粉体的分级
粉体工程-粉体分级课件
气流分级设备
01
02
03
气流分级机
利用高速气流将颗粒物料 进行分级,适用于超细粉 体的制备。
旋风分离器
利用离心力原理,将不同 粒度的物料进行分离,适 用于颗粒较粗的物料。
袋式除尘器
利用过滤原理,将颗粒物 料进行分离,适用于颗粒 较细的物料。
惯性分级设备
惯性分级器
利用惯性力原理,将不同粒度的物料进行分离,适用于颗粒较粗的物料。
分级技术的发展趋势
高效能化
随着科技的发展,粉体分 级设备不断向高效能化发 展,提高分级效率,降低 能耗。
智能化
引入智能化技术,如物联 网、大数据和人工智能等, 实现分级过程的自动化和 智能化控制。
环保化
随着环保意识的提高,粉 体分级技术向环保化发展, 减少对环境的污染和破坏。
分级技术的挑战与机遇
挑战
粉体分级过程中易产生粉尘污染,对操作人员的健康造成影 响;同时,分级精度和稳定性也是分级技术面临的挑战。
机遇
随着科技的不断进步和市场需求的增加,粉体分级技术面临 巨大的发展机遇。例如,在新能源、新材料等领域,粉体分 级技术的应用前景广阔。
分级技术的未来展望
创新发展
加强粉体分级技术的创新研究,推动 分级技术的进步和发展。
进料控制
控制进料速度,保持粉体流量稳定,确保分 级效果。
质量检测
对分级后的粉体进行质量检测,如粒度、含 水量等,确保质量达标。
分级后的处理
收集粉体
将分级后的粉体收集起来,进行后续 处理或储存。
清理设备
ቤተ መጻሕፍቲ ባይዱ对分级设备进行清理,去除残留粉体, 为下次分级做准备。
记录数据
记录分级过程中的数据,如进料量、 分级效果等,便于分析和改进。
药剂学第十章-粉体学基础
药剂学第十章-粉体学基础成都医学院22考研药剂学第十章粉体学基础第一节概述粉:小于等于100微米粒:大于100微米单一粒子为一级粒子,单一粒子聚结体为二级粒子第二节粉体的基本性质基本性质:粉体的粒径及其分布和总表面积,单一粒子的形态及表面积一、粒径及粒径分布(一)粒径的表示方法1、几何学粒径1)三轴径:在粒子平面图上测定的长径l,短径b 和高度h2)定方向径:在粒子平面投影图上测得的特征径a)Fe ret:径:定方向接线径,在粒子投影图上画出外接平行线,其平行线见得距离即是定方向径b)Krummbein:定方向最大径,用一直线将粒子投影面按一定方向进行分割,分割的最大长度为定方向最大径c)Martin:定方向等分径,用一直线将粒子投影面按一定方向进行分割,恰好将投影面积等分时的长度为定方向等分径3)圆相当径a)Heywood:投影面积圆相当径,系与粒子投影面积相同的圆的直径b)周长圆相当径:系与投影面积周长相等的圆的直径4)球相当径a)球体积相当径:与粒子体积相同的球体的体积b)球面积相当径:与粒子体表面积相同的球体的直径5)纵横比:系颗粒的最大轴长度与最小轴长度之比2、筛分径:细孔通过相当径3、有效径:沉降速度相当径,与粒子在液相中具有相同沉降速度的球的直径4、比表面积等价径:与粒子具有相同比表面积的球的直径5、空气动力学相当径:空气动力学径,与不规则粒子具有相同动力学行为的单位密度球体的直径(二)粒径分布频率分布:表示各个粒径所对应的粒子在全体粒子群中所占的百分数累计分布:表示小于或大于某粒径的粒子在全体粒子群中所占的百分数粒度分布基准:个数基准、质量基准、面积基准、体积基准、长度基准(三)平均粒径:中位径:中值径,累计分布图中累计正好为50%所对应的粒径众数粒径:颗粒出现最多的粒度值,即频率分布曲线的最高峰值(四)粒径的测定方法显微镜法或筛分法测定药物制剂的粒子大小和限度,光散射法测定原料药或药物制剂的粒度分布1、显微镜法:将粒子放在显微镜下,根据投影测定等价粒径2、筛分法:筛孔机械阻挡的分级方法3、沉降法:液相中混悬粒子的沉降速度4、库尔特计数法:电阻法,等体积球的相当径5、激光散射/衍射法:光传播遇到颗粒阻挡发生散射,颗粒越大,散射光夹角越小6、比表面积法:吸附法和透过法测定7、级联撞击器法:测量可吸入颗粒物的空气动力学粒径和粒径分布的首选二、粒子形态:系指粒子的轮廓或表面个点所构成的图像(一)形态指数:将粒子某些性质与球或圆的理论值比较形成的无因次组合1、球形度:真球度,系指用粒子的球相当径计算的球的表面积与粒子实际面积之比2、圆形度:系指用粒子的投影面积相当径计算的圆周长与粒子投影面积周长之比(二)形状系数1、体积形状系数2、表面积形状系数3、比表面积形状系数三、粒子比表面积(一)比表面积的表示方法:单位体积或单位重量的表面积1、体积比表面积:单位体积粉体的表面积2、重量比表面积:单位重量粉体的比表面积(二)比表面积的测定方法1、气体吸附法:利用粉体吸附气体的性质2、气体透过法:气体通过粉体时的阻力与比表面积有关第三节粉体的其他性质一、粉体的密度(一)粉体密度分类和定义1、真密度:粉体质量除以真体积得到的密度,不包括颗粒内外空隙的体积2、粒密度:粉体质量除以粒体积得到的密度,包括内部空隙3、堆密度:,松密度,粉体质量除以该粉体所占体积得到的密度,包括内部空隙振实密度:经一定规律振动或轻敲后测得的堆密度理论上:真密度大于等于粒密度大于等于振实密度大于等于堆密度(二)粉体密度的测定方法1、真密度的测定1)氦气测定法:首先通入已知重量的氦气到代测定空仪器中,测得仪器容积V0,然后将供试品放入容器抽真空,完成后导入一定量氦气,而后计算出粉体周围及进入粉体孔径氦气体积Vt,V0-Vt既是粉体体积计算可得真密度2)液体汞、苯置换法2、粒密度的测定:比重瓶法(常用)、吊斗法3、堆密度与振实密度的测定方法:将约50立方厘米到的经过二号筛处理的粉体装入100ml量筒中,将量筒从一英寸处落下到坚硬木板三次,所得体积即为粉体堆体积,计算可得堆密度二、粉体的空隙率分类:颗粒内空隙率、颗粒间空隙率、总空隙率测定:压汞法、气体吸附法三、粉体的流动性(一)粉体流动性的评价方法1、休止角:粉体堆积层的自由斜面与水平面形成的最大夹角测定方法:固定圆锥底法、固定漏斗法动态休止角:流动粉体与水平面形成的夹角,可装入量筒后以一定速度旋转测定休止角小于等于30度时流动性好,小于等于40度时,可以满足生产需要2、流出速度:单位时间内从容器小孔中流出粉体的量表示3、压缩度和Hausenr测量方法:将一定量粉体装入量筒中测得最初堆体积,采用轻敲法测得粉体最紧状态得到最终体积,后根据相关公式计算出压缩度压缩度为20