北师大版数学八年级下册《期末考试卷》(带答案)

合集下载

北师大版八年级下册数学期末考试试卷及答案

北师大版八年级下册数学期末考试试卷及答案

北师大版八年级下册数学期末考试试题一、单选题1.下列图案中,不是中心对称图形的是()A .B .C .D .2.不等式32x -<-的解集是()A .23x >B .23x <-C .23x <D .23x >-3.若分式+-x yx y中的x 、y 的值都变为原来的3倍,则此分式的值()A .不变B .是原来的3倍C .是原来的13D .是原来的164.多项式223634xy x y x yz +-各项的公因式是()A .xyB .2xzC .3xyD .3yz5.如图,在四边形ABCD 中,AB=CD ,M ,N ,P 分别是AD ,BC ,BD 的中点,若∠MPN=130°,则∠NMP 的度数为()A .10°B .15°C .25°D .40°6.如图,ABC ∆中,AB 的垂直平分线DE 交AC 于D ,如果5AC cm =,4BC cm =,那么DBC ∆的周长是()A .6cmB .7cmC .8cmD .9cm7.一个多边形的每个内角均为108º,则这个多边形是()A .七边形B .六边形C .五边形D .四边形8.若解分式方程144x mx x -=++产生增根,则m=()A .1B .0C .﹣4D .﹣59.下列命题中是真命题的是()A .若a b >,则33a b->-B .有两个角为60︒的三角形是等边三角形C .一组对边相等,另一组对边平行的四边形是平行四边形D .如果0ab =,那么0a =,0b =10.如图,在Rt ABC 中,90ABC ∠=︒,AB BC ==ABC 绕点A 逆时针旋转60︒,得到ADE ,连接BE ,则BE 的长是()A .2+B .3+C .2+D .3+二、填空题11.分解因式:22a 4a 2-+=_____.12.关于x 的不等式组22x b a x a b ->⎧⎨-<⎩,的解集为-3<x<3,则a ,b 的值分别为_______.13.对分式12x,14y ,218xy 进行通分时,最简公分母是_____14.等边三角形的两条中线所夹的锐角的度数为__________15.如图,在 ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,若AE =4,AF =6, ABCD 的周长为40,则S ABCD 四边形为______.16.如图,已知正五边形ABCDE ,AF ∥CD ,交DB 的延长线于点F ,则∠DFA =____度.17.如图,矩形ABCD 的面积为20cm 2,对角线交于点O ;以AB 、AO 为邻边作平行四边形AOC 1B ,对角线交于点O 1;以AB 、AO 1为邻边作平行四边形AO 1C 2B ;…;依此类推,则平行四边形AO 4C 5B 的面积为_____.三、解答题18.先化简,再求值:22211a ab b a b b a -+⎛⎫÷- ⎪-⎝⎭.其中21a =,21b =+.19.解分式方程:241244x x x x -=--+.20.解不等式组1123(1)213x x x -⎧<⎪⎨⎪-≤+⎩,把解集表示在数轴上并写出该不等式组的所有整数解.21.某商店购进甲、乙两种商品,已知每件甲种商品的价格比每件乙种商品的价格贵10元,用350元购买甲种商品的件数恰好与用300元购买乙种商品的件数相同.(1)求甲、乙两种商品每件的价格各是多少元?(2)计划购买这两种商品共50件,且投入的经费不超过3200元,那么最多购买多少件甲种商品?22.如图,在边长为1个单位长度的小正方形组成的网格中,△ABC 的顶点A 、B 、C 在小正方形的顶点上,将△ABC 向下平移4个单位、再向右平移3个单位得到△A 1B 1C 1,然后将△A 1B 1C 1绕点A 1顺时针旋转90°得到△A 1B 2C 2.(1)在网格中画出△A 1B 1C 1和△A 1B 2C 2;(2)计算线段AC 从开始变换到A 1C 2的过程中扫过区域的面积(重叠部分不重复计算)23.如图,在ABC ∆中,AD 平分BAC ∠,BE AD ⊥,BE 交AD 的延长线于点E ,点F 在AB 上,且//EF AC ,求证:点F 是AB 的中点.24.如图,在四边形ABCD 中,AD ∥BC ,AD =12cm ,BC =15cm ,点P 自点A 向D 以1cm/s 的速度运动,到D 点即停止.点Q 自点C 向B 以2cm/s 的速度运动,到B 点即停止,点P ,Q 同时出发,设运动时间为t (s ).(1)用含t 的代数式表示:AP =________cm ;DP =________cm ;BQ =________cm ;CQ =________cm .(2)当t 为何值时,四边形APQB 是平行四边形?(3)当t 为何值时,四边形PDCQ 是平行四边形?25.为执行中央“节能减排,美化环境,建设美丽新农村”的国策,我市某村计划建造A B ,两种型号的沼气池共20个,以解决该村所有农户的燃料问题,两种型号沼气池的占地面积、使用农户数及造价见下表:型号占地面积(2m/个)使用农户数(户/个)造价(万元/个)A15182B20303365m,该村农户共有492户.已知可供建造沼气池的占地面积不超过2(1)满足条件的方案共有几种?写出解答过程;(2)通过计算判断,哪种建造方案最省钱.26.已知:如图,点B,C,D在同一直线上,△ABC和△CDE都是等边三角形,BE交AC于点F,AD交CE于点H,(1)求证:△BCE≌△ACD;(2)求证:CF=CH;(3)判断△CFH的形状并说明理由.参考答案1.C【详解】解:A、是中心对称图形,故A错误;B 、是中心对称图形,故B 错误;C 、不是中心对称图形,故C 正确;D 、是中心对称图形,故D 错误;故选:C .2.A 【详解】−3x <−2,不等式两边同除以−3,得23x >,故选:A .3.A 【详解】解:∵分式+-x yx y中的x 、y 的值都变为原来的3倍∴()()333333x y x y x yx y x y x y+++==---∴此分式的值不变.故应选A 【点睛】本题主要考查了分式的基本性质,解题的关键是把x 、y 的值都变为原来的3倍后代入.4.A 【解析】【分析】根据公因式的定义可求解.【详解】解:()2233=634634xy x y x yz xy x xz+-+-故多项式223634xy x y x yz +-各项的公因式是xy .故选A .【点睛】本题主要考查公因式,掌握公因式的定义是解题的关键.5.C 【解析】【详解】分析:根据中位线定理和已知,易证明△PMN 是等腰三角形,根据等腰三角形的性质和三角形内角和定理即可求出∠PMN 的度数.详解:∵在四边形ABCD 中,M 、N 、P 分别是AD 、BC 、BD 的中点,∴PN ,PM 分别是△CDB 与△DAB 的中位线,∴PM=12AB ,PN=12DC ,PM ∥AB ,PN ∥DC .∵AB=CD ,∴PM=PN ,∴△PMN 是等腰三角形.∵∠MPN=130°,∴∠PMN=1801302︒-︒=25°.故选C .点睛:本题考查了三角形中位线定理及等腰三角形的判定和性质,解题时要善于根据已知信息,确定应用的知识.6.D 【详解】DE 垂直平分AB ,549DBC AD BD C DB DC BC AC BC ∴=∴=++=+=+= 故选D 【点睛】本题考查垂直平分线的性质,是重要常见考点,难度易,掌握相关知识是解题关键.7.C 【详解】试题分析:因为这个多边形的每个内角都为108°,所以它的每一个外角都为72°,所以它的边数=360÷72=5(边).考点:⒈多边形的内角和;⒉多边形的外角和.8.D 【详解】解:方程两边都乘()4x +,得1x m-=原方程增根为4x =-∴把4x =-代入整式方程,得5m =-故选D .【点睛】本题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.9.B 【解析】【分析】由不等式的基本性质判断A ,由等边三角形的判定判断B ,由平行四边形的判定判断C ,由两数之积为0,则两数中至少一个为0判断D .【详解】解:由a b >,所以a -<,b -所以:3a -<3,b -故A 错误;有两个角为60︒的三角形是等边三角形,此命题是真命题,故B 正确;一组对边相等,另一组对边平行的四边形不一定是平行四边形,这样的四边形可以是等腰梯形,故C 错误;如果0ab =,那么0a =或0b =,故D 错误.故选B .【点睛】本题考查的命题的真假的判断,同时考查了不等式的基本性质,等边三角形的判定,平行四边形的判定,两数之积为0,则两数中至少一个为0,掌握命题真假的判断方法是解题的关键.10.C 【解析】【分析】如图(见解析),先利用勾股定理、旋转的性质可得4,60AE AC CAE ==∠=︒,再根据等边三角形的判定与性质可得AE CE =,然后根据垂直平分线的判定与性质可得12,2OA AC OA BE ==⊥,最后利用勾股定理分别可得2,OB OE ==由此即可得出答案.【详解】如图,设AC 与BE 的交点为点O ,连接CE ,90,ABC AB BC ∠=︒==4AC ∴==,由旋转的性质得:4,60AE AC CAE ==∠=︒,ACE ∴ 是等边三角形,AE CE ∴=,BE ∴是线段AC 的垂直平分线,12,2OA AC OA BE ∴==⊥,在Rt AOB 中,2OB ==,在Rt AOE 中,OE =,则2BE OB OE =+=+,故选:C .【点睛】本题考查了勾股定理、旋转的性质、等边三角形的判定与性质、垂直平分线的判定与性质等知识点,通过作辅助线,构造等边三角形是解题关键.11.()22a 1-【解析】【详解】分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式2后继续应用完全平方公式分解即可:()()2222a 4a 22a 2a 12a 1-+=-+=-.12.-3,3【解析】【详解】22x b a x a b ->⎧⎨-<⎩,,22x a bx b a >+⎧⎨<+⎩,所以2323a b b a +=-⎧⎨+=⎩,解得33a b =-⎧⎨=⎩.13.8xy 2【解析】【分析】由于几个分式的分母分别是2x 、4y 、8xy 2,首先确定2、4、8的最小公倍数,然后确定各个字母的最高指数,由此即可确定它们的最简公分母.【详解】根据最简公分母的求法得:分式12x,14y ,218xy 的最简公分母是8xy 2,故答案为8xy 2.【点睛】此题主要考查了几个分式的最简公分母的确定,确定公分母的系数找最小公倍数,确定公分母的字母找最高指数.14.60°【解析】【分析】如图,等边三角形ABC 中,根据等边三角形的性质知,底边上的高与底边上的中线,顶角的平分线重合,所以∠1=∠2=12∠ABC =30°,再根据三角形外角的性质即可得出结论.【详解】解:如图,∵等边三角形ABC ,AD 、BE 分别是中线,∴AD、BE分别是角平分线,∴∠1=∠2=12∠ABC=30°,∴∠3=∠1+∠2=60°.故答案为60°【点睛】本题考查的是等边三角形的性质,熟知等边三角形三线合一的性质是解答此题的关键.15.48【解析】【分析】首先根据平行四边形的性质可得AB=CD,AD=BC,可得AB+BC=20,再利用其面积的求法S=BC×AE=CD×AF,可得4AE=6CD,列出方程组,求出平行四边形的各边长,再求其面积.【详解】解:设BC=x,CD=y,∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∵▱ABCD的周长为40,∴x+y=20,∵AE=4,AF=6,S ABCD四边形=BC×AE=CD×AF,∴4x=6y,得方程组:20 46x yx y+⎧⎨⎩==,解得:128x y =⎧⎨=⎩∴S 平行四边形ABCD =BC×AE =12×4=48.故答案为:48.【点睛】此题主要考查了平行四边形的性质与其面积公式,解题的关键是根据性质得到邻边的和,根据面积公式得到方程,再解方程组即可.16.36【解析】【分析】首先求得正五边形内角∠C 的度数,然后根据CD =CB 求得∠CDB 的度数,然后利用平行线的性质求得∠DFA 的度数即可.【详解】解:∵正五边形的外角为360°÷5=72°,∴∠C =180°﹣72°=108°,∵CD =CB ,∴∠CDB =36°,∵AF ∥CD ,∴∠DFA =∠CDB =36°,故答案为36.【点睛】本题考查了多边形的内角和外角及平行线的性质,解题的关键是求得正五边形的内角.17.58【解析】【分析】根据矩形的性质求出△AOB 的面积等于矩形ABCD 的面积的14,求出△AOB 的面积,再分别求出1ABO ∆、2ABO ∆、3ABO ∆、4ABO ∆的面积,即可得出答案【详解】解:∵四边形ABCD 是矩形,∴AO=CO ,BO=DO ,DC ∥AB ,DC=AB ,∴11201022ADC ABC ABCD S S S ∆∆===⨯=矩形,∴1110522AOB BCO ABC S S S ∆∆===⨯=,∴11155222ABO AOB S S ∆∆==⨯=,∴21524ABO ABQ S S ∆∆==,321528ABO ABO S S ∆∆==,4315216ABO AB S S ∆∆==,∴4435522168ABO AO C B S S ==⨯= 平行四边形故答案为:58.【点睛】本题考查了矩形的性质,平行四边形的性质,三角形的面积的应用,解此题的关键是能根据求出的结果得出规律,注意:等底等高的三角形的面积相等.18.ab ,1.【解析】【分析】根据分式的除法和减法可以化简题目中的式子,然后将a 、b 的值代入化简后的式子即可解答本题.【详解】解:22211a ab b a b ba -+⎛⎫÷- ⎪-⎝⎭2()a b a b a b ab--=÷-1a b ab a b -=⋅-ab =,当1a =,1b =+时,原式1)1)1=⨯=.【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.19.x=4【分析】先将分式方程去分母转化为整式方程,求出整式方程的解,得到x 的值,经检验即可得到分式方程的解.【详解】解:241244x x x x -=--+,方程两边乘2(2)x -得:2(2)(2)4x x x ---=,解得:x=4,检验:当x=4时,220x ≠(﹣).所以原方程的解为x=4.【点睛】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.﹣2、﹣1、0、1、2.【解析】【分析】根据不等式组的计算方法,首先单个计算不等式,在采用数轴的方法,求解不等式组即可.【详解】解:11(1)23(1)213(2)x x x -⎧<⎪⎨⎪-≤+⎩解不等式(1)得:x <3,解不等式(2)得:x≥﹣2,它的解集在数轴上表示为:∴原不等式组的解集为:﹣2≤x <3,∴不等式组的整数解为:﹣2、﹣1、0、1、2.【点睛】本题主要考查不等式组的整数解,关键在于数轴上等号的表示.21.(1)每件甲种商品价格为70元,每件乙种商品价格为60元;(2)该商店最多可以购进20件甲种商品【分析】(1)分别设出甲、乙两种商品的价格,根据“用350元购买甲种商品的件数恰好与用300元购买乙种商品的件数相同”列出方程,解方程即可得出答案;(2)分别设出购进甲、乙两种商品的件数,根据“投入的经费不超过3200元”列出不等式,解不等式即可得出答案.【详解】解:(1)设每件乙种商品价格为x 元,则每件甲种商品价格为(10x +)元,根据题意得:35030010x x=+解得:60x =.经检验,60x =是原方程的解,则1070x +=.答:每件甲种商品价格为70元,每件乙种商品价格为60元.(2)设购进甲种商品a 件,则购进乙种商品(50a -)件,根据题意得:7060(50)3200a a +-≤,解得:20a ≤.∴该商店最多可以购进20件甲种商品.【点睛】本题考查的是分式方程在实际生活中的应用,认真审题,根据题意列出方程和不等式是解决本题的关键.22.见解析【解析】【详解】试题分析:(1)根据图形平移及旋转的性质画出△A 1B 1C 1及△A 1B 2C 2即可;(2)根据图形平移及旋转的性质可知,将△ABC 向下平移4个单位AC 所扫过的面积是以4为底,以2为高的平行四边形的面积;再向右平移3个单位AC 扫过的面积是以3为底以2为高的平行四边形的面积;当△A 1B 1C 1绕点A 1顺时针旋转90°到△A 1B 2C 2时,A 1C 1所扫过的面积是以A 1为圆心以以2为半径,圆心角为90°的扇形的面积,再减去重叠部分的面积,根据平行四边形的面积及扇形面积公式进行解答即可.解:(1)如图所示:(2)∵图中是边长为1个单位长度的小正方形组成的网格,∴AC==2,∵将△ABC向下平移4个单位AC所扫过的面积是以4为底,以2为高的平行四边形的面积;再向右平移3个单位AC扫过的面积是以3为底以2为高的平行四边形的面积;当△A1B1C1绕点A1顺时针旋转90°到△A1B2C2时,A1C1所扫过的面积是以A1为圆心以2为半径,圆心角为90°的扇形的面积,重叠部分是以A1为圆心,以2为半径,圆心角为45°的扇形的面积,∴线段AC在变换到A1C2的过程中扫过区域的面积=4×2+3×2+﹣=14+π.点评:本题考查的是旋转变换及平移变换,扇形的面积公式,熟知图形旋转、平移不变性的特点是解答此题的关键.23.见解析【解析】【分析】由AD为角平分线,利用角平分线定义得到一对角相等,再由EF与AC平行,利用两直线平行内错角相等得到一对角相等,等量代换可得出∠AEF=∠BAE,利用等角对等边得到AF=EF,再由AE与AD垂直,利用垂直的定义及直角三角形的两锐角互余,得到两对角之和为90°,由∠AEF=∠BAE,利用等角的余角相等可得出∠BEF=∠ABE,利用等角对等边得到BF=EF,等量代换得到AF=BF,即F为AB的中点,得证.【详解】证明:∵AD平分∠BAC,∴∠BAE=∠CAE,∵EF∥AC,∴∠AEF=∠CAE,∴∠AEF=∠BAE,∴AF=EF,又∵BE⊥AD,∴∠BAE+∠ABE=90°,∠BEF+∠AEF=90°,又∠AEF=∠BAE,∴∠ABE=∠BEF,∴BF=EF,∴AF=BF,∴F为AB中点.【点睛】此题考查了等腰三角形的判定与性质,平行线的性质,利用了转化及等量代换的思想,其中等腰三角形的判定方法简称“等角对等边”;等腰三角形的性质简称“等边对等角”.24.(1)t,(12﹣t),(15﹣2t),2t;(2)当t=5为何值时,四边形APQB是平行四边形;(3)当t=4时,四边形PDCQ是平行四边形【解析】【分析】(1)根据速度、路程以及时间的关系和线段之间的数量关系,即可求出AP,DP,BQ,CQ 的长;(2)当AP=BQ时,四边形APQB是平行四边形,建立关于t的一元一次方程方程,解方程求出符合题意的t值即可;(3)当PD=CQ时,四边形PDCQ是平行四边形;建立关于t的一元一次方程方程,解方程求出符合题意的t值即可.【详解】解:(1)t,(12﹣t),(15﹣2t),2t;(2)根据题意有AP=t,CQ=2t,PD=12﹣t,BQ=15﹣2t.∵AD∥BC,∴当AP =BQ 时,四边形APQB 是平行四边形.∴t =15﹣2t ,解得t =5.∴t =5时四边形APQB 是平行四边形;(3)由AP =tcm ,CQ =2tcm ,∵AD =12cm ,BC =15cm ,∴PD =AD ﹣AP =12﹣t ,如图1,∵AD ∥BC ,∴当PD =QC 时,四边形PDCQ 是平行四边形.即:12﹣t =2t ,解得t =4,∴当t =4时,四边形PDCQ 是平行四边形.【点睛】本题考查了平行四边形的判定和性质的应用,题目是一道综合性比较强的题目,难度适中,解题的关键是把握“化动为静”的解题思想.25.(1)满足条件的方案有三种,方案一建造A 型沼气池7个,B 型沼气池13个;方案二建造A 型沼气池8个,B 型沼气池12个;方案三建造A 型沼气池9个,B 型沼气池11个,见解析;(2)方案三最省钱,见解析【解析】【分析】(1)关系式为:A 型沼气池占地面积+B 型沼气池占地面积≤365;A 型沼气池能用的户数+B 型沼气池能用的户数≥492;(2)由(1)得到情况进行分析.【详解】解(1)设建设A 型沼气池x 个,B 型沼气池()20x -个,根据题意列不等式组得()()152020365183020492x x x x ⎧+-≤⎪⎨+-≥⎪⎩解不等式组得:79x ≤≤∴满足条件的方案有三种,方案一建造A 型沼气池7个,B 型沼气池13个方案二建造A 型沼气池8个,B 型沼气池12个方案三建造A 型沼气池9个,B 型沼气池11个(2)方案一的造价为:2731353⨯+⨯=万元方案二的造价为2812352⨯+⨯=万元方案三的造价为:2×9+3×11=51万元所以选择方案三建造9个A ,11个B 最省钱【点睛】此题考查一元一次不等式的应用,解题关键在于根据题意列出不等式.26.(1)证明见解析;(2)证明见解析;(3)△CFH 是等边三角形,理由见解析.【解析】【分析】(1)利用等边三角形的性质得出条件,可证明:△BCE ≌△ACD ;(2)利用△BCE ≌△ACD 得出∠CBF=∠CAH ,再运用平角定义得出∠BCF=∠ACH 进而得出△BCF ≌△ACH 因此CF=CH .(3)由CF=CH 和∠ACH=60°根据“有一个角是60°的三角形是等边三角形可得△CFH 是等边三角形.【详解】解:(1)∵∠BCA=∠DCE=60°,∴∠BCE=∠ACD .又BC=AC 、CE=CD ,∴△BCE ≌△ACD .(2)∵△BCE ≌△ACD ,∴∠CBF=∠CAH .∵∠ACB=∠DCE=60°,∴∠ACH=60°.∴∠BCF=∠ACH .又BC=AC ,∴△BCF≌△ACH.∴CF=CH.(3)∵CF=CH,∠ACH=60°,∴△CFH是等边三角形.【点睛】本题考查了三角形全等的判定和性质及等边三角形的性质;普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS.同时还要结合等边三角形的性质,创造条件证明三角形全等是正确解答本题的关键.。

