SPC基础知识讲解[1]
统计过程控制(SPC)
11
控制图的选择
控制图的选定
计量值 数据性质
计数值
平均值
“n”=10~25 “n”是否较大
n≧1 样本大小 n≧2
Cl的性质
中位数 “n”=2~5
“n”=1
不良数
缺陷数
不良数或
缺陷数
不一定
一定
“n”是否一定
单位大小 是否一定 不一定 一定
X-s 图
X-R 图
X-R
X-Rm “p”
图
图图
“np” “c”
数据类别: 计数值数据:只以缺陷数和个数表示,不能连续取值的数据 计量值数据:以产品本身的特性来表示,可以连续取值的数据
2
两种变异
普通性(特定性)变异:不易避免的原因(普通 原因)造成的变异,如操作人员的熟练程度的 差异、设备精度与保养好坏的差异、同批原材 料本身的差异
特殊性(偶尔性)变异:可以避免也必须避免 的原因(特殊原因)造成的变异,如不同原材料 之间的差异、设备故障
“u”
图图
图
12
案例1(控制图的选择)
质量特性 长度 重量 乙醇比重 电灯亮/不亮 每一百平方米的 脏点
样本数 5 10 1
100 100平方米
选用什么图
13
答案1
质量特性 长度 重量 乙醇比重 电灯亮/不亮 每一百平方米的 脏点
样本数 5 10 1
100 100平方米
选用控制图 均值极差控制图
通常用来消除变差的普通原因 几乎总是要求管理措施,以便纠正 大约可纠正85%的过程问题
8
控制图的目的
控制图和一般的统计图不同,因其不仅能 将数值以曲线表示出来,以观其变异之趋 势,且能显示变异系属于机遇性或非机遇 性,以指示某种现象是否正常,而采取适 当之措施。
SPC (统计过程控制)基础知识
SPC(统计过程控制)基础知识 统计过程控制) 统计过程控制
4.X-Rs 控制图。多用于下列场合:对每一个产品都进行检验,采用自动化检查和 测量的场合;取样费时、昂贵的场合;以及如化工等过程、样品均匀,多抽样也无 太大意义的场合。由于它不像前三种控制图那样能取得较多的信息,所以它判断过 程的灵敏度也要差一些。
以 客 贯 彻
户 为
中
心 宗
旨
的
质 量 目 标 的 制 定
有 目 期 况
无 制 定 可 测 量 的 质 量 目 标 ? 质 量 标 有 无 分 解 到 各 职 能 层 ? 有 无 定 测 量 评 估 各 质 量 目 标 的 达 成 情 ?
职 责 和 权 限
各 部 门 , 各 职 能 岗 位 有 无 定 义 相 关 的 职 责 和 权 限 ?
4 .2 .2
质 量 手 册
有 无 编 写 符 合 要 求 的 质 量 手 册 ?
SPC(统计过程控制)基础知识 统计过程控制) 统计过程控制
3.4 分层图 用于将数据分类比较 250
不良率(PPM)
目标线
150 100 50 0 1 2 3 4
工作周
C班 B班 A班
5
6
7
8
9
SPC(统计过程控制)基础知识 统计过程控制) 统计过程控制
3.5 控制图 什么是控制图? 什么是控制图? 控制图是对过程质量加以测定,记录从而进行控制管理的一种用科学方法设计的图。 控制图的理论基础是概率论。依据概率论,我们把“小概率的事件如果发生了,我 们认为有异常存在”。 控制图的种类: 控制图的种类
数据 计量值 分布 正态分布 控制图名称 均值-极差 图 均值-标准差 图 中位数-极差 图 单值-移动极差 图 不合格品率图 不合格品数图 单位缺陷数 缺陷数 简记 X-R chart X-S chart X-R chart X-Rs chart P chart Pn chart U chart C chart
SPC
3-1 分析极差图上的数据点 3-1-1 判定准则: 1.点子超出或落在控制线上; 2.控制界线内的点子排列有下列缺陷:
缺陷
●
图例 UCL
链状况-连 续9点以上在中 心线同一侧出现。
● ● ● ●
●
● ● ●
● ●
● ● ●
● ● ●
●
●
CL
●
●
●
LCL
UCL
趋势状况- 连续6点以上上 升或下降。
1-1-3 子组数:子组越多,变差越有机会出现。一般为25 组,首次使用管制图选用35 组数据,以便调整。 1-2 建立控制图及记录原始数据 (见下图)
管理项目:某一尺寸 规格要求:25+/-5
24 25 27 26 24 26 23 26 26 25 26 25 27 25 25 24 26 25 26 25 24 25 28 25 24 26 26 27 24 25 26 23 26 24 25 26 25 24 25 26 27 24 24 25 23 24 24 24 23 27 24 25 23 25 22 24 25 26 25 26 26 24 24 25 25 25 25 26 25 22 24 24 26 24 25 26 24 26 26 25 25 25 25 24 26 26 25 24 26 27 25 26 27 24 25 24 25 25 26 25 25 26 25 24 23 26 26 25 25 24 25 27 27 25 24 25 26 27 27 25 26 26 25 24 25
注:排除代表不稳定条件的子组并不仅是“丢弃坏数据”。而 是排除受已知的特殊原因影响的点。并且一定要改变过程, 以使特殊原因不会作为过程的一部分重现。 3-4 延长控制限,作为实际运用控制图的控制限
SPC培训讲义---基础知识
SPC培训讲义—基础知识简介SPC(Statistical Process Control,统计过程控制)是一种基于统计方法的质量管理工具,旨在通过对过程数据的统计分析,帮助组织识别和解决可能导致质量问题的根本原因,从而提高产品的稳定性和可靠性。
本讲义将介绍SPC的基础知识,包括SPC的原理、常用的SPC 工具和应用案例等内容。
1. SPC的原理SPC的核心原理是基于过程数据的统计分析,通过对数据的收集和分析,识别和排除可能导致质量问题的特殊原因,同时通过控制图的使用,监控和改进过程的稳定性和可靠性。
1.1 正态分布在SPC中,数据的正态分布是一个重要的假设。
正态分布是一种对称的概率分布,其特点是均值和标准差能够完全描述分布的情况。
正态分布的图形呈钟形曲线,均值位于曲线的中央。
在实际应用中,SPC 通常假设数据是近似正态分布的,以方便进行统计分析。
1.2 变异性与稳定性在质量管理中,变异性是指同一过程在不同时间或不同条件下相同测量项的数值差异。
通过SPC的应用,可以发现原本被认为是随机变动的过程,实际上可能存在特殊原因造成的异常波动。
稳定性是指过程在一段时间内的变异性较小,并且符合预期的性能要求。
通过SPC 的控制图,可以监控过程的稳定性,并及时采取措施防止不稳定状态的出现。
2. 常用的SPC工具SPC工具是SPC实施过程中使用的具体方法和技术,下面介绍几种常用的SPC工具。
2.1 控制图控制图是SPC中最常用的一种工具,它用来监控过程在一段时间内的变异情况。
控制图是一种统计图表,将过程数据按时间顺序绘制在图表上,同时画出上下限和中心线。