%以下流动性较好,增大流动性下降,超过30%很难流出HR在1.25以下流动性好,大于1.6时很难操作(二)改善流动性的方法1、增大粒子大小:250~2000微米流动性好,72~250微米流动性取决于形态和其他因素,小于100微米时流动性会出现问题2、改善粒子形态及表面粗糙度3、改变表面作用力4、助流剂的影响5、改变过程条件四、粉体的填充性(一)表示方法:堆容比:单位质量所占体积空隙率:堆体积中空隙所占体积堆密度:单位体积的质量空隙比:空隙体积与真体积之比充填率:堆密度与真密度之比配位数:一个粒子周围相邻其他粒子个数(二)颗粒的排列模型球形粒子规则排列,接触点最小为6,此时空隙率最大,为48%,接触点为12时最小为26%,粒径大小不影响空隙率和接触点(三)充填状态的变化和速度方程:久野方程、川北方程(四)影响粉体充填性的因素1、粒径大小及其分布2、颗粒的形状和结构3、颗粒的表面性质4、粉体处理及过程条件5、助流剂的影响五、粉体的吸湿性定义:固体表面吸附水分的现象(一)水溶性药物的吸湿性CRH:水溶性药物在较低的相对湿度环境中平衡水分含量较低,不吸湿,但当空气中相对湿度提高到一定值时吸湿量急剧增加,此时的相对湿度即为物料的临界相对湿度。
粉体工程粉体分级
原理:图9-14-15,213-214页 特点:结构简单,无运动部件,体积小,耗电少, 振动频率高达3000次/min,振幅一般为2-4毫米。
开孔率:筛孔净面积占筛面总面积的比率。(中等粒度) 优点:牢固,刚度大,使用寿命长。缺点:开孔率小。
③编织筛面:由钢丝编织而成,优点是开孔率高,质量轻,制造 方便。缺点是使用寿命短。(宜中细粒度)
(2)筛制:我国现行标准采用ISO制以方孔筛的边长表示筛孔大小。
之前,我国采用公制符号:用1厘米长度上的筛孔的数目表示筛 孔大小;英美等国家采用英制筛:以每1英寸长度上的筛孔数目 表示筛目。
粉体分级
2007年10月
1 定义与意义
分级:把粉碎产品按某种粒度大小或不同种 类颗粒进行分选的操作过程。分级的方式有 两种:①用筛子筛分;②在流体中进行筛分。
意义:(1)满足工艺要求(构成闭路系统) (2)满足用户要求(合格产品)
2 分级性能的评估
2.1分级效率:分级后获得的某种成分的质量与 分离前粉体中所含该成分的质量之比。
(2)准自由涡离心式分级机
①DS型分级机(无运动部件,二次空气经可调角度叶片进入) ②SLT分级机(分级区设有两组方向相反的导向叶片,借以实
现二次分级)
5.3.3离心式分级机
(3)强制涡分级机(电机带动转子)
①MC型分级机(二次空气给入,5-50微米。图9-46) ②MS型分级机(分级叶轮旋转形成稳定离心力场,产品
5331自由涡离心式分级机旋风式分级机以前用于粗粒改进后可用于细粒螺线型旋风分级器进口尺寸较大筒体为若干圈螺线组成双涡入口型旋风管用于天然气净化排气管下带螺旋缝式扩散管的旋风分级器在排气芯管下装设一个螺旋缝式扩散管顺着漩流进行导向可减小阻力料斗抽气的旋风分级器研究表明料斗抽气可提高除尘效率2准自由涡离心式分级机ds型分级机无运动部件二次空气经可调角度叶片进入slt分级机分级区设有两组方向相反的导向叶片借以实现二次分级5333强制涡分级机电机带动转子mc型分级机二次空气给入550微米
各类粉体参数表
超细重质碳酸钙超细重质碳酸钙是选择安徽青阳一号方解石原料进行加工、处理而成.该产品属颗粒极细的重质碳酸钙,呈白色粉末,不溶于水,易溶于酸。
优质的方解石经过机械粉碎和气力分级得到系列、不同白度和细度的方解石粉,不改变原有化学成份.具有CaCO3纯度高、结构稳定、质量均齐的特性,主要应用于涂料、油漆、橡胶、塑料等行业。
产品规格及技术指标(执行标准: HG/T3249-88)备注:吸油量检测方法为 ISO787/5-1980超细轻质碳酸钙产品指标表备注:以上数据不作为产品的正式质量保证,质量数据以本公司的质检单为准微细滑石粉该产品是海城一号滑石矿加工、处理而成。
本产品是一种重要的含水的镁硅酸盐矿物。
分子式: 3MgO.4SiO 2.H 2O.滑石属单斜晶系晶体呈薄鳞片状。
本产品具有较好的白度、极细的微粒性,柔软而有滑腻感,相对密度2.7-2.8,莫氏硬度为1,是自然界中硬度最小的矿物之一,折射率1.54-1.59,耐热性和化学稳定性好,耐强酸、强碱、在水溶液中呈碱性,PH值8-9,吸油性和遮盖力强,熔点高、比热大、导热率以及收缩率低。
产品规格及技术指标备注:以上数据不作为产品的正式质量保证,质量数据以本公司的质检单为准超细硅灰石粉超细硅灰石是选择棒状矿石进行加工、处理而成,呈白色粉末,不溶于水,微溶于酸。
优质的硅灰石经过机械粉碎和气力分级得到系列不同白度和细度的硅灰石粉,不改变原有化学成份。
具有CaSiO3纯度高、结构稳定、质量均齐的特性,主要应用于涂料、油漆、橡胶、塑料等行业。
产品规格及技术指标备注:以上数据不作为产品的正式质量保证,质量数据以本公司的质检单为准我司微晶白云母性能参数表筛目数200目325目600目800目1250目2500目粒径(um)75 42 25 16 10 5 比表面积(cm2/cm3)6000 8000 10000 12000 21000 25860 真密度(g/cm3) 2.7 2.7 2.7 2.7 2.7 2.7 吸水量(ml/g)0.35 0.37 0.43 0.45 0.49 0.5 吸油量(ml/g)18 20 22 24.5 25 25.5 白云母含量(≥%)90 90 90 90 90 90 PH值7——8 7——8 7——8 7——8 7——8 7——8 白度(≥%)73左右73左右73左右73左右73左右73左右粒径特征片状片状片状片状片状片状含沙量(≤%) 1 0.5 0.5 0.5 0.24 0.18 折光率 1.58 1.58 1.58 1.58 1.58 1.58 径厚比20 20 20 20 25 29备注:1、真密度:就是cm3的质量,除以水的密度(1g/cm3)的值2、比表面积:单位体积或单位质量上颗粒的总表面积3、3、径厚比:径厚比大小是一个很重要的参数,它的大小影响光的反射,从而影响到产品亮度绢云母系列产品指标表。
【精品文章】亚微米粉体干式分级技术难点及解决方案
亚微米粉体干式分级技术难点及解决方案
一、原理
干式微粉分级机,大都是采用离心法和射流法实现不同粒度的微粉分级。
