机械工程学报论文格式模板
机械工程学报格式模板
Chinese Journal of Mechanical Engineering(中国机械工程学报)论文排版要求一、排版步骤对论文全部内容套模板进行排版操作,排版结果必须符合以下“排版基本要求”、“排版细则”和“论文模板”。
重点检查以下各项的排版是否正确:页面设置,页眉(文字,页码),DOI,题目,作者(姓名、单位名称),脚注,日期信息,摘要,关键词,各级标题,正文文字及段落,插图,表格,数学式,References (参考文献),Biographical notes(作者简介),Appendix(附录),页面底部。
二、排版基本要求1页面设置必须符合要求,见排版细则中的“页面设置”,注意栏宽必须为85 mm,工具栏“格式”中的段落设置,“缩进和间距”的“自动调整右缩进”和“与网格对齐”两项均不要勾选。
2论文首页页眉的文字是本刊名称、卷期年;单码页面页眉的文字是本刊名称,双码页面页眉的文字是论文第一作者及论文题目。
页眉文字与页眉线之间的行距全刊必须一致。
3单码页面的页码在右侧,双码页面的页码在左侧。
4DOI按照最终排版结果的论文首页面实际期号和页码填写,期号前补“0”,页码不足三位数字的前面补“0”。
5作者右上角标的星号位置全刊必须一致,如果还有与其并列的数字上标,则要与该数字上标保持平齐。
6正文字号10磅,正文中段落文字首行一律缩进0.35 cm;如果包含上下标符号或较为复杂的数学式时,应调整该段落为多倍行距,“设置值”为1.1~1.2,使段内文字不出现叠盖现象。
7插图整体左右居中排。
对图中文字进行字体、字号修改时,未要求修改的内容保持原样。
例如:曲线或引线的位置、刻度的位置、比例尺的线长等等。
8表格整体左右居中排。
表格的幅面要根据表头和表身内文字的多少而定,文字较少时表格左右长度不必占满整个栏宽,且各列间不要留过多的空白。
一栏内能够排下的表格不要转行排也不要通栏排,一栏内排不下但通栏能够排下的表格不要转行通栏排。
机械工程类论文4100字_机械工程类毕业论文范文模板
机械工程类论文4100字_机械工程类毕业论文范文模板机械工程类论文4100字(一):机械工程类职业学院管理信息化解决方案论文【摘要】管理信息化是信息化背景下管理工作发展的一个重要方向,随着现代信息技术的日益成熟,信息化技术也被广泛应用于各个行业生产、管理、研发等多个方面,并且在其中发挥着非常积极的作用。
但是就现阶段机械工程类职业学院管理相关工作而言,在实际的发展过程中,信息化水平并不是特别高,这样必然会对机械工程类专业长效发展产生巨大的影响。
论文重点针对机械工程类职业学院管理信息化中的实训教学管理信息化的解決方案进行了探究。
【关键词】管理;信息化;机械工程类职业学院;解决方案1引言机械工程类职业学院是现阶段我国培养机械工程类高等职业人才的主要场所,其管理水平的高低直接对职业人才培养质量产生较大影响。
随着现代社会发展,对于高素质、高水平机械工程职业人才需求数量及质量的提升,机械工程类职业学院对于学院管理工作重视程度也越来越高。
在信息时代背景下,如何做好机械工程类职业学院管理信息化相关工作,也成为现阶段学院发展的一项重点。
2机械工程类职业学院管理信息化现状分析2.1管理信息化系统相关技术相对落后经过多年的实践与探索,高等职业学院也开始了信息化建设,并且取得了较为优异的成绩。
但是对于机械工程类职业学院管理信息化而言,其在实际的工作过程中,由于受其专业特点、技术应用等诸多因素的制约,导致机械工程类职业学院的信息化建设水平并不是特别高,有的学院尽管已经完成了信息化建设,但是在其技术应用方面,依然相对落后,尤其是学院管理信息化方面[1]。
在这种技术相对落后的管理信息化背景下,也必然会对管理工作产生严重的影响。
2.2学院领导对于管理信息化重视程度不足对于机械工程类职业学院而言,其属于一类实践能力以及专业技能要求较高的专业,因此,在进行人才培养以及学院建设方面,其工作重点也大多数放在专业技术培养以及重点学科建设方面,并未对管理工作引起足够的重视,尽管现阶段已经将现代先进的管理理念以及方法应用其中,但在实施过程中,也多数的流于形式[2],这样就很难真正发挥出管理工作在学院发展中的积极作用。
中国机械工程学报(英文版)论文模板
ZHANG Jiafan1, 3, *, FU Hailun2, DONG Yiming1, ZHANG Yu1, YANG Canjun112 Zhejiang Province Instituteof Metrology,Hangzhou 310027, China3Abstract:and high head have been developed overseas. However, low efficiency and large size are the common disadvantages for the magnetic drive pump. In order to study the performance of high-speed magnetic drive pump, FLUENT is used to simulate the inner flow field of magnetic drive pumps with different rotate speeds, and get velocity and pressure distributions of inner flow field. According to analysis the changes of velocity and pressure to ensure the stable operation of pump and avoid cavitation. Based on the analysis of velocity and pressure, this paper presents the pump efficiency of magnetic drive pumps with different rotated speeds by calculating the power loss in impeller and volute, hydraulic loss, volumetric loss, mechanical loss and discussing the different reasons of power loss between theKey words:1At first look at modern society, more and more robotsand automated devices are coming into our life and servemechatronic devices replacelower levels, essentiallylevels just as the term humanwhich is coined byGOERTZ,et al[2]widely developed in the fields of robothaptic interface to enhance theoperator, also in the excitingplanning, personnel training, and50305035), National Hi-tech Research andChina(863 Program, Grant No. ##), BeijingFoundation of China((Grant No. ##), and ZhejiangScience Foundation of China((Grant No. ##)DUBEY, et al[3], to incorporatesensor and model into humancontrolled teleoperation systems. In their approach, thehuman operator was retained at all phases of the operation,and was assisted by adjusting system parameters whichredundant robotic arms[4]. In recent work[5–6],signal has been used to control thearm and many new concepts were applied in–10]. Several researchers from Koreaand Technology(KIST) introduced[11–12].new exoskeleton-type master arm, inbrakes