【最新】北师大版八年级下册数学《期末考试试卷》含答案

【最新】北师大版八年级下册数学《期末考试试卷》含答案

2019-2020学年度第二学期期末测试北师大版八年级数学试题时间:120分钟 总分:120分7•下列命题的逆命题是真命题的是 (8•已知等腰△ ABC 的两边长分别为 2和3,则等腰△ ABC 的周长为( )A. 7B. 8C. 6 或 8D. 7 或 89•如图,△ ABC 以点C 为旋转中心,旋转后得到△ EDC ,已知AB = 1.5,BC = 4,AC = 5,贝U DE =()1.下面四个多项式中,能进行因式分解的是( )2 [ 2A. X +yB. X 2- yC. X 2- 1X 2.要使分式一 X 11有意义,则X 的取值应满足(2)A X 2 B. X 1 C. X 2D. x 2+χ+1D. X 1∠ BAD = ∠ BCDC. AO = COD. AC ⊥ BD4•若x>y ,则下■子 A. X — 3>y — 3中错误的是( )C. x+3>y+3D. —3x> — 3y5•下列图形中,不是中心对称图形的是(6•若一个多边形的每一个外角都是 ,则这个多边形是A.七边形B. A 边形C. 九边形D. 十边形A.对顶角相等B. 全等三角形的面积相等C.两直线平行,内错角相等D.等边三角形是等腰三角形、选择题(本大题共10小题,每小题3分,共30分)中,下列结论中错误的是A. ∠ 1 = ∠ B A. B 40C. D.15. 已知 a+b = 3, ab =— 4,贝y a 2b+ab 2的值为 ___________ .16. 如图,在△ ABC 中,∠ C = 90°, AB = 10, AD 是厶ABC 的一条角平分线.若 CD = 3,则厶ABD 的面积A. 1.5B. 3C. 4D. 510.直线l ι : y k 1x b 与直线J : y k 2X 在同一平面直角坐标系中的图象如图所示,则关于X 的不等式C. X v — 2D.无法确定、填空题(本大题共6小题,每小题3分,共18分)11.计算:P'的坐标)B. X v — 12.不等式2x+8 ≥ 3(x+2)的解集为 ______________ 度.4个单位长度得到点是 ______为 ______三、解答题17.分解因式:2x 2- 12x+18.19.如图,在平行四边形 ABCD 中,AE ⊥ BD , CF 丄BD ,垂足分别 E , F .(1) 写出图中所有全等的三角形; (2) 选择(1)中的任意一对进行证明.20.解方程:3—X X 121.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ ABC 的顶点均在格点上,点 C 的坐标为(4 , - 1). ① 把△ ABC 向上平移5个单位后得到对应△ A 1B 1C 1,画出△ A 1B 1C 1;② 以原点O 为对称中心,再画出与△ ABC 关于原点对称的厶A 2B 2C 2,并写出点C 2的坐标.22.如图,在? ABCD 中,点O 是对角线 AC 、BD f 且CF =18.解不等式组3x 2 2x 26x13x11BC,求证:四边形OCFE是平行四边形.63)÷23.化简求值: (1+-X 2x 6,其中X=- 1. 6x 924.女口图,在梯形ABCD中,AD // BC, DE = CE,连接AE、BE, BE丄AE,延长AE交BC 延长线于点F .求25.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成•已知甲队完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400 m2区域的绿化时比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用是0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过元,至少应安排甲队工作多少天?冃能甲队8万答案与解析、选择题(本大题共10小题,每小题3分,共30分)1•下面四个多项式中,能进行因式分解的是()A、x2+y2 B. x2- y C. x2- 1 D. x2+χ+1【答案】C【解析】【分析】根据因式分解的定义对各选项分析后利用排除法求解.【详解】A、X2+y2不能进行因式分解,故本选项错误;B、χ2-y不能进行因式分解,故本选项错误;C、X2-I能利用平方差公式进行因式分解,故本选项正确;D、x2+x+1不能进行因式分解,故本选项错误.故选C.【点睛】本题主要考查了因式分解定义,因式分解就是把一个多项式写成几个整式积的形式,是基础题,比较简单.X 12.要使分式有意义,则X的取值应满足()X 2A. x 2B. X 1C. X 2D. X 1【答案】A【解析】X 12 .故选A. 试题分析:根据分式分母不为O的条件,要使D在实数范围内有意义,必须x 2 0 XX 2考点:分式有意义的条件.【此处有视频,请去附件查看】3.如图,在平行四边形ABCD中,下列结论中错误的是()【解析】 【分析】根据平行四边形的对边平行和平行线的性质可对 A 进行判断;根据平行四边形的对角相等可对 B 进行判断;根据平行四边形的对边相等可对A 进行判断;根据平行四边形的对角线互相平分可对D 进行判断.【详解】A 、在? ABCD 中,∙∙∙ AB // CD ,.∙.∠ 1 = ∠ 2,所以A 选项结论正确;B 、 在? ABCD 中,∠ BAD= ∠ BCD ,所以B 选项结论正确;C 、 在? ABCD 中,AO=CO ,所以C 选项的结论正确; D 、 在? ABCD 中,OA=OC , OB=OD ,所以D 选项结论错误.故选D .【点睛】本题考查了平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的 对角线互相平分.4•若χ>y ,则下列式子中错误.的是()X yA. X — 3>y — 3B.C. x+3>y+3D. — 3x> — 3y3 3【答案】D 【解析】A. 不等式两边都加3 ,不等号的方向不变,正确;B. 不等式两边都除以一个正数,不等号的方向不变,正确;C. 不等式两边都减 3,不等号的方向不变,正确;D. 乘以一个负数,不等号的方向改变,错误。

【北师大版】数学八年级下册《期末测试题》含答案

【北师大版】数学八年级下册《期末测试题》含答案
8.如图,已知四边形ABCD是平行四边形,若AF、BE分别是 、 的平分线, , ,则EF的长是
A.1B.2C.3D.4
【答案】B
【解析】
【分析】
由四边形ABCD是平行四边形,若AF、BE分别是 、 的平分线,易得 与 是等腰三角形,继而求得 ,则可求得答案.
【详解】 四边形ABCD是平行四边形,
, , ,
3.下列分式中,最简分式是
A B. C. D.
4.如图, 沿直线边BC所在的直线向右平移得到 ,下列结论中不一定正确的是
A. B.
C. D.
5.如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则
∠CBE的度数为
A.80°B.70°C.40°D.30°
【详解】∵AB=AC,∠A=40°,
∴∠ABC=∠C=(180°−∠A)÷2=70°,
∵线段AB的垂直平分线交AB于D,交AC于E,
∴AE=BE,
∴∠ABE=∠A=40°,
∴∠CBE=∠ABC-∠ABE=30°,
故选D.
【点睛】本题考查了线段垂直平分线的性质以及等腰三角形的性质,熟练掌握相关性质,运用数形结合思想是解题的关键.
如图1,当点E在AD上时,连接BE、BF,试探究BE与BF的数量关系,并证明你的结论;
在 的前提下,求EF的最小值和此时 的面积;
当点E运动到DC边上时,如图2,连接BE、DF,交点为点M,连接AM,则 大小是否变化?请说明理由.
30.如图, 中, , ,在AB的同侧作正 、正 和正 ,求四边形PCDE面积的最大值.
25.如图,平面直角坐标系中,已知点 , 若对于平面内一点C,当 是以AB为腰的等腰三角形时,称点C时线段AB的“等长点”.

北师大版八年级下学期数学期末试卷含答案(共5套)

北师大版八年级下学期数学期末试卷含答案(共5套)

北师大版八年级下学期期末调研测试题一、选择题(本大题共12小题,每小题4分,共48分)1.“抛一枚均匀的硬币,落地后正面朝上”这一事件是()A.必然事件B.随机事件C.确定事件D.不可能事件2.下列条件中不能判断四边形是平行四边形的是()A.AB=CD,AD=BC B.AB=CD,AB∥CDC.AB=CD,AD∥BC D.AB∥CD,AD∥BC3.方程x(x+3)=0的根是()A.x=0B.x=-3C.x1=0,x2=3D.x1=0,x2=-34.某几何体的三视图如图所示,则这个几何体是()A.圆柱B.正方形C.球D.圆锥5.如图,在口ABCD中,过点C的直线CE⊥AB,垂足为E,∠EAD=53°,则∠BCE的度数为()A.37°B.47°C.53°D.127°EDAB C6.关于x的一元二次方程kx2+2x-1=0有两个不相等的实数根,则k的取值范围是()A.k>-1B.k≥-1C.k≠0D.k>-1且k≠07.同一时刻,小明在阳光下的影长为2米,与他邻近的旗杆的影长为6米,小明的身高为1.6米,则旗杆的高为()A.3.2米B.4.8米C.5.2米D.5.6米8.若菱形的周长为8cm,高为1cm,则菱形两邻角的度数比为()A.3∶1B.4∶1C.5∶1D.6∶19.下列各组图形可能不相似的是( )A .各有一个角是45°的两个等腰三角形B .各有一个角是60°的两个等腰三角形C .各有一个角是105°的两个等腰三角形D .两个等腰直角三角形10.如图,P 为口ABCD 的边AD 上的一点,E 、F 分别是PB 、PC 的中点,△PEF 、△PDC 、△P AB 的面积分别为S 、S 1、S 2,若S =3,则S 1+S 2的值是( ) A .3 B .6 C .12 D .2411.如图,正方形ABCD 的边长为3,点E 、F 分别在边BC 、CD 上,将AB 、AD 分别沿AE 、AF 折叠,点B 、D 恰好都落在点G 处,已知BE =1,则EF 的长为( )A .32B .52C .94D .312.如图,已知在Rt △ABC 中,AB =AC =2,在△ABC 内作第一个内接正方形DEFG ;然后取GF 的中点P ,连接PD 、PE ,在△PDE 内作第二个内接正方形HIKJ ,再取线段KJ 的中点Q ,在△QHI 内作第三个内接正方形……依次进行下去,则第n 个内接正方形的边长为( )A .23×(12)n -1B .223×(12)n -1C .23×(12)nD .223×(12)n二、填空题(本大题共6小题,每小题4分,共24分)13.一个多边形图案在一个有放大功能的复印机上复印出来,它的一条边由原来的1cm 变成了2cm ,那么它的面积会由原来的6cm 2变为___________.14.有一个正多边形的每一个外角都是60°,则这个多边形的边数是_______________.15.如图所示,直线a经过正方形ABCD的顶点A,分别过此正方形的顶点B、D作BF⊥a于点F、DE⊥a于点E,若DE=4,BF=3,则EF的长为____________.16.如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长为____________.17.设a,b是方程x2+x-2017=0的两个不相等的实数根,则a2+2a+b的值为_________________.18.如图,菱形ABCD和菱形ECGF的边长分别为2和3,∠A=120°,则图中阴影部分的面积是___________________.三、解答题(本大题共9小题,共78分)19.解方程:(1)x2-2x-3=0; (2)x2-4x+1=020.如图,在口ABCD中,∠ABC的平分线交CD于点E,∠ADC的平分线交AB于点F.求证:BF=DE.21.小玲用下面的方法来测量学校教学大楼AB的高度:如图,在水平面上放一面平面镜,镜子与教学楼的距离EA=12米,当她与镜子的距离CE=2米时,她刚好能从镜子中看到教学楼的顶端B.已知她的眼睛距地面的高度DC=1.5米.请你帮助小玲计算出教学楼的高度AB是多少米(根据光的反射定律:反射角等于入射角.)22.某市为改善生态环境,积极开展向雾霾宣战,还碧水蓝天专项整治活动.已知2014年共投资1000万元,2016年共投资1210万元.(1)求2014年到2016年的平均增长率;(2)该市预计2017年的投资增长率与前两年相同,则2017年的投资预算是多少万元?23.小明和小丽用形状大小相同,面值不同的5张邮票设计了一个游戏,将面值1元、2元、3元的邮票各一张装入一个信封,面值4元、5元的邮票各一张装入另一个信封,游戏规定:分别从两个信封中各抽取1张邮票,若它们的面值和是偶数,则小明赢;若它们的面值之和是奇数,则小丽赢.请你判断这个游戏是否公平,并说明理由.24.如图1,将矩形ABCD沿DE折叠,使顶点A落在DC上的点A′处,然后将矩形展平,沿EF折叠,使顶点A落在折痕DE上的点G处,再将矩形ABCD沿CE折叠,此时顶点B恰好落在DE上的点H处,如图2.(1)求证:EG=CH;(2)已知AF=2,求AD和AB的长.25. 如图,在萎形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.26. 如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t(0<t≤15).过点D作DE⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.27. 如图1,四边形ABHC与四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由;(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G,交AC于点M,求证:BD⊥CF;(3)在(2)的条件下,当AB=4,AD=2时,求线段CM的长.参考答案八年级第二学期期末考试数学试卷(北师大版)考试时间90分钟 满分100分一、选择题(每小题3分,共24分) 1.下列关于的方程:①;②;③;④();⑤1x =-1,其中一元二次方程的个数是( ) A .1 B .2 C .3 D .42.已知α为锐角,且sin(α-10°)=22,则α等于( )A .45°B .55°C .60°D .65°3.如图,是由6个棱长为1个单位的正方体摆放而成的,将正方体A 向右平移2个单位,向后平移1个单位后,所得几何体的视图( ) A.主视图改变,俯视图改变 B.主视图不变,俯视图不变 C.主视图不变,俯视图改变 D.主视图改变,俯视图不变4.二次函数y=ax 2+bx 的图象如图所示,若一元二次方程ax 2+bx+m=0有两个不相等的实数根,则整数m 的最小值为( )A .﹣3B .﹣2C .﹣1D .2(第4题图) (第5题图) (第6题图)5.如图,点A ,B ,C ,D 的坐标分别是(1,7),(1,1),(4,1),(6,1),以点C ,D ,E 为顶点的三角形与△ABC 相似,则点E 的坐标不可能是( )A .(6,0)B .(6,3)C .(6,5)D .(4,2) 6.如图,将一个长为,宽为 的矩形纸片先按照从左向右对折,再按照从下向上的方向对折,沿所得矩形两邻边中点的连线(虚线)剪下(如图(1)),再打开,得到如图(2)所示的小菱形的面积为( ) A. B. C. D.DCBA7.如图,平面直角坐标系中,直线y=﹣x+a与x、y轴的正半轴分别交于点B和点A,与反比例函数y=﹣的图象交于点C,若BA:AC=2:1,则a的值为( )A.2 B.﹣2 C.3 D.﹣38.观察二次函数y=ax2+bx+c(a≠0)的图象,下列四个结论:①4ac﹣b2>0;②4a+c<2b;③b+c<0;④n(an+b)﹣b<a(n≠1).正确结论的个数是()A. 4个 B. 3个 C. 2个 D. 1个(第7题图) (第8题图) (第12题图) (第13题图)二、填空题(每小题3分,共21分)9.计算:﹣14+﹣4cos30°= .10.在同一平面直角坐标系中,若一个反比例函数的图象与一次函数=-2+6y x 的图象无.公共点,则这个反比例函数的表达式是(只写出符合条件的一个即可).11.若关于x的一元二次方程..(m-2)x²+2x-1=0有实数根,求m的取值范围。

北师大版八年级数学下册期末考试及答案【全面】

北师大版八年级数学下册期末考试及答案【全面】

北师大版八年级数学下册期末考试及答案【全面】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-2019的相反数是( ) A .2019B .-2019C .12019D .12019-2.将9.52变形正确的是( ) A .9.52=92+0.52B .9.52=(10+0.5)(10﹣0.5)C .9.52=102﹣2×10×0.5+0.52D .9.52=92+9×0.5+0.523.解分式方程11222x x x-=---时,去分母变形正确的是( ) A .()1122x x -+=--- B .()1122x x -=-- C .()1122x x -+=+-D .()1122x x -=---4.在平面直角坐标系中,点A (﹣3,2),B (3,5),C (x ,y ),若AC ∥x 轴,则线段BC 的最小值及此时点C 的坐标分别为( ) A .6,(﹣3,5) B .10,(3,﹣5) C .1,(3,4) D .3,(3,2)5.代数式131x x -+-中x 的取值范围在数轴上表示为( ) A . B . C .D .6.关于x 的不等式组314(1){x x x m->-<的解集为x <3,那么m 的取值范围为( ) A .m=3B .m >3C .m <3D .m ≥37.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙B.甲和丁C.乙和丙D.乙和丁8.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为()A.32B.3 C.1 D.439.如图,两个不同的一次函数y=ax+b与y=bx+a的图象在同一平面直角坐标系的位置可能是()A.B.C.D.10.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.6二、填空题(本大题共6小题,每小题3分,共18分)1.9的平方根是_________.2.已知x,y满足方程组x2y5x2y3-=⎧+=-⎨⎩,则22x4y-的值为__________.3.若m20161-m3﹣m2﹣2017m+2015=________.4.如图,▱ABCD中,AB=3cm,BC=5cm,BE平分∠ABC交AD于E点,CF平分∠BCD交AD于F点,则EF的长为________m.5.如图,在□ABCD中,BE平分∠ABC,BC=6,DE=2,则□ABCD的周长等于__________.6.如图,在矩形ABCD中,BC=20cm,点P和点Q分别从点B和点D出发,按逆时针方向沿矩形ABCD的边运动,点P和点Q的速度分别为3cm/s和2cm/s,则最快_________s后,四边形ABPQ 成为矩形.三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)257320x yx y-=⎧⎨-=⎩(2)134342x yx y⎧-=⎪⎨⎪-=⎩2.先化简,再求值:(1﹣11a-)÷2244a aa a-+-,其中23.已知关于x的一元二次方程22240x x k++-=有两个不相等的实数根(1)求k的取值范围;(2)若k为正整数,且该方程的根都是整数,求k的值.4.如图,直角坐标系xOy 中,一次函数y=﹣12x+5的图象l 1分别与x ,y 轴交于A ,B 两点,正比例函数的图象l 2与l 1交于点C (m ,4). (1)求m 的值及l 2的解析式; (2)求S △AOC ﹣S △BOC 的值;(3)一次函数y=kx+1的图象为l 3,且11,l 2,l 3不能围成三角形,直接写出k 的值.5.如图,在平面直角坐标系xOy 中,函数(0)k y x x=>的图象与直线2y x =-交于点A(3,m). (1)求k 、m 的值;(2)已知点P(n ,n)(n>0),过点P 作平行于x 轴的直线,交直线y=x-2于点M ,过点P 作平行于y 轴的直线,交函数(0)k y x x=> 的图象于点N. ①当n=1时,判断线段PM 与PN 的数量关系,并说明理由; ②若PN ≥PM ,结合函数的图象,直接写出n 的取值范围.6.为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、D4、D5、A6、D7、D8、A9、C 10、A二、填空题(本大题共6小题,每小题3分,共18分)1、±32、-153、40304、15、206、4三、解答题(本大题共6小题,共72分)1、(1)55x y =⎧⎨=⎩;(2)64x y =⎧⎨=⎩.2、原式=2aa -=.3、(1)k <52(2)24、(1)m=2,l 2的解析式为y=2x ;(2)S △AOC ﹣S △BOC =15;(3)k 的值为32或2或﹣12.5、(1) k 的值为3,m 的值为1;(2)0<n ≤1或n ≥3.6、(1)A 种纪念品需要100元,购进一件B 种纪念品需要50元(2)共有4种进货方案(3)当购进A 种纪念品50件,B 种纪念品50件时,可获最大利润,最大利润是2500元。

八年级数学下册期末考试卷附答案(北师大版)

八年级数学下册期末考试卷附答案(北师大版)

八年级数学下册期末考试卷附答案(北师大版)(满分:120分;考试时间:120分钟)一.单选题。

(每小题4分,共40分)1.下列图形中,既是轴对称图形,又是中心对称图形的是( )2.若x >y ,则下列不等式一定成立的是( )A.x+4>y+6B.x -8<y -8C.x9>y9 D.﹣a >﹣b 3.下列各式:①3x ;②a+b 4;③y 3y ;④xyπ+2,其中是分式的是( )A.①③B.③④C.①②D.①②③④ 4.关于x 的方程5x x -2=ax -2+1有增根,则a 的值是( )A.0B.2或3C.2D.3 5.如果把5a a+b中的a ,b 同时扩大10倍,那么这个代数式的值( )A.不变B.扩大50倍C.扩大10倍D.缩小大原来的1106.如图,在四边形ABCD 中,AB ∥CD ,要使四边形ABCD 是平行四边形,下列添加的条件不正确的是( )A.AB=CDB.BC=ADC.∠A=∠CD.BC ∥AD(第6题图) (第7题图) (第8题图) 7.如图,正五边形ABCDE 中,连接BE ,则∠ABE 的度数为( ) A.30° B.36° C.54° D.72°8.如图,一个长为2,宽为1的长方形以所示姿态从直线l的左侧水平平移至右侧(图中的虚线是水平线),其中,平移的距离是()A.1B.2C.3D.2√29.若不等式组{x<1x<a的解集是x<a,则a的取值范围是()A.a≤1B.a=1C.a≥1D.a<1二.填空题。