离心法就是利用高速旋转的分级叶轮,在分级叶轮缘处形成了强大的离心场,大尺寸微粉因为离心力更大被甩出,小尺寸微粉颗粒因为离心力较小,被风力“压入”分级叶轮,经过管道导入收集室收集。
本文所讨论的EPL亚微米分级机,采用了离心法。
二、给料和多次打散
容重比较重和形状更接近球形颗粒的微粉,在分级桶内的流场中后容易“下沉”;容重比较轻和形状更不规则的微粉,在分级桶内的流场中容易“上浮”。
因此,要达到期望的粒度,除了分级机转速和风机转速的有效配合,给料口针对不同的微粉设置有不同的给料导向槽,促使微粉在分级桶内的流场内更均匀地多次参与分级。
亚微米尺寸的粉体的比表面积更大,微粉的表面能增高后,静电和范德华力等使得微粉更容易团聚,因此在分级过程中需要多次打散和分级。
市场上接近亚微米尺寸的分级机,大都是采用中部风力送料+二次进风的方法(增大打散机会和多次分级)。
通过观察我们发现,在分级叶轮高速旋转的离心场下,中部送料+二次进风造成了分级机中部的强烈湍流,很多细粉在湍流的裹挟下来不及上升到分级叶轮就被留在了分级机底部的粗粉中,同时也增大了粉尘密度,使得一次分利率降低,分级叶轮和二次进风功耗增大。
针对以上问题,为了使得分级机内的流场更容易控制,EPL亚微米分级。
【精品文章】粉体分级技术初探及基本概念解析
粉体分级技术初探及基本概念解析
一、粉体分级的基本概念
在现代各工业领域的使用中,往往要求超细粉体产品处于一定的粒度分布范围。
另外,在粉碎过程中,粉体中往往只有一部分产品达到了粒度要求,而另一部分产品却未达到粒度要求,如果不将这些已达到要求的产品及时分离出去,而将它们与末达到要求的产品一道再粉碎,则会造成能源浪费和部分产品的过粉碎问题。
为此,在超细粉体生产过程中要对产品进行分级处理。
一方面控制产品粒度处于所需分布范围,另一方面使混合粉料中粒度已达到要求的产品及时地被分离出去。
这种将有效的粒度分布范围的粉体分选出来的工艺环节就叫做粉体分级。
二、常见粉体分级方法
对普通粉体的分级通常是采用筛分法,然而目前最细的筛网孔径也只有20μm左右(即600目左右),再考虑到实际筛分过程中超细粉体对筛孔的堵塞问题,因此,在实际生产中超过325目的筛网用于干粉分级无实际工业化使用的意义。
采用普通的常规筛分技术及设备无法对超细粉体进行分级处理,必须研究新的超细粉体分级设备及技术。
到目前为止,已研究成功和正在研究并公开报导的超细粉体的分级方法较多,但分级效果较理想的技术和设备并不多。
根据被分级物料的状态可分为干法分级和湿法分级。
新近又研究了一种介于干法分级和湿法分级之间的分级方法,即超临界分级。
另外,根据分级力场的不同,分级方法又可分为:重力场分级、离心力场分级、惯性力场分级、电场力分级、磁场力分级、热梯度力场分级以及色谱分级等。
对。
【精品文章】粉体行业常用分级方法简介
粉体行业常用分级方法简介
分级是利用颗粒粒径、密度、形状、化学成分等特性的不同而把颗粒分为不同的几个部分。
分级技术是一门涉及机械、材料、化工以及流体力学等多学科的高新技术。
目前工业上大规模使用的常见粉体分级的方法可简单的分为两种类型:用筛子筛分和在流体中进行分级。
一、筛子筛分:
把固体颗粒置于具有一定大小孔径或缝隙的筛面上,使通过筛孔的成为筛下料,被截留在筛面上的成为筛上料,这种分级方法称为筛分。
筛分在操作按物料含水分的不同,分为干法筛分和湿法筛分。
在筛分过程中,物料通过筛孔,其必要条件就是颗粒的大小一定要比筛孔小,同时颗粒还要有通过筛孔的机会。
而其充分条件是颗粒与筛面之间要保持一定形式的相对运动。
为了说明筛分质量,引入了筛分效率的概念,即筛下料与总入筛料质量的百分比。
工业上实际操作的平均筛分效率约为70%~80%,这与颗粒与筛面的相对运动,料层的厚薄,筛孔形状和有效面积比,物料颗粒的大小分布规律和颗粒形状,过细颗粒的含量以及物料含水率等有关。
筛分机械或设备的工作是筛面。
筛面结构有格子筛(又称栅筛)、板筛(又称筛板)、编织筛(又称网筛)等多种,格子筛与板筛用于筛分块、粒状物料,编织筛用于筛分粉料或浆料。
运动着的筛面由于加强了颗粒与筛孔之间的相对运动,必然会强化筛分效率与处理能力,所以工业上筛分设备的分类,实际上是按筛面的运动方式来划分的。
筛分设备分类:。
粉体工程复习资料
一、名词解释1、粉体:由大量的不同尺寸的颗粒组成的颗粒群体。
2、颗粒:能单独存在并参与操作过程,还能反应物料某种基本构造与性质的最小单元。
3、颗粒形状系数:在表示颗粒群性质和具体物理现象、单元过程等函数时,把与颗粒形状有关的诸多因素概括为一个修正系数加以考虑,该修正系数即为形状系数。
(有体积形状指数、表面积形状指数、比表面积形状指数)4、颗粒形状指数:表示单一颗粒外形的几何量的各种无因次组合。
5、粒度分布:指将颗粒群用一定的粒度范围按大小顺序分为若干粒级,各级别粒子占颗粒群总量的百分数。
6、破坏包络线:对同一粉体层的所有极限摩尔圆可以做一条公切线,这条公切线成为破坏包络线。
7、填充率:粉体所占体积与粉体表观体积的比值。
8、球形度:与颗粒等体积的球和实际粉体的表面积之比。
9、孔隙率:粉体层中空隙所占有的比率。
10、配位数:某一个颗粒与周围空间接触的颗粒个数。
11、极限应力状态:在粉体层加压不大时,因粉体层的强度足以抵御外界压力,此时粉体层外观不起变化,当压力达到某一极性状态时,此时的应力称极限应力。
粉体层就会突然崩坏,这与金属脆性材料的断裂是一致的。
12、库仑粉体:分体的破坏包络线呈一条直线,称该粉体为库仑粉体。
13、粘附性粉体:破坏包络线不经过坐标原点的粉体称为粘附性粉体。
14、主动受压粉体:由于重力作用在崩塌前将其支撑住,在崩塌时临界状态称主动态,最小应力在水平方向。
15、被动受压粉体:粉体延水平方向压缩,当粉体呀倾斜向上压动时的临界状态称为被动状态,最大主应力在水平方向。
16、堆积:17、安息角/休止角:指物料堆积层的自由表面在静平衡状态下,与水平面形成的最大角度。
(安息角越小,粉体的流动性越好)18、均化:物料在外力作用下发生速度和方向的改变,使各组分颗粒得以均匀分布。
19、粉体流动函数:固结主应力与开放屈服强度存在着一定的函数关系。
20、静态拱:物料颗粒在出口处起拱,此时正好承受上面的压力这样流动停止,此时孔口处处于静止平衡状态。
粉体知识点整理