如果过程数据处于控制限之内,说明过程处于稳定状态;如果过程数据超过控制限,说明过程发生了特殊原因的变异,需要进行分析和改进。
2.2 直方图直方图是一种用柱形表示数据分布的图表,它可以直观地展示数据的中心趋势、波动幅度以及偏态情况。
通过直方图,可以判断数据是否符合正态分布,如果数据呈现钟形分布,则可以认为数据符合正态分布的假设。
SPC理论基础知识
广州今朝科技有限公司SPC基础知识一SPC术语录1.控制图:SPC的核心工具。
一种标绘着根据相继抽取的样本或子组的某一统计量的值、并画有控制限的图,用于评估或检查一个过程是否处于控制状态之下。
画在坐标系中,横轴表示时间或样本号,纵轴表示数值大小,将采集到的数据以点的形式表示在图中。
2.运行图:一种代表过程特性的简单图形,上面描有一些从过程中收集到的统计数据(通常是单值)和一条中心线(通常是测量值的中位数),可用来进行链分析。
3.排列图:一种用于解决问题的简单工具,按照对成本或变差的影响程度对各种潜在的有问题区域或变差源进行排序。
一般情况下,大多数的成本(或变差)是由于少量原因造成的,所以解决问题的精力最好是首先集中在少量关键的原因上,而暂时忽视多数不重要的原因。
4.散点图(相关图):把两个变量标在横轴与纵轴上,按照一一对应测量值点描绘成的图。
5.计量值:当质量特性值可以取给定范围内的任何一个可能的数值时,这样的质量特性值称为计量值。
6.计数值:当质量特性值只能取一组特定的数值,而不能取这些数值之间的数值时,称之为计数值。
7.过程:过程是指将输入转换成输出的一系列活8.9.10.628052366666611.动的总和。
12.样本:取自总体中的一个或多个个体,用于提供关于总体的信息,并作为可能做出对总体(或产生总体的过程)的某种判定的基础(引自GB3358-82)。
样本中所包含的样本单位数,称为样本大小。
13.样本容量(子组大小):在抽检中抽出来的样本单位数。
14.不良品:指整件物品作为一个整体考虑而未满人意或不能接受。
一件不良品可能具有若干相同的或不相同的缺陷。
15.不良率控制图:即P图,用于控制对象的不合格率。
16.不良品数控制图:即Pn图,是一种计数值控制图,用于控制对象为不合格品数的场合。
)17.采集规划:采集规划指从某过程中选择质量特征值进行数据采集的一种工具。
18.单位缺陷数(U)控制图:是一种计数值控制图,它通过周期性抽取样本以统计单位产品的缺陷率并在控制图上绘制点来监控过程变化,样本的检测结果为平均每个样品包含的缺陷数。
SPC培训讲义---基础知识
控制图原理——两种解释
➢点出界判异——小概率事件不会发生 ➢控制界限是区分偶波和异波的界限 偶波——过程固有的,始终存在的。对质量影响小但难以除去 异波——非过程固有的,时在时亡,对质量影响大但不难除去
控制图原理——预防的作用
20字方针 查出异因 采取措施 加以消除 不在出现 纳入标准
控制图原理——稳态
控制图判断准则
×
UCL A
B
XC C
B
LCL A
图一
UCL A B C
XC B
LCL A
图三
UCL A B C
XC B
LCL A
UCL A B C
XC B
LCL A
图二
图四
控制图判断1-2001的8种判异准则: 五、连续3点中有2点落在中心线同一测的B区以外; 六、连续5点中有4点落在中心线同一测的C区以外; 七、连续15点在C区中心线上下; 八、连续8点在中心线两侧,但无一在C区中;
S P C 培 训 讲 义——基础知识
课程大纲
➢ SPC概念 ➢ 控制图原理 ➢ 控制图判断准则
➢ 控制图种类 ➢ CPk值计算
SPC基本概念——SPC涵义
➢SPC:统计过程控制,主要工具是控制图理论。
SPC特点: ➢强调全员参加,不只是依耐少数质量管理人员 ➢强调用统计的方法保证预防原则的实现 ➢SPC强调用整个过程、整个体系出发解决问题
o
加强自身建设,增强个人的休养。202 1年1月 2日下 午9时35 分21.1. 221.1.2
o
精益求精,追求卓越,因为相信而伟 大。202 1年1月 2日星 期六下 午9时35 分45秒 21:35:4 521.1.2
o
SPC基本知识
SPC 基础知识一、 什么是SPCSPC 是Statistical process control 的缩写,即统计过程控制。
是应用统计方法对过程中的各个阶段进行临控,从而达到质量保证与质量改进的目的,在此可将统计学看成是从一系列数据中收集信息的工具,它是通过预防而不是通过检测来避免浪费。
二、 SPC 目的1. 预防问题的发生 2. 减少浪费三、 SPC 的管制图原理与益处1.根据3σ原理,在分布范围μ ±3 σ内,对于服从或近似服从正态分布的统计量,大约有99.73%的数据点会落在上下控制界限之内,数据点落在上下控制界限之外的概率约为0.27%,根据小概率原则,可判为异常点.图示如上.2.SPC管制图举例下面是Minitab R14 制作的Xbar-R 管制图。
从图可以看出制程有多个超出控制限的点,说明需要查找原因,采取措施,加以消除,不再出现,纳于标准。
合理使用管制图能够:1.区分变差的普通原因和特殊原因,作为采取局部措施和系统措施的指南。
2.有助于过程在质量上和成本上能持续地、可预测地保持下去。
3.使过程达到:A、更高的质量 B、更低的单位成本C、更高的有效能力。
四、 SPC制程能力分析1.Cp、Cpk与Pp、Ppk的含义与区别如下:Cp指数= 规格宽度工序宽度Cp:(Capability of Process)过程能力指数Cpk:修正的过程能力指数Pp: (Performance of Process)过程性能指数Ppk:修正的过程性能指数2..Cp、Cpk与Pp、Ppk的计算:过程能力指数的计算公式如下:过程性能指数计算公式如下:1.经济性:有效的抽样管制,不用全数检验,不良率,得以控制成本。
使制程稳定,能掌握品质、成本与交期。
2.预警性:制程的异常趋势可实时对策,预防整批不良,以减少浪费。
3.分辨特殊原因:作为局部问题对策或管理阶层系统改进之参考。
4.善用机器设备:估计机器能力,可妥善安排适当机器生产适当零件。
SPC基础知识[1]
2020/10/31
SPC基础知识[1]
課程大綱
• 直方圖統計 • 特性要因圖 • 圖形分析制程能力 • 制程能力指數 • 循環改善PDCA • 六個標准差的概念 • 六個標准差測量和統計 • 六個標准差工具
SPC基础知识[1]
直方圖
直方圖的定義、用途
• 將收集的測定值或數據之全距分為幾個相等區間作為橫軸,並將各區間 • 內之測定值所出現次數累積而成的面積以條狀方式排列起來所產生的圖 • 形,稱之為直方圖。
名詞解釋:
1. 次數分配: 將許多的複雜數據依其差異的幅度分成若干組,在各組內列入測定
2.
值得出現次數,即為次數分配.
2. 相對次數: 在各組出現的次數除以全部之次數.
3. 累積次數: 為自次數分配的測定值較小的一端將其次數累積計算,則成為
4.
累積次數
5. 4. 全距(R) : 在所有數據中的最大值和最小值的差
• ...............