with the torque sensor beamsreflection[14]. Likewise, the authorsout a 2-port network model to describe the bilateral[15–17].this research, a wearable exoskeleton arm, ZJUESA,system is designed and ateleoperation control system isY ZHANG Jiafan, et al: Novel 6-DOF Wearable Exoskeleton Arm with Pneumatic Force-Feedback for Bilateral Teleoperation·2·explained. This system includes three main levels: ① supervisor giving the command through the exoskeleton arm in safe zone with the operator interface; ② slave-robot working in hazardous zone; ③ data transmission between supervisor-master and master-slave through the Internet or Ethernet. In section 2, by using the orthogonal experiment design method, the design foundation of ZJUESA and its optimal design are presented. Then in section 3, we describe a novel hybrid fuzzy control system for the force feedback on ZJUESA. Consequently, the force feedback control simulations and experiment results analysis are presented in section 4, followed by discussions and conclusions.2 Configuration of the Exoskeleton ArmSystemThe master-slave control is widely employed in the robotmanipulation. In most cases, the joystick or the keyboard isthe routine input device for the robot master-slave controlsystem. The system presented in this paper is shown in Fig. 1.In the system the exoskeleton arm —ZJUESA replaces the joystick as the command generator. It is an externalstructure mechanism, which can be worn by the operator, and can transfer the motions of human upper arm to slave manipulator position-control-commands through the Internet or Ethernet between the master and slave computers. With this information, the slave manipulator mimics the motion of the operator. At the same time, the force-feedback signals, detected by the 6-axis force/torque sensor on the slave robot arm end effector, are sent back to indicate the pneumatic actuators for the force-feedback on ZJUESA to realize the bilateral teleoperation.Since ZJUESA is designed by following the physiological parameters of the human upper-limb, with such a device the human operator can control the manipulator more comfortably and intuitively than the system with the joystick or the keyboard input.3 Design of the Exoskeleton ArmWhat we desire is an arm exoskeleton which is capable of following motions of the human upper-limb accurately and supplying the human upper-limb with proper force feedback if needed. In order to achieve an ideal controlling performance, we have to examine the structure of the human upper-limb.3.1 Anatomy of human upper-limb3.1.1 Upper-limbRecently, various models of the human upper-limbanatomy have been derived. The biomechanical models of the arm that stand for precise anatomical models including muscles, tendons and bones are too complex to be utilized in mechanical design of an anthropomorphic robot arm. From the view of the mechanism, we should set up a morepracticable model for easy and effective realization.Fig. 2 introduces the configuration of human upper-limband its equivalent mechanical model, which is a 7-DOFstructure, including 3 degrees of freedom for shoulder(flexion/extension, abduction/adduction and rotation), 1 degree of freedom for elbow (flexion/extension) and 3 degrees of freedom for wrist (flexion/ extension, abduction/adduction and rotation)[18]. The details about the motion characteristics of these skeletal can be obtained in Refs. [18-20]. Compared to the mechanical model, the shoulder and wrist can be considered as spherical joints and the elbow as a revolution joint. It is a good approximate model for the human arm, and the base for the design and construction of exoskeleton arm-ZJUESA.Fig. 2. Configuration of human upper limband its equivalent mechanical model3.2 