第一章绪论1.粉体学的重要意义对应“粉体及其技术的重要性”1)粉体是许多材料构成、组分或原料;2)粉体技术是制备材料的基础技术之一;3)超细粉体材料,尤其是纳米粉体材料在新型材料的开发研究中越来越重要;4)粉体容易大批量生产处理,产品质量均匀,成本低,控制精确,成为许多人工合成材料必然选择的合成方法;2.颗粒的定义:是在一特定范围内具有特定形状的几何体;大小一般在毫米到纳米之间,颗粒不仅指固体颗粒,还有雾滴、油珠等液体颗粒;3.粉体的定义:大量颗粒的集合体,即颗粒群,又称粉末狭义的粉末是指粒度较小的部分;颗粒与粉体的关系:颗粒是粉体的组成单元,是粉体中的个体,是研究粉体的出发点;颗粒又总是以粉体这种集合体的形式出现,集合体产生了个体所所不具有的性质;4.粉体学的特点:以粉体为研究对象,研究其性质及加工利用技术;5.粉体技术包括:制备、加工、测试;制备有各种物理、化学、机械方法;加工作业有粉碎、分级、分散、混合、制粒、表面处理、流态化、干燥、成形、烧结、除尘、粉尘爆炸、输运、储存、包装等;测试对粉体各种几何、力学、物理、化学性能表征;6.粉体的存在状态:通常所指的粉体是小尺寸的固体,但气体中的液滴、液体中的气泡也属于颗粒;固态的物质中又分为分散态和聚集态,多数粉体为分散态;7.粉体的分类:1)按照成因分类:天然粉体与人工粉体2)按制备方法分类:机械粉碎法和化学法粉体3)按分散状态分类:原级颗粒一次颗粒、聚集体颗粒二次颗粒、凝聚体颗粒三次颗粒、絮凝体颗粒4)按颗粒大小粒径分类:粗粉体>、中细粉体~、细粉体10~74μm、微粉体~10 μm 、纳米粉体<100nm第二章粉体的几何性质1.粒度定义:粒度是指粉体颗粒所占空间的线性尺寸;2.颗粒尺寸常用的表征方法:三轴径、定向径、当量径、3.粉体平均粒径计算公式:4.粒度分布及其表示方法:粒度分布依据的统计基准:∑n的比例;①个数基准分布又称频度分布以每一粒径间隔内的颗粒数占颗粒总数∑nd的比例;②长度基准分布以每一粒径间隔内的颗粒总长度占全部颗粒的长度总和∑2nd的比例;③面积基准分布以每一粒径间隔内的颗粒总表面积占全部颗粒的总表面积∑3nd的比例;④重量基准分布以每一粒径间隔内的颗粒总重量占全部颗粒的总重量表征粒度分布的方法:列表法,作图法、矩值法和函数法;其中函数法是最精确的粒度描述方法即用概率理论或者近似函数的经验法莱寻找数学函数5.形状因子:为形状表征量,无量纲常数,有形状指数和形状系数;形状指数是指颗粒几何参数的无量纲组合;它与形状系数相比没有明确的物理意义;形状系数:颗粒的表面积、体积、比表面积等几何参数与某种规定粒径dp的相应次方的比例关系;6.常用粒度测量方法及其他优缺点:1)筛分析法一般>40μm,其中最细的是400目,孔径为38μm;优点:统计量大、代表性强;便宜;重量分布;缺点:粒度下限为38μm;人为因素影响大;重复性差;非规则形状粒子误差;速度慢;2)显微镜法:采用定向径方法测量;光学显微镜——250μm;电子显微镜——5μm;优点:可直接观察粒子形状;可直接观察粒子团聚;光学显微镜便宜;缺点:代表性差;重复性差;要测量投影面积直径;速度慢;3)光衍射法粒度测试:根据小颗粒衍射角大,大颗粒衍射角小来测量,同时某一衍射角的光强度与相应粒度的颗粒多少关;4)激光衍射—500μm;X光小角衍射—μm;所用方法即为投射电子显微镜法;扫描电子显微镜法;优点:可观察粒径小,图像富有立体感,较真实,易于识别,可观察微区,一般同时进行成分分析;缺点:造价昂贵,试样制备要求严格,真空度要求严格5)原子力显微镜AFM:x,y方向分辨率可达到2nm,垂直方向分辨率课达到小于.优点:AFM具有操作客易、样品准备简单、操作环境不受限制、分辨率高等优点缺点:与SEM相比,成像范围太小,速度慢,受探头的影响太大;6)光散射法和消光法光散射法原理:利用颗粒对激光的散射角度随颗粒粒度而改变的原理测定粒度分布;消光法原理:通过测定经粉体散射和吸收后光强度在入射方向上衰减确定粒度;符合朗勃比尔定律;优点:适用于气溶胶和液体分散系、非接触测定、精确给出粒度分布曲线和平均粒度、测定速度快;电传感法粒度测试:当一个小颗粒通过小孔时所产生的电感应,即电压脉冲与颗粒的体积成正比;7)水利分析法—沉降法用于小于物料粒度组成的测定测量原理:在具有一定粘度的粉末悬浊液内,大小不等的颗粒自由沉降时,其速度是不同的,颗粒越大沉降速度越快;大小不同的颗粒从同意起点高度同时沉降,经过一定距离时间后,几颗将粉末按粒度差别分开;重力沉降:10-300μm;离心沉降:μm;优点:测量重量分布;代表性强;经典理论, 不同厂家仪器结果对比性好;价格比激光衍射法便宜;缺点:检测速度慢尤其对小粒子;重复性差;对非球型粒子误差大;不适用于混合物料即粒子比重必须一致才能较准确;动态范围窄8)气体吸附法原理:使气体分子吸附于微粒表面,测定吸附量,换算粉体比表面积,求出粒度;常见粒度分析方法:7:粒度测定方法的选定还要进一步看书P34根据数据的应用场合选择;根据粉体的粒度范围选择;根据粉体的存在形式选择;根据测定精度的要求选择;根据样品量选择;.根据粒度测定所需时间选择;根据设备投资和分析费选择:8.粉体填充结构:是指粉体层内部颗粒在空间中的排列状态;一般而言,粉体层的排列状态是不均匀的;要注意到填充状态的两个极端,即最疏与最密填充状态;原因是:形状不规则,存在空隙;注意:粉尘的体积与其他固体物质的体积不同粉尘的体积包括:尘粒的颗粒体积、粉颗粒之间的空隙体积、颗粒外开口体积、颗粒内闭孔和附面膜体积等五部分;9.描述粉体填充结构的参数主要掌握前三个容积密度:ρb,亦称视密度:单位填充体积的粉体质量,即自然堆积状态下单位体积粉体的质量;表观密度填充率:Ψ,颗粒体积占粉体填充体积的比例如右图;空隙率:ε,空隙体积占粉体填充体积的比例Ε=1-Ψ=1- ρb/ρp配位数:某一个颗粒接触的颗粒个数配位数分布:粉体层中各个颗粒有着不同的配位数,用分布来表示具有某一配位数的颗粒比率时,该分布称为配位数分布;空隙率分布:以距观察颗粒中心任一半径的微小球壳空隙体积比率对距离表示的分布;接触点角度分布:将与观察颗粒相接的第一层颗粒的接触点位置,以任意设定的坐标角度表示的分布10.等径球均一球的颗粒的规则填充相邻的四个球视为基本层的最小组成单位,则有正方形和单斜方形两种排列方式;掌握立方体填充立方最疏填充和菱面体填充六方最密填充;立方体填充:配位数为6;菱面体填充:配位数12.11.