• ............... • 23.15 + 0.5 = 23.65 (已大圖的作法
• 6. 求出各組的中心值 -- 各組上界加下界除以二
• Ex: (20.15 + 20.65)/ 2 =20.40 第一組中心值 • 7. 計算落在各組內的 次數
0.645 0.658 0.650 0.648 0.647 0.655 0.645 0.647 0.647 0.648
0.641 0.654 0.643 0.654 0.642 0.652 0.641 0.652 0.641 0.649
0.650 0.660 0.649 0.650 0.643 0.654 0.644 0.649 0.644 0.650
SPC统计过程控制基础知识
• +3
•当产品的质量特性值的分布,均处于控制
界限(μ±3 )之内,且围绕μ值均匀随机分
布时,则称过程处于受控状态. PPT文档演模板
SPC统计过程控制基础知识
管制图
• 管制图(又名控制图): 管制图是对过程质量加以测定、记录
并分析从而对过程进行控制管理的一种图。 图中包含中心线(CL)、上控制限 (UCL)、下控制限(LCL),并有按时间 顺序抽取的样本统计数值的描点序列。如 下图所示:
因果图
• 因果图又叫鱼刺图,用来罗列问题的原因, 并将众多的原因分类、分层的图形。
PPT文档演模板
SPC统计过程控制基础知识
水平对比法
• 水平对比法是通过不断地将企业流程与世 界处于领先地位的企业相比较,以获得有
助于改善经营绩效的信息。它是一项有系 统的、持续性的评估过程。
•工序1 •工序a
•工序2 •工序3 •工序b •工序c
•几小时每次,主要依据样本的差异
•至少为25组数据,这与“每组至少 100个”的条件必须同时满足;(行 业惯例)
PPT文档演模板
SPC统计过程控制基础知识
•取样的方式
取样必须达到组內变异小,组间变异大 样本数、频率、组数的说明
PPT文档演模板
SPC统计过程控制基础知识
• 组数的要求(最少25组)
•当制程中心值偏差了两 •个标准差时,它在控制 •限內的概率为0.84,那 •么连续25点在线內的概 •率为:
PPT文档演模板
SPC统计过程控制基础知识
•每个子组的平均值和极差的计算
1
100 98
99
100 98
2
98
99
98
101 97
SPC基础知识1
再見!
工序能力的評估 :
5. CPK<0.67時,工序能力非常不充分,根本 沒有滿足品質的狀態,必須進行品質改善.
管制圖的描劃 :
1. 將UCLX,LCLx,CLx,UCLR,LCLR,CLR繪制
在X-R管制圖(QA-022A表格) 2. IPQC檢查員4小時隨機抽取5PCS數據,將 X填入X-R,并描點. 3. X-R需張貼在生產線相應的工位旁,一台 設備/工具一張. 4. 4小時內隨機抽取5個數據的方法是 : 第 一小時取2個,後續3小時各1個.
注 : 極差分布寬度減小是一個好狀態,應研究以便 推廣應用和改進過程.
c . 過程均值已改變,也許還在變化; d . 測試系統已改變, (飄移,偏倚,靈敏度等)
三.異常情況及處理 :
a. 連續10點在中心線一側
b. 連續5點出現向上或向下趨勢 應知會生產組長,必要時作出調整 c. 前兩項的調整無效 d. 超出管制線但未超出公差 知會生產課長,立即作出調整 e. 發生不良經調整無效且有惡化現象 f. 超出公差 暫停生產,對不良加以追溯隔離,調整經QA接受後 才可繼續生產.
二 . 原因 : (分偶發性原因和系統性原因) a~b為R值原因, c~d為均值原因 a . 全距R增加,可能是無規律的,如設備工 作不正常或固定松動或過程中某個要素 變化,如使用新的不是很一致的原材料,需 糾正或調整或改善; b . 測量系統改變,如檢驗員或量具; ===>>會遮掩過程真實性能的變化
定義
SPC : Statistical Process Control 統計過程 控制 δ : Sigma 代表標準偏差的希臘字母 μ : 標準中心值 (規格要求的中間值) ε : 分布中心對標準中心的絕對偏移 ====>>> μ-x T : 規格之上限與下限的差 X : 樣品的實測值﹐也稱單值 X : 讀作 X bar , 為子組X的均值 X : 子組均值X 的平均值,即各樣本總平均 值, 讀作 X double bar
SPC基础知识培训讲义
SPC基础知识培训讲义SPC基础知识⼀、什么是SPCSPC是英⽂Statistical Process Control的前缀简称。
即统计过程控制。
SPC就是应⽤统计技术对过程中的各个阶段进⾏监控。
从⽽达到改进与保证质量的⽬的。
SPC强调全过程的预防。
SPC的特点是:1.SPC是全系统的,全过程的,要求全员参加,⼈⼈有责。
这点与全⾯质量管理的精神完全⼀致。
2.SPC强调⽤科学⽅法(主要是统计技术,尤其是控制图理论)来保证全过程的预防。
3.SPC不仅⽤于⽣产过程,⽽且可⽤于服务过程和⼀切管理过程。
⼆、SPC发展简史过程控制的⽅法早在20世纪20年代就由美国的休哈特提出。
迄今为⽌已经经历了三个发展阶段,即:SPC,SPCD和SPCDA。
1.SPC(Statistical Process Control):它能使⼈们采取措施,消除异常,恢复过程的稳定。
这就是科学地区分出⽣产过程中产品质量的正常波动与异常波动,从⽽对过程的异常及时告警,谓统计过程控制。
2.SPCD(Statistical Process Control and Diagnosis)的前缀简称,即统计过程与诊断。
SPC虽然能对过程的异常进⾏告警,但是它并不能告诉我们是什么异常,发⽣于何处,即不能进⾏诊断。
1982年我国张公绪⾸创两种质量诊断理论,突破了传统的美国休哈特质量控制理论,开辟了统计质量诊断的新⽅向。
3.SPCDA(Statistical Process Control , Diagnosis and Adhustment)的前缀简称,即统计过程控制、诊断与调整。
正如同病⼈确诊后要进⾏治疗,过程诊断后⾃然要加以调整。
⽬前尚⽆实⽤性的成果。
三、成都公司在TS16949标准基础上建⽴的《统计技术应⽤规定》中推荐了⼏种⽤于质量改进的统计⼯具和技术序号⼯具和技术应⽤1调查表系统地收集资料,以得到真实清晰的实况⽤于⾮数字资料的⼯具和技术2因果图分析和表达因果图解关系;通过从症状到原因分析到寻找答案的过程,促进问题的解决3流程图描述现存的过程;设计新的过程4特性要因图表⽰某个论题与其组成要素之间的关系⽤于数字资料的统计⼯具和技术5控制图诊断:评估过程的稳定性;控制:决定何时某⼀过程需要调整,何时该过程需要继续保持下去。
SPC基础
