于时隙0的倒 数第1个和倒数第2个符号。而在FS2中,PSCH放置在DwPTS的第3个符号,SSCH则 放置在时隙1的最后一个符号(如图5-10所示)。
5.2.2 TDD帧结构(FS2)
子帧1包含DwPTS、GP以及UpPTS,子帧6在表5-1所列的配置0、1、2和6中包 含DwPTS、GP以及UpPTS。所有其他子帧包含两个相邻的时隙,其中第i个子帧由 第2i个和第2i+1个时隙构成,如图5-5所示。