均一球形颗粒的实际填充不规则填充实际填充时,由于受到球之间的碰撞、回弹、摩擦、容器壁面等影响,而成为不规则填充;均一球形颗粒群的随机填充结构贝尔纳实验统计分析结论是:1空隙率比较大时,配位数分布接近正态分布;2随着空隙率减小,趋近于最密填充状态的配位数;实验结论:高配位数的疏接触点多,填充疏松,空隙率大;P39.低配位数的密接触电多,填充紧密,空隙率小;12.非等径球形颗粒的填充较大球形颗粒中加入一定数量的较小球形颗粒,空隙率可以降低;若进一步加入更小的球形颗粒,空隙率进一步降低;1)空隙率随着小颗粒的混入比增加而减小2)填入颗粒的粒径越小,空隙率也越低总结即是:小颗粒粒径越小,配位数越大,空隙率越小,填充率越大;13.影响颗粒填充的因素:1)壁效应:当粉体填入容器时,填充结构受容器壁面的影响,在容器壁面附近形成特殊的填充结构,成为壁效应;2)局部填充结构:空隙率分布、填充数密度分布、接触点分布;3)粉体的含水量:潮湿粉体易于团聚,导致内部保持松散结构,致使填充率降低;含水量较低时候,容积密度略有降低,影响不大;随着含水量继续增大,形成大团粒,导致容积密度迅速降低;含水量继续增大,由于颗粒发生相对滑动而使填充率增大;4)颗粒形状:颗粒越接近球形,通常其空隙率越低;即空隙率随颗粒球形度降低而增加;5)颗粒大小:粒度很小时,颗粒间的附着力大于颗粒重力,发生团聚,此时空隙率较大,即表观体积增大;当粒度大于某一临界值,凝聚力可忽略不计,粒度大小则对堆积无明显影响;6)填充速度:对粗颗粒,填充速度越快会导致有较大的空隙率;对于面粉之类吸附力较明显的粉体,填充速度快,可降低空隙率;14.致密堆积经验1)用单一粒径尺寸的颗粒,不能满足致密堆积对颗粒级配的要求;2)采用多组分且组分粒径尺寸相差较大一般相差4-5倍的颗粒,可较好地满足致密堆积对粒度与级配的要求;3)细颗粒数量应能足够填充堆积体的空隙,通常,两组分时,粗细颗粒数量之比约为7:3;三组分时,粗中细颗粒数量比例约为7:1:2时,相对而言,可更好地满足致密堆积对粒度与级配的要求;4)在可能的条件下,适当增大临界颗粒粗颗粒尺寸,可较好地满足致密堆积对颗粒级配的要求;第三章粉体的力学性质1.颗粒间的附着力当粉体颗粒很小时,由于附着力存在易于团聚颗粒间的附着力凝聚力包括范德华力、静电吸引力、水分毛细管力、磁性力、机械咬合力;2.填充层内的静态液相根据颗粒间液体量的多少,有四种的静态液相;1)摆动状态:颗粒接触点上存在透镜状或环状的液相,液相互不连接;2)链索状态:液相相互连接而成网,空气分布其间;3)毛细管状态:颗粒间隙充满液体,仅仅颗粒表面存在气液界面;4)浸渍状态:颗粒群浸在液体中,存在自由液面;3.液桥力粉体颗粒之间接触处或间隙部位存在液体的状态成为液桥,液桥对所连接的颗粒有引力,也就是液桥力,实际上即毛细管力;液桥力大小与颗粒间液体量、颗粒表面润湿性、颗粒形状、液固接触状况等有关;孔隙和R孔隙的差异T孔隙:4个球以正三角锥的顶点为球心排列时所形成的四面型孔隙称为T孔隙;这种孔隙有6个解除点和4个支路,各个支路都与R孔隙相通;与霍斯菲尔德填充的三角孔相同;R孔隙:4个球并排成正方形,在通过正方形中心的垂线上再排列两个球后形成的长斜方形空隙称为R孔隙;相当于霍斯菲尔德填充的四角孔;5.粉体的摩擦特性后三种以了解为主摩擦角:由于颗粒间的摩擦力和内聚力而形成的角的统称;根据颗粒体运动状态的不同,可分为内摩擦角、安息角、壁摩擦角及动内摩擦角;6.内摩擦角:在力学上可以理解为块体在斜面上的临界自稳角,在这个角度内,块体是稳定的;大于这个角度,块体就会产生滑动;摩擦角表示该极限应力状态下剪应力与垂直应力的关系,它可用莫尔圆和破坏包络线来描述;测试方法:流出法、抽出法、活塞法、慢流法、压力法、剪切盒法等有关莫尔圆的画法和性质:式中σ1和σ2为两个主应力,这两个关系式也可以用莫尔圆上N点的坐标值来表示,N点与σ1夹圆心角为2θ,当σ1和σ2为已知时, 用公式法或莫尔圆法都可获得通过该点的任一截面上的正应力和剪应力值;7.安息角安息角又称粉尘静止角、休止角、堆积角,是粉体粒度较粗的状态下由自重运动所形成的角;测定方法:排出角法、注入角法、滑动角法、剪切盒法安息角休止角≤30°流动性好;≤40°基本满足;≥40°流动性差;同时注意粘性粉体或粒径小于100~200um的粉体粒子相互作用力较大,而流动性差,相应地所测休止角较大;对于非黏聚性粉体,安息角和内摩擦角是相近的;8.质量流与漏斗流的差异质量流:指物料仓内整个粉体层能够大致均匀地下降流出,又称为整体流;其特点是先进先出,即先进仓的物料先流出; 漏斗流:是指料仓内粉体层的流动区域呈漏斗流,其特点是后进先出,即先加入的物料后流出,料流顺序紊乱,甚至有部分粉体滞留不动;漏斗流有两种,其中有一种死角区一直在;质量流优点:避免了粉料的不稳定流动、沟流和溢流;消除了筒仓内的不流动区;形成了先进先出的流动,颗粒的偏析被大大减少或杜绝;最大限度减小了贮存期间的结块问题、变质问题和偏析问题;颗粒的密度在卸料时是常数,料位差对其无影响;流量得以很好控制,任意水平横截面的压力可以预测,且相对均匀,物料的密实程度和透气性是均匀的;漏斗流缺点:出料口流速不稳定;料拱或穿孔崩塌时,细粉料可能被充气,并无法控制地倾泻而出;密实应力下,不流动区留下的颗粒可能变质或结块;沿料仓壁长度安装的料位指示器不能正确指示料仓下部的料位;后进先出;9.应力的主动状态和被动状态被动状态:粉体层受水平方向压缩时,粉体将沿斜上方被推开,此时的极限应力状态;最大主应力为水平方向主动状态:粉体层受重力作用,将要出现崩坏是的极限应力状态;最小主应力为水平方向10.流动形式:E不流动区D自由降落区C垂直运动区B缓慢滑动区A迅速滑动区E N流动椭圆体;E G边界椭圆体;E0流动锥体第四章粉体的粉碎制备1.粉碎的定义:在外力作用下使大块物料克服内聚力,碎裂成若干小颗粒的加工过程;破碎是使大块物料碎裂成小块物料的加工过程100mm粗碎、30mm中碎、3mm细碎;粉磨是使小块物料碎裂成细粉体的加工过程粗磨、60μm细磨、5μm超细磨;作用与目的:粉碎后,粒度显著减小,比表面积显著增大,有利于几种物料的均匀混合、便于输送和贮存、有利于提高固相高温反应的程度和速度;2.