SPC(统计过程控制)基础知识培训教材 第一部分 SPC 统计过程控制概论 1,什幺是 SPC? SPC 是三个英文单词的缩写(Statistical Process Control) ,即统计过程控制是应用统 计方法对过程中的各个阶段进行监控,从而达到质量保证与质量改进的目的.在此可将 统计学看成是从一系列数据中收集信息的工具, 它是通过预防而不是通过检测来避免浪 费. SPC 的特点是:1.全系统的,要求全员参与,人人有责;2.强调用科学的方法来保 证达到目的;3.SPC 强调全过程的预防为主;4.SPC 不仅用于生产过程,而且可用于服 务过程和一切管理过程. SPC 要点:1.SPC 是运用统计学方法将过程的输出量和预先设定的控制界限进行比 较,并分辨出通常原因和异常原因,从而在生产过程中进行质量控制;2.SPC 是预防行 为,可针对问题的纠正措施提供有效的资源配置;3.SPC 是一系列的"事前"方法,它 不仅是检测,而且是通过系统的分析,使用收集的数据,并以过程能力为基础,来预测 过程的发展趋势. 2,SPC 的发展史与质量管理的进展 20 世纪二三十年代,美国贝尔电话实验室的休哈特(W.A.Shewhart)博士首先提出 过程控制的概念与实施过程控制的方法,并于 1931 年出版了"加工产品品质的经济控 制" (Economic Control of Quality of Manufactured Products)之后,SPC 应用于各种制造 过程改善便从此展开.今天的 SPC 与当年的休哈特方法并没有根本的区别. 当时 SPC 并不流行,二次世界大战后期,美国开始在军工部门推行休哈特的方法, 但应用并不广泛. 战后, 美国成为当时工业强大的国家, 于是统计过程控制方法在 1950~ 1980 年这一阶段内逐渐从美国工业中消失.反之,在战后经济遭到严重破坏的日本,白 废待兴,提出了以产品质量为根本来提高竞争力,所以到美国请了戴明等人到日本指导 品质,将 SPC 的概念引入日本.SPC 在戴明的指导下,功能发挥的很不错,从 1950 年 到 1980 年,日本跃居世界质量和生产率方面的领先地位.日本人为了牢记戴明的功劳, 就在日本设立了一年一度的品质界最高奖项-----戴明品质奖,后来美国和台湾等地也采 用日本的方式,设立了一年一度的戴明奖. 在日本强有力的竞争之下,SPC 在西方工业发达的国家复兴,西方工业发达国家纷 纷加以推行并把 SPC 列为高科技之一.如美国从 80 年代起开始推行 SPC,美国汽车工 业,钢铁工业等许多行业都推行了 SPC. 20 世纪人类跨入了以加工机械化,经营规模化,资本垄断化为特征的工业化时代. 在整整一个世纪中,质量管理的发展经历了生产后检测,生产中使用 SPC,在生产前进 行产品和过程控制三个阶段. 3,SPC 的作用 过程控制是为了确保满足顾客的要求而对过程所执行的一套程序和经过计划的措 施,使用控制图等统计技术来分析过程或其输出,以便采取适当措施来达到并保持统计 控制状态从而提高过程能力. SPC 的作用主要体现在如下几个方面: 3.1 单纯从 SPC 理论上分析对企业的益处,它具有经济性,预警性,能合理的使用企业 的设备; 3.2 从制造过程(制程)上分析对制程的功效,通过分辨共同原因和特殊原因,找出最 大质量问题原因,以便于工作更有绩效;生产过程能力指数(CPK)可作为改善前后简 单比较的依据,作为生产过程检讨的共同语言;减少报表处理工作量,增加了分析数据的真实性,科学性,从宏观到微观全面真实地了解质量状况;建立一个技术,生产,质 管三个与质量有直接管理部门的沟通的平台. 3.3SPC 有利于维护过程控制和过程的稳定性,加强产品的可靠性和可维护性 3.4 理想的运做 SPC 可以达到的做用可以用 3W2H 来描述:找出什幺时候会发生异常 (When) ;找出发生什幺具体异常(What) ;分析出异常的原因(Why) ;得出解决异常 的方法(How) ;建立起预防方案(How) . 4,SPC 的基本理论基础 在 SPC 中,虽然任何统计方法都可以应用的,但最常用的是控制图理论.现在将 SPC 的理论要点简单介绍如下: 4.1 产品质量的统计观点 产品质量的统计观点是现代质量管理的基本观点之一.它包括两部分的内容:1.产 品质量具有变异性:在生产中,影响产品质量的因素按不同的来源分可分为人员,原材 料,机器设备,操作方法,测量设备,环境等(即 5M1E)几个方面,这些质量因素不 可能保持绝对不变,因此,产品质量在一系列客观存在的因素的影响下必然会不停的变 化着.这就是产品质量的变异性;2.产品质量的变异具有统计规律性:生产正常的情况 下,对产品质量的变异经过大量调查与分析,可应用概率论和数理统计方法来精确地找 出产品质量变异的幅度及不同大小的变异幅度出现的可能性,即产品质量的分布,这就 是产品质量变异的统计规律.在质量管理中,计量特性值常见的分布有正态分布等,计 件质量特性值常见的分布有二项分布等,计点质量特性值常见的分布有泊松分布等,利 用这些规律,可以做到保证和提高产品质量. 从哲学的观点看,前者是认识世界,后者是改造世界.引入产品质量的统计观点是 近代质量管理的区别于传统质量管理的一个重要的标志. 近代质量管理不再把产品质量 仅仅看成是产品和规格的比较, 而是辨证的认为产品质量是受一系列因素的影响并遵循 一定的统计规律在不停的变化着的,这种观点就是产品质量的统计观点. 4.2 抓住异常因素就是抓住主要矛盾 将质量因素分为通常因素和异常因素两类,通常因素对产品质量影响微小,随生产 过程始终存在,难以去除,反之,异常因素对产品质量影响很大,在生产过程中有时存 在,有不难除区.因此在生产过程中,对通常因素的是听之任之,而对异常因素则不然, 异常因素一旦发生,要尽快找出来,并采取措施将其消除,这就是抓住主要矛盾(前面 我们介绍的因果图和排列图) .这里控制图是发现异常因素的科学工具. 4.3 稳定状态是生产过程追求的目标 在生产过程中,只存在通常因素而不存在异常因素时的状态称为稳定状态,简称稳 态,也叫统计控制状态.在稳态下生产,我们对产品的质量有完全的把握,同时生产过 程也是最经济的,所生产的不合格品最少.因此,稳定状态是生产过程追求的目标.一 道工序稳定称为稳定工序,道道工序稳定称为全稳生产线.建立全稳生产线是建立产品 质量保证体系的科学基础.对于如何判断过程是否稳定,有无异常,已建立了一套判断 稳定的准则和判断异常的准则. 4.4 预防为主是质量管理的重要原则 控制图是实现预防为主的原则的重要的科学方法, 这部分内容我们将在控制图部分 的学习时详细学习. 4.5SPD 诊断理论是 SPC 的重要新发展 SPC 可以判断过程的异常,及时告警,但 SPC 也具有其局限性,它不能告诉我们 异常发生的原因,发生在何处,换句话说,SPC 不能进行诊断.而生产现场迫切需要解 决诊断的问题,否则即使想要纠正异常也无从下手,故现场和理论都迫切需要将 SPC发展为 SPD(Statistical Process Diagnosis) .SPD 不仅具有 SPC 及时警告的功能,而且 具有 SPC 所没有的诊断功能,故 SPD 是 SPC 发展的新阶段.SPD 就是利用统计技术方 法对过程的各个阶段进行监控与诊断, 从而达到缩短诊断时间, 以便迅速采取解决措施, 减少损失,降低成本保证产品质量的目的. 4.6 生产线的系统分析工具 不是从孤立的一道工序出发, 而是从上下工序互相联系的整个系统出发来分析一条 生产线是 SPC 分析方法的特色. 以上 SPC 的理论要点将在以后的培训中进行详细的阐明. 