Mechanism of the exoskeleton armBecause the goal of this device is to follow motions of the human arm accurately for teleoperation, ZJUESA ought to make the best of motion scope of the human upper-limb and limit it as little as possible. A flexible structure with the same or similar configuration of human upper-limb is an ideal choice. Based on the anatomy of human upper-limb, the joint motion originates from extension or flexion of the图题字号9磅,行距固定值11磅,段前0.3行,段后回车换行1次;图中字号8磅 图题后遇标题时,段后回车换行2次 图前段落,段后回车换行1次双码页面页眉字号8磅,单倍行距,段后1.2磅三级标题字号10磅,斜体,段前0.5行 二级标题字号10磅图片及表格要求: 图表类型 分辨率 灰度 < 150 | > 225 彩色 < 150 | > 225位图 < 600 | > 900CHINESE JOURNAL OF MECHANICAL ENGINEERING·3·muscle and ligament with each other to generate torque around the bones. Compared with the serial mechanism, the movements of the parallel mechanism are driven by the prismatics, which act analogically to the human muscles and ligament. Besides, using the parallel mechanism not only realizes the multi-DOF joint for a compact structure and ligament. Besides, using the parallel mechanism not only realizes the multi-DOF joint for a compact structure of human upper-limb. The 3RPS parallel mechanism is one of the simplest mechanisms. Fig. 3 explains the principle of the 3RPS parallel mechanism. KIM, et al [11], introduced it into the KIST design. Here we follow this concept. The two revolution degrees of freedom embodied in the 3RPS are for flexion/extension, abduction/adduction at shoulder. Its third translation degree of freedom along z axis can be used for the dimension adjustment of ZJUESA for different operators. The prismatic joints are embodied by pneumatic actuators, which are deployed to supply force reflective capability. Also displacement sensors are located along with the pneumatic actuators and the ring-shaped joints to measure their linear and angular displacements. At elbow, a crank-slide mechanism composed of a cylinder and links is utilized for flexion/extension. At wrist, since the abduction/ adduction movement is so limited and can be indirectly reached by combination of the other joints, we simplify the configuration by ignoring the effect of this movement. As shown in Fig. 4, the additional ring the same as that at shoulder for the elbow rotation. Thus our exoskeletonarm-ZJUESA has 6 degrees of freedom totally.Fig. 3. 3RPS parallel mechanismFig. 4. Prototype of the exoskeleton arm-ZJUESA 3.3 Optimization design of ZJUESAAs nentioned above, the best design is to makethe workspace of ZJUESA as fully cover the scope of the human upper-limb motion as possible. We employ the 3RPS parallel mechanism for the shoulder, whose workspace mainly influences the workspace of ZJUESA. The optimal design of 3RPS parallel mechanism for the shoulder is the key point of ZJUESA optimal design. However, it is a designing problem with multi-factors, saying the displacement of the prismatics (factor A ), circumradius ratio of the upper and lower platforms (factor B ), initial length of the prismatics (factor C ), and their coupling parameters (factor A *B , A *C and B *C ) (Table 1) and multi-targets, namely, its workspace, weight, size. So,we use the orthogonal experiment design method with foregoing 6 key factors and Eq. (1) gives the expressionof the optimal target function of this problem: 0, , x r Q F L R θθ⎛⎫=- ⎪⎝⎭, (1)where L 0 is the initial length of the prismatics, R is the circumradius of the lower base in 3RPS mechanism, r is thecircumradius of the upper base in 3RPS mechanism, θ is the expected reachable angle around axis, and xθ is thereachable angle around axis.Table 1. Factors and their levels mm Level rank A B C A *B A *C B *C1 60 0.5 150 - - -2 80 0.438 160 - - -3100 0.389 170 - - - 4 --180---The orthogonal experiment design is