被粉碎物料的性质:强度、硬度、脆性、韧性、易磨性等;1)强度:材料抵抗外力的能力,通常以材料破坏时单位面积上所受的力来表示,单位N/㎡或Pa理想强度:物料完全均质、不含任何缺陷时的强度称为理想强度;实际强度:实际强度一般为理想强度的1/100~1/1000;强度的尺寸效应:试验片体积变小时,强度值增大←---裂纹的大小、形状、方向及数量强度随着加荷速度而变化:材料本身兼具弹性性质和延展性质强度随氛围条件而变化2)硬度:材料抵抗其他物体刻划或压入其表面的能力,也可理解为固体表面产生局部变形所需的能量;3)脆性:材料在外力作用下如拉伸、冲击等仅产生很小的变形即断裂破坏的性质;4)韧性:在外力作用下,塑性变形过程中吸收能量的能力;介于柔性和脆性之间的一种材料性能5)易磨性:在一定粉碎条件下,将物料从一定粒度粉碎至某一指定粒度所需的比功耗3.Griffith强度理论Griffith指出,固体材料内部的质点实际上并非严格地规则排布,而是存在许多微裂纹不,,当材料受拉时,这些微裂纹就会逐渐扩展,与其尖端附近产生高度的应力集中,结果使裂纹进一步扩展,直至使材料破坏;裂纹产生和扩展必须满足力和能量两个条件:1.作为力的条件而言,在裂纹尖端产生的局部拉应力必须大于裂纹尖端分子间的结合力;2.就能量条件而言,破碎时的能量消耗于两个方面:一是裂纹扩展时产生新表面所需的表面能s;二是因弹性变形而储存于固体中的能量U;4.粉碎方式和粉碎模型1)粉碎方式:挤压粉碎、劈裂粉碎、折断粉碎、研磨粉碎、冲击粉碎;挤压粉碎:多用于硬脆性、坚硬物料的粗碎;劈裂粉碎:劈裂粉碎比挤压粉碎所需压力小;折断粉碎:即物料受弯曲作用力而粉碎;研磨粉碎:主要产生细粒,其效率低、能量消耗大,用于小块物料的细磨;冲击粉碎:主要用于脆性物料的粉碎;2)粉碎模型:体积粉碎模型、表面粉碎模型、均一粉碎模型;体积粉碎模型:整个颗粒均受到破坏,粉碎后生成物多为粒度大的中间颗粒;随着粉碎过程的进行,这些中间颗粒逐渐被粉碎成细粉;冲击粉碎和挤压粉碎与此模型较接近表面粉碎模型:在粉碎的某一时刻,仅是颗粒的表面产生破坏,被磨削下微粉,这一破坏作用基本不涉及颗粒内部,这是典型的研磨和磨削的粉碎方式;均一粉碎模型:施加于颗粒的作用力使颗粒产生均匀的分散性破坏,直接粉碎成微粉;此模型仅符合结合极其不紧密的颗粒集合体如药片等特殊粉碎情形;实际粉碎过程是前两者的综合,前者构成过渡成分,后者形成稳定成分;体积粉碎看成冲击粉碎,表面粉碎看成摩擦粉碎;粗碎时宜采用冲击力和压缩力,细碎时采用剪切力和摩擦力;5.低温粉碎与混合粉碎低温粉碎对于低软化点、熔点低的热塑性物料,温度上升会失去结合水的物料,或温度上升会氧化的物料,以及常温时强韧、低温时脆性化的物料,适用低温粉碎; 采用技术有预冷物料、包裹或加入冷却介质;混合粉碎可以提升细粉效率几种粉碎性质不同的物料装入同一粉碎设备进行粉碎时,由于物料相互影响,则粉碎情形比单一物料复杂,会出现选择性粉碎,即易碎的物料更细、难碎的物料更粗;原因是:①粉碎介质受到作用力是,会优先碎裂,而高强度颗粒不足以碎裂,同时作用在高强度颗粒上的作用力部分或传递到相邻的低强度颗粒上,再次造成低强度颗粒碎裂,即易碎颗粒发生粉碎的概率大;②另一方面,两种硬度不同的颗粒相互接触并做相互运动时候,硬度大颗粒对硬度较小的颗粒产生切屑作用,软质颗粒被磨削;因此粗的更粗,细的更细;6.粉碎流程分类及特点a简单的粉碎流程b带预筛分的粉碎流程c带检查筛分的粉碎流程d带预筛分和检查筛分的粉碎流程各种粉碎流程的特点:a流程简单,设备少,操作控制较方便,但往往由于条件的限制不能充分发挥粉碎机械的生产能力,有时甚至难以满足生产要求b和d流程可增加粉碎流程的生产能力,减小动力消耗、工作部件的磨损等;适合原料中细粒级物料较多的情形;c和d流程可获得粒度合乎要求的粉碎产品,为后续工序创造有利条件,但流程较复杂,设备多、建筑投资大,操作管理工作量大,多用于最后一级粉碎作业;开路开流流程:不带检查筛分或选粉设备的粉碎流程:比较简单、设备少、扬尘少;当要求粉碎产品粒度较小时,粉碎效率低,产品中会含有部分不合格的粗颗粒物料闭路圈流流程:带检查筛分或选粉设备的粉碎流程:可直接筛选出符合粒度要求的产品;7.粉碎方式的选择以较强的化学健力结合的:要采用具有较强机械力的碎裂方式;对于拟粉碎至厘米级的矿石:可采用挤压粉碎、劈裂粉碎;对于拟磨细至微米级、纳米级的矿石:采用研磨粉碎、折断粉碎;实际过程中则是多种粉碎相互结合,连续作业;8.粒子焊接:即在粉碎的过程中,小颗粒间存在压应力,会发生焊接现象,再次形成大颗粒,可称之为二次颗粒;这些二次颗粒结构较为疏松,颗粒间焊接点少,但是当研磨强度过大时,压应力大,作用时间长,焊接程度增大,强度甚至比原矿大;在超细粉体制备时应该要极力避免通过加入分散剂来防止,其中常见的固体分散剂有微晶碳、液体分散剂有四氢呋喃等;9.粉碎机械分类;重点掌握超细粉碎机械;破碎机械:颚式破碎机,圆锥破碎机常用分类粉磨机械:振动磨,雷蒙磨超细粉碎机械:行星球磨机、气流粉碎机粉体实验仪器会考,还有加上筛分10.行星球磨机构造及原理主要有立式和卧式的两种,其主要构造组成有:电机、传动三角带、共用转盘、球磨罐、齿轮系列或三角带传动系列;其工作原理是利用磨料与试料在研磨罐内高速翻滚,对物料产生强力剪切、冲击、碾压达到粉碎、研磨、分散、乳化物料的目的;行星式球磨机在同一转盘上装有四个球磨罐,当转盘转动时,球磨罐在绕转盘轴公转的同时又围绕自身轴心自转,作行星式运动;罐中磨球在高速运动中相互碰撞,研磨和混合样品;该产品能用干、湿两种方法研磨和混合粒度不同、材料各异的产品,研磨产品最小粒度可至微米;与挤压和冲击粉碎的不同的是,球磨机靠研磨介质对物料颗粒表面不断的磨蚀实现粉碎;11.气流粉碎机构造及原理气流粉碎机其工作原理是,将高压空气或高压水蒸气通过拉瓦尔喷管加速为亚音速或超音速气流,喷出的射流带动物料做高速运动,使物料因撞击和摩擦而粉碎;由于喷嘴附近的速度梯度很大,因此,绝大多数粉碎作用发生在喷嘴附近;被粉碎的物料随气流到分级区进行分级,达到粒度要求的由收集器捕集下来,未达到粒度要求的则返回粉碎室继续粉碎,只要满足粒度要求;12.影响粉碎效率的因素:机械力大小、作用点、作用方式、作用时间等13.影响球磨效率的因素:原料性质的影响;球磨强度的影响:球磨环境的影响;球磨气氛的影响;研磨介质性质、尺寸呢及球料比的影响;球磨时间的影响;14.