(每小题4分,共24分)11.因式分解:a2-6a= .12.若分式x+1x-1的值为0,则x的值是 .13.如图,正方形AMNP的边AM在正五边形ABCDE的边AB上,则∠PAE等于 .(第13题图)(第15题图)(第16题图)14.若不等式(a-4)x>1的解集是x<1a-4,则m的取值范围是 .15.如图,在平行四边形ABCD中,CE平分∠BCD,若CD=5,BC=3,则AE的长是 .16.如图,点A的坐标为(1,3),点B在x轴上,把△OAB沿x轴向右平移到△ECD,若四边形ABDC的面积为15,则点C的坐标为 .三.解答题。

北师大版八年级数学下册《期末试卷》(附答案)

北师大版八年级数学下册《期末试卷》(附答案)

学校姓名班级___________ 座位号……装…………订…………线…………内…………不…………要…………答…………题……一、选择题(毎小题3分,共30分)1.(3分)下列四种汽车标志,其中既是中心对称图形,又是轴对称图形的是()A .B .C .D .2.(3分)下面四个多项式中,能进行因式分解的是()A.x2+y2B.x2﹣y C.x2﹣1 D.x2+x+13.(3分)已知等腰△ABC的两边长分别为2和3,则等腰△ABC的周长为()A.7 B.8 C.6 或8 D.7或84.(3分)如果分式有意义,那么x的取值范围是()A.x≠0 B.x≤﹣3 C.x≥﹣3 D.x≠﹣35.(3分)将下列多项式分解因式,结果中不含因式x﹣1的是()A.x2﹣1 B.x(x﹣2)+(2﹣x)C.x2﹣2x+1 D.x2+2x+16.(3分)如图在直角△ABC中,∠BAC=90°,AB=8,AC=6,DE是AB边的垂直平分线,垂足为D,交边BC于点E,连接AE,则△ACE的周长为()A.16 B.15 C.14 D.137.(3分)如图,△ABC中,点D、E分别在AB、AC边上,AD=BD,AE=EC,BC=6,则DE=()A.4 B.3 C.2 D.58.(3分)如图在平面直角坐标系中,□MNEF的两条对角线ME,NF交于原点O,点F的坐标是(3,2),则点N的坐标是()A.(﹣3,﹣2)B.(﹣3,2)C.(﹣2,3)D.(2,3)9.(3分)若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.>C.x+3>y+3 D.﹣3x>﹣3y10.(3分)直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b>k2x的解为()A.x>﹣1 B.x<﹣1 C.x<﹣2 D.无法确定二、填空题(毎小题4分,共24分)11.(4分)已知a+b=3,ab=﹣4,则a2b+ab2的值为.12.(4分)如图,在△ABC中,D,E,F,分别时AB,BC,AC,的中点,若平移△ADF平移,则图中能与它重合的三角形是.(写出一个即可)13.(4分)化简:=.14.(4分)若关于x的分式方程=1的解为正数,那么字母a的取值范围是.15.(4分)点P(﹣4,5)关于x轴对称的点P′的坐标是.16.(4分)如图,在△ABC中,∠C=90°,AB=10,AD是△ABC的一条角平分线.若CD=3,则△ABD的面积为.三、解答题(每小题6分,共18分)17.(6分)解不等式组:,并将解集在数轴上表示出来.18.(6分)先化简,再求值:(﹣x﹣1)÷,其中x=,y=.19.(6分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上,请按要求完成下列步骤:(1)画出将△ABC向上平移3个单位后得到的△A1B1C1;(2)画出将△A1B1C1绕点C1按顺时针方向旋转90°后所得到的△A2B2C1.四、解答题(毎小题7分,共21分)20.(7分)如图,在▱ABCD中,点E、F分别在AD、BC上,且AE=CF,EF、BD相交于点O,求证:OE=OF.21.(7分)如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3(1)求证:BN=DN;(2)求△ABC的周长.22.(7分)阅读下列解题过程:已知a,b,c为△ABC的三边长,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:∵a2c2﹣b2c2=a4﹣b4,①∴c2(a2﹣b2)=(a2+b2)(a2﹣b2),②∴c2=a2+b2,③∴△ABC为直角三角形.④回答下列问题:(1)在上述解题过程中,从哪一步开始出现错误?该步的序号为:;(2)错误的原因为:;(3)请你将正确的解答过程写下来.五、解答题(每小题9分,共27分)23.(9分)如图,已知△ABC是等边三角形,点D、F分别在线段BC、AB上,∠EFB=60°,EF=DC.(1)求证:四边形EFCD是平行四边形.(2)连结BE,若BE=EF,求证:AE=AD.24.(9分)甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?25.(9分)已知△ABC是等边三角形,D是BC边上的一个动点(点D不与B,C重合)△ADF是以AD为边的等边三角形,过点F作BC的平行线交射线AC 于点E,连接BF.(1)如图1,求证:△AFB≌△ADC;(2)请判断图1中四边形BCEF的形状,并说明理由;(3)若D点在BC 边的延长线上,如图2,其它条件不变,请问(2)中结论还成立吗?如果成立,请说明理由.2017-2018学年广东省茂名市高州市八年级(下)期末数学试卷参考答案与试题解析一、选择题(毎小题3分,共30分)1.(3分)下列四种汽车标志,其中既是中心对称图形,又是轴对称图形的是()A.B.C.D.【解答】解:A、是中心对称图形,不是轴对称图形,故本选项不符合题意;B、不是中心对称图形,是轴对称图形,故本选项不符合题意;C、既是中心对称图形,又是轴对称图形,故本选项符合题意;D、是中心对称图形,不是轴对称图形,故本选项不符合题意.故选:C.2.(3分)下面四个多项式中,能进行因式分解的是()A.x2+y2B.x2﹣y C.x2﹣1 D.x2+x+1【解答】解:A、x2+y2不能进行因式分解,故本选项错误;B、x2﹣y不能进行因式分解,故本选项错误;C、x2﹣1能利用平方差公式进行因式分解,故本选项正确;D、x2+x+1不能进行因式分解,故本选项错误.故选:C.3.(3分)已知等腰△ABC的两边长分别为2和3,则等腰△ABC的周长为()A.7 B.8 C.6 或8 D.7或8【解答】解:当2为底时,三角形的三边为3,2、3可以构成三角形,周长为8;当3为底时,三角形的三边为3,2、2可以构成三角形,周长为7.4.(3分)如果分式有意义,那么x的取值范围是()A.x≠0 B.x≤﹣3 C.x≥﹣3 D.x≠﹣3【解答】解:由题意得:x+3≠0,解得:x≠3,故选:D.5.(3分)将下列多项式分解因式,结果中不含因式x﹣1的是()A.x2﹣1 B.x(x﹣2)+(2﹣x)C.x2﹣2x+1 D.x2+2x+1【解答】解:A、x2﹣1=(x+1)(x﹣1),故A选项不合题意;B、x(x﹣2)+(2﹣x)=(x﹣2)(x﹣1),故B选项不合题意;C、x2﹣2x+1=(x﹣1)2,故C选项不合题意;D、x2+2x+1=(x+1)2,故D选项符合题意.故选:D.6.(3分)如图在直角△ABC中,∠BAC=90°,AB=8,AC=6,DE是AB边的垂直平分线,垂足为D,交边BC于点E,连接AE,则△ACE的周长为()A.16 B.15 C.14 D.13【解答】解:连接AE,∵在Rt△ABC中,∠BAC=90°,AB=8,AC=6,∴BC==10,∵DE是AB边的垂直平分线,∴AE=BE,∴△ACE的周长为:AE+EC+AC=BE+CE+AC=BC+AC=10+6=16.7.(3分)如图,△ABC中,点D、E分别在AB、AC边上,AD=BD,AE=EC,BC=6,则DE=()A.4 B.3 C.2 D.5【解答】解:∵AD=BD,AE=EC,∴DE是△ABC的中位线,∴BC=2DE,∴DE=3,故选:B.8.(3分)如图在平面直角坐标系中,□MNEF的两条对角线ME,NF交于原点O,点F的坐标是(3,2),则点N的坐标是()A.(﹣3,﹣2)B.(﹣3,2)C.(﹣2,3)D.(2,3)【解答】解:在▱MNEF中,点F和N关于原点对称,∵点F的坐标是(3,2),∴点N的坐标是(﹣3,﹣2).9.(3分)若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.>C.x+3>y+3 D.﹣3x>﹣3y【解答】解:A、根据不等式的性质1,可得x﹣3>y﹣3,故A选项正确;B、根据不等式的性质2,可得>,故B选项正确;C、根据不等式的性质1,可得x+3>y+3,故C选项正确;D、根据不等式的性质3,可得﹣3x<﹣3y,故D选项错误;故选:D.10.(3分)直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b>k2x的解为()A.x>﹣1 B.x<﹣1 C.x<﹣2 D.无法确定【解答】解:能使函数y=k1x+b的图象在函数y=k2x的上方时的自变量的取值范围是x<﹣1.故关于x的不等式k1x+b>k2x的解集为:x<﹣1.故选:B.二、填空题(毎小题4分,共24分)11.(4分)已知a+b=3,ab=﹣4,则a2b+ab2的值为﹣12.【解答】解:∵a+b=3,ab=﹣3,∴a2b+ab2=ab(a+b)=4×(﹣3)=﹣12.故答案为:﹣1212.(4分)如图,在△ABC中,D,E,F,分别时AB,BC,AC,的中点,若平移△ADF平移,则图中能与它重合的三角形是△DBE(或△FEC).(写出一个即可)【解答】解:△DBE形状和大小没有变化,属于平移得到;△DEF方向发生了变化,不属于平移得到;△FEC形状和大小没有变化,属于平移得到.∴图中能与它重合的三角形是△DBE(或△FEC).13.(4分)化简:=1.【解答】解:原式==1.故答案为:1.14.(4分)若关于x的分式方程=1的解为正数,那么字母a的取值范围是a>1且a≠2.【解答】解:分式方程去分母得:2x﹣a=x﹣1,解得:x=a﹣1,根据题意得:a﹣1>0且a﹣1﹣1≠0,解得:a>1且a≠2.故答案为:a>1且a≠2.15.(4分)点P(﹣4,5)关于x轴对称的点P′的坐标是(﹣4,﹣5).【解答】解:点P(﹣4,5)关于x轴对称的点P′的坐标是(﹣4,﹣5),故答案为:(﹣4,﹣5).16.(4分)如图,在△ABC中,∠C=90°,AB=10,AD是△ABC的一条角平分线.若CD=3,则△ABD的面积为15.【解答】解:作DE⊥AB于E.∵AD平分∠BAC,DE⊥AB,DC⊥AC,∴DE=CD=3.∴△ABD的面积为×3×10=15.故答案是:15.三、解答题(每小题6分,共18分)17.(6分)解不等式组:,并将解集在数轴上表示出来.【解答】解:,由①得,x>﹣3,由②得,x≤2,故此不等式组的解集为:﹣3<x≤2.在数轴上表示为:18.(6分)先化简,再求值:(﹣x﹣1)÷,其中x=,y=.【解答】解:(﹣x﹣1)÷=×==﹣1∵x=,y=∴﹣1=﹣1=﹣1=﹣119.(6分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上,请按要求完成下列步骤:(1)画出将△ABC向上平移3个单位后得到的△A1B1C1;(2)画出将△A1B1C1绕点C1按顺时针方向旋转90°后所得到的△A2B2C1.【解答】解:(1)如图所示:△A1B1C1是所求的三角形.(2)如图所示:△A2B2C1为所求作的三角形.四、解答题(毎小题7分,共21分)20.(7分)如图,在▱ABCD中,点E、F分别在AD、BC上,且AE=CF,EF、BD相交于点O,求证:OE=OF.【解答】证明:方法1,连接BE、DF,如图所示:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴DE=BF,∴四边形BEDF是平行四边形,∴OF=OE.方法2,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵∠ODE=∠OBF,AE=CF,∴DE=BF,在△DOE和△BOF中,,∴△DOE≌△BOF(AAS),∴OE=OF.21.(7分)如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3(1)求证:BN=DN;(2)求△ABC的周长.【解答】(1)证明:∵AN平分∠BAC∴∠1=∠2∵BN⊥AN∴∠ANB=∠AND=90°在△ABN和△ADN中,∵,∴△ABN≌△ADN(ASA),∴BN=DN.(2)解:∵△ABN≌△ADN,∴AD=AB=10,又∵点M是BC中点,∴MN是△BDC的中位线,∴CD=2MN=6,故△ABC的周长=AB+BC+CD+AD=10+15+6+10=41.22.(7分)阅读下列解题过程:已知a,b,c为△ABC的三边长,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:∵a2c2﹣b2c2=a4﹣b4,①∴c2(a2﹣b2)=(a2+b2)(a2﹣b2),②∴c2=a2+b2,③∴△ABC为直角三角形.④回答下列问题:(1)在上述解题过程中,从哪一步开始出现错误?该步的序号为:③;(2)错误的原因为:除式可能为零;(3)请你将正确的解答过程写下来.【解答】解:(1)③;(2)除式可能为零;(3)∵a2c2﹣b2c2=a4﹣b4,∴c2(a2﹣b2)=(a2+b2)(a2﹣b2),∴a2﹣b2=0或c2=a2+b2,当a2﹣b2=0时,a=b;当c2=a2+b2时,∠C=90°,∴△ABC是等腰三角形或直角三角形.故答案是③,除式可能为零.五、解答题(每小题9分,共27分)23.(9分)如图,已知△ABC是等边三角形,点D、F分别在线段BC、AB上,∠EFB=60°,EF=DC.(1)求证:四边形EFCD是平行四边形.(2)连结BE,若BE=EF,求证:AE=AD.【解答】证明:(1)∵△ABC是等边三角形,∴∠ABC=60°,∵∠EFB=60°,∴∠ABC=∠EFB,∴EF∥DC(内错角相等,两直线平行),∵DC=EF,∴四边形EFCD是平行四边形;(2)连接BE∵BF=EF,∠EFB=60°,∴△EFB是等边三角形,∴EB=EF,∠EBF=60°∵DC=EF,∴EB=DC,∵△ABC是等边三角形,∴∠ACB=60°,AB=AC,∴∠EBF=∠ACB,∴△AEB≌△ADC,∴AE=AD.24.(9分)甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?【解答】解:(1)设甲每天修路x千米,则乙每天修路(x﹣0.5)千米,根据题意,可列方程:1.5×=,解得x=1.5,经检验x=1.5是原方程的解,且x﹣0.5=1,答:甲每天修路1.5千米,则乙每天修路1千米;(2)设甲修路a天,则乙需要修(15﹣1.5a)千米,∴乙需要修路=15﹣1.5a(天),由题意可得0.5a+0.4(15﹣1.5a)≤5.2,解得a≥8,答:甲工程队至少修路8天.25.(9分)已知△ABC是等边三角形,D是BC边上的一个动点(点D不与B,C重合)△ADF是以AD为边的等边三角形,过点F作BC的平行线交射线AC 于点E,连接BF.(1)如图1,求证:△AFB≌△ADC;(2)请判断图1中四边形BCEF的形状,并说明理由;(3)若D点在BC 边的延长线上,如图2,其它条件不变,请问(2)中结论还成立吗?如果成立,请说明理由.【解答】证明:(1)∵△ABC和△ADF都是等边三角形,∴AF=AD,AB=AC,∠FAD=∠BAC=60°,又∵∠FAB=∠FAD﹣∠BAD,∠DAC=∠BAC﹣∠BAD,∴∠FAB=∠DAC,在△AFB和△ADC中,,∴△AFB≌△ADC(SAS);(2)由①得△AFB≌△ADC,∴∠ABF=∠C=60°.又∵∠BAC=∠C=60°,∴∠ABF=∠BAC,∴FB∥AC,又∵BC∥EF,∴四边形BCEF是平行四边形;(3)成立,理由如下:∵△ABC和△ADF都是等边三角形,∴AF=AD,AB=AC,∠FAD=∠BAC=60°,又∵∠FAB=∠BAC﹣∠FAE,∠DAC=∠FAD﹣∠FAE,∴∠FAB=∠DAC,在△AFB和△ADC中,,∴△AFB≌△ADC(SAS);∴∠AFB=∠ADC.又∵∠ADC+∠DAC=60°,∠EAF+∠DAC=60°,∴∠ADC=∠EAF,∴∠AFB=∠EAF,∴BF∥AE,又∵BC∥EF,∴四边形BCEF是平行四边形.考试注意事项1、准备充分,忙中有序考试前的准备是否充分对临场的情绪状态和水平的发挥有重要的影响。

最新北师大版数学八年级下册期末考试真题附答案解析

最新北师大版数学八年级下册期末考试真题附答案解析

北师大版数学八年级下册期末考试真题姓名:得分:一、选择题1.若分式有意义,则x应满足的条件是()A.x≠0 B.x≥3 C.x≠3 D.x≤32.下列多项式的分解因式,正确的是()A.12xyz﹣9x2y2=3xyz(4﹣3xyz) B.3a2y﹣3ay+6y=3y(a2﹣a+2)C.﹣x2+xy﹣xz=﹣x(x2+y﹣z)D.a2b+5ab﹣b=b(a2+5a)3.如图,▱ABCD中,对角线AC、BD交于点O,点E是BC的中点.若OE=3cm,则AB的长为()A.3cm B.6cm C.9cm D.12cm4.如图,不等式组的解集在数轴上表示正确的是()A.B.C.D.5.小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x个/分钟,则下列方程正确的是()A.B.C.D.6.如果x>y,那么下列各式中正确的是()A.x﹣2<y﹣2 B.<C.﹣2x<﹣2y D.﹣x>﹣y7.不等式组的解集在数轴上表示正确的是()A.B.C.D.8.两个等腰三角形全等的条件是()A.有两条边对应相等B.有两个角对应相等C.有一腰和一底角对应相等D.有一腰和一角对应相等9.如图,△ABC沿BC边所在的直线向左平移得到△DEF,下列错误的是()A.AC=DF B.EB=FC C.DE∥AB D.∠D=∠DEF10.下列各式从左到右的变形中,是因式分解的为()A.x(a+2b)=ax+2bx B.x2﹣1+4y2=(x﹣1)(x+1)+4y2C.x2﹣4y2=(x+2y)(x﹣2y)D.ax+bx﹣c=x(a+b)﹣c二、填空题11.已知一等腰三角形两边为2,4,则它的周长.12.x与3的和不小于6,用不等式表示为.13.如图,∠C=∠ABD=90°,AC=4,BC=3,BD=12,则AD的长等于.14.若x2+px+q=(x+2)(x﹣4),则p=,q=.15.若9x2+(m﹣1)x+4是完全平方式,那么m=.三、解答题16.解不等式组,并把解集在数轴上表示出来..。