outlined because of the ease with which levels can be allocated and its efficiency. The concept of orthogonal experiment design is discussed in Ref. [21] to obtain parameters optimization, finding the setting for each of a number of input parameters that optimizes the output(s) of the design. Orthogonal experiment design allows a decrease in the number of experiments performed with only slightly less accuracy than full factor testing. The orthogonal experiment design concept can be used for any complicated system being investigated, regardless of the nature of the system. During the optimization, all variables, even continuous ones, are thought of discrete “levels ”. In an orthogonal experiment design, the levels of each factors are allocated by using an orthogonal array [22]. By discretizing variables in this way, a design of experiments is advantageous in that it can reduce the number of combinations and is resistant to noise and conclusions valid over the entire region spanned by the control factors and their setting.Table 2 describes an orthogonal experiment design array for 6 key factors [23]. In this array the first column implies the number of the experiments and factors A , B , C , A *B ,表题字号9磅,字体加粗,段后0.3行表中字号8磅,行距固定值11磅,段后回车换行1次数学式前段落,段后回车换行1次表前段落,段后回车换行1次 单码页面页眉字号10.5磅,单倍行距,段后1.2磅 图序与图题间空两格Table 后空一格,表序与表题间空两格缩写点后空一格页码文字周围的图文框宽 1.1 cm ,高0.4 cm ,相对于“页面”水平距离18 cm ,相对于“段落”垂直距离0.4 cm另行排的数学式必须居中,单倍行距,段后回车换行1次Y ZHANG Jiafan, et al: Novel 6-DOF Wearable Exoskeleton Arm with Pneumatic Force-Feedback for Bilateral Teleoperation·4·A *B and B *C are arbitrarily assigned to columnsrespectively. From Table 2, 36 trials of experiments are needed, with the level of each factor for each trial-runindicated in the array. The elements represent the levels of each factors. The vertical columns represent the experimental factors to be studied using that array. Each of the columns contains several assignments at each level for the corresponding factors. The levels of the latter three factors are dependent on those of the former three factors. The elements of the column IV , namely factor A *B , are determined by the elements in the columns I, II, and elements of column V , factor A *C , has the relationship with the elements of columns I, III, and the column VI, factor B *C , lies on the columns II, III.Table 2. Orthogonal experiment design array L36for 6 key factorsExperiment No.A B C A *B A *C B *C Result Q 1 1 1 1 1 1 1 Y 1 2 1 1 2 1 2 2 Y 2 3 1 1 3 1 3 3 Y 3 4 1 1 4 1 4 4 Y 4 5 1 2 1 2 1 5 Y 5 6 1 2 2 2 2 6 Y 6 33 3 3 1 9 9 9 Y 33 34 3 3 2 9 10 10 Y 34 35 3 3 3 9 11 11 Y 35 3633491212Y 36The relation between column IV and columns I, II is that: if level of A is n and level of B is m , the level of A *B is 3(n –1)+m , where n=1, 2, 3 and m=1, 2, 3. All the cases can be expressed as follows:(1, 1)→1 (1, 2)→2 (1, 3)→3; (2, 1)→4 (2, 2)→5 (2, 3)→6; (3, 1)→7 (3, 2)→8 (3, 3)→9.The first element in the bracket represents the corresponding level of factor A in Table 1 and the latter means the corresponding level of the factor B . Factor A *B has totally 9 levels, as factor A and factor B have 3 levels, respectively.Likewise, the relation between column V and columns I, III is(1, 1)→1 (1, 2)→2 (1, 3)→3 (1, 4)→4; (2, 1)→5 (2, 2)→6 (2, 3)→7 (2, 4)→8; (3, 1)→9 (3, 2)→10 (3, 3)→11 (3, 4)→12.Also the relation between column VI and columns II, III is(1, 1)→1 (1, 2)→2 (1, 3)→3 (1, 4)→4; (2, 1)→5 (2, 2)→6 (2, 3)→7 (2, 4)→8;(3, 1)→9 (3, 2)→10 (3, 3)→11 (3, 4)→12.The optimal design is carried out according to the first three columns:1211121235*36*1/91/91/90000000000000,0000001/3000000001/3A A B C B C I Y I Y I Y I Y ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ (2)max{}min{}i ij ij K I I =-, (3) where i = A , B , C , A *B , A *C , B *C ; j is the number of i rank. By calculation of the 3RPS parallel mechanism [24–35], the relationship between the target Q and each factor can be obtained, as shown inFig. 