助磨剂助磨作用机理常为表面活性剂①助磨剂吸附在物料颗粒表面,改变颗粒的结构性质,降低颗粒的强度或硬度;②助磨剂吸附在固体颗粒表面,减小颗粒的表面能;总之,添加助磨剂使物料颗粒内的裂纹易于扩展,强度或硬度降低,颗粒软化;助磨剂吸附在颗粒表面能平衡因粉碎而产生的不饱和键,防止颗粒团聚,从而抑制粉碎逆过程;助磨剂一般分成三类:碱性聚合无机盐、碱性聚合有机盐、偶极—偶极有机化合物;15.粉碎机械力活化作用机理及影响因素机械力化学的作用机理:1)物料在机械力作用下粉碎生成新表面,颗粒粒度减小,比表面积增大,从而粉体表面自由能增大,活性增强;2)物料颗粒在机械力作用下,表面层发生晶格畸变,其中贮存了部分能量,使表面层能位升高,从而活化能降低,活性增强;3)物料颗粒在机械力作用下,表面层结构发生破坏,并且趋于无定形化,内部贮存了大量能量,使表面层能位更高,因而活化能更小,表面活性更强;4)粉磨系统输入能量的较大一部分还将转化为热能,使粉体物料表面温度升高,在很大程度上提高了颗粒的表面活性因此,物料经机械粉碎后形成的微细颗粒表面性质大大不同于原有粗颗粒,机械力的持续作用使颗粒表面的活性点不断增多,颗粒表面处于亚稳高能活性状态,易于发生化学或物理学的变化;影响机械力化学的因素:1)原料性质的影响:原料性质和各组分配比决定最终产品组成的物质基础;2)粉磨强度的影响:即能量对原子重新组合的影响;强度过低,形成非晶时间较长,甚至无法形成非晶;强度较高,形成非晶时间较短,利于非晶成分扩散,继续粉磨或造成相便;当强度达到某一值时候,会使得原料形成稳定化合物;3)粉磨环境的影响:湿法和干法两种环境,相差了助磨剂水;4)粉磨气氛的影响:利用或防止七固反应;5)粉磨时间和温度的影响:较适宜的时间和温度;16.机械力化学在应用中的特点优点:①经高能粉磨处理的物料,不仅使粒度减小,比表面积增大,而且由于反应的活性提高,可使后续热处理过程的烧成温度大幅度降低;②由于机械粉碎的同时兼有混合作用,使多组分的原料在颗粒细化同时达到均匀化,特别是均匀化程度提高,使制备的产品性能更好;③便于制备宏观、纳米乃至分子尺度的复合材料;④便于制备某些常规方法难以制备的材料;缺点:①通常需要长时间的机械处理,能量消耗大,且反应难以进行完全,在实际应用中,通常对物料进行适当的粉磨来制备前驱体而不是最终产物;②研磨介质的磨损会造成物料污染,影响粉磨产物纯度③处理金属材料时,需要用氮气、氩气等惰性气体保护,否则可能发生氧化、燃烧等不希望发生的反应;。
粉体工程作业答案
第一章 粉体基本性质1-1 粉体是 细小颗粒状物料 的集合体。
粉体物料是由无数颗粒构成的, 颗粒是粉体物料的最小单元。
1-2 工程上常把在常态下以较细的粉粒状态存在的物料,称为粉体 。
1-3 颗粒的 大小、分布、结构、形态和表面形态等因素,是粉体其他性能的基础。
1-4 构成粉体颗粒的大小,一般在几个纳米到几十毫米区间。
1-5 如果构成粉体的所有颗粒,其大小和形状都是一样的,则称这种粉体为单分散粉体。
大多数粉体都是由参差不齐的各种不同大小的颗粒所组成,这样的粉体称为多分散粉体 。
粉体颗粒的大小和在粉体颗粒群中所占的比例分别称为粉体物料的粒度和 粒度分布 。
1-6“目”是一个长度单位,代表在1平方英寸上的标准试验筛网上筛孔数量 。
1-7 粒度是颗粒在空间范围所占大小的线性尺度。
粒度越小,颗粒越细 。
所谓粒径,即表示颗粒大小的 一因次尺寸 。
1-8以颗粒的长度l 、宽度b 、高度h 定义的粒度平均值称为 三轴平均径 ,适用于必须强调长形颗粒存在 的情况。
1-9 沿一定方向与颗粒投影轮廓两端相切的两平行线间的距离。
称为弗雷特直径 。
沿一定方向将颗粒投影面积等分的线段长度,称为马丁直径 。
1-10 与颗粒同体积的球的直径称为等体积球当量径;与颗粒等表面的球的直径称为等表面积球当量径;与颗粒投影面积相等的圆的直径称为 投影圆当量径 (亦 称heywood 径 。
1-11 若以Q 表示颗粒的平面或立体的参数,d 为粒径,则形状系数Φ定义为n d Q =Φ ;若以S 表示颗粒的表面积,d 为粒径,则颗粒的表面积形状系数形状系数Φs 定义为2d Ss =Φ ; 对于球形颗粒,Φs=π;对于立方体颗粒,Φs= 6 。
若以V 表示颗粒的体积,d 为粒径,则颗粒的体积形状系数Φv 定义为Φv = 3d V 对于球形颗粒,Φv= 6π;对于立方体颗粒,Φv= 1 。
1-12 比表面积形状系数定义为 表面积形状系数 与 体积形状系数 之比,用符号Φsv 表示:Φsv=V S ΦΦ , 对于球形颗粒和立方体颗粒,Φsv= 6 。
超细粉体分级技术
分级技术的绿色化
环保材料
选用低污染、可降解的环 保材料,降低对环境的影 响。
能耗降低
采用高效节能技术和设备, 降低分级过程中的能源消 耗。
废弃物资源化
对分级过程中产生的废弃 物进行资源化利用,减少 对环境的负担。
分级技术的精细化
高精度分级
提高分级设备的精度和稳定性,实现超细粉体的精细 分级。
粒度分布控制
分级技术的意义
01
02
03
提高产品质量
通过精确的分级技术,可 以去除不合格的粉体颗粒, 提高产品的纯度和均匀性。
优化生产工艺
合理的分级技术能够实现 连续、高效的粉体生产, 降低能耗和生产成本。
拓展应用领域
随着分级技术的不断改进, 超细粉体的应用领域将进 一步拓展,为各行业带来 更多的发展机遇。
02
超细粉体的颗粒形态多样,可以是球形、立方体、片状等。颗粒形态对粉体的 物理和化学性质有重要影响,如比表面积、孔隙率、吸附性能等。
颗粒形态控制
可以通过物理或化学方法对超细粉体的颗粒形态进行控制,以提高其应用性能。 例如,采用球磨、化学气相沉积等方法可以制备出具有特定形态的超细粉体。
表面性质
表面性质
超细粉体的表面性质对其应用性能具有重要影响。由于粒径小,超细粉体的比表面积大,表面能高, 容易发生团聚现象。因此,需要对超细粉体的表面进行改性处理,以提高其分散性和稳定性。
应用
气流分级广泛应用于超细粉体的制备和分级,如硅微粉、碳化硅、石墨烯等。通过气流分级技术,可以获得粒度 均匀、纯度高的超细粉体产品。
静电分级
原理
静电分级是利用静电场将不同粒度的粉 体颗粒进行分离。在静电场的作用下, 颗粒受到的电场力与颗粒的电导率和电 荷量成正比。因此,通过控制电场强度 和电场方向,可以将不同粒度的粉体颗 粒进行有效分离。
粉体的基本概念