北师大版八年级下册数学期末考试试题含答案

北师大版八年级下册数学期末考试试题含答案

北师大版八年级下册数学期末考试试卷一、单选题1.若m n >,则下列不等式中不成立...的是()A .22m n +>+B .22m n->-C .2>2m n --D .22m n>2.下列图形:平行四边形、等腰三角形、线段、正六边形、圆,其中既是中心对称图形又是轴对称图形的有()A .1个B .2个C .3个D .4个3.下列各式从左到右的变形中,是因式分解的是()A .()()2339a a a +-=-B .()()2211a b a b a b -+=+-+C .()()2422m m m -=+-D .2211m m m m ⎛⎫+=+ ⎪⎝⎭4.下列各式中x 、y 的值均扩大为原来的2倍,则分式的值一定保持不变的是()A .2x y B .1x x y-+C .2x y-D .y x y+5.若关于x 的分式方程311-=-m x 的解为2x =,则m 的值为()A .5B .4C .3D .26.如图,在ABC 中,AB AC =,AD AB ⊥交BC 于点D ,120BAC ∠=︒,4=AD ,则BC 的长()A .8B .10C .11D .127.如图,将ABC 绕点A 按逆时针方向旋转80°,得到ADE ,连接BE ,若//AD BE ,CAE ∠的度数为()A .20°B .30°C .25°D .35°8.如图,一次函数1y kx b =+图象经过点()2,0A ,与正比例函数22y x =的图象交于点B ,则不等式02kx b x <+<的解集为()A .0x >B .1x >C .01x <<D .12x <<9.如图,在ABC 中,AB AC =,46BAC ∠=︒,BAC ∠的平分线与AB 的垂直平分线OD 交于点O ,点E 在BC 上,点F 在AC 上,连接EF ,将C ∠沿EF 折叠,点C 与点O 恰好重合时,则OEC ∠的度数()A .90°B .92°C .95°D .98°二、填空题10x 的取值范围是______.11.已知一个正多边形的一个内角是120º,则这个多边形的边数是_______.12.若1n m -=,则22242m mn n -+的值为______.13.如图:在ABC 中,90ACB ∠=︒,AD 平分CAB ∠交BC 于点D ,且2BD CD =,9BC cm =,则点D 到AB 的距离为______.14.不等式5132x x -+>-的正整数解为______.15.如图,ABC ∆,D 、E 分别是BC 、AC 的中点,BF 平分ABC ∠,交DE 于点F ,若10AB =,8BC =,则EF 的长是______.16.关于x 的分式方程2433x m mx x++=--的解为非负数,则实数m 的取值范围______.17.如图,四边形ABCD 中,//AB DC ,6DC =cm ,9AB =cm ,点P 以1cm/s 的速度由A 点向B 点运动,同时点Q 以2cm/s 的速度由C 点向D 点运动,其中一点到达终点时,另一点也停止运动,当线段PQ 将四边形ABCD 截出一个平行四边形时,此时的运动时间为______s .18.如图,BD 是ABC 的内角平分线,CE 是ABC 的外角平分线,过A 分别作AF BD ⊥、AG CE ⊥,垂足分别为F 、G ,连接FG ,若6AB =,5AC =,4BC =,则FG 的长度为____三、解答题19.(1)因式分解:32231212x x y xy -+(2)解不等式组:()3241213x x x x ⎧--<⎪⎨+>-⎪⎩,并把解集表示在数轴上.20.(1)先化简,再求值:236214422m m m m m m+-÷++++-,其中5m =.(2)解方:2231111x x x +=+--21.如图,在平面直角坐标系中,网格的每个小方格都是边长为1个单位长度的正方形,ABC 的顶点均落在格点上.(1)将ABC 先向右平移6个单位长度再向下平移1个单位长度,得到111A B C △,在网格中画出111A B C △;(2)作ABC 关于x 轴的轴对称图形,得到222A B C △,在网格中画出222A B C △.22.如图,在ABC 中,90BAC ∠=︒,AB AC =,点D 为BC 的中点,E 、F 分别是AB ,AC 上的点,且BE AF =,连接AD 、DE 、DF 、EF .求证:①BED ≌AFD V ②DE DF⊥23.某服装厂准备加工260套运动服,在加工了60套后,采用新技术,使每天的工作效率是原来的2倍,结果共用了8天完成,求该厂原来每天加工多少套运动服.24.如图,在ABCD 中,过点B 作BM AC ⊥,交AC 于点E ,交CD 于点M ,过点D 作DN AC ⊥,交AC 于点F ,交AB 于点N .(1)求证:四边形BMDN 是平行四边形;(2)已知125AF EM ==,,求AN 的长.25.甲、乙两家商场以相同的价格出售同样的商品,为了吸引顾客各自推出不同的优惠方案:在甲商场购买商品超过300元之后,超过部分按8折优惠;在乙商场购买商品超过200元之后,超过部分按8.5折优惠,设甲商场实际付费为1y 元,乙商场实际付费为2y 元,顾客购买商品金额为x 元()300x >.(1)分别求出1y ,2y 与x 的函数关系式;(2)比较顾客到哪个商场更优惠,并说明理由.26.在ABC 中,5AB BC ==,6AC =,将ABC 沿BC 方向平移得到DCE ,A ,C 的对应点分别是D 、E ,连接BD 交AC 于点O .(1)如图1,将直线BD 绕点B 顺时针旋转,与AC 、DC 、DE 分别相交于点I 、F 、G ,过点C 作//CH BG 交DE 于点H .①求证:IBC ≌HCE ②若DF CF =,求DG 的长;(2)如图2,将直线BD 绕点O 逆时针旋转()90αα<︒,与线段AD 、BC 分别交于点P 、Q ,在旋转过程中,四边形ABQP 的面积是否发生变化?若不变,求出四边形ABQP 的面积,若变化,请说明理由;(3)在(2)的旋转过程中,AOP 能否为等腰三角形,若能,请直接写出PQ 的长,若不能,请说明理由.参考答案1.B 【详解】解:A .∵m n >,不等式两边同时加2,不等号方向不变,∴22m n +>+,故A 不符合题意;B .∵m n >,不等式两边同时乘以-2,-2<0,不等号方向改变,∴22m n -<-,故B 符合题意;C .∵m n >,不等式两边同时加-2,不等号方向不变,∴22m n ->-,故C 不符合题意;D .∵m n >,不等式两边同时乘以12,12>0,不等号方向不变,∴22m n>,故D 不符合题意;故选B .2.C 【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】解:平行四边形不是轴对称图形,但是中心对称图形;等腰三角形是轴对称图形,不是中心对称图形;线段、正六边形、圆既是中心对称图形又是轴对称图形,所以既是中心对称图形又是轴对称图形的有3个.故选:C .3.C 【分析】将多项式写成几个整式的积的形式,叫做将多项式分解因式,也叫因式分解,根据定义解答.【详解】解:A 、()()2339a a a +-=-不是因式分解;B 、()()2211a b a b a b -+=+-+不是因式分解;C 、()()2422m m m -=+-是因式分解;D 、2211m m m m ⎛⎫+=+ ⎪⎝⎭不是因式分解;故选:C .【点睛】此题考查因式分解,掌握因式分解的定义及因式分解的方法是解题的关键.4.D 【解析】【分析】根据分式的基本性质,分子分母同时乘除同一个不为零的数或式,分式的值不发生改变进行变形即可求解.【详解】解:根据题意,将x 变成2x,y 变成2y 化简求解:A.2x y 变成22222(2)4x x xy y y =≠,该选项不符合题意,B.1x x y -+变成21122x x x y x y --≠++,该选项不符合题意,C.2x y -变成2222x y x y ≠--,该选项不符合题意,D.yx y+变成22()y y x y x y =++,该选项符合题意,【点睛】本题考查了分式的基本性质,属于基础题,掌握分式的性质是解题关键. 5.B【解析】【详解】分析:直接解分式方程进而得出答案.详解:解分式方程311mx-=-得,x=m-2,∵关于x的分式方程311mx-=-的解为x=2,∴m-2=2,解得:m=4.故选B.点睛:此题主要考查了分式方程的解,正确解方程是解题关键.6.D【解析】【分析】依据等腰三角形的内角和,即可得到∠C=∠B=30°,依据AD⊥AB交BC于点D,即可得到BD=2AD=8,∠CAD=30°=∠B,CD=AD=4,进而得出BC的长.【详解】解:∵△ABC中,AB=AC,∠BAC=120°,∴∠C=∠B=30°,∵AD⊥AB交BC于点D,∴BD=2AD=8,∠CAD=30°=∠B,∴CD=AD=4,∴BC=BD+CD=8+4=12.故选:D.【点睛】本题主要考查了含30°角的直角三角形的性质以及等腰三角形的性质,解题时注意:在直角三角形中,30°角所对的直角边等于斜边的一半.【解析】【分析】由旋转的性质可知AB AE =,CAD BAE ∠=∠,即可求出50AEB ABE ∠=∠=︒.再由平行线的性质可知EAD AEB ∠=∠,最后由CAE CAD EAD ∠=∠-∠,即可求出CAE ∠的大小.【详解】∵ADE 是由ABC 绕点A 按逆时针方向旋转80︒得到,∴AB AE =,80CAD BAE ∠=∠=︒,∴1(180)502AEB ABE BAE ∠=∠=︒-∠=︒.∵//AD BE ,∴50EAD AEB ∠=∠=︒,∴805030CAE CAD EAD ∠=∠-∠=︒-︒=︒.故选:B .【点睛】本题考查旋转的性质,等腰三角形的判定和性质,平行线的性质.利用数形结合的思想是解答本题的关键.8.D 【解析】【分析】当x >1时,直线y=2x 都在直线y=kx+b 的上方,当x <2时,直线y=kx+b 在x 轴上方,于是可得到不等式0<kx+b <2x 的解集.【详解】解:当x >1时,2x >kx+b ,∵函数y=kx+b (k≠0)的图象经过点B (2,0),∴x <2时,kx+b >0,∴不等式0<kx+b <2x 的解集为1<x <2.故选D .【点睛】本题主要考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.9.B 【解析】【分析】连接OB 、OC .由角平分线和垂直平分线的性质可求出1232ABO BAC ∠=∠=︒,再由等腰三角形的性质可求出67ABC ACB ∠=∠=︒,由OBC ABC ABO ∠=∠-∠,即可求出OBC ∠的大小.在AOB 和AOC △中,利用“SAS”易证AOB AOC ≅ ,即得出OB=OC ,从而可求出44OBC OCB ∠=∠=︒.再由题意折叠可知OE=CE ,即得出44EOC ECO ∠=∠=︒,最后由180OEC EOC ECO ∠=︒-∠-∠,即可求出OEC ∠的大小.【详解】如图,连接OB 、OC.∵46BAC ∠=︒,BAC ∠的平分线与AB 的垂直平分线OD 交于点O ,∴1232OAB OAC ABO BAC ∠=∠=∠=∠=︒.∵AB=AC ,∴1(180)672ABC ACB BAC ∠=∠=︒-∠=︒,∴44OBC ABC ABO ∠=∠-∠=︒.在AOB 和AOC △中,AB AC OAB OAC AO AO =⎧⎪∠=∠⎨⎪=⎩,∴()AOB AOC SAS ≅ ,∴OB=OC ,∴44OBC OCB ∠=∠=︒.由题意将C ∠沿EF 折叠,点C 与点O 恰好重合,∴OE=CE ,∴44EOC ECO ∠=∠=︒,∴18092OEC EOC ECO ∠=︒-∠-∠=︒.故选:B .【点睛】本题考查角平分线、线段垂直平分线的性质,等腰三角形的性质,全等三角形的判定和性质,折叠的性质.作出辅助线构造等腰三角形是解答本题的关键.综合性强,较难.10.1≥x 且3x ≠【解析】【分析】直接利用二次根式有意义被开方数是非负数、分式有意义则分母不为零,进而得出答案.【详解】由题意知:x−1≥0且x−3≠0,解得:x≥1且x≠3.故答案为:x≥1且x≠3.【点睛】此题主要考查了二次根式有意义、分式有意义,正确掌握相关有意义的条件是解题关键.11.6【解析】【详解】一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.解:外角是180-120=60度,360÷60=6,则这个多边形是六边形.故答案为六.12.2【解析】先把所求式子的前三项分解因式得到()2222422m mn n m n -+=-,然后整体代入计算即得答案.【详解】解:∵1m n -=,∴()22222422212m mn n m n -+=-=⨯=.故答案为:2.【点睛】本题考查了多项式的因式分解和代数式求值,属于常考题型,熟练掌握分解因式的方法和整体的数学思想是解题的关键.13.3cm【解析】【分析】先求出CD 的长,再根据角平分线的性质证得DE=CD 即可.【详解】解:∵2BD CD =,9BC cm =,∴133CD BC ==cm ,过点D 作DE ⊥AB 于E ,∵AD 平分CAB ∠交BC 于点D ,90ACB ∠=︒,∴DE=CD=3cm ,故答案为:3cm .【点睛】此题考查角平分线的性质:角平分线上的点到角两边的距离相等,熟记性质定理是解题的关键.14.1,2【解析】【分析】根据解一元一次不等式基本步骤:去分母、移项、合并同类项、系数化为1可得.解:去分母得:x−5+2>2x−6,移项得:x−2x >−6+5−2,合并同类项得:−x >−3,系数化为1得:x <3.故不等式的正整数解是1,2,故答案为1,2.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.15.1.【解析】【分析】根据三角形中位线定理得到DE ∥AB ,DE=0.5AB=5,根据平行线的性质、角平分线的定义求出DF ,计算即可.【详解】解:D Q 、E 分别是BC 、AC 的中点,152DE AB ∴==,//DE AB ,142BD BC ==,ABF DFB ∴∠=∠,BF 平分ABC ∠,ABF DBF ∴∠=∠,DBF DFB ∠=∠,4DF DB ∴==,1EF DE DF ∴=-=,故答案为1.【点睛】本题考查的是角平分线的定义、三角形中位线定理,掌握平行线的性质、角平分线的定义是解题的关键.16.12m ≤且3m ≠【分析】先解得分式方程的解为43m x =-,再由题意可得43m -≥0,又由x≠3,即可求m 的取值范围.【详解】解:2433x m m x x ++=--,方程两边同时乘以x−3,得x +m−2m =4(x−3),去括号得,x−m =4x−12,移项、合并同类项得,3x =12−m ,解得:43m x =-,∵解为非负数,∴43m -≥0,∴m≤12,∵x≠3,∴m≠3,∴m 的取值范围为m≤12且m≠3,故答案为为:m≤12且m≠3.【点睛】本题考查分式方程的解,熟练掌握分式方程的解法,注意增根的情况是解题的关键.17.2或3【解析】【分析】设运动时间为t ,有题意可得AP=tcm ,PB=(9-t )cm ,CQ=2tcm ,DQ=(6-2t )cm ,然后分当四边形APQD 是平行四边形时,DQ=AP 和当四边形BPQC 是平行四边形时,CQ=BP ,进行求解即可.【详解】解:设运动时间为t ,有题意可得AP=tcm ,PB=(9-t )cm ,CQ=2tcm ,DQ=(6-2t )cm ,∵AB ∥CD∴当四边形APQD 是平行四边形时,DQ=AP ,解得t=2;当四边形BPQC 是平行四边形时,CQ=BP ,∴9-t=2t ,解得t=3,∴当t=2或3时,线段PQ 将四边形ABCD 截出一个平行四边形,故答案为:2或3.【点睛】本题主要考查了平行四边形的性质,解题的关键在于能够熟练掌握相关知识进行求解.18.32【解析】【分析】延长AF 交BC 延长线于H ,延长AG 交BC 延长线于I ,由BD 平分∠ABC ,AF ⊥BF ,可得∠CBF=∠ABF ,∠HFB=∠AFB=90°,可证△HBF ≌△ABF (ASA ),可得BH=BA=6,HF=AF ,由CE 平分∠ACI ,AG ⊥CE ,可得∠ICG=∠ACG ,∠IGC=∠AGC=90°,可证△ICG ≌△ACG (ASA ),可得CI=CA=5,IG=AG,可证FG 为△AHI 的中位线即可.【详解】解:延长AF 交BC 延长线于H ,延长AG 交BC 延长线于I ,∵BD 平分∠ABC ,AF ⊥BF ,∴∠CBF=∠ABF ,∠HFB=∠AFB=90°,在△HBF 和△ABF 中,HBF ABF BF BF HFB AFB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△HBF ≌△ABF (ASA ),∴BH=BA=6,HF=AF ,∵CE 平分∠ACI ,AG ⊥CE ,∴∠ICG=∠ACG ,∠IGC=∠AGC=90°,在△ICG 和△ACG 中,ICG ACG CG CG IGC AGC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ICG ≌△ACG (ASA ),∴CI=CA=5,IG=AG ,∴IH=BC+CI-BH=4+5-6=3,∵HF=AF ,IG=AG ,∴FG 为△AHI 的中位线,∴FG=1133222HI =⨯=.故答案为32.【点睛】本题考查角平分线定义,垂线定义,三角形全等判定与性质,三角形中位线性质,线段和差,本题难度不大,训练画图构思能力,通过辅助线画出准确图形是解题关键.19.(1)()232x x y -;(2)14x <<,图见解析【解析】【分析】(1)先提公因式3x ,再利用完全平方公式进行因式分解即可;(2)先分别求出每一个不等式的解集,进而求出其公共解即可.【详解】解:(1)原式2223(44)3(2)x x xy y x x y =-+=-;(2)()3241213x x x x ⎧--<⎪⎨+>-⎪⎩①②解不等式①,得1x >,解不等式②,得4x <,在同一数轴上表示不等式①②的解集如下:∴不等式组的解集为:14x <<.【点睛】本题考查提公因式法、公式法分解因式,解一元一次不等式组,熟练掌握因式分解的方法以及解一元一次不等式组的基本步骤是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.(1)22m -,23;(2)0x =【解析】【分析】(1)先利用完全平方公式和分式混合运算法则进行化简,然后代值计算即可;(2)先把方程两边同时乘以()()11x x +-化为整式方程,然后求解即可.【详解】解:(1)236214422m m m m m m+-÷++++-()()23221222m m m m m ++=⨯---+3122m m =---22m =-,当5x =时,原式22523==-.(2)2231111x x x +=+--方程两边同时乘以()()11x x +-得()()21311x x -++=,整理得22331x x -++=,解得0x =.检验:将0x =代入原方程,左边1=-=右边,∴原方程的根是0x .【点睛】本题主要考查了分式的化简求值,解分式方程,解题的关键在于能够熟练掌握相关知识进行求解.21.(1)见解析;(2)见解析【解析】【分析】(1)利用点平移的坐标特征写出A 1、B 1、C 1的坐标,然后描点即可;(2)利用关于x 轴对称的点的坐标特征写出A 2、B 2、C 2的坐标,然后描点即可.【详解】解:(1)由图可得:A (-4,5)、B (-5,2)、C (-3,1)∴平移后的坐标:A 1(2,4)、B 1(1,1)、C 1(3,0)如图,111A B C △即为所求.(2)对称后的坐标:A 2(-4,-5)、B 2(-5,-2)、C 2(-3,-1)如图,222A B C △即为所求.【点睛】本题考查了作图−旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.22.①见解析;②见解析【解析】【分析】①证明:根据等腰直角三角形的性质推出1452DAF DAB BAC ∠=∠=∠=︒,45B C ∠=∠=︒,BD AD =,即可证得结论;②根据全等的性质证得BDE ADF ∠=∠,利用AD BC ⊥证得结论.【详解】解:①证明:在ABC 中,AB AC =,90BAC ∠=︒,点D 是BC 的中点,∴1452DAF DAB BAC ∠=∠=∠=︒,45B C ∠=∠=︒,∵B DAB ∠=∠,∴BD AD =,∵B DAF ∠=∠,BE AF =,∴BED ≌AFD V ;②证明:由①可知,BED ≌AFD V ,∴BDE ADF ∠=∠,∵AB AC =,点D 是BC 的中点,∴AD BC ⊥,∴90ADB ∠=︒,∴90ADE BDE ∠+∠=︒,∴90ADE ADF ∠+∠=︒,∴90EDF ∠=︒,∴DE DF ⊥.【点睛】此题考查了等腰直角三角形的性质,全等三角形的判定及性质,熟记等腰直角三角形的性质及全等三角形的判定定理是解题的关键.23.该厂原来每天加工20套运动服.【解析】【分析】设该厂原来每天加工x 套运动服,则采用新技术后每天加工2x 套运动服,由题意:某服装厂准备加工260套运动服,在加工了60套后,采用新技术,使每天的工作效率是原来的2倍,结果共用了8天完成,列出分式方程,解方程即可.【详解】解:设该厂原来每天加工x 套运动服,则采用新技术后每天加工2x 套运动服.根据题意得:602606082x x-+=解这个方程得20x =,经检验:20x =是原方程的根.答:该厂原来每天加工20套运动服.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.24.(1)见解析;(2)13【解析】【分析】(1)只要证明DN ∥BM ,DM ∥BN 即可;(2)只要证明△CEM ≌△AFN ,可得FN =EM =5,在Rt △AFN 中,根据勾股定理AN =.【详解】(1)∵四边形ABCD 是平行四边形,∴CD AB .∵BM AC DN AC ⊥⊥,,∴DN BM ,∴四边形BMDN 是平行四边形.(2)∵四边形ABCD ,BMDN 都是平行四边形,∴AB CD DM BN CD AB ==,,∥,∴CM AN MCE NAF =∠=∠,.又∵90CEM AFN ∠=∠=︒,∴()CEM AFN AAS ≌,∴5FN EM ==.在Rt AFN 中,13AN =.【点睛】本题考查平行四边形的性质和判定、全等三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.25.(1)10.860y x =+,20.8530y x =+;(2)当600x =时,选择甲、乙两个商场均可,当300600x <<时,选择乙商场更优惠,当x 600>时,选择甲商场更优惠.【解析】【分析】(1)在甲超市购物所付的费用:300元+0.8×超过300元的部分,在乙超市购物所付的费用:200+0.85×超过200元的部分;(2)根据(1)中解析式的费用分类讨论即可.【详解】(1)由题意得,()13000.8300y x =+-,即10.860y x =+,22000.85(200)y x =+-,即20.8530y x =+(2)当300x >时,由12y y <得:0.8600.8530x x +<+,解得:x 600>,由12y y =得:0.8600.8530x x +=+,解得:600x =,由12y y >得:0.8600.8530x x +>+,解得:600x <.∴当600x =时,选择甲、乙两个商场均可,当300600x <<时,选择乙商场更优惠,当x 600>时,选择甲商场更优惠.【点睛】本题考查了一次函数以及一元一次不等式的应用,根据题意列出正确的甲、乙两家商场的实际费用与购买商品金额x 之间的函数关系式是本题的关键.26.(1)①见解析;②2;(2)不变,12;(3)能,5PQ =或6【解析】【分析】(1)①由平移的特征可以推出三角形全等的条件,证明△IBC ≌△HCE ;②由①得IC =HE ,再证明四边形ICHG 是平行四边形,得IC =GH ,再证明△DFG ≌△CFI ,得DG =IC ,于是得DG =GH =HE =13DE =13AC ,可求出DG 的长;(2)由平行四边形的性质可证明线段相等和角相等,证明△AOP ≌△COQ ,将四边形ABQP 的面积转化为△ABC 的面积,说明四边形ABQP 的面积不变,求出△ABC 的面积即可;(3)按OP =OA 、PA =OA 、OP =AP 分类讨论,分别求出相应的PQ 的长,其中,当PA =OA 时,作OL ⊥AP 于点L ,构造直角三角形,用面积等式列方程求OL 的长,再用勾股定理求出OP 的长即可.【详解】(1)证明:①如图1,∵DCE 是由ABC 平移得到的,∴//AC DE BC CE =,∴ACB DEC ∠=∠,∵//CH BG ,∴GBC HCE∠=∠∴IBC ≌HCE②如图1,由①可知:IBC ≌HCE ,∴IC HE =,∵//AC DE ,//CH BG ,∴CI //GH ,CH //GH ,∴四边形ICHG 是平行四边形,∴IC GH =,∵//AC DE ,∴CDG DCI∠=∠∵CFI DFG ∠=∠,DF CF =,∴DFG ≌CFI △,∴DG IC =,∴DG GH HE ==,∴11233DG DE AC ===.(2)面积不变;如图2:由平移可知//AB CD ,AB CD =,∴四边形ABCD 是平行四边形,∴OA OC =,∵//AD BC ,∴APO CQO ∠=∠,∵AOP COQ ∠=∠,∴APO △≌CQO ,∴APO CQO S S =△△,APO CQO ABC ABQP AOQB AOQB S S S S S S =+=+=四边形四边形四边形△△△,∴四边形ABQP 的面积不变.∵5AB BC ==132OA OC AC ===,∴OB AC ⊥,∴90AOB ∠=︒,在Rt BOC 中222OB OC BC +=∴4OB ==,∴11641222ABC S AC OB ==⨯⨯= ,∴12ABQP S =四边形(3)如图3,OP =OA =3,由(2)得,△AOP ≌△COQ ,∴OQ =OP =3,∴PQ =3+3=6;如图4,PA =OA =3,作OL ⊥AP 于点L ,则∠OLA =∠OLP =90°,由(2)得,四边形ABCD是平行四边形,OA=3,∠AOB=90°,∴OD=OB=4,∠AOD=180°−∠AOB=90°,∵AO⊥BD,OD=OB,∴AO垂直平分BD,∴AD=AB=5,由12AD•OL=12OA•OD=AODS得,1 2×5OL=12×3×4,解得,OL=12 5,∴2222129355 AL OA OL⎛⎫=-=-=⎪⎝⎭,∴96355 PL=-=,∴222212665555OP OL PL⎛⎫⎛⎫=+=+=⎪ ⎪⎝⎭⎝⎭,∴PQ=2OP 125 5如图5,OP=AP,∵AD=AB,AC⊥BD,∴∠DAC=∠BAC,∴∠POA =∠DAC =∠BAC ,∴PQ //AB ,∵AP //BQ ,∴四边形ABQP 是平行四边形,∴PQ =AB =5,综上所述,5PQ 或6或5.【点睛】此题重点考查平行四边形的判定与性质、全等三角形的判定与性质、等腰三角形的判定、平移的特征、勾股定理以及根据面积等式列方程求线段的长度等知识与方法,解第(3)题时要进行分类讨论,求出所有符合条件的值,此题难度较大,属于考试压轴题.。