5,SPC 进行的基本步骤 SPC 进行过程改进的流程如图所示.SPC的 重 要 性 正 态 分 布 等 统 计 基 础 知 识 质 量 管 理 的 七 个 工 具 如 何 制 定 过 程 控 制 网 图 , 即 控 制 点 工 艺 流 程 图 如 何 制 定 工 序 控 制 表SPC培 训确 定 关 键 变 量 , 提 出 规 格 标 准建 立 过 程 改 进 的 机 会选 择 过 程 改 进 小 组进 行 测 量 可 重 复 性 和 可 再 现 性 研 究进 行 过 程 能 力 研 究建 立 过 程 监 控 系 统持 续 过 程 改 进图 1 SPC 过程改进流程图 6,几个基本的品质概念 下面,我们了解几个与品质有关的重要的观念. 6.1 可能出问题的地方一定会出问题,不可能出问题的地方也可能出问题; 6.2 不要认为所有产品都符合规格就一定品质好了; 6.3 品质目标永远是零缺点,好的品质并不代表一定是高成本; 6.4 品质不是靠制造,检验,设计出来的,而是靠全体员工在一个良好的体系下面,并 拥有良好和完备的方法和工具,形成了一个良好的习惯并得到客户的认同并制造出来 的; 6.5 作了控制图和 CPK 并不代表做了 SPC; 6.6 对自身各环节要多注意任何一点的改善,认识同仁,建立团队默契,发挥团队功能; 6.7PDCA 观念. 第二部分 SPC 的研究对象----差异 SPC 是一种用来分析资料的科学方法,并且利用分析结果来解决实际的问题.只要 问题能以数字表示,就可以应用 SPC 来分析.在生产过程中,产品的加工尺寸的波动是不可避免的.为何会有这些波动发生?它是由人(Man) ,机(Machine) ,料(Material) , 法(Method) ,测(Measurement) ,环(environment) ,简称 5M1E,等基本因素的波动 影响所致.通常我们对产生了变异的系统也是从这六个方面去调查系统产生变异的原 因,这也是过程控制的主要影响因素.在此,我们用图 2 及图 3 来表示变异的来源,这 些来源影响并造成了产品的变异.生产原料机器设备操作者产品品质方法测量系统环境图2品质特性的因果图人机 法料环测产品图3 产品变异来源 生产系统的波动分为两种:正常波动和异常波动.正常波动是偶然性原因(不可避 免因素)造成的.它对产品质量影响较小,在技术上难以消除,在经济上也不值得消除. 异常波动是由系统原因(异常因素)造成的.它对产品质量影响很大,但能够采取措施 避免和消除.过程控制的目的就是消除,避免异常波动,使过程处于正常波动状态.图 4 异常变异和通常变异示意图 生产系统的波动造成数据的波动,在测量的结果上存在一定的差异,是事物所固有 的.但是,只有两种原因:一种是通常原因引起的差异,其过程是稳定的,可预测的, 差异的多种根源共同起作用,是过程所固有的,这些原因导致过程的自然波动;另一种 是异常原因引起的差异,存在异常差异过程是不稳定的,不可预测的,这种差异不是过 程固有的,它是间断差异的根源,是不可预测的,不稳定的.我们在分析差异产生的原 因时一般采用 80/20 原则. 第三部分 统计学基础 离开了数据收 数据收集和分析对于任何一个管理体系都是一个很基本的项目之一, 集和分析,所有的管理体系都是一纸空谈.1,数据的收集和分析 1.1 数据的分类 数据大体上可以分为两类:计量型数据和计数型数据.计量型数据是指那些作为连 续量测得到的质量特性值,如长度,重量,强度,化学成分,时间,电阻.计数型数据 是指按个数数得的非连续性取值的质量特性值,如铸件的疵点,统计抽样中的不合格判 定数,审核中的不合格数等可以用 0,1,2……等阿拉伯数一直数下去的数据.计数型 数据还可以进一步分为计件数(如不合格数)和计点数(如疵点数) ,将这些数据变换 成概率后的数据就是计数型数据. 两类数据的差别,决定了数据所反映的统计性质和数据处理的不同的方法.例如对 于计量型数据都属于连续性数据,最常见的是正态分布(Normal distribution) ;而计数 型数据属于离散概率分布,最典型的是二项分布和泊松分布. 1.2 数据的收集 在 SPC 中,数据收集是非常重要的,收集数据的好坏关系到 SPC 的意义是否存在, 关系到 SPC 的功能能否实现. 因为 SPC 应用的精神在于收集最简洁最基本的数据,经过一系列科学而复杂的运 算,以最简单,直观,明了的方式表现,以便于深入了解品质状况和预测问题.所以 SPC 在数据收集过程中必须强调四项原则:真实,及时,简洁,标准. SPC 在数据的收集过程中,通常包括两大类:一是所检验项目的各项位置条件,如 批号,产品类别,材料编号,收集时间,工序位置,批量数,检验数,检验人员等;二 是各种检验项目,如各缺点代码的缺点个数,各缺点类别个数,各质量特性值所测量出 来的类别个数,各产品控制特性值所测量出来的数值等. 还可根据需要收集:客户名称,班别,机台别,关键材料商等位置条件项目,但根 据的原则为:所订字段需要层别分析,以利于问题地深入分析. 数据收集流程简单来说, 就是把检验出来的数据收集整理好, 其基本流程如图所示.开 始QC工 程 图 或 客 户 要 求确 定 品 检 项 目 及 品 质 要 求制 定 抽 样 计 划 及 现 场 抽 样 表检 验 人 员 现 场 实 际 检 验 并 填 写 检 查 表做 数 据 处 理 或 正 确 无 误 地 输 入 计 算 机结 束图5数据收集流程图2,常用的统计学术语 2.1 必然事件,不可能事件和随机事件 必然事件(event)是指在一定条件下,必然发生的事件,而不可能事件是在一定的 条件下不可能发生的事件. 在质量管理方面我们经常遇到的是随机事件, 即一定条件下, 可能发生,也可能不发生的事件.如我们无法预料 SM 的 SW 一定是目标值,但我们从大量统计的基础上我们可以说 SW 在目标值附近; 再如我们无法预知电灯泡的使用寿命 一定是 1000 小时,但我们在大量统计的基础上可以说电灯泡的寿命有 80%的可能性在 1000 小时以上,这都是随机现象的一种科学的描述. 对于随机现象我们知道,随机现象的结果至少有两个,至于出现那一个,人们事先 并不知道.举一个最简单的例子.抛一枚硬币,可能出现正面,也可能出现反面,至于 出现那一面事先并不知道. 随机事件的发生是偶然的,但随即事件发生的概率还是可能有大小之别的,是可以 设法度量的.而在实际的生产过程中随机事件发生的可能性大小,我们是十分关注的. 例如在上边的例子中,硬币出现中面和反面的几率各是 1/2,足球裁判就是利用抛硬币 的方法让双方队长选择场地的,以示机会均等.再如购买彩票的中奖机会是多少? 2.2 总体和样本 在实际的生产过程中,当产品的批量很大,破坏性试验或无限总体的情况下,很难 或根本不可能对所有原料或产品进行检验,通常的做法是:从总体中抽取取部分个体进 行检验,并依据部分个体的检验结果,去推断总体的水平.例如我们在生产时一检检验 下线 SM 的 25%左右,对我们的生产情况作出推测,进行控制.总体是我们要研究或考 察的全体,而从总体中抽取的部分个体称为样本.所谓的统计判断就是依据对样本的检 测或观察的结果进行推断总体状况. 3,常用的表征数据情况的特征值 用来表示随机现象结果的变量称为随机变量,在生产过程中,产品的质量特性就是 表征产品性能的指标,产品的性能一般是随机的,为了表征这些问题我们引入如下几个 常用的表示随机变量的特征值. 