粉体的基本概念1、粉体颗粒:在物质的本质结构不发生改变的情况下,分散或细化而得到的固态基本颗粒。
是构成粉体的基本单元。
粉休:由大量的不同尺寸的颗粒组成的颗粒群。
基本颗粒(一次颗粒):没有堆积、絮联等结构的最小单元。
指含有低气孔率的一种独立的粒子。
实际粉体往往都是在一定程度上团聚了的颗粒,即所谓二次颗粒。
二次颗粒:是指人为制造的粉料团聚粒子。
软团聚:是一种由范德华引力作用引起的颗粒间聚集,软团聚可以用机械的办法分开。
硬团聚:在强的作用力下使颗粒团聚在一起,不能用机械的方法分开。
2、颗粒的粒度:粒度是颗粒在空间范围所占大小的线性尺度。
1)投影径a.二轴径:颗粒投影的外接矩形的长l和宽b称为二轴径。
b.Feret径:与颗粒投影相切的两条平行线之间的距离。
DFc.Martin径:在一定方向上将颗粒投影面积分为两等份的直径,DMd.投影面积相当径(Heywod径):与颗粒投影面积相等的圆的直径,又称当量直径,记作DH。
e.定方向最大直径(Krumbein) DK :在一定方向上颗粒投影的最长长度。
f.投影周长相当径:与颗粒周长相等的圆的直径。
记作Dc 此径常用于考察颗粒的形状。
2)球当量直径a.等表面积(球)相当径(equivalent surface diameter) DS :与颗粒等表面积球的直径,记作DS,外表面积S=πDS?b.等体积(球)相当径(equivalent volume diameter)DV :与颗粒体积相等的球的直径DV,颗粒体积V=(π/6)DV?C.等比表面积(球)相当径 Dsv (equivalent specific surface diameter)与颗粒等比表面积的球的直径Dsv DSV=DV?/DS?d.沉降速度相当径(settling velocity diameter) Dstk :与颗粒沉降速度相同的直径.在层流区称为stokes径,Newton径,记作Dstk。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高速旋转形成强迫涡旋流场内,颗粒受到风的
阻力和由于涡轮叶片旋转而产生的离心力作用, 颗粒的大小不同所受的离心力不同,粒径小, 质量轻的细小颗粒经过涡轮叶片间隙,进入输 出管道被分选出来,粒径大的颗粒被涡轮叶片 甩向器壁进入主分级室下面的二次进风室,在 二次进风室中,粒径较小的颗粒再次被吹回主 分级室进行分级,从而达到提高分级效率的目 的。
(3)回转筛的筛面在传动装置的带动下旋转时, 里面的物料被升举到一定的高度,然后沿筛面下 落,接着又被升举,同时,物料还沿倾斜的筛面 从进料端向卸料端移动,在筛内形成螺旋形运动。 细颗粒通过筛孔,成为筛下产品,粗颗粒则留在 筛内,从卸料端卸出。
涡轮式超细分级机
1
工作原理及特点
工作原理
分级室内涡轮可以任意调节转速,由电机
涡轮式超细分级机
长度上的孔数或1 cm 筛面上的孔数来表示; 为0.038~300 mm;在测定粒度分布而采用湿法筛分时, ①固定筛。筛面固定不动,作预先筛分之用,特点是结构简单,不需要动 干燥;⑺ 改善填充状态;⑻ 改善粉体的流动性;⑼ 定 2、直接用筛孔的尺寸:按筛孔尺寸从大到小排列,相邻的两个筛孔 力。 其分级粒径的下限可达0.005 mm。 ②回转筛。筛面作回转运动。 尺寸之比称为筛比。按照一定的筛比、筛孔尺寸及筛丝直径制造的筛 量称取,提高配料精度;⑽ 向整个工作面给料及分散;
对颗粒密度的差别进行操作。
分级的作用
分级是粉体工程学中最基本的操 作过程之一。
(1)按需要去除粉体产品中过大(小)的颗粒, 使原料或产品的粒度控制在一定的范围之内。 (2)与粉碎操作配合,组成粉碎-分级系统。 (3)进行产品的粒度分布测定。
流体分级的原理
1、随着粒径的增大,离心 力流体阻力增加得更快。
③摇动筛。筛面在偏心连杆机构的作用下作往复运动。
子称为标准筛,而标准筛的筛孔尺寸系列则称为筛制 。
④振动筛。筛面在激振器的作用下作圆(椭圆)或直线振动。 ⑾ 混合;⑿ 造粒;⒀ 粉体流量控制;⒁ 除尘。
回 转 筛
(1)回转筛由筛面、支架和传动装置等部分组 成。
(2)筒筛安装时稍稍倾斜,锥筛则水平安装。
⑶ 除去凝聚性粗颗粒或使凝聚性粗颗粒分散;⑷ 有用成 粒完全按几何尺寸的大小进行分级时,其适用的粒径范围 1、“目”:其含义是每英寸(25.4mm)长度上筛孔的数目,也可用1cm ③检测筛分。其目的是检测产品的细度或粒度分布。
筛分机械主要由筛面及使筛面运动的部件组成。按筛面的运动特点,分为: 分、物品的分离、回收;⑸ 特殊过滤;⑹ 洗净、脱水、 2
粉体的分级
粉体分级的定义分类 广义的粉体分级 在粉体工程学中,分级操作的对象是粉体,分级的结果则是得到二组
或二组以上的、具有某种特性的粉体,分级就是按照某种判断标准将 狭义的粉体分级 利用粉体颗粒的特性(如粒径、形状、密度等)的差别将 粉体进行分离。 其分离的操粒的总称。对粉体进行分级时是以粉体颗粒的 利用颗粒的几何特征的差别进行操作的。即是利用粉体颗粒的大
2、相等时,颗粒处于静止、 平衡状态。
3、FC>Fd,颗粒向分级装 置的外侧运动,被分到粗颗 粒群一边,反之,向内侧运 动,被分到细颗粒群一边。
离心力分级
颗粒所受的离心力: Fc mR 2
颗粒所受的流体阻力: Fd C D A u 2 / 2
机械分级设备 概述 筛分的种类 筛分是分级的一种,是利用具有一定大小孔径的筛面,将
按照筛分目的的不同,分为:
立筛分。筛分后的产品即为成品。 ②辅助筛分。与粉碎设备配合使用,在粉碎前筛分出部分合格的产品为预先 ⑴ 整粒,即调整粒度分布;⑵ 成分分离,除去异物; 同的筛面,就可将粉体分成若干个粒径级别。在对粉体颗 筛制 筛分,而在粉碎后的筛分则是检查筛分。
由于分级技术、在不断地发展,这种“判断标准”也在逐渐增多,为 某种特牲作为判断标准的。在这些特性中,有些不能量化 小或形状的差别将其分离的操作。通常所说的粉体分级,一般就是指
了 (如颜色)、或者可以量化但其变化是不连续的(如密度), 粒度分级。 兼顾粉体分级定义的包容性和现阶段的实用性,可将其分为广义的粉 有些则可以量化并且其变化是连续的(如粒径)。基于前者 粒度分级又称为选粉,按照分级原理或分级方法、手段的不同, 的广义的粉体分级称为选别(选分),如重力选矿就是利用 体分级和狭义的粉体分级。 可分为筛分和流体分级两种。