【最新】北师大版八年级下册数学《期末考试卷》(含答案)

【最新】北师大版八年级下册数学《期末考试卷》(含答案)

北师大版八年级下册期末考试数 学 试 卷一、选择题(本题10小题,每小题3分,满分30分)下列各小题均有四个选项,其中只有一个是正确的1.下列是我国某四个高校校徽的主体图案,其中是中心对称图形的是( ) A.B. C. D. 2.下列从左到右的变形中,因式分解正确的是( )A. 2x 2-4x+1=2x(x-2)+1B. x 2-2x=x(x-2)C. (x+1)(x-1)=x 2-1D. x 2+2x+4=(x+2)23.如果a>b,那么下列四个不等式中不正确的是( )A. a-3>b-3B. -3a <-3bC. -3a>-3bD. 33a b > 4.不等式组2131122x x -≥-⎧⎪⎨+≤⎪⎩的解集在数轴上表示正确的是( ) A .B. C. D.5.若一个正多边形的一个外角是45°,则这个正多边形的边数是( )A. 5B. 6C. 7D. 86.一个等腰三角形的周长为14,其一边长为4那么它的底边长为( )A. 5B. 4C. 6D. 4或6 7.如图,在△ABC 中,∠C=90°,以点B 为圆心,任意长为半径画弧,分别交AB 、BC 于点M 、N 分别以点M 、N为圆心,以大于12MN 的长度为半径画弧两弧相交于点P 过点P 作线段BD,交AC 于点D,过点D 作DE ⊥AB 于点E,则下列结论①CD=ED ;②∠ABD=12∠ABC ;③BC=BE ;④AE=BE 中,一定正确的是( )A. ①②③B. ①②④C. ①③④D. ②③④8.如图,在△ABC中,点D、E分别是边AC,AB的中点,BD,CE相交于点O,连接O在AO上取一点F,使得OF=12AF若S△ABC =12,则四边形OCDF的面积为()A. 2B.83C. 3D.1039.设min{ a,b }表示a,b这两个数中的较小的一个,如min{-1,1}= -1,min{3,2}=2则关于x的一次函数y=min{x,3x-4}可以表示为()A. y=xB. y=3x-4C.(2)34(2)x xyx x<⎧=⎨-≥⎩D.(2)34(2)x xyx x>⎧=⎨-≤⎩10.如图,为一副重叠放置的三角板,其中∠ABC=∠EDF=90°,BC与DF共线,将△DEF沿CB方向平移,当EF 经过AC的中点O时,直线EF交AB于点G,若BC=3,则此时OG的长度为()A.3B. 32C. 322D. 33二、填空题(每小题3分,共15分) 11.当x=___时,分式31x x+-的值为0. 12.命题“一个三角形中至少有两个锐角”是真命题用反证法证明该命题时,第一步应先假设______.13.如图,口ABCD中,对角线AC、BD交于点O,OE⊥AC交AB于点E,已知△BCE周长为14,则口ABCD 的周长为___.14.若一元一次不等式组3x x a>⎧⎨>⎩的解集为x>a,则a 的取值范围是______.15.如图,在Rt △ABC 中,∠C=90°,AC=6,BC=8,D 是BC 边的中点,E 是AC 边上的任意一点,△DCE 和△DC′E 关于直线DE 对称,若点C′ 恰好落在△ABC 的中位线上,则CE 的长度为_______.三、解答题(本大题共7 小题,共 55分)16.阅读下列计算过程,回答问题:211x x x -++ =2(1)1x x x -++ ① =22(1)11x x x x +-++ ② =22+211x x x x -++ ③ =211x x ++. 以上过程有两处关键性错误,分别是 请写出此题的正确解答过程,17.如图,△ABC 是等腰直角三角形,∠A=90°,BC=4.(1)建立适当平面直角坐标系,写出各个顶点的坐标;(2)将△ABC 向左平移5个单位,请在图中画出平移后的△A 1B 1C 1;(3)将△A 1B 1C 1绕点C 1按逆时针旋转90°,请在图中画出旋转后的△A 2B 2C 1.18.如图所示,有两个长度相等的滑梯,左边滑梯BC的高AC与右边滑梯EF水平方向的长度DF相等,两滑梯倾斜角∠ABC和∠DFE有什么关系?19.两个一次函数y甲,y乙的图象如图所示.(1)请分别写出y甲,y乙的表达式;(2)结合图象比较y甲与y乙的大小关系.20.如图,AC⊥BC,垂足为C,AC=6,BC=43,将线段AC绕点C按顺时针方向旋转60°,得到线段CD,连接AD,DB。

八年级数学下册期末测试卷与答案解析(北师大版)

八年级数学下册期末测试卷与答案解析(北师大版)

八年级数学下册期末测试卷与答案解析(北师大版)一.选择题(共10小题,满分30分,每小题3分) 1.下列图形中,既是轴对称又是中心对称图形的是( )A .B .C .D .2.若x <﹣1,则下列各式中错误的是( ) A .x +1<0B .x ﹣2<﹣3C .2x <﹣2D .﹣2x <23.对于下列四个命题:①是最简二次根式;②三角形的外角和为360°;③对角线相等的四边形是矩形;④圆内接四边形对角互余.其中真命题的个数为( ) A .1B .2C .3D .44.阅读理解:我们把称作二阶行列式,规定它的运算法则为=ad ﹣bc ,例如=1×4﹣2×3=﹣2,如果>0,则x 的解集是( ) A .x >3B .x <﹣3C .x <﹣1D .x >15.如图所示,点H 是△ABC 内一点,要使点H 到AB 、AC 的距离相等,且S △ABH =S △BCH ,点H 是( )A .∠BAC 的角平分线与AC 边上中线的交点B .∠BAC 的角平分线与AB 边上中线的交点 C .∠ABC 的角平分线与AC 边上中线的交点D .∠ABC 的角平分线与BC 边上中线的交点6.如果一个多边形的内角和为1260°,那么从这个多边形的一个顶点出发共有多少条对角线?( ) A .5B .6C .7D .87.下列关于4a +2的叙述正确的是( ) A .4a +2的次数是0B .4a +2表示a 的4倍与2的和C.4a+2是单项式D.4a+2可因式分解为4(a+1)8.一副三角板如图放置,等腰直角三角板的斜边与含30°的直角三角板长直角边重合于AC,∠B=∠CAD =90°,∠ACD=30°,AB=BC,点N在边CD上运动,点M在边BC上运动,连接MN,AN,分别作出MN 和AN边的中点E和F,测得EF的最小值是6cm,则最长的斜边CD的长为()A.3cm B.8cm C.8cm D.8cm9.如图所示,一次函数y=ax+b与y=cx+d的图象如图所示,下列说法:①对于函数y=﹣ax+b来说,y 随x的增大而增大;②函数y=ax+d不经过第四象限;③不等式ax﹣d≥cx﹣b的解集是x≥4;④4(a ﹣c)=d﹣b.其中正确的是()A.①②③B.①③④C.②③④D.①②④10.如图1,在长方形ABCD中,动点P从点B出发,沿B→C→D→A方向匀速运动至点A停止.已知点P的运动速度为1cm/s,设点P的运动时间为x(s),△PAB的面积为y(cm2),若y关于x的函数图象如图2所示,则长方形ABCD面积为()cm2A.20 B.28 C.48 D.24二.填空题(共5小题,满分15分,每小题3分)11.请写出一个有意义的条件是x≠3的分式.12.在完成因式分解的练习时,小明不小心将一道题4x3弄上了污渍,他只记得将这个多项式因式分解时应先提公因式,再用平方差公式分解,请你帮小明想一想,老师布置的原题可能是,因式分解的结果是.(填一个合适的即可)13.用反证法证明:△ABC中至少有两个锐角,第一步假设为.14.已知某函数图象如图所示,请回答下列问题:(1)自变量x的取值范围是;(2)函数值y的取值范围是;(3)当x=0时,y的对应值是;(4)当x为时,函数值最大.15.如图,∠AOB=60°,点C,D在射线OA上,且OC=4,CD=2,P是射线OB上的动点,Q是线段DP的中点,则线段CQ长的最小值为.三.解答题(共7小题,满分75分)16.(8分)(1)计算: +2(﹣)+|﹣|+;(2)先化简,再求值:已知x=,求﹣﹣|﹣x﹣|的值.17.(10分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣1,1),B(﹣4,2),C(﹣3,3).(1)将△ABC先向下平移2个单位长度,再向右平移5个单位长度得到△A1B1C1,画出△A1B1C1;(2)将△ABC绕点A按顺时针方向旋转90°得到△A2B2C2,画出△A2B2C2.18.(9分)已知线段a、b(如图),根据下列要求,依次画图或计算.(1)画出一条线段OA,使它等于3a﹣b;(2)画出线段OA的中点M;(3)如果a=2.5厘米,b=3厘米,求线段OM的长.(画图时不要求写出画法,但要保留画图痕迹,及写出结论)19.(12分)如图,将▱ABCD沿过点A的直线折叠,使点B落到AD边上的点F处,折痕为AE,连接FE、DE.(1)求证:四边形ABEF是菱形;(2)若DE平分∠ADC,四边形CDFE会是菱形吗?请说明理由.20.(12分)今年湖南石门的桔子又是大丰收,为了争取利润最大化,老张决定从石门运桔子到山东,再从山东运苹果到石门,已知甲车一次可以运12吨,每箱苹果的重量是桔子重量的两倍.(1)若该车每次运输都刚好装满12吨,每次所运的桔子比苹果多400箱,每箱桔子多少千克?(2)老张要从石门运102吨桔子到山东,现和用甲、乙两种汽车共6辆,且乙车一次可以运20吨.①至少需要用几辆乙车?②若甲车每辆的运输费为3500元,乙车每辆的运输费为5000元,运这些桔子到山东至少需要多少运费?21.(12分)阅读材料:分离整数法就是将分式拆分成一个整式与一个分式(分子为整数)的和的形式如:①②解答问题:已知x为整数,且分式为整数,则x的值为多少?22.(12分)如图,△ABC为等边三角形,点O为线段AB的中点,连接OC,点M在线段BC上,将线段OM 绕点O顺时针旋转60°到ON,连接MN,连接NC交OM于点G.(1)如图1,当点M与点B重合时,直接写出线段MG和线段OG的数量关系;(2)如图2,当OM⊥BC时,过点M作AB的平行线交AC于点H,请写出线段AH与MG的数量关系,并说明理由;(3)在(2)的条件下,当AC=4时,请直接写出点M到直线NC的距离.参考答案与解析一.选择题(共10小题,满分30分,每小题3分)1.【答案】解:A、是轴对称图形,也是中心对称图形,故本选项符合题意B、是轴对称图形,不是中心对称图形,故本选项不合题意C、不是轴对称图形,是中心对称图形,故本选项不合题意D、是轴对称图形,不是中心对称图形,故本选项不合题意故选:A.2.【答案】解:A.x<﹣1,则x+1<0,所以A选项不符合题意;B.当x<﹣1,则x﹣2<﹣3,所以B选项不符合题意;C.x<﹣1,则2x<﹣2,所以C选项不符合题意;A.x<﹣1,则﹣2x>2,所以D选项符合题意.故选:D.3.【答案】解:①=2,故①是假命题;②三角形的外角和为360°,正确,故②为真命题;③对角线相等的平行四边形是矩形,故③为假命题;④圆内接四边形对角互补,故④为假命题;故选:A.4.解:根据题意得2x﹣(3﹣x)>0去括号,得:2x﹣3+x>0移项、合并,得:3x>3系数化为1,得:x>1故选:D.5.【答案】解:如图:∵AD平分∠BAC,点H在AD上∴点H到AB、AC的距离相等∵BE是AC边上的中线∴S△ABE =S△BCE,S△AHE=S△CHE∴S△ABE ﹣S△AHE=S△BCE﹣S△CHE∴S△ABH =S△CBH∴点H是∠BAC的角平分线与AC边上中线的交点故选:A.6.【答案】解:设此多边形的边数为x,由题意得:(x﹣2)×180=1260解得;x=9从这个多边形的一个顶点出发所画的对角线条数:9﹣3=6故选:B.7.【答案】解:4a+2的次数为1次,表示a的4倍与2的和,是多项式,可分解为2(2a+1).故选:B.8.解:连接AM∵点E和F分别为MN和AN边的中点∴AM=2EF∵EF的最小值是6cm∴AM的最小值是12cm由题意可知,当点M与点B重合时,AM最小∴AB=12cm∴AC=AB=12cm在Rt△ACD中,∠ACD=30°则CD===8(cm)故选:D.9.【答案】解:由图象可得a>0,则﹣a<0,对于函数y=﹣ax+b来说,y随x的增大而减小,故①错误;a>0,d>0,则函数y=ax+d经过第一、二、三象限,不经过第四象限,故②正确;由ax﹣d≥cx﹣b可得ax+b≥cx+d,故不等式ax﹣d≥cx﹣b的解集是x≥4,故③正确;4a+b=4c+d可以得到4(a﹣c)=d﹣b,故④正确;故选:C.10.【答案】解:∵动点P从点B出发,沿BC、CD、DA运动至点A停止当点P在点B,C之间运动时,△ABP的面积随时间x的增大而增大由图2知,当x=6时,点P到达点C处∴BC=1×6=6(cm);当点P运动到点C,D之间时,△ABP的面积不变由图2可知,点P从点C运动到点D所用时间为14﹣6=8(s)∴CD=1×8=8(cm)∴长方形ABCD面积=BC×CD=6×8=48(cm2)故选:C.二.填空题(共5小题,满分15分,每小题3分)11.【答案】解:∵分式有意义的条件是x≠3∴分式可以是:(答案不唯一).故【答案】(答案不唯一).12.【答案】解:老师布置的题目可能是4x3﹣9x(答案不唯一)其因式分解的结果为:4x3﹣9x=x(4x2﹣9)=x(2x+3)(2x﹣3)故【答案】4x3﹣9x(答案不唯一),x(2x+3)(2x﹣3).13.解:反证法证明:△ABC中至少有两个锐角,第一步假设△ABC中最多有一个锐角故【答案】最多有一个锐角.14.【答案】解:观察函数图象得:(1)自变量x的取值范围是﹣4≤x≤3;故【答案】﹣4≤x≤3;(2)函数y的取值范围是﹣2≤y≤4;故【答案】﹣2≤y≤4;(3)当x=0时,y的对应值是3;故【答案】3;(4)当x为1时,函数值最大.故【答案】1.15.解:如图所示,取OD的中点E,连接EQ又∵Q是DP的中点∴EQ是△DOP的中位线∴EQ∥OP∴∠CEQ=∠AOB=60°,即点Q在过点E且平行于OB的直线上运动如图,当∠CQE=90°时,CQ⊥EQ,依据垂线段最短可知,此时CQ最短∵OC=4,CD=2,E是OD的中点∴CE=OC﹣OE=4﹣OD=4﹣3=1∴Rt△CEQ中,CQ=CE×sin∠CEQ=1×=故【答案】.三.解答题(共7小题,满分75分)16.【答案】解:(1)原式===;(2)∵x =∴x ==>1 ∴原式=﹣x ﹣=﹣x ﹣=x +﹣﹣x ﹣= 当x =+1时原式==.17.【答案】解:(1)如图所示,△A 1B 1C 1即为所求; (2)如图所示,△A 2B 2C 2即为所求.18.【答案】解:(1)如图,OA 为所作; (2)如图,点M 为所作;(3)∵OA=3a﹣b=3×2.5﹣3=4.5(厘米)而M点为OA的中点∴OM=OA=2.25厘米.19.【答案】证明:(1)由折叠知,∠1=∠2,AB=AF ∵四边形ABCD是平行四边形∴AD∥BC,AD=BC∴∠2=∠3∴∠1=∠3∴AB=BE∴AF=BE∵AF∥BE∴四边形ABEF是菱形;(2)四边形CDFE会是菱形∵AD﹣AF=BC﹣BE,即DF=CE,DF∥CE∴四边形CDFE是平行四边形∵DE平分∠ADC∴∠4=∠5∵AD∥BC∴∠4=∠6∴∠5=∠6∴CD=CE∴▱CDFE是菱形.20.【答案】解:(1)12吨=12000千克设每箱桔子x千克,则每箱苹果2x千克,由题意得:=+400∴=+400解得x=15经检验,x=15时,分式方程的分母不为0,且符合问题的实际意义,故x=15是原方程的解∴每箱桔子15千克.(2)①设至少需要y辆乙车,则甲车的数量为(6﹣y),由题意得:12(6﹣y)+20y≥102∴72﹣12y+20y≥102∴y≥至少需要4辆乙车.②由①知至少需要4辆乙车,而5辆乙车可以运输20×5=100(吨)<102吨故运这些桔子到山东至少需要的运费为:3500×(6﹣4)+5000×4=7000+20000=27000(元).答:运这些桔子到山东至少需要27000元运费.21.【答案】解:∵又∵为整数,且x为整数∴x﹣2的值为1或﹣1或2或﹣2.∴x的值为3或1或4或0.22.【答案】解:(1)线段MG和线段OG的数量关系为:MG=2OG,理由如下:∵△ABC为等边三角形,点O为线段AB的中点∴∠ABC=60°,AB=BC,OB=AB=BC∵线段OM绕点O顺时针旋转60°到ON∴△MNO是等边三角形∴∠MON=60°,ON=OM=OB=BC∴∠ABC=∠MON∴ON∥BC∴△MCG∽△ONG∴===2∴MG=2OG;(2)线段AH与MG的数量关系为:AH=MG,理由如下:∵△ABC为等边三角形∴AC=BC,∠ACB=∠A=∠ABC=60°∵MH∥AB∴∠CHM=∠A=60°,∠CMH=∠ABC=60°∴∠CHM=∠CMH=∠ACB=60°∴△CMH是等边三角形∴CH=CM∴AC﹣CH=BC﹣CM即:AH=BM∵△ABC为等边三角形,点O为线段AB的中点∴∠BOC=90°,∠OCM=∠ACB=30°∴OC=2OM,∠COM=90°﹣30°=60°∴∠BOM=∠BOC﹣∠COM=90°﹣60°=30°∵△MNO为等边三角形∴MN=OM,∠OMN=60°∴∠COM=∠OMN∴MN∥OC∴△OGC∽△MGN∴===2∴OG=2GM∴OM=3MG在Rt△OBM中,tan∠BOM=∴tan30°=∴BM=tan30°×OM=OM=×3MG=MG∴AH=GM;(3)过点N作NE⊥BC于E,如图3所示:∵△ABC为等边三角形,点O为线段AB的中点,AC=4∴BC=4,OB=2在Rt△OBM中,∠ABC=60°∴BM=OB=,OM=OB=×2=3∴MN=OM=3,MC=4﹣=3∵∠OMN=60°,∠OMB=90°∴∠NME=90°﹣60°=30°∴NE=MN=,ME=MN=∴EB=ME﹣BM=﹣=∴EC=BC+EB=4+=在Rt△CEN中,由勾股定理得:CN===设点M到直线NC的距离为h=MC•NE=CN•h∵S△MNC∴×3×=××h解得:h=∴点M到直线NC的距离为.。