5.Fig. 5. Relation between levels of factors and QAccording to the plots in Fig. 5, we can get the superiority and the degree of the influence (sensitivity) of each design factor. The factor with bigger extreme difference K i , as expressed in Eq. (3) has more influence on Q . In this case, it can be concluded that the sensitivity of the factors A *B and A *C are high and factors B *C and C have weak influence, since K A *B and K A *C are much bigger than K B *C and K C . And the set A 3B 1, A 2C 1, A 2, B 1, C 1, B 1C 1 are the best combination of each factor levels. But there is a conflict with former 3 items in such a set. As their K i have little differences between each other, the middle course is chosen. After compromising, we take the level 2 of factor A , the level 1 of factor B and the level 1 of factor C , namely d =80 mm, r /R =0.5, L 0=150 mm [32].It is interesting to know how good the results derived from the above 36 trials are, when compared with all other possible combinations. Because of its mutual balance of orthogonal arrays, this performance ratio can be guaranteed by the theorem in non-parametric statistics [13]. It predicts双数页码周围的图文框,相对于“页面”水平距离1.8 cm量名称与量符号间空一格缩写点与后续文字间空一格CHINESE JOURNAL OF MECHANICAL ENGINEERING·5·that this optimization is better than 97.29% of alternatives. Combined with the kinematics and dynamics simulation of the 3RPS parallel mechanism and ZJUESA with chosen design parameters by ADAMS, we perform the optimal design. Table 3 indicates the joint range and joint torque of each joint on ZJUESA. It is apparent that ZJUESA can almost cover the workspace of human upper-limb well so that it can follow the motion of human operation upper-limb with little constrain, as shown in Fig. 6.Table 3. Joint ranges and joint torques for each jointon ZJUESAJoint on ZJUESA Joint range θ/(°) Joint torque T /(N ·m) Joint density ρm / (kg ·m –3)Flexion/extension(shoulder) -60-60 36 - Abduction/adduction -50-60 36 - Rotation(shoulder) -20-90 18 - Flexion/extension(elbow) 0-90 28 - Rotation(wrist) -20-90 13 - Flexion/extension(wrist) 0-6028 - Abduction/ adduction(wrist)-Fig. 6. Motion of exoskeleton arm following the operator4 Hybrid Fuzzy-Controller for the ForceFeedback On ZjuesaIn master-slave manipulation, besides the visual feedback and man-machine soft interface, the force feedback is another good choice to enhance the control performance. If the slave faithfully reproduces the master motions and the master accurately feels the slave forces, the operator can experience the same interaction with the teleoperated tasks, as would the slave. In this way the teleoperation becomes more intuitive.In our bilateral teleoperation system with ZJUESA, a 6 axis force/torque sensor is mounted on the end effector of the slave manipulator and detects the force and torque acting on the end effector during performing the work. This information is transferred to the master site in real time.With dynamic calculation, the references of the generatingforce on actuators of ZJUESA are obtained. Hereafter, the feeling can be reproduced by means of the pneumatic system.Eq. (4) expresses the relation between the force and torque on the end effector and the torques generating on the joints: T =τJ F ,(4)where F —Force and torque on the end effector,⎛⎫= ⎪⎝⎭f F n ,τ —Torque on each joint, T 126()τττ=τ,J —Jacobian matrix of ZJUESA.By dividing the force arm, it is easy to get to the generating force on the joints, such as shoulder ring, elbow, wrist ring and wrist, as explained by Eq. (5):()TT345645673456f f f f a a