3.1 平均数(Mean,但通常用 Xbar 或 x 表示) 把一组数据全部相加,再除以该组数据的个数, x = ( x1 + x2 + L + xn ) / n (1)在 SPC 的计量值中, 通过平均数可以看出这组数据的准确度状况如何, 判断出制程 控制与规格之间的关系,如果偏差过大,说明我们当初设定的规格有问题,并可进一步 判断是我们的规格订错了还是我们的机器设备或测量设备有较大的偏差;如果偏差很 小,则表明我们当初设定的规格正常,同时我们的制程也还可以,所以,平均数离规格 中心线越近越好. 3.2 中位数(median,通常用 M 表示) 为了减少计算,将一组数据先按大小顺序排列起来,然后取最中间的那个数(当数 据为奇数)或取中间两位数的平均值(数据为偶数) .在 SPC 的计量值中,通过中位数 也可以看出该组数据的准确度,它的变化与平均数有些相同,同样也是越接近中心规格 值越好. 3.3 极差(R) 极差是一组数据中的最大值减去最小值; R=Xmax-Xmin (2) 在 SPC 的计量值中, 通过极差的大小可以看出这组数据的精密度状况如何, 判断出 这一组数据的制程幅度是否很大,如果很大则表明制程能力较差,如果组距较小,则表 明制程能力还不错,如果在几组数据中有极差突然增大,则表明出现了特殊原因,必须 马上查出真正的问题点,并尽快解决. 3.4 方差( σ ,有时也用 S 表示)2方差是由该组数据中每个数据减去实际平均数的差值的平方和除以该组数据的个 数,计算公式如下:n 1 在 SPC 的计量值中, 方差是用来后面算标准方差用的, 通过方差我们可以了解该组 产品在这一控制特性值的制程能力.如果方差很大,则说明我们的制程能力较差,后面 的标准差就大,CPK 也就小,如果方差较小,则说明我们的制程能力较好,后面的标准 差就小,CPK 也就越大,也就是说方差小好.但是在 SPC 系统中,通常不用方差来分 析制程,这只是在后面使用的标准差的一个前奏. 3.5 标准差(s) 标准差可以直接有方差开平方的来,n 1 例如我们计算上例中的两组数据的方差和标准偏差.s12 =8.52 s 2 =72σ2∑ (x x ) =i2s=∑ (xix)2s1 = 8.5 =2.915 s 2 = 72 =8.485在 SPC 的计量值中,通过标准差可以判断该组数据的准确度和精密度,反映一定 的制程能力,同时为后面 CPK 和控制上下限算法做基础.如果标准差很大时,则表明 我们的制程能力不好,同时也不稳定,说明共同原因需要改善,CPK 也就小,控制上下 限距离也就大,如果标准差较小,则表明我们的制程能力很好,同时也很稳定,同时说 明我们可以维持现状,甚至考虑到成本时可以将制程适当放松,这时 CPK 也就大,控 制上下限距离也就小了,并且基本上所有数据都在规格上下限之间. 4,常用的数据处理工具 在实际的数据处理常用的统计工具有如下几种:质量管理的七个工具分别是:分层 法(Stratification) ,排列图(Pareto diagram) ,因果图(Cause-effect diagran) ,直方图 (Histogram) ,散布图(Scatter diagram) ,控制图(Control chart) ,检查表(Check list) . 5,常用的数据分布情况 对于随机现象通常用分布(distribution)来描述,分布可以告诉我们:变异的幅度 有多大,出现这幺大幅度的可能性(概率,probability)有多大,这就是统计规律.对 于计量特性值,如长度,重量,时间,强度,纯度,成分收率等连续性数据,最常见的 是正态分布(Normal distribution) .对于计件特性值,如特性测量的结果只有合格与不 合格两种情形的离散性数据,最常见的是二项分布(Binomial distribution) .对于计点特 性值,如铸件的沙眼数,布匹上瑕点数,电视机中的焊接不合格数等离散性数据,最常 见的是泊松分布(Poisson distribution) .掌握这些数据的统计规律可以保证和提高产质 量量. 5.1 正态分布 正态分布是一种最常见,应用最广泛的一种分布,当质量特性值(随机变量)由为 数众多的因素影响,而没有一个因素起主导作用的情况下,该质量特性值的分布规律符 合正态分布,例如,轴承的加工尺寸,化工产品的化学组成,测量误差,下线 SM 的尺 寸,透过率等都属于正态分布. 正态分布的曲线的特点有:1. 曲线的最高点的横坐标, 称为正态分布的均值用μ表示, 这意味着随机变量在μ附近 出现的概率最大,当 X 向左右远离时,X 出现的概率随分布曲线的降低而迅速下降. 2. 曲线以μ为对称轴,从理论上讲,如将曲线以该轴对折时,曲线应该能重合. 3. 如果用数学表达式来表述正态分布曲线,我们有: 1 2 f ( x) = e 2σ 2π σ 4. 根据上式可以看出, 任一正态分布仅由两个参数, 即总体平均值μ和总体标准偏差σ 完全确定,其中μ称为分布的位置参数,σ称为分布的形状参数,σ值 越小,曲线越 陡,数据变量离散性也越小,σ越大,曲线越扁平,数据的离散性也越大.如图给出了 标准偏差σ分别为 0.5,1 和 2 的三种情况的示意图. ( x )2图 6 σ变化的直观意义 5. 从理论上讲,曲线对横轴是渐进的,即横轴定义的区域是从-∞到+∞.通过计算可以 得到以下几个在质量管理中常用到的结论: 总体平均值落在:μ±1σ范围内的概率为 68.26% μ±2σ范围内的概率为 95.46% μ±3σ范围内的概率为 99.73% μ±1.96σ范围内的概率为 95.0% 而数据落在:μ±3σ之外的概率为 3‰ μ±1.96σ范围之外的概率为 5%图 7 以σ为基准分布曲线下不同面积所包含的概率 中心极限定理:对于较大样本,从总体中(其平均值为μ,标准偏差为 s)随机抽样的 各样本的平均值的分布接近正态分布,无论抽样总体的概率分布如何.样本容量越大, 样本平均值的分布越接近正态分布. 这是从统计学得出的重要结论, SPC 中占有重要 在地位.在 SPC 中,我们使用平均数据来判定过程是否受控.由于这个理论,我们知道样 本平均值的分布接近正态分布,其平均值等于μ,标准偏差等于 σ / n ,在此 n 是样 本数. 因为样本平均值的分布比总体的分布要紧密,所以它对过程的变化更加敏感.我们 将在讲述控制图时再做讨论.图 8 样本平均值对曲线的影响 掷骰子个数不同,其平均值的分布情况如下:随着样本容量(在此为掷骰子的个数) 的增加,你发现了什么变化?图 9 中心值定理的理解 5.2 二项分布 有时,一个事物只有两种可能的状态或结果,例如一张 SM 的检验,要么合格,要 么不合格;一颗卫星的发射要么成功,要么不成功;谈恋爱也是如此,要么成功要么不 成功,等等,二者必具其一,此时我们就可以用二项分布来研究和分析这些问题. 以 SM 的检验为例,虽然结果只有合格与不合格两种情况,但抽到的不合格品的概 率显然取决于该批产品的固有的不合格率,如果我们用 p 和 q 来代表 SM 的合格率和不 合格率,则有 p+q=1, (p+q)2=1,则我们通过二项分布的展开 n 个产品中出现 x 个不 合格品的概率为:C nx p x q n x 或 C nx p x (1 p ) n x = C nx p x (1 p ) n x ,在此是 n 个产品取 x 的组合C nx =n! x!( n x )!。