(整理版)北师大八年级数学下册期末测试卷(含答案)

(整理版)北师大八年级数学下册期末测试卷(含答案)

北师大版八年级数学下册期末测试卷(含答案〕〔时间:120分钟,总分值:120分〕一、选择题〔每题3分,共30分〕1. 一种糖果,包装袋上写着:净重200克±≤≥≤x ≤205克 D.x =200克2. 分解因式x 3-x 正确的结果是〔 〕A.x(x 2-1)B.x(x-1)(x+1)C.⎪⎭⎫ ⎝⎛-x x x 122(x-1) 3. 以下四个选项中分式的分母都不等于0,对以下各分式的变形,一定正确的选项是〔 〕A.22b a b a = B.x b x a b --=a C.b m a m b a ++= D.bmam b a =4. 以下各对四边形中,一定相似的一对是〔 〕A.对应边成比例的两个四边形B.对应角相等的两个四边形C.长和宽相等比相等的两个矩形D 将一个矩形的各边的长度都增加2㎝后的矩形和原矩形.5. 如图是利用一根直立的竹竿AB 测量一棵大树的高度DF 的示意图,其中的虚线表示相互平行的太阳光线,AC 、ED 分别表示它们的影子,这样做可以测量出大树的高度,所利用的数学原理是〔 〕A.相似三角形对应中线的比等于相似比B.相似三角形面积的比等于相似比的平方C.位似三角形位似比等于各个对应顶点到位似中心的比D.相似三角形对应边成比例6. 我国于底开展的全国的1%人口抽样调查工作中,调查的样本量为1705万人,占全国总人口的1.31%,针对这次抽样调查,以下说法正确的个数是〔 〕①和人口普查相比,得到的数据准确程度差一些②从被调查的1705万人中得到的有关数据是全国人口的相应数据的一个样本③和的人口普查相比,调查的范围小,节省时间,人力,物力 A.3个 B.2个 C.1个 D.0个7. 高原地区地形起伏比拟小,山区地形起伏比拟大,在两个地区用同样的方法各选取11个地点测量它们的海拔高度将得到11个数据组成下面的图形,从图中可以看出下面的结论正确的选项是〔 〕A.山区的11个数据标准差比拟小B.高原的11个数据方差比拟小C.山区的11个数据方差比拟小D.高原的11个数据的极差比拟大8. 解分式方程可能产生增根,以下步骤中,可能产生增根的是〔 〕A.去分母 ,两边同时乘以一个含未知数的整式B.去括号C.移项,合并同类项D.检验,将所求的根代入原方程9. ° (第9题图)10. 一次函数y=kx+b 的图象如下图,从图象中可以看出,不等式kx+b>0的解集是A.x<4B.x<5C.x>4D.x>511. 填空题〔每题3分,共30分〕某中园内设计修建一个正六边形花坛,设计图的比例尺是1∶100,图上的正六 边形和实际的正六边形是相似的,它们的相似比是________,面积比是________.12. 点A(2-a,a+1)在第一象限,那么a 的取值范围是___________13. 把代数式xy 2-9x 分解因式,结果是_____________14. =+=a b a a b 时,当74_______ 15. 电视节目主持人在主持节目时,站在舞台的黄金分割点处最是自然得体,假设舞台AB长为20m ,试计算主持人大约应走到离A 点_______处.〔结果精确到0.1m ,黄金比近似等于0.618〕.16. =+=ab a a b 时,当53_______ 17. 韩日世界杯足球赛决赛阶段的64场比赛中,比分是1∶0的场次有15场之多,出现这种比分的频率是________〔用分数表示〕18. 两个相似多边形的周长比是3∶5,那么它们的面积的比是_______19. 在电学中,如果两个并联的电阻分别是R 1和R 2,那么总电阻R 和R 1、R 2的关系是:____,211111221===+R R R R R RR R 的是:表示那么用,如果____ 20. 在138-的所有大于70的正整数因数中,有两个因数的差是2,那么这两个因数的和是________三.解答题〔每题10分,共60分〕21. ⑴解方程:;1526+=+x x ⑵.251023x x x +-分解因式:22.为了鼓励居民避开顶峰用电,电力局鼓励居民安装峰谷电表,此种电表分两个时段计费:在当日8∶00到当日22∶00用电顶峰时以峰电价计费,其余时间以谷电价计费,谷电价是峰电价的一半,某居民家安装了峰谷电表后,五月份,使用“峰电〞电费占了总电费的60%,总共用电140度,求使用“峰电〞的度数。

北师大版八年级下册数学期末考试卷(参考答案)

北师大版八年级下册数学期末考试卷(参考答案)

北师大版八年级下册数学期末考试卷(参考答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A .24y x =-B .24y x =+C .22y x =+D .22y x =-2.(-9)2的平方根是x ,64的立方根是y ,则x+y 的值为( )A .3B .7C .3或7D .1或73.若x ,y 的值均扩大为原来的3倍,则下列分式的值保持不变的是( )A .2x x y +-B .22y xC .3223y xD .222()y x y - 4.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为( ) A .-3 B .-1 C .1 D .35.已知一个多边形的内角和为1080°,则这个多边形是( )A .九边形B .八边形C .七边形D .六边形6.如图,矩形ABCD 中,AB=8,BC=4.点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则AE 的长是( )A .25B .35C .5D .67.如图,在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N8.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60C.76 D.809.如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE的长等于()A.2 B.3.5 C.7 D.1410.若b>0,则一次函数y=﹣x+b的图象大致是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:29a-=__________.2.计算1273-=___________.3.因式分解:a3﹣2a2b+ab2=________.4.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于________.5.如图:在△ABC中,AB=13,BC=12,点D,E分别是AB,BC的中点,连接DE ,CD ,如果DE=2.5,那么△ACD 的周长是________.6.如图,ABCD 的周长为36,对角线AC ,BD 相交于点O .点E 是CD 的中点,BD=12,则△DOE 的周长为________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)329817x y x y -=⎧⎨+=⎩ (2)272253x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩2.先化简,再求值:213(2)211a a a a a +-÷+-+-,其中a =2.3.已知关于x 的方程220x ax a ++-=.(1)当该方程的一个根为1时,求a 的值及该方程的另一根;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根.4.如图,在菱形ABCD 中,对角线AC 与BD 交于点O .过点C 作BD 的平行线,过点D 作AC 的平行线,两直线相交于点E .(1)求证:四边形OCED 是矩形;(2)若CE=1,DE=2,ABCD 的面积是 .5.如图,有一个直角三角形纸片,两直角边6AC =cm ,8BC = cm ,现将直角边沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?6.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、D4、D5、B6、C7、C8、C9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、()()33a a +-23、a (a ﹣b )2.4、8.5、186、15.三、解答题(本大题共6小题,共72分)1、(1)11x y =⎧⎨=⎩;(2)23x y =⎧⎨=⎩2、11a -,1.3、(1)12,32-;(2)略.4、(1)略;(2)4.5、CD 的长为3cm.6、(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.。

八年级下学期期末考试数学试卷带答案(北师大版)

八年级下学期期末考试数学试卷带答案(北师大版)

八年级下学期期末考试数学试卷带答案(北师大版)(满分:120分;考试时间:120分钟)一.单选题。

(每小题4分,共40分) 1.下列图形中,其中是中心对称的是( )A. B. C. D.2.下列因式分解正确的是( )A.x 2+y 2=(x+y )2B.5a 2-20ab=m (5m -20n )C.﹣a 2+b 2=(b -a )(a+b )D.a 3-a=a (a 2-1) 3.若x >y ,下列不等式一定成立的是( )A.2x >y+2B.x -2023>y -2023C.﹣x >﹣yD.|x |>|y |4.如图,将平行四边形ABCD 沿对角线AC 折叠,使点B 落在B’处,若∠1=∠2=44°,则∠B 为( )A.124°B.114°C.104°D.66°(第4题图) (第5题图) (第7题图)5.如图,在五边形ABCDE 中,∠A+∠B+∠E=300°,DP ,CP 分别平分∠EDC ,∠BCD ,则∠P=( )A.45°B.60°C.90°D.120° 6.下列多项式中,不能用公式法因式分解的是( )A.﹣x 2+16y 2B.81(a 2-2ab+b 2)-(a+b )2C.m 2-13mn+19n 2 D.﹣a 2-b 2(第9题图)(第10题图)10.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,BD=2AD,E、F、G分别是OC,OD,AB的中点,下列结论:①BE⊥AC;②四边形BEFG是平行四边形;③△EFG≌△GBE,其中正确的个数是()A.0B.1C.2D.3二.填空题。

(每小题4分,共24分)11.若xy=2,x-y=1,则代数式2x2y-2xy2= .12.如图,在△ABC中,AD为△ABC的平分线,DE⊥AB于点E,DF⊥AC于点F,若△ABC的面积是10cm2,AB=6cm,AC=4cm,则DF= cm.(第12题图)(第14题图)(第16题图)13.正多边形的一个内角等于150°,则这个正多边形的边数是.14.如图,在平行四边形ABCD 中,∠B=60°,AE ⊥BC ,AF ⊥CD ,垂足分别为E 、F ,若AB=6,CF=2,则CE= .15.按图中程序计算:规定输入一个值x 到结果是否≥17为一次程序操作,如果程序操作进行了两次才停止,则x 的取值范围是 .16.如图,等边△ABC 内有一点O ,OA=3,OB=4,OC=5,以点B 为旋转中心将OB 逆时针旋转60°得到线段O’B ,连接O’A ,下列结论:①△BO’A 可以看成是△BOC 绕点B 逆时针旋转60°得到的;②点O 到点O’的距离为5;③∠AOB=150°;④S 四边形AOBO’=6+4√2;⑤S △AOC +S △AOB =6+94√3.其中正确的结论有 .(只填序号) 三.解答题。

【最新】北师大版八年级下册数学《期末测试题》含答案

【最新】北师大版八年级下册数学《期末测试题》含答案

2019-2020学年度第二学期期末测试北师大版八年级数学试题时间:120分钟 总分:120分一、选择题(每个小题3分,共30分)1.若a b ,则下列各式成立的是()2•己如等腰三角形的底边长是 6,腰长为5,则这个等腰三角形的面积是 ()A. 30B. 15C. 24D. 12224亠 23•下面四个式子①2a y 2a xy •,②x 3x④ab ac a a b c ,从左到右不是因式分解的() A. 1个 B. 2个C. 3个D. 4个4•下列三角形中,不一定是直角三角形的是 () A. 三角形中有一边的中线等于这边的一半 B. 三角形三内角之比是 1:2:3C. 三角形有一内角是30°,且有一边是另一边的一半D. 三角形三边分别是m 2 n 2、2mn 、m 2 n 2m n 0325.若方程的根是正数,则k 的取值范围是()x 3 x kA. k 2B. 3 k 2C. k 2 且 k 3D. k 3三角形,(6)等边三角形,一定可以拼成的图形是 ()7.点P 的坐标恰好是方程x 22x 24 0的两个根,则经过点 P 的正比例函数图象一定过()象限A. 一、三B. 二、四C. 一D.四8.某质检部门抽取甲、乙两厂相同数量的b2a221:③ 3mn 6m n 3mn n 2m ;6.用两个完全相同直角三角形拼下列图形:(1)平行四边形, ⑵ 矩形,(3)菱形,(4)正方形,(5)等腰A.⑴⑷⑸;B.⑵(5)(6);C. (1)(2)( 3);D. (1)(2)(5).产品进行质量检测,结果甲有48件合格产品,乙厂有45件合格产品,甲厂的合格率比乙厂高5% •设求甲厂的合格率为x%,则x应满足的方程为().48 45 48 45 48 45 48 45A -------------------B ------------------------- ------C ------------------------------D ------------------------- ------A x% x 5 % B. x 5 % x% C. x% x 5 % D. x 5 % x%9•如图,由点P 14, 1 , A a , 0 , BO , a ,0 a 14确定的△ PAB 的面积是18,则a 的值是().10.己如等边△ ABC 的边长为4,点P 是边BC 上的动点,将△ ABP 绕点A 逆时针旋转60得到VACQ , 点D 是AC 边的中点,连接DQ ,则DQ 的最小值是()A. 2B. 3C. 2D.不能确定二、填空题(每个小题3分,共18分)x 2 911. 若分式 ----- 的值为零,则x= _________.x 312. 若关于x 的一元二次方程 a 1 x a a 10的一个根是0,则a 的值是 ___________ .13.如图,若四边形 ABCD 各内角的平分线相交得到四边形EFGH ,贝U F H 的度数为 _________________x 8 4x 114.如果不等式组的解集是x 3,那么m 的取值范围是 __________x m积是200,则BF 的长是 _____________C. 12D. 3 或1215.如图,正方形 ABCD 的面枳是256,点E 在AD 上,点F 在AB 的延长线上,EC FC ,△ CEF 的面21.如图,菱形 ABCD 中,AB 4 , E 为 BC 中点,AE BC , AF CD 于点 F , CG // AE , CG交16.已知四边形ABCD , AB BC , AD DC , AB BC ,如果AD 4, DC 2,则BD 的长为、简答题(共72分)17.解不等式(组) (1)2x 134x 1 145x 1 3x 4 ⑵ 1 2 X 一X 3 318.(1)化简:2 2 . 2a ab abb19.先化简:2x 1 x 1(x 1),然后x 在-1, 0, 1, 2四个数中选一个你认为合适的数代入求值.x 2 2x 1xx(2)解分式方20.如图,已知 △ ABC ,AC BC ,请用尺规作图在 BA 上取一点P ,使得PA PC BA .AF于点H,交AD于点G .(1)求菱形ABCD的面积;(2 )求CHA的度数.E, F分别是BC, AC的中点,延长BA到点D,使得AB 2AD,连接DE, DF,AE, EF,AF与DE交于点0 .(1)证明:AF与DE互相平分;⑵如果AB 6, BC 10,求DO的长.23.2019年618年中大促活动中,各大电商分期进行降价促销.某宝店铺热销网红A款服装进行价格促销,促销价比平时售价每件降90元,如果卖出相同数量的A款服装,平时销售额为5万元,促销后销售额只有4万元.(1)该店铺A款服装平时每件售价为多少元?(2)该店铺在6. 1 —6. 2第一轮促销中,A款服装销售情况非常火爆,商家决定为第二轮6. 16—6. 18 大促再进一批货,经销A款的同时再购进同品牌的B款服装,己知A款服装每件进价为300元,B款服装每件进价为200元,店铺预计用不少于7.2万元且不多于7.3万元的资金购进这两款服装共300件•请你算一算,商家共有几种进货方案?⑶在6. 16—6. 18促销活动中,A款仍以平日价降90元促销,B款服装每件售价为280元,为打开B款服装的销路,店铺决定每售出一件B款服装,返还顾客现金a元,要使(2)中所购进服装全部售完后所有方案获利相同,a的值应是多少?24.问题探究将几何图形按照某种法则或规则变换成另一种几何图形的过程叫做几何变换•旋转变换是几何变换的一种基本模型•经过旋转,往往能使图形的几何性质明白显现•题设和结论中的元素由分散变为集中,相互之 间的关系清楚明了,从而将求解问题灵活转化.问题提出:如图1, △ ABC 是边长为1的等边三角形,P ABC 内部一点,连接 PA 、PB PC ,求PA PB PC 的最小值.S 1 S2方法分析:通过转化,把由三角形内一点发出的三条线段 (星型线)转化为两定点之间的折线 (化星为折),再利用 两点之间线段最短”求最小值(化折为直)•问题解决:如图2,将△ BPA 绕点B 逆时针旋转60至△ BP A ,连接PP 、AC ,记AC 与AB 交于点D ,PC ,贝U PA PB PC 最小值是的最小值.易知BA BA BC 1 , A BCABAABC 120 •由 BP BP , P BP60 ,可知△ P BP 为正三角形,有PB P P •故 PA PB PC PA P P PCA C .3 •因此,当A 、P 、P 、C 共线时,PA PB PC 有最小值3 •BAC 30 , AB 4, CA学以致用:⑴如图3,在厶ABC 中, 3 , PABC 内部一点,连接PA 、PB 、连接PA 、PB 、 PC ,D 、PQ ,求 PA PDPQ为△ABC 内部 求..2PA PB PC 的'值.(2)如图4丄在厶ABC 中, BAC⑶如图5, P 是边长为2的正方形C 上一点,连接PA答案与解析一、选择题(每个小题3分,共30分)1•若a b ,则下列各式成立的是()a bA 、 a 1 b 1B. 2a 2bC. 1 a 1 bD.2 2【答案】A 【解析】 【分析】不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变. 【详解】解: A 、两边同时加 1,不等号方向不变,故 A 成立;B 、 两边都乘以2,不等号的方向不变,故 B 不成立;C 、 两边都加1,不等号的方向不变,故 C 不成立;1D 、 两边都乘以,不等号的方向改变,故 D 不成立;2故选:A .【点睛】本题考查了不等式的性质,不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方 向改变.2.己如等腰三角形的底边长是 6,腰长为5,则这个等腰三角形的面积是 () A. 30B. 15C. 24D. 12【答案】D 【解析】【分析】AB AC 5,BC 6,作AD BC •利用勾股定理求出Q AB AC , AD BC ,AB AC 5,BC 6,作 AD BC .AD 即可解决问题.如图,由题意:BD DC 3,在Rt ADC 中,AD .AC2CD2、. 52324,1 1二S ABC BC AD 6 4=12 ,2 2故选:D .【点睛】本题考查等腰三角形的性质和勾股定理的应用,解题的关键是熟练掌握基本知识,属于中考常考题型.2 2 4 2 2 2 o o3•下面四个式子① 2a y 2a xy :② x 3x 1 x x 3 1 :③ 3mn2 6m2n 3mn n 2m ;④ab ac a a b c,从左到右不是因式分解的()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】根据分解因式就是把一个多项式化为几个整式的积的形式,利用排除法求解.【详解】解:①左边不是多项式,不是因式分解;②右边不是积的形式,不是因式分解;③符合因式分解的定义;④ab ac a a(b c 1),原式不是因式分解.故从左到右不是因式分解的有3个.故选:C .【点睛】本题考查了因式分解的定义,解决这类问题的关键在于能否正确应用分解因式的定义来判断.4•下列三角形中,不一定是直角三角形的是()A.三角形中有一边的中线等于这边的一半B.三角形三内角之比是1: 2:3C.三角形有一内角是30°,且有一边是另一边的一半D.三角形三边分别是m2 n2、2mn、m2 n2 m n 0【答案】C【解析】【分析】根据直角三角形的定义以及判定方法一一判断即可.【详解】解:A、三角形中有一边的中线等于这边的一半,这个三角形是直角三角形.B、三角形三内角之比是1:2:3,这个三角形的三个内角分别为30° , 60 , 90是直角三角形.C、三角形有一内角是30°,且有一边是另一边的一半,这个三角形不一定是直角三角形.D、三角形三边分别是m2 n2、2mn、m2 n2(m n 0),Q (m2 n2)2 (2mn)2 (m2 n2)2,这个三角形是直角三角形,故选:C .【点睛】本题考查勾股定理的逆定理,直角三角形的判定等知识,解题的关键是熟练掌握直角三角形判定方法,属于中考常考题型.3 25.若方程的根是正数,则k的取值范围是()x 3 x kA. k 2B. 3 k 2C. k 2 且k 3D. k 3【答案】A【解析】【分析】先求出分式方程的解,得出6 3k 0,求出k的范围,再根据分式方程有解得出x 3 0, x k 0, 求出x 3 , k 3,即可得出答案.【详解】解:方程两边都乘以(x 3)(x k)得:3(x k) 2(x 3),3x 3k 2x 6,3x 2x 6 3k,x 6 3k ,3 2Q方程的根为正数,6 3k 0,解得:k 2,又:x 3 0, x k 0,二 x 3 , k 3 , 即k 的取值范围是k 2, 故选:A .【点睛】本题考查了分式方程解的应用,关键是求出 6 3k 0和得出x 3 , k 3,是一道比较容易出错的题目.6.用两个完全相同的直角三角形拼下列图形: ⑴平行四边形,(2)矩形,(3)菱形,⑷正方形, 形,(6)等边三角形,一定可以拼成的图形是()A.⑴(4)(5);B.⑵(5)(6);C.⑴(2)(3);D.(1)(2)(5).【答案】D 【解析】试题分析:此题需要动手操作或画图即可判断。

北师大版数学八年级下册期末达标测试卷(含答案)

北师大版数学八年级下册期末达标测试卷(含答案)