a a ττττ⎛⎫== ⎪⎝⎭f , (5)where a i (i =3, 4, 5, 6) is the force arm of the shoulder ring, elbow, elbow ring and wrist joints, respectively.As for the generating force of the prismatics on the 3RPS parallel mechanism, it can be calculated as follows [35]:13RPS 23RPS 3 f F f f f ⎛⎫⎛⎫ ⎪= ⎪ ⎪⎝⎭ ⎪⎝⎭τG f , (6)where f F G —Jacobian matrix of 3RPS parallel mechanism,3RPS τ—Torques on 3RPS parallel mechanism,()T3RPS 12ττ=τ,f 3RPS —Force on 3RPS parallel mechanism.Therefore, with Eqs. (5), (6), the total seven force references are obtained for the pneumatic system on ZJUESA. Fig. 7 explains the scheme of the pneumatic cylinder-valve system for the force feedback.Therefore, with Eqs. (5), (6), the total seven force references are obtained for the pneumatic system on ZJUESA. Fig. 7 explains the scheme of the pneumatic cylinder-valve system for the force feedback. Therefore, with Eqs. (5), (6), the total seven force references are obtained for the pneumatic system on ZJUESA. Fig. 7 explains the scheme of the pneumatic cylinder-valve system for the force feedback. Therefore, with Eqs. (5), (6), the total seven force references are obtained for the pneumatic system on ZJUESA. Fig. 7 explains the scheme of the pneumatic cylinder-valve system for the force feedback. Therefore, with Eqs. (5), (6), the total seven force references are obtained for the pneumatic system on ZJUESA. Fig. 7 explains the scheme of the pneumatic数学式下方的解释语及其他数学式,各行间单倍行距Y ZHANG Jiafan, et al: Novel 6-DOF Wearable Exoskeleton Arm with Pneumatic Force-Feedback for Bilateral Teleoperation ·6·cylinder-valve system for the force feedback. Therefore, with Eqs. (5), (6), the total seven force references are obtained for the pneumatic system on ZJUESA.Fig. 7. Scheme of the pneumatic cylinder-valve systemp1, v1, a1—Pressure, volume and section area of cylinder chamber 1p2, v2, a2—Pressure, volume and section area of cylinder chamber 2 m p—Mass of the pistona r—Section area of rodm L —Mass of loadThe high-speed on-off valves, working as the command components in the system, are controlled by the pulse width modification(PWM) signals from the control units, respectively. Rather than the proportional or servo valve, this is an inexpensive and widely used method in the application of position and force control in the pneumatic system [23–28]. To simplify the control algorithm, there is just one valve on work at any moment. For instance, when a leftward force is wanted, the valve V1 works and valve V2 is out of work. Under this case, we can control the pressure p1 in chamber 1 by modifying the PWM signals. Chamber 2 connects to the atmosphere at that time and the pressure p2 inside the chamber 2 of cylinder is absolutely ambient pressure, and vice versa. At each port of the cylinder, there is a pressure sensor to detect the pressure value inside the chamber for the close-loop control. And the throttle valves are equipped for limiting the flow out of the chamber to reduce piston vibrations. In our previous work, we gave out the specific mathematic models of the system, including pneumatic cylinder, high-speed on-off valve and connecting tube[33].However, the pneumatic system is not usually a well linear control system, because of the air compressibility and its effect on the flow line. Also the highly nonlinear flow brings troubles into the control. The conventional controllers are often developed via simple models of the plant behavior that satisfy the necessary assumptions, via the specially tuning of relatively simple linear or nonlinear controllers. As a result, for pressure or force control in such a nonlinear system, especially in which the chamber pressure vibrates rapidly, the conventional control method can hardly have a good performance.Fortunately, the