SPC教育培训资料
n
f i xi n
7
2.5 Me 中位数
对于一组升序或降序排列的n个子组观测值X1 ,X2 ,…Xn ,当n为 奇数时,中位数等于该组数中间的那个数;当n为偶数时,中位数等 于该组数中间两个数的平均值
n =5 为奇数 例: 25.0 , 25.3, 25.4, 25.6, 25.5 n = 4 为偶数 Me=25.4
计量控制图 计数控制图
标准值未给定 标准值
标准值给定
为规定的要求或目标值 为控制用控制图
标准值给定控制图
标准值未给定控制图
为分析用控制图
4.5.2 计量控制图和计数控制图的类型
计 量 值 控 制 图
平均值( X )图与极差(R)或标准差(s)图; 单值(X)图与移动极差(R)图
中位数(Me)图与极差(R)图
3
1.1 SPC的作用
1) 预防不合格产品 的生成,提高产品质量、生 产能力、降低成本。 2) 控制和监督生产过程 3) 为质量管理者衡量质量状态提供了量化的参 数指标,为制程分析提供依据。 4)为质量管理人员提供了直观的管理工具确保制 程持续稳定、可预测。
4
二、基本统计概念
2.1 统计学(Statistics)
制图的示例。
管制上限
=中心线+3σ
中心線
管制下限 5 10 15 20 25 圖一.典型之管制圖
=中心线-3σ
4.3 控制图的作用
控制图的三个主要作用: 1.决定制造过程可能达到的目标。 设计
2.可作为达到目标的工具。 制造
3.可借由控制图判断制程是否已超出目标以外。 检验 因此,控制图可将「设计」、「制造」、「检验」等三阶段的工作连 成一体,成为工厂中在生产工作方面最有效之工具。
详细全面的SPC详解(培训资料)
• • • • • • •
过程控制即控制过程中的某一部分,我们关注这个过程的绩效 我们用什么方法来控制过程: 这就是我们讲的第三个叫统计 1.3统计IPO 什么是统计:统然后计算 统计:我们先要决定我们收集什么?然后通过什么方法收集数据?我们计算 什么?统计是干什么的? 任何统计都带有一点的目的性,要有有意义的情报
第一讲SPC的基础
介绍内容: 1.SPC的基础知识 2.SPC的基本原理 3.SPC的控制图 4.过程能力方面的内容
第一讲SPC的基础知识
1.1 控制 SPC讲的是统计过程控制
与控制有关的要素: 首先应找到 (最适)范围
付出的代价
(经济)成本
控制
合理的范围 付出代价高,约束能力越高 超出控制范围存在风险 要求: 1.最佳范围 2.经济成本 3减少风险 这中间体现一种控制能力 即:内涵的证明 4展现能力
• • • • • • • •
关键特性—特别的管制方法 对定量的特性数据:用SPC分析方法 对定性的特性数据:采用顾客认可的方法 对破坏性的特性:建议采用实验设计的方法,如DOE分析方法 客户: 一般关心计量性特性,不关心技术性特性 如:顾客买1000个产品,有千分之一不合格,顾客不认同 SPC即控制产品关键特性的过程,这种控制用统计学的方法
• • • • • • • • • • • • •
1.4特性 可区分的特征称为特性 产品所固有的一些特征,所赋予它的一些特征 如:产品的一些物理的性能,机械的性能等等,特性可区分 特性的表征: 特性值:定量和定性两种表示方法 一个产品的特性很多。 如纸杯:高度、化学成分、漏不漏等等 每个特性都要控制,就没有办法来管控,将特性进行区分 关键特性和普通特性 关键特性: 1.与安全法规有关的特性—称为特殊特性或安全特性 2.与工人和新人有关的数学的一个分支,为了了解被检查总体的某些隐含的特性,运用合理的抽样方法从 被调查总体中取得适当的样本,通过研究样本来发现总体的特性。 例:我国人口调查,人口普查工作量大、成本高、时间长,人口是总体,人口变化进 行抽样分析
SPC基础知识培训教材_入门级
X-R控制图的应用案例
X-R控制图的应用案例
控制用控制图
日期 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
145 145 145 145 145 145 145 143 142 145 145 145 145 145 145 145 145 147 145 145 145 145 145 145 145
6、制定反馈行 动计划
5、选择和建立 控制图
应用SPC的十大误区
误区之一:没能找到正确的管制点 误区之二:没有适宜的测量工具. 误区之三:没有解析生产过程,直接进行管制. 误区之四:解析与管制脱节。 误区之五:管制图没有记录重大事项。 误区之六:不能正确理解XBAR图与R图的含义。 误区之七:管制线与规格线混为一谈 误区之八:不能正确理解管制图上点变动所代表的意思 误区之九:没有将管制图用于改善 误区之十:管制图是品管的事情
质量数据的分类
按质量数 据的性质
计量值数据 计数值数据
一般可以有小数,例如质量、长度、强度、硬度、 温度、湿度、压力、化学成分等。
计件值数据 计点值数据
合格品数、废品数等; 缺陷数、疵点数等;
控制图的类型
类别
名称
计
平均值-极差 控制图
量
值 中位数-极差
控 控制图
制 单值-移动极 图 差控制图
不合格品数控 计 制图
X-R控制图的应用案例
X-R控制图的应用案例
X-R控制图的判定准则
X-R控制图的判定准则
受控状态
1.多数之点子集中在中心线附近. 2.少数之点子落在管制界限附近. 3.点之分布呈随机状态,无任何规则可循. 4.没有点子超出管制界限之外.
SPC基础知识讲解
3.2.1 數據收集:
裝配管控工站以每節課收集一次數据,可收集25~30個數据
作
為制定管控圖中心線及上管控線之數据.
3.2.2 計算制程平均不良率P:
P=ΣnP/Σn ΣnP: 不良個數總和 Σn: 檢驗個數的
總和
n: 每節課檢驗的平均數
. nP: 平均不良個數
3.2.3 計算管制界限:
若LCL<0,則以0管制
SPC基礎知識講解
Page:1/57
本課程目標
本課程的目標是介紹SPC基本概念及應用
在本課程中,你將學到… SPC概念及實際使用控制方式
目錄
1. SPC簡介 2. 制程能力指數 3. 制程管制圖 4.管制圖選用原則 5.異常處理
1. SPC簡介
1.1 SPC管制目 的
SPC(Statistical Process Control 統計制程管制) 是由制程調查來改進制程能力,不斷降低產品品質的 變異性,而達到提升產品品質的一種方法,其主要工具 為管制圖
問題三:哪一組數據比較好?
10.30 10.40 10.30 10.45
1.5 SPC觀念
1.5.4 品質變異的原因
1>機遇原因(Chance cause) 隨机因素,偶因,過程固有的,始終存在,不可 避免的原因、非人為的原因、共同原因、 偶然原因、一般原因,是屬於管制狀態的變異.
機遇原因(偶然性,不易識別,不易消除, 大量的) 如:同批材料內部結構的不均勻性表現的微小差異,
S (Statistical) : 統計
P (Process) :
制程
C (Control) : 管制
Page:6/57
1.4 為什麼要用SPC?