期末达标测试卷一、选择题(每题3分,共30分)1.若分式x 2-4x 的值为0,则x 的值是( )A .2或-2B .2C .-2D .02.【2021·牡丹江】下列美术字中,既是轴对称图形又是中心对称图形的是( )3.下列式子从左到右的变形中,属于因式分解的是( )A .(x +1)(x -1)=x 2-1B .x 2-2x +1=x (x -2)+1C .a 2-b 2=(a +b )(a -b )D .mx +my +nx +ny =m (x +y )+n (x +y )4.【2021·丽水】若-3a >1,两边都除以-3,得( )A .a <-13B .a >-13C .a <-3D .a >-35.【2022·张家界】把不等式组⎩⎨⎧x +1>0,x +3≤4的解集表示在数轴上,下列选项正确的是( )6.【2022·雅安】在平面直角坐标系中,点(a +2,2)关于原点的对称点为(4,-b ),则ab 的值为( ) A .-4 B .4C .12D .-127.【2022·山西】化简1a -3-6a 2-9的结果是( ) A.1a +3 B .a -3 C .a +3 D.1a -3 8.在▱ABCD 中,对角线AC ,BD 交于点O ,下列结论不一定...成立的是( ) A .∠ABO =∠CDO B .∠BAD =∠BCDC .AB =CDD .AC ⊥BD9.【教材P 132复习题T 12变式】为了防止疫情扩散,确保人民健康,某区计划开展全员核酸检测,甲、乙两个检测队分别负责A,B两个生活区的核酸检测.已知A生活区参与核酸检测的共有3 000人,B生活区参与核酸检测的共有2 880人,乙检测队因工作原因比甲检测队晚开始检测10分钟.已知乙检测队的检测速度是甲检测队的1.2倍,结果两个检测队同时完成检测,设甲检测队每分钟检测x人,根据题意,可以得到的方程是()A.2 880x=3 0001.2x+10 B.3 000x=2 8801.2x+16C.3 000x=2 8801.2x D.3 000x=2 8801.2x+1010.【2022·百色】活动探究:我们知道,已知两边和其中一边的对角对应相等的两个三角形不一定全等,如已知△ABC中,∠A=30°,AC=3,∠A所对的边为3,满足已知条件的三角形有两个(我们发现其中如图的△ABC是一个直角三角形),则满足已知条件的三角形的第三边长为()A.2 3 B.23-3C.23或 3 D.23或23-3二、填空题(每题3分,共24分)11.【2022·金华】因式分解:x2-9=____________.12.【2022·福建】如图,在△ABC中,D,E分别是AB,AC的中点.若BC=12,则DE的长为________.(第12题)(第15题)(第16题)(第17题)13.计算mm2-1-11-m2的结果是__________.14.【教材P156例2改编】一个多边形的内角和是外角和的2倍,这个多边形的边数是________.15.如图,在Rt△ABC中,∠BAC=90°,AB=8,AC=6,DE是边AB的垂直平3分线,垂足为D ,交边BC 于点E ,连接AE ,则△ACE 的周长为________. 16.如图,已知函数y =kx +2与函数y =mx -4的图象交于点A ,根据图象可知不等式kx +2<mx -4的解集是__________.17.如图,将△ABC 绕点C 按顺时针方向旋转20°,B 点落在B′的位置,A 点落在A ′的位置,若AC ⊥A′B ′,则∠BAC =________. 18.【2022·齐齐哈尔】若关于x 的分式方程1x -2+2x +2=x +2m x 2-4的解大于1,则m 的取值范围是__________.三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分) 19.【2022·梧州】解方程:1-23-x =4x -3.20.【2022·常德】解不等式组:⎩⎪⎨⎪⎧5x -1>3x -4,-13x ≤23-x .21.【2022·盘锦】先化简,再求值:x -3x 2-1÷x -3x 2+2x +1-⎝ ⎛⎭⎪⎫1x -1+1,其中x =|-2|+1.22.【2021·达州】如图,在平面直角坐标系中,△ABC的顶点坐标分别是A(0,4),B(0,2),C(3,2).(1)将△ABC以O为旋转中心旋转180°,画出旋转后对应的△A1B1C1;(2)将△ABC平移后得到△A2B2C2,若点A的对应点A2的坐标为(2,2),求△A1C1C2的面积.23.【2023·云南大学附属中学模拟】如图,在平行四边形ABCD中,F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.(1)求证:四边形AEBD是平行四边形;(2)若BD=BC=5,CD=6,求平行四边形AEBD的面积.24.【2022·聊城】为了解决雨季时城市内涝的难题,我市决定对部分老街道的地下管网进行改造.在改造一段长3 600米的街道地下管网时,每天的施工效率比原计划提高了20%.按这样的进度可以比原计划提前10天完成任务.(1)求实际施工时,每天改造管网的长度;(2)施工进行20天后,为了减少对交通的影响,施工单位决定再次加快施工进度,以确保总工期不超过40天,那么以后每天改造管网至少还要增加多少米?25.【动态探究题】点D是等边三角形ABC外一点,且DB=DC,∠BDC=120°,将一个三角尺60°角的顶点放在点D上,三角尺的两边DP,DQ分别与射线AB,CA相交于E,F两点,连接EF.(1)当EF∥BC时,如图①所示,求证:EF=BE+CF.(2)当三角尺绕点D旋转到如图②所示的位置时,线段EF,BE,CF之间的上述数量关系是否仍然成立?如果成立,请说明理由;如果不成立,写出EF,BE,CF之间的数量关系,并说明理由.(3)当三角尺绕点D继续旋转到如图③所示的位置时,(1)中的结论是否发生变化?如果不变化,请说明理由;如果变化,请直接写出EF,BE,CF之间的数量关系.5答案一、1.A 2.C 3.C 4.A 5.D 6.D 7.A 8.D 9.D10.C 【点拨】如图,满足已知条件的三角形为△ABC 和△AB ′C ,其中CB ′=CB ,作CH ⊥AB 于H . ∴B ′H =BH . ∵∠A =30°, ∴CH =12AC =32.∴AH =AC 2-CH 2=32 3.在Rt △CBH 中,由勾股定理得BH =BC 2-CH 2=3-94=32,∴AB =AH +BH =332+32=23,AB ′=AH -B ′H =AH -BH =332-32= 3.二、11.(x +3)(x -3) 12.6 13.1m -114.6 15.16 16.x <-3 17.70° 18. m >0且m ≠1【点思路】解分式方程,得x =m +1.经检验,当m +1≠2,m +1≠-2,即m ≠1且m ≠-3时,x =m +1是原分式方程的解.根据题意,得m +1>1,所以m >0且m ≠1. 三、19.解:去分母,得x -3+2=4,解得x =5.检验:当x =5时,x -3≠0. 所以x =5是原分式方程的根. 20.解:⎩⎪⎨⎪⎧5x -1>3x -4,①-13x ≤23-x .②7解不等式①,得x >-32; 解不等式②,得x ≤1.所以这个不等式组的解集为-32<x ≤1. 21.解:x -3x 2-1÷x -3x 2+2x +1-⎝ ⎛⎭⎪⎫1x -1+1=x -3(x +1)(x -1)·(x +1)2x -3-⎝⎛⎭⎪⎫1x -1+x -1x -1 =x +1x -1-x x -1=1x -1. ∵x =|-2|+1=2+1, ∴原式=12+1-1=12=22.22.解:(1)如图,△A 1B 1C 1即为所求.(2)如图所示.S △A 1C 1C 2=8×4-12×3×2-12×2×8-12×4×5=11. 23.(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC . ∴AD ∥BE . ∴∠ADF =∠BEF . ∵F 是AB 的中点, ∴AF =BF .在△ADF 和△BEF 中,⎩⎨⎧∠ADF =∠BEF ,∠AFD =∠BFE ,AF =BF ,∴△ADF ≌△BEF (AAS). ∴AD =BE . 又∵AD ∥BE ,∴四边形AEBD 是平行四边形.(2)解:如图,过点D 作DG ⊥BC 于点G ,过点B 作BH ⊥CD 于点H . ∵BD =BC =5,CD =6, ∴CH =DH =12CD =3. ∴BH =BC 2-CH 2=4. ∵S △BCD =12BC ·DG =12CD ·BH , ∴DG =CD ·BH BC =6×45=245. ∵四边形AEBD 是平行四边形, ∴BE =AD . ∴BE =BC =5.∴S 平行四边形AEBD =BE ·DG =5×245=24.24.解:(1)设原计划每天改造管网x 米,则实际施工时每天改造管网(1+20%)x米.由题意得3 600x - 3 600(1+20%)x =10,解得x =60.经检验,x =60是原方程的解,且符合题意. 此时,60×(1+20%)=72(米).答:实际施工时,每天改造管网的长度是72米. (2)设以后每天改造管网还要增加m 米. 由题意得(40-20)(72+m )≥3 600-72×20, 解得m ≥36.答:以后每天改造管网至少还要增加36米.25.(1)证明:∵△ABC是等边三角形,∴AB=AC,∠ABC=∠ACB=60°.∵DB=DC,∠BDC=120°,∴∠DBC=∠DCB=30°.∴∠DBE=∠DBC+∠ABC=90°,∠DCF=∠DCB+∠ACB=90°.∵EF∥BC,∴∠AEF=∠ABC=60°,∠AFE=∠ACB=60°.∴∠AEF=∠AFE.∴AE=AF.∴BE=AB-AE=AC-AF=CF.又∵DB=DC,∠DBE=∠DCF=90°,∴△BDE≌△CDF(SAS).∴DE=DF,∠BDE=∠CDF.又∵∠BDC=120°,∠EDF=60°,∴△DEF是等边三角形,∠BDE=∠CDF=30°.∴DE=DF=EF,BE=12DE=12DF=CF.∴BE+CF=12DE+12DF=EF,即EF=BE+CF.(2)解:仍然成立.理由如下:如图,在射线AB上取点F′,使BF′=CF,连接DF′.由(1)得∠DBE=∠DCF=90°,则∠DBF′=∠DCF=90°.又∵BD=CD,∴△DCF≌△DBF′(SAS).9∴DF=DF′,∠BDF′=∠CDF.∵∠BDC=120°,∠EDF=60°,∴∠EDB+∠CDF=60°.∴∠EDB+∠BDF′=∠EDF′=60°.∴∠EDF′=∠EDF.又∵DE=DE,∴△EDF′≌△EDF(SAS).∴EF=EF′=BE+BF′=BE+CF.(3)解:结论发生变化.EF=CF-BE.【点要点】利用旋转解决问题时要注意以下几点:1.旋转中的变(图形的位置)与不变(图形的形状、大小);2.旋转前后的对应关系(顶点、边、角);3.旋转过程中的相等关系.。