introduction of the hybrid control method mentioned, gives out a solution to this problem. But the traditional design of the hybrid controller is always complicated and only available to the proportion or servo valve system. In our system, we figured out a kind of novel hybrid fuzzy control strategy for the high-speed on-off valves, which is much simpler and can be realized by micro control units(MCUs) in the contributed architecture. This strategy is composed of two main parts: a fuzzy controller and a bang-bang controller. The fuzzy controller provides a formal methodology for representing, manipulating, and implementing a person’s heuristic knowledge about how to control a system. It can be regarded as an artificial decision maker that operates in a closed-loop system in real time and can help the system to get the control information either from a human decision maker who performs the control task or by self-study, while the bang-bang controller is added to drive the response of the system much more quickly.Fig. 8 shows the concept of the proposed hybrid fuzzy controller. The concept of multimode switching is applied to activate either the bang-bang controller or the fuzzy controller mode.Fig. 8. Concept of the hybrid fuzzy controllerBang-bang control is applied when the actual output is far away from reference value. In this mode, fast tracking of the output is implemented. The fuzzy controller is activated when the output is near the set point, which needs accuracy control.In the fuzzy-control mode, we use pressure error ref actual()()()e t P t P t=-and its change ()e t as the input variables on which to make decisions. On the other hand, the width of the high voltage in one PWM period is denoted as the output of the controller.As mentioned above, the PC on master site works as the supervisor for real-time displaying, kinematics calculation and exchanges the control data with the slave computer and so on. For the sake of reducing the burden of the master PC, the distributed control system is introduced. Each control unit contains a Mega8 MCU of A TMEL Inc., working as a hybrid fuzzy-controller for each cylinder respectively, and forms a pressure closed-loop control. The controller samples the pressure in chamber with 20 kHz sampling rate当图题后面有注释时,图题前、后各0.3行注释文字字号8磅,单倍行距,最后一行段后回车换行1次CHINESE JOURNAL OF MECHANICAL ENGINEERING·7·by the in-built analog- digital converters. These controllers keep in contact or get the differential pressure signals from the master PC through RS232, as depicted in Fig. 9. In this mode, fast tracking of the output is implemented.Fig. 9. Distributed control system of the master arm5 Force Feedback ExperimentsFig. 10 gives out the set up of the force feedback experiments. The system includes the soft interface, data acquisition, Mega8 MCU experiment board, on-off valves, sensors of displacement and pressure, and the oscilloscope. We chose the cylinder DSNU-10-40-P produced by FESTO Inc. The soft signal generator and data acquisition are both designed in the LabVIEW, with which users may take advantage of its powerful graphical programming capability. Compared with other conventional programming environments, the most obvious difference is that LabVIEW is a graphical compiler that uses icons instead of lines of text. Additionally, LabVIEW has a large set of built-in mathematical functions and graphical data visualization and data input objects typically found in data acquisition and analysis applications.Fig. 10. Set-up of force feedback experimentThe plots in Fig. 11 give out experimental results of the chamber pressure outputs with step input signals on one joint. While at frequencies higher than 80 Hz, force is sensed through the operator’s joint, muscle and