SPC知识
一、spc的基础知识1.关于控制、过程、统计2.特性及其分类3.统计学基础二、spc的基本原理4.过程的理解与过程控制5.波动及波动的原因6.局部措施和系统措施三、统计过程的控制思想1.正态分布简介2.统计控制状态及两种错误3.过程控制和过程能力4.过程改进循环四、控制图类型1.控制图应用说明2.控制图的定义和目的3.控制图解决问题思路4.控制图益处5.控制图分类6.控制图的选择五、建立计算型控制图的步骤和计算方法1.均值和极差图2.均值和标准差图3.中位数和极差图4.单值和移动极差图六、计数型控制图与过程能力指数1.过程能力解释前提2.过程能力的计算3.制程能力指数4.过程绩效指数SPC就是利用统计方法去:1.分析过程的输出并指出其特性.2.使过程在统计控制情况下成功地进行和维持.3.有系统地减少该过程主要输出特性的变异.统计制程管制(SPC)它可用统计管制图及时监督与控制线场作业 .. 它可用统计计算制程能力及规格 .. 它可防止制程的偏差去影响产品的良率与品质/ 可靠性. . 它可消除非机率原因的变异来改善制程.SPC 就是依据统计的逻辑来判断制程是否正常及应否采取改善对策的一套控制系统SPC是Statistical Process Control的简称统计过程控制利用统计的方法来监控制程的状态,确定生产过程在管制的状态下,以降低产品品质的变异SPC能解决之问题1.经济性:有效的抽样管制,不用全数检验,不良率,得以控制成本。
使制程稳定,能掌握品质、成本与交期。
2.预警性:制程的异常趋势可即时对策,预防整批不良,以减少浪费。
3.分辨特殊原因:作为局部问题对策或管理阶层系统改进之参考。
4.善用机器设备:估计机器能力,可妥善安排适当机器生产适当零件。
5.改善的评估:制程能力可作为改善前后比较之指标。
利用管制图管制制程之程序1.绘制「制造流程图」,并用特性要因图找出每一工作道次的制造因素(条件)及品质特性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.4 為什麼要用SPC?
1.确保制程持续稳定、可预测。 2.提高产品质量、生产能力、降低成本。 3.为制程分析提供依据。 4.区分变差的特殊原因和普通原因,作为采取局部措施
或对系统采取措施的指南。
SPC基础知识讲解[1]
1.5 SPC觀念(續)
1.5.1 沒有任何兩件事、人、產品是一模一樣的.
1. SPC簡介
1.1 SPC管制目的
SPC(Statistical Process Control 統計制程管制) 是由制程調查來改進制程能力,不斷降低產品品質的 變異性,而達到提升產品品質的一種方法,其主要工具 為管制圖
制程管制的目的: 分辯共同原因與特殊原因,并分別加以改善
SPC基础知识讲解[1]
SPC基础知识讲解
2020/10/31
SPC基础知识讲解[1]
本課程目標
本課程的目標是介紹SPC基本概念及應用 在本課程中,你將學到…
SPC概念及實際使用控制方式
SPC基础知识讲解[1]
目錄
1. SPC簡介 2. 制程能力指數 3. 制程管制圖 4.管制圖選用原則 5.異常處理
SPC基础知识讲解[1]
SPC基础知识讲解[1]
3.1.2 管制用管制圖
先有管制界限,后有數據用於控制制程之品質, 如有點子跑出界限時,立即采取 如下措施.
A.追查不正常原因. B.迅速消除此原因. C.研究采取防止此項原因重復發生的措施.
SPC基础知识讲解[1]
3.2 管制圖制法
3.2.1 nP- Chart(不良數管制圖) 3.2.2 P-Chart(不良率管制圖) 3.2.3 X-R(平均值-全距管制圖) 3.2.4 判讀原則
SPC基础知识讲解[1]
1.5 SPC觀念
1.5.4 品質變異的原因 1>機遇原因(Chance cause) 隨机因素,偶因,過程固有的,始終存在,不可 避免的原因、非人為的原因、共同原因、 偶然原因、一般原因,是屬於管制狀態的變異.
機遇原因(偶然性,不易識別,不易消除, 大量的) 如:同批材料內部結構的不均勻性表現的微小差異, 設備的微小振動,刀具的正常磨損,以及操作者細微 的不穩定等. ---其對品質變異起著細微的作用,但難以排除.
SPC基础知识讲解[1]
3.2 管控圖制作步驟
3.2.1 數據收集:
裝配管控工站以每節課收集一次數据,可收集25~30個數据作 為制定管控圖中心線及上管控線之數据.
3.2.2 計算制程平均不良率P: P=ΣnP/Σn ΣnP: 不良個數總和 Σn: 檢驗個數的總和
. n: 每節課檢驗的平均數 nP: 平均不良個數
如:使用了不合規格標准的原材料,設備的不正確調整, 設備異常,操作者偏離操作規程等.
---其對品質變異影響程度大,生產失控,為異常原因, 但不難排除.
SPC基础知识讲解[1]
2. 制程能力指數
SPC基础知识讲解[1]
2. 制程能力指數(續)
SPC基础知识讲解[1]
3.制程管制圖
3.1管制圖分類 3.2管制圖制法 3.3判讀原則
請看以下幾個例子:
第一組數據: 10.10
10.20
10.30
第二組數據: 10.10
10.25
10.40
第三組數據: 10.20
10.25
10.30
第四組數據: 10.05
10.25
10.45
問題一:它們的平均值相等嗎?
問題二:若SPEC定在10.25±0.15,它們合格嗎?
問題三:哪一組數據比較好?
SPC基础知识讲解[1]
3.2.3 計算管制界限:
若LCL<0,則以0管制
SPC基础知识讲解[1]
SPC基础知识讲解[1]
1.5 SPC觀念
2>非機遇原因( Assignable cause可查明因素) 系統因素,異因,非過程固有,有時存在,有時不存在,可避免的
原因、人為原因、特殊原因、異常原因、局部原因等.此種原因, 應采取行動,使制程恢復正常,進入管制狀態. 非機遇原因(系統性,易識別,可以力的进一步发展,大规 模生产形成,如何控制大批量产品质量已成为一个突出 问题,单纯依靠事后检验的质量控制方法已不能适应当 时经济发展的要求,因此,必须改进质量管理的方式。 于是,英、美等国开始着手研究用统计方法代替事后检 验的质量控制方法。
1924年,美国的休哈特博士提出将3Sigma原理运 用于生产过程当中,并发表了著名的“控制图法”,对 过程变量进行控制,为统计质量管理奠定了理论基础。
1.5.2 宇宙萬物和工業產品大部份都呈現常態 分配.
常態分配:
68.27%
0.135%
95.45% 99.73%
0.135%
-3σ -2σ -1σ μ
+1σ +2σ +3σ
SPC基础知识讲解[1]
1.5 SPC觀念
1.5.3常態分布兩個重要參數:
平均值 μ:描述品質特性值之集中位置 標準差σ : 描述品質特性值之分散程度
SPC基础知识讲解[1]
3.不良數管制圖
nP- Chart
SPC基础知识讲解[1]
3.1目的,范圍及定義
目的: 通過管控檢驗工站的不良數,籍以管控制程,當制程異常發生 時能適時偵測,及時校正,以確保制程的穩定,減少制程變異. 范圍: 適用于本公司所有零件及成品制程掌控 定義:
本文所指管控圖又稱np管制圖,籍以相同時間內(生產數/檢 驗相差數量不超過20%),以不良所出現的個數表示其趨 勢之一種計數值管制圖.
SPC基础知识讲解[1]
1.3 SPC的定義:
是一套將制程中所收集的資料,透過制程能力分析 與標准化,去發掘制程異常,立即實施改善措施,使 制程恢復正常運作的統計手法. S (Statistical) : 統計 P (Process) : 制程 C (Control) : 管制
SPC基础知识讲解[1]
SPC基础知识讲解[1]
3.1管制圖分類(按數值類型分)
SPC基础知识讲解[1]
3.1管制圖分類(按用途分類)
3.1.1 解析用管制圖 3.1.2 管制用管制圖
SPC基础知识讲解[1]
3.1.1 解析用管制圖
解析用管制圖先有數據,后才有管制界限
A.決定方針用. B.制程解析用. C.制程能力研究用. D.制程管制之準備用. 做解析用管制圖時,只需觀看該點是否在 管制界限內,不需要去判讀.