新北师大版八年级下学期数学期末试题及答案详解

新北师大版八年级下学期数学期末试题及答案详解

新北师大版八年级下学期期末数学试题一.选择题(共15小题)1.下列说法不一定成立的是()A.若a>b,则a+c>b+c B.若a+c>b+c,则a>bC.若a>b,则ac2>bc2D.若ac2>bc2,则a>b2.关于x的不等式组的解集为x>1,则a的取值范围是()A.a>1 B.a<1 C.a≥1 D.a≤13.如图,函数y=kx+b(k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,则不等式0<kx+b<2x的解集为()A.x>0 B.0<x<1 C.1<x<2 D.x>24.如果不等式组恰有3个整数解,则a的取值范围是()A.a≤﹣1 B.a<﹣1 C.﹣2≤a<﹣1 D.﹣2<a≤﹣15.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.35°B.40°C.50°D.65°6.如图O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边形AOBO′=6+3;⑤S△AOC+S△AOB=6+.其中正确的结论是()A.①②③⑤B.①②③④C.①②③④⑤D.①②③7.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2 B.3 C.4 D.58.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′交CD于点E.若AB=3,则△AEC的面积为()A.3 B.1.5 C.2D.9.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0).将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为()A.4 B.8 C.16 D.810.已知a,b,c为△ABC的三边长,且满足a2c2﹣b2c2=a4﹣b4,判断△ABC的形状()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形11.下列从左到右边的变形,是因式分解的是()A.(3﹣x)(3+x)=9﹣x2B.(y+1)(y﹣3)=﹣(3﹣y)(y+1)C.4yz﹣2y2z+z=2y(2z﹣yz)+z D.﹣8x2+8x﹣2=﹣2(2x﹣1)212.分式方程=有增根,则m的值为()A.0和3 B.1 C.1和﹣2 D.313.关于x的分式方程=1的解为正数,则字母a的取值范围为()A.a≥﹣1 B.a>﹣1 C.a≤﹣1 D.a<﹣114.已知x2﹣3x+1=0,则的值是()A.B.2 C.D.3 15.已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2 B.m≥2 C.m≥2且m≠3 D.m>2且m≠3二.填空题(共12小题)16.若不等式组有解,则a的取值范围是.17.若不等式组的解集是﹣1<x<1,则(a+b)2009=.18.如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为.19.多项式x2+mx+5因式分解得(x+5)(x+n),则m=,n=.20.若关于x的分式方程﹣1=无解,则m的值.21.如图,四边形ABCD中,∠A=90°,AB=3,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为.22.如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=5,AC=2,则DF的长为.23.如图,▱ABCD 与▱DCFE 的周长相等,且∠BAD=60°,∠F=110°,则∠DAE 的度数为 .24.如图,△ACE 是以▱ABCD 的对角线AC 为边的等边三角形,点C 与点E关于x 轴对称.若E 点的坐标是(7,﹣3),则D 点的坐标是 .25.如图,在▱ABCD 中,BE 平分∠ABC ,BC=6,DE=2,则▱ABCD 的周长等于 .26.如图,在▱ABCD 中,AB=3,AD=4,∠ABC=60°,过BC 的中点E 作EF ⊥AB ,垂足为点F ,与DC 的延长线相交于点H ,则△DEF 的面积是 .27.如图,在▱ABCD 中,E ,F 是对角线AC 上的两点且AE=CF ,在①BE=DF ;②BE ∥DF ;③AB=DE ;④四边形EBFD 为平行四边形;⑤S △ADE =S △ABE ;⑥AF=CE 这些结论中正确的是 .三.解答题(共8小题)28.去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?29.已知关于x ,y 的方程组的解满足不等式组,求满足条件的m 的整数值.30.解不等式,并把它们的解集表示在数轴上.31.(1)已知x2﹣2xy+2y2+6y+9=0,求xy的值;(2)已知△ABC的三边长a、b、c都是正整数,且满足a2+b2﹣10a﹣12b+61=0,求△ABC的最大边c 的值;32.解分式方程:=﹣.33.先化简:,并从0,﹣1,2中选一个合适的数作为a的值代入求值.34.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?35.如图,在平面直角坐标系中,点A,B的坐标分别是(﹣3,0),(0,6),动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从点B出发,沿射线BO方向以每秒2个单位的速度运动.以CP,CO为邻边构造□PCOD.在线段OP延长线上一动点E,且满足PE=AO.(1)当点C在线段OB上运动时,求证:四边形ADEC为平行四边形;(2)当点P运动的时间为秒时,求此时四边形ADEC的周长是多少?新北师大版八年级下学期期末考试试题答案一.选择题(共15小题)1.下列说法不一定成立的是()A.若a>b,则a+c>b+c B.若a+c>b+c,则a>bC.若a>b,则ac2>bc2D.若ac2>bc2,则a>b【解答】解:A、在不等式a>b的两边同时加上c,不等式仍成立,即a+c>b+c,不符合题意;B、在不等式a+c>b+c的两边同时减去c,不等式仍成立,即a>b,不符合题意;C、当c=0时,若a>b,则不等式ac2>bc2不成立,符合题意;D、在不等式ac2>bc2的两边同时除以不为0的c2,该不等式仍成立,即a>b,不符合题意.故选:C.2.关于x的不等式组的解集为x>1,则a的取值范围是()A.a>1 B.a<1 C.a≥1 D.a≤1【解答】解:因为不等式组的解集为x>1,所以可得a≤1,故选:D.3.如图,函数y=kx+b(k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,则不等式0<kx+b<2x的解集为()A.x>0 B.0<x<1 C.1<x<2 D.x>2【解答】解:把A(x,2)代入y=2x得2x=2,解得x=1,则A点坐标为(1,2),所以当x>1时,2x>kx+b,∵函数y=kx+b(k≠0)的图象经过点B(2,0),即不等式0<kx+b<2x的解集为1<x<2.故选:C.4.如果不等式组恰有3个整数解,则a的取值范围是()A.a≤﹣1 B.a<﹣1 C.﹣2≤a<﹣1 D.﹣2<a≤﹣1【解答】解:如图,由图象可知:不等式组恰有3个整数解,需要满足条件:﹣2≤a<﹣1.故选:C.5.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.35°B.40°C.50°D.65°【解答】解:∵CC′∥AB,∴∠ACC′=∠CAB=65°,∵△ABC绕点A旋转得到△AB′C′,∴AC=AC′,∴∠CAC′=180°﹣2∠ACC′=180°﹣2×65°=50°,∴∠CAC′=∠BAB′=50°.故选:C.6.如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边形AOBO′=6+3;⑤S△AOC+S△AOB=6+.其中正确的结论是()A.①②③⑤B.①②③④C.①②③④⑤D.①②③【解答】解:由题意可知,∠1+∠2=∠3+∠2=60°,∴∠1=∠3,又∵OB=O′B,AB=BC,∴△BO′A≌△BOC,又∵∠OBO′=60°,∴△BO′A可以由△BOC绕点B逆时针旋转60°得到,故结论①正确;如图①,连接OO′,∵OB=O′B,且∠OBO′=60°,∴△OBO′是等边三角形,∴OO′=OB=4.故结论②正确;∵△BO′A≌△BOC,∴O′A=5.在△AOO′中,三边长为3,4,5,这是一组勾股数,∴△AOO′是直角三角形,∠AOO′=90°,∴∠AOB=∠AOO′+∠BOO′=90°+60°=150°,故结论③正确;=S △AOO′+S△OBO′=×3×4+×42=6+4,故结论④错误;如图②所示,将△AOB绕点A逆时针旋转60°,使得AB与AC重合,点O旋转至O″点.易知△AOO″是边长为3的等边三角形,△COO″是边长为3、4、5的直角三角形,则S△AOC +S△AOB=S四边形AOCO″=S△COO″+S△AOO″=×3×4+×32=6+,故结论⑤正确.综上所述,正确的结论为:①②③⑤.故选:A.7.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2 B.3 C.4 D.5【解答】解:由B点平移前后的纵坐标分别为1、2,可得B点向上平移了1个单位,由A点平移前后的横坐标分别是为2、3,可得A点向右平移了1个单位,由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,所以点A、B均按此规律平移,由此可得a=0+1=1,b=0+1=1,故a+b=2.故选:A.8.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′交CD 于点E.若AB=3,则△AEC的面积为()A.3 B.1.5 C.2 D.【解答】解:∵旋转后AC′的中点恰好与D点重合,即AD=AC′=AC,∴在Rt△ACD中,∠ACD=30°,即∠DAC=60°,∴∠DAD′=60°,∴∠DAE=30°,∴∠EAC=∠ACD=30°,∴AE=CE,在Rt△ADE中,设AE=EC=x,则有DE=DC﹣EC=AB﹣EC=3﹣x,AD=×3=,根据勾股定理得:x2=(3﹣x)2+()2,解得:x=2,∴EC=2,=EC•AD=,则S△AEC故选:D.9.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0).将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为()A.4 B.8 C.16 D.8【解答】解:如图所示.∵点A、B的坐标分别为(1,0)、(4,0),∴AB=3.∵∠CAB=90°,BC=5,∴AC=4.∴A′C′=4.∵点C′在直线y=2x﹣6上,∴2x﹣6=4,解得x=5.即OA′=5.∴CC′=5﹣1=4.∴S▱BCC′B′=4×4=16 (面积单位).即线段BC扫过的面积为16面积单位.故选:C.10.已知a,b,c为△ABC的三边长,且满足a2c2﹣b2c2=a4﹣b4,判断△ABC的形状()A.等腰三角形B.直角三角形C.等腰直角三角形 D.等腰三角形或直角三角形【解答】解:由a2c2﹣b2c2=a4﹣b4,得a4+b2c2﹣a2c2﹣b4=(a4﹣b4)+(b2c2﹣a2c2)=(a2+b2)(a2﹣b2)﹣c2(a2﹣b2)=(a2﹣b2)(a2+b2﹣c2)=(a+b)(a﹣b)(a2+b2﹣c2)=0,∵a+b>0,∴a﹣b=0或a2+b2﹣c2=0,即a=b或a2+b2=c2,则△ABC为等腰三角形或直角三角形.故选:D.11.下列从左到右边的变形,是因式分解的是()A.(3﹣x)(3+x)=9﹣x2B.(y+1)(y﹣3)=﹣(3﹣y)(y+1)C.4yz﹣2y2z+z=2y(2z﹣yz)+z D.﹣8x2+8x﹣2=﹣2(2x﹣1)2【解答】解:A、右边不是整式积的形式,不是因式分解,故本选项错误;B、不合因式分解的定义,故本选项错误;C、右边不是整式积的形式,不是因式分解,故本选项错误;D、左边=右边,是因式分解,故本选项正确.故选:D.12.分式方程=有增根,则m的值为()A.0和3 B.1 C.1和﹣2 D.3【解答】解:∵分式方程=有增根,∴x﹣1=0,x+2=0,∴x1=1,x2=﹣2.两边同时乘以(x﹣1)(x+2),原方程可化为x(x+2)﹣(x﹣1)(x+2)=m,整理得,m=x+2,当x=1时,m=1+2=3,当x=﹣2时,m=﹣2+2=0,当m=0时,方程为﹣1=0,此时1=0,即方程无解,∴m=3时,分式方程有增根,故选:D.13.关于x的分式方程=1的解为正数,则字母a的取值范围为()A.a≥﹣1 B.a>﹣1 C.a≤﹣1 D.a<﹣1【解答】解:分式方程去分母得:2x﹣a=x+1,解得:x=a+1,根据题意得:a+1>0且a+1≠﹣1,解得:a>﹣1且a≠﹣2.即字母a的取值范围为a>﹣1.故选:B.14.已知x2﹣3x+1=0,则的值是()A.B.2 C.D.3【解答】解:∵x2﹣3x+1=0,∴x2=3x﹣1,∴原式==.故选:A.15.已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2 B.m≥2 C.m≥2且m≠3 D.m>2且m≠3【解答】解:分式方程去分母得:m﹣3=x﹣1,解得:x=m﹣2,由方程的解为非负数,得到m﹣2≥0,且m﹣2≠1,解得:m≥2且m≠3.故选:C.二.填空题(共12小题)16.若不等式组有解,则a的取值范围是a>﹣1.【解答】解:∵由①得x≥﹣a,由②得x<1,故其解集为﹣a≤x<1,∴﹣a<1,即a>﹣1,∴a的取值范围是a>﹣1.故答案为:a>﹣1.17.若不等式组的解集是﹣1<x<1,则(a+b)2009=﹣1.【解答】解:由不等式得x>a+2,x<,∵﹣1<x<1,∴a+2=﹣1,=1∴a=﹣3,b=2,∴(a+b)2009=(﹣1)2009=﹣1.18.如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为 1.6.【解答】解:由旋转的性质可得:AD=AB,∵∠B=60°,∴△ABD是等边三角形,∴BD=AB,∵AB=2,BC=3.6,∴CD=BC﹣BD=3.6﹣2=1.6.故答案为:1.6.19.多项式x2+mx+5因式分解得(x+5)(x+n),则m=6,n=1.【解答】解:∵(x+5)(x+n)=x2+(n+5)x+5n,∴x2+mx+5=x2+(n+5)x+5n∴,∴,故答案为:6,1.20.若关于x的分式方程﹣1=无解,则m的值﹣或﹣.【解答】解:方程两边同乘x(x﹣3),得x(2m+x)﹣(x﹣3)x=2(x﹣3)(2m+1)x=﹣6x=﹣,当2m+1=0,方程无解,解得m=﹣.x=3时,m=﹣,x=0时,m无解.故答案为:﹣或﹣.21.如图,四边形ABCD中,∠A=90°,AB=3,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为3.【解答】解:∵ED=EM,MF=FN,∴EF=DN,∴DN最大时,EF最大,∵N与B重合时DN最大,此时DN=DB==6,∴EF的最大值为3.故答案为3.22.如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=5,AC=2,则DF的长为.【解答】解:延长CF交AB于点G,∵AE平分∠BAC,∴∠GAF=∠CAF,∵AF垂直CG,∴∠AFG=∠AFC,在△AFG和△AFC中,∵,∴△AFG≌△AFC(ASA),∴AC=AG,GF=CF,又∵点D是BC中点,∴DF是△CBG的中位线,∴DF=BG=(AB﹣AG)=(AB﹣AC)=.故答案为:.23.如图,▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为25°.【解答】解:∵▱ABCD与▱DCFE的周长相等,且CD=CD,∴AD=DE,∵∠DAE=∠DEA,∵∠BAD=60°,∠F=110°,∴∠ADC=120°,∠CDE═∠F=110°,∴∠ADE=360°﹣120°﹣110°=130°,∴∠DAE==25°,故答案为:25°.24.如图,△ACE是以▱ABCD的对角线AC为边的等边三角形,点C与点E关于x轴对称.若E点的坐标是(7,﹣3),则D点的坐标是(5,0).【解答】解:∵点C与点E关于x轴对称,E点的坐标是(7,﹣3),∴C的坐标为(7,3),∴CH=3,CE=6,∵△ACE是以▱ABCD的对角线AC为边的等边三角形,∴AC=6,∴AH=9,∵OH=7,∴AO=DH=2,∴OD=5,∴D点的坐标是(5,0),故答案为(5,0).25.如图,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD的周长等于20.【解答】解:∵四边形ABCD为平行四边形,∴AE∥BC,AD=BC,AB=CD,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE,∴AE+DE=AD=BC=6,∴AE+2=6,∴AE=4,∴AB=CD=4,∴▱ABCD的周长=4+4+6+6=20,故答案为:20.26.如图,在▱ABCD中,AB=3,AD=4,∠ABC=60°,过BC的中点E作EF⊥AB,垂足为点F,与DC 的延长线相交于点H,则△DEF的面积是.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC=4,AB∥CD,AB=CD=3,∵E为BC中点,∴BE=CE=2,∵∠B=60°,EF⊥AB,∴∠FEB=30°,∴BF=1,由勾股定理得:EF=,∵AB∥CD,∴△BFE∽△CHE,∴====1,∴EF=EH=,CH=BF=1,∵S△DHF=DH•FH=×(1+3)×2=4,∴S△DEF =S△DHF=2,故答案为:2.27.如图,在▱ABCD中,E,F是对角线AC上的两点且AE=CF,在①BE=DF;②BE∥DF;③AB=DE;④四边形EBFD为平行四边形;⑤S△ADE =S△ABE;⑥AF=CE这些结论中正确的是①②④⑤⑥.【解答】解:连接BD交AC于O,过D作DM⊥AC于M,过B作BN⊥AC于N,∵四边形ABCD是平行四边形,∴DO=BO,OA=OC,∵AE=CF,∴OE=OF,∴四边形BEDF是平行四边形,∴BE=DF,BE∥DF,∴①正确;②正确;④正确;∵根据已知不能推出AB=DE,∴③错误;∵BN⊥AC,DM⊥AC,∴∠BNO=∠DMO=90°,在△BNO和△DMO中∴△BNO≌△DMO(AAS),∴BN=DM,∵S△ADE =×AE×DM,S△ABE=×AE×BN,∴S△ADE =S△ABE,∴⑤正确;∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,∴⑥正确;故答案为:①②④⑤⑥.三.解答题(共8小题)28.去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?【解答】解:(1)设饮用水有x件,则蔬菜有(x﹣80)件.x+(x﹣80)=320,解这个方程,得x=200.∴x﹣80=120.答:饮用水和蔬菜分别为200件和120件;(2)设租用甲种货车m辆,则租用乙种货车(8﹣m)辆.得:,解这个不等式组,得2≤m≤4.∵m为正整数,∴m=2或3或4,安排甲、乙两种货车时有3种方案.设计方案分别为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车4辆,乙车4辆;(3)3种方案的运费分别为:①2×400+6×360=2960(元);②3×400+5×360=3000(元);③4×400+4×360=3040(元);∴方案①运费最少,最少运费是2960元.答:运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元.29.已知关于x,y的方程组的解满足不等式组,求满足条件的m的整数值.【解答】解:①+②得:3x+y=3m+4,②﹣①得:x+5y=m+4,∵不等式组,∴,解不等式组得:﹣4<m≤﹣,则m=﹣3,﹣2.30.解不等式,并把它们的解集表示在数轴上.【解答】解:,解①得x<2,解②得x≥﹣1,所以不等式组的解集为﹣1≤x<2.用数轴表示为:.31.阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知x2﹣2xy+2y2+6y+9=0,求xy的值;(2)已知△ABC的三边长a、b、c都是正整数,且满足a2+b2﹣10a﹣12b+61=0,求△ABC的最大边c 的值;【解答】解:(1)∵x2﹣2xy+2y2+6y+9=0,∴(x2﹣2xy+y2)+(y2+6y+9)=0,∴(x﹣y)2+(y+3)2=0,∴x﹣y=0,y+3=0,∴x=﹣3,y=﹣3,∴xy=(﹣3)×(﹣3)=9,即xy的值是9.(2)∵a2+b2﹣10a﹣12b+61=0,∴(a2﹣10a+25)+(b2﹣12b+36)=0,∴(a﹣5)2+(b﹣6)2=0,∴a﹣5=0,b﹣6=0,∴a=5,b=6,∵6﹣5<c<6+5,c≥6,∴6≤c<11,∴△ABC的最大边c的值可能是6、7、8、9、10.32.解分式方程:=﹣.【解答】解:原方程即=﹣,两边同时乘以(2x+1)(2x﹣1)得:x+1=3(2x﹣1)﹣2(2x+1),x+1=6x﹣3﹣4x﹣2,解得:x=6.经检验:x=6是原分式方程的解.∴原方程的解是x=6.33.先化简:,并从0,﹣1,2中选一个合适的数作为a的值代入求值.【解答】解:=×,=×=﹣,当a=0时,原式=1.34.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?【解答】解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:﹣=4,解得:x=50,经检验x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)设应安排甲队工作y天,根据题意得:0.4y+×0.25≤8,解得:y≥10,答:至少应安排甲队工作10天.35.如图,在平面直角坐标系中,点A,B的坐标分别是(﹣3,0),(0,6),动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从点B出发,沿射线BO方向以每秒2个单位的速度运动.以CP,CO为邻边构造□PCOD.在线段OP延长线上一动点E,且满足PE=AO.(1)当点C在线段OB上运动时,求证:四边形ADEC为平行四边形;(2)当点P运动的时间为秒时,求此时四边形ADEC的周长是多少?【解答】(1)证明:连接CD交AE于F,∵四边形PCOD是平行四边形,∴CF=DF,OF=PF,∵PE=AO,∴AF=EF,又CF=DF,∴四边形ADEC为平行四边形;(2)解:当点P运动的时间为秒时,OP=,OC=3,则OE=,由勾股定理得,AC==3,CE==,∵四边形ADEC为平行四边形,∴周长为(3+)×2=6+3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版数学八年级下学期期末测试卷时间:120分钟总分:120分1.如图,在中,已知,点D、E分别在AC、AB上,且,,那么的度数是A.B.C.D.2.如图,下列哪组条件不能判定四边形ABCD是平行四边形()A.AB∥CD,AB=CD B.AB∥CD,AD∥BCC.OA=OC,OB=OD D.AB∥CD,AD=BC3.以下列各组数为边长,能构成直角三角形的是( )A.1,2,3B.4,5,6C.,,D.32,42,52 4.已知点P关于x轴的对称点P1的坐标是(4,3),那么点P关于原点的对称点P2的坐标是A.(-3,-4)B.(-4,3)C.(-4,-3)D.(4,-3)5.如图,在△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,C,D,E三点在同一条直线上,连接BD,则下列结论错误的是()A.△ABD≌△ACE B.∠ACE+∠DBC=45°C.BD⊥CE D.∠BAE+∠CAD=200°6.若a<b,则ac>bc成立,那么c应该满足的条件是()A.c>0B.c<0C.c≥0D.c≤07.下列图形既是轴对称图形,又是中心对称图形的代号是A.①③④B.②③④C.③④⑤D.①③⑤8.一直角三角形的三边分别为2,3,x,那么以x为边长的正方形的面积为()A.13B.5C.4D.13或59.如图,直线y=kx+3经过点(2,0),则关于x的不等式kx+3>0的解集是()A.x>2B.x<2C.x≥2D.x≤210.若不等式组的整数解共有三个,则a的取值范围是()A.5<a<6B.5<a≤6C.5≤a<6D.5≤a≤62212.有一块土地的形状如图所示,∠B=∠D=90°,AB=20m,BC=15m,CD=7m,则这块土地的面积为_____.13.如图,将△ABC沿BC平移得△DCE,连AD,R是DE上的一点,且DR:RE=1:2,BR分别与AC、CD相交于点P、Q,则BP:PQ:QR=_____.14.一个等边三角形,一个直角三角形以及一个等腰三角形如图放置,等腰三角形的底角∠3=80°,则∠1+∠2=_____.15.下列式子属于不等式的是_______________.①②③④⑤⑥⑦⑧⑨16.如图,吴伯伯家有一块等边三角形的空地ABC,已知E,F分别是边AB,AC的中点,量得EF=5米,他想把四边形BCFE用篱笆围成一圈放养小鸡,则需要篱笆的长是__米. 17.E,F,G,H分别为□ABCD四边的中点,则四边形EFGH为_______.18.已知关于x的不等式组的解集为x>1,则a的取值范围是_____.19.已知等腰直角三角形ABC中,∠C=90°.AC=BC=4,点D在直线AC上,且CD=2,连接BD,作BD的垂直平分线交三角形的两边于E.F,则EF的长为________.20.不等式组的解集为______.21.如图,在半径为R cm的圆形钢板上,除去半径为r cm的四个小圆,利用因式分解计算当R=7.8,r=1.1时剩余部分的面积.(π取3.14,结果精确到个位)22.A.B两地相距120 km,汽车货运公司与铁路货运公司都开办运输业务,所需费用如下表所示(注:“元/t· km”表示1 t货物运送1 km所需的费用).其客户有一批货物需从A地运到B地,根据他所运货物的质量,采取铁路运货的方式运输所需费用较少,你知道这批货物的质量在多少吨以上吗?23.阅读材料:对于多项式x2.2ax.a2可以直接用公式法分解为(x.a)2的形式.但对于多项式x2.2ax.3a2就不能直接用公式法了.我们可以根据多项式的特点.在x2.2ax.3a2中先加上一项a2.再减去a2这项.使整个式子的值不变.解题过程如下:x2.2ax.3a2.x2.2ax.3a2.a2.a2(第一步).x2.2ax.a2.a2.3a2(第二步).(x.a)2.(2a)2(第三步).(x.3a)(x.a).(第四步)参照上述材料.回答下列问题:(1)上述因式分解的过程.从第二步到第三步.用到了哪种因式分解的方法()A.提公因式法B.平方差公式法C.完全平方公式法D.没有因式分解(2)从第三步到第四步用到的是哪种因式分解的方法:__________.(3)请你参照上述方法把m2.6mn.8n2因式分解.24.华联商厦进货员在苏州发现一种应季衬衫,预料能畅销市场,就用80000元购进所有衬衫,还急需2倍这种衬衫,经人介绍又在上海用了176000元购进所需衬衫,只是很快销售完,问商厦这笔生意赢利多少元?25.解不等式,并把解集在数轴上表示出来.(1)3x﹣5<2(2+3x)(2)﹣1≤ ,26.如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.(1)画出△ABC向左平移2个单位,再向上平移3个单位后得到的△A1B1C1;(2)图中AC与A1C1的关系是:;(3)画出△ABC中BC边上的中线AD;(4)△ACD的面积为27.因式分解:28.阅读下面的解题过程:已知,求代数式的值.解:由,取倒数得,=4,即2y2+3y=1.所以4y2+6y﹣1=2(2y2+3y)﹣1=2×1﹣1=1,则可得=1.该题的解题方法叫做“倒数法”,请你利用“倒数法”解下面的题目:已知,求的值.答案与解析1.B解:设,,∵,,,在中,,解得..故选:B.2.D解:根据平行四边形的判定,A、B、C均符合是平行四边形的条件,D则不能判定是平行四边形.故选D.3.C解:A、∵12+22≠32,∴该三角形不是直角三角形,故此选项不符合题意;B、∵42+52≠62,∴该三角形不是直角三角形,故此选项不符合题意;C、∵∴该三角形是直角三角形,故此选项符合题意;D、∵(32)2+(42)2≠(52)2,∴该三角形不是直角三角形,故此选项不符合题意.故选:C.4.B解:∵点P关于x轴的对称点P1的坐标是(4,3),∴P点坐标为(4,-3),∴点P(4,-3)关于原点的对称点P2的坐标是(-4,3).故选B.5.D解:∵∠BAC..DAE.90°...BAC+.CAD..DAE+.CAD.即∠BAD..CAE.在△BAD和△CAE中,∵...BAD..CAE.SAS...BD.CE.故A正确...ABC为等腰直角三角形...ABC..ACB.45°...ABD+.DBC.45°...BAD..CAE...ABD..ACE...ACE+.DBC.45°.故B正确...ABD+.DBC.45°...ACE+.DBC.45°...DBC+.DCB..DBC+.ACE+.ACB.90°.则BD.CE.故C正确...BAC..DAE.90°...BAE+.DAC.360°.90°.90°.180°.故D错误.故选D.6.B解:若a.b,则ac.bc成立,那么c应该满足的条件是c.0.故选:B.7.D解:如图所示:,既是轴对称图形,又是中心对称图形的代号是:①③⑤.故选:D.8.D解:当2和3是直角边,x是斜边时,则x2=4+9=13;当2和x是直角边,3是斜边,则x2=9-4=5.故选D.9.B解:由一次函数图象可知关于x的不等式kx+3>0的解集是x<2故选B.10.C解:解不等式组得:2.x≤a.∵不等式组的整数解共有3个,∴这3个是3.4.5,因而5≤a.6.故选C.11.直角三角形解:化简(a+b)2=c2+2ab,得,a2+b2=c2所以三角形是直角三角形,故答案为: 直角12.234m2解:连接AC,在Rt△ABC中,AC为斜边,则AC===25(m),在Rt△ACD中,AC为斜边,则AD==═24(m),四边形ABCD面积S=AB×BC+AD×CD=×20×15+×7×24=234(m2).故答案为:234m2.13.2:1:1解:由平移的性质可知,AC∥DE.BC=CE.∴△BPC∽△BRE.∴.∴PC=RE.BP=PR.∵DR.RE=1.2.∴PC=DR.∵AC∥DE.∴△PQC∽△RQD.∴=1.∴PQ=QR.∴BP.PQ.QR=2.1.1.故答案为:2.1.1.14.130°.解:如图,由等边三角形和直角三角形可得∠1+α=120°,∠2+β=90°,∴∠1+∠2+α+β=90°+120°=210°,且∠3=α+β,∴α+β=80°,∴∠1+∠2=210°-80°=130°,故答案为:130°.15.①③④⑤⑦⑧⑨解:∵不等式要求用不等号连接∴排除②⑥∴不等式的有①③④⑤⑦⑧⑨16.25解:∵点E,F分别是边AB,AC的中点,EF=5米,∴BC=2EF=10米,∵△ABC是等边三角形,∴AB=BC=AC,∴BE=CF=BC=5米,∴篱笆的长=BE+BC+CF+EF=5+10+5+5=25米.故答案为:25.17.平行四边形解:证明:连接BD,∵点E. F.G、H分别是边AB、BC、CD、DA的中点,∴EH为△ABD的中位线,∴EH∥BD,EH=BD.同理:FG∥BD,FG=BD,∴EH∥FG.EH=FG∴...EFGH..................18.a≤1.解:由关于x的不等式组的解集为x>1,得a≤1,故答案为:a≤1.19.解:如图.过点D作DG.AE于点G...C.90°.AC.BC.4....A.45°...ADG.90°.45°.45°...A..ADG.AG.DG(设为λ..由勾股定理得.λ2+λ2.AD2.而AD.AC.2.2.λ.BG.3.由勾股定理得.BD.2..EF.BD.且平分BD..DE.BE(设为μ..DF.BF(设为γ...GE.3μ.CF.4.γ.在△DGE中.由勾股定理得..解得.μ.在△DCF中.同理可求.γ.2.5..S四边形BEDF.S△BED+S△BFD....解得.EF.故答案为:.20.x≤1.解:∵解不等式①得:x≤1,解不等式②得:x<4,∴不等式组的解集为x≤1,故答案为:x≤1.21.剩余部分的面积约为176cm2. 解:........(πR2.4πr2)cm2..R.7.8.r.1.1..πR2.4πr2.π(R2.4r2).π(R.2r)(R.2r).π(7.8.2×1.1)(7.8.2×1.1).π×10×5.6≈56×3.14≈176. .........176 cm2.22.这批货物的质量在50 t以上.解:设这批货物的质量为x t.根据题意,得2×120x.200.1.8×120x.1400.解得x.50.答:这批货物的质量在50 t以上.23.(1)C.(2)平方差公式法;(3)(m.2n)(m.4n).解:(1)C.(2)平方差公式法.(3)m2.6mn.8n2.m2.6mn.8n2.n2.n2.m2.6mn.9n2.n2.(m.3n)2.n2.(m.2n)(m.4n).24.商厦这笔生意赢利90260元解:设从苏州购进x件衬衫,根据题意,得:解得:x=2000.经检验:x=2000是原方程的解..2000+4000-150.×58+150×58×0.8-.80000+176000.=90260(元).答:这笔生意赢利90260元.25.(1)-3;(2) 4解:(1)去括号,得3x-5<4+6x.移项,得3x-6x<4+5.合并同类项,得-3x<9.两边同除以-3,得x>-3.这个不等式的解表示在数轴上如图所示:(2)去分母,得去括号,得移项,得合并同类项,得两边同除以5,得4这个不等式的解表示在数轴上如图所示:26.(1);(2)平行且相等;(3);(4)4解(1) 图中.A1B1C1即为所求;(2) AC与A1C1的关系是:平行且相等;(3)图中AD即为所求;(4)S △ACD=4×6-×4×6-×4×4=24-12-8=4.27.;.解:原式;原式.28.解:原式===-,∵,∴,∴,∴,∴原式=.。

相关文档
最新文档