tendon receptors, and the operator is unable to respond to, and low amplitude disturbances at these frequencies. We remove reflected force signals above 80Hz band by fast Fourier transfer (FFT) and get the smoothed curve in the plots. One is obtained by using hybrid control strategy and another is obtained by using traditional fuzzy controller without bang-bang controller. Although these two curves both track the reference well with very good amplitude match (less than 5% error) and a few milliseconds misalignment in the time profile, by comparing these two curves, it can be found that the adjust time of the curve with hybrid control strategy is less than 0.03 s, which is much less than 0.05 s of other with traditional fuzzy controller. It proves effect of the hybrid control strategy.Fig. 11. Experimental results with a step signalFig. 12 shows the results of tracking a sinusoidal commander. This experiment…up to 5 Hz frequency sinusoidal command well.Fig. 12. Experiment results for sinusoidal pressure commandsY ZHANG Jiafan, et al: Novel 6-DOF Wearable Exoskeleton Arm with Pneumatic Force-Feedback for Bilateral Teleoperation ·8·After then, another two experiments are carried out torealize the bilateral teleoperation with simple motion, inwhich the slave manipulator is controlled for the shoulderabduction/ adduction(the movement of a bone away/toward the midline in the frontal plane) and extension/flexion of elbow(the movement in the sagittal plane) by theteleoperation with ZJUESA.In the first experiment, the operator performs theshoulder abduction/adduction movement with ZJUESA,when the slave robot follows and holds up the load. Withthe force feedback on ZJUESA, the operator has feeling asif he holds the load directly without the mechanicalstructure, as shown in Fig. 13. Plots in Figs. 14, 15 showthe torque and force on each joint on ZJUESA during theshoulder abduction/adduction movement from 45° to 90°(in the frontal plane) with 5 kg load. There are some remarks. In plots of Fig. 14 shoulder 3RPS-x means the torque around x-axis of 3RPS mechanism at shoulder and the same to shoulder 3RPS-y. Shoulder ring, elbow, wrist ring and wrist represent the torques on these joints, respectively. The characters shoulder 3RPS-1, shoulder 3RPS-2 and shoulder 3RPS-3 in Fig. 15 represent corresponding force on the cylinders on 3RPS parallel mechanism (referring to Fig. 3) with length L1, L2 and L3, respectively.Fig. 13. Shoulder abduction/adduction teleoperation Fig. 14. Torques on the joints of the shoulderabduction/adduction for 5 kg load liftingFig. 15. Force feedback on the cylinders of the shoulder abduction/adduction for 5 kg load liftingThe operator teleoperates the slave manipulator with force feedback as if he performs for lifting a dumbbell or raising package in daily life(Fig. 16). Fig. 17 shows the moment on each joint during the process for producing the feeling of lifting a 10 kg dumbbell. Fig. 18 depicts the force output of every pneumatic cylinder on ZJUESA.Fig. 16. Extension/flexion for elbow teleoperationFig. 17. Torques on the joints of the elbowextension/flexion for 10 kg load liftingAll these results of experiments demonstrate the effect of ZJUESA system. ZJUESA performs well by following the motions of human upper-limb with little constrain and the pneumatic force feedback system supplies a proper force feedback tracking the reference well.。
机械专业论文格式及常见课题
机械论文格式1、论文题目(下附署名)要求准确、简练、醒目、新颖。
2、目录目录是论文中主要段落的简表。
(短篇论文不必列目录)3、内容提要:是文章主要内容的摘录,要求短、精、完整。
字数少可几十字,多不超过三百字为宜。
4、关键词或主题词关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。
关键词是用作计算机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。
每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。
主题词是经过规范化的词,在确定主题词时,要对论文进行主题分析,依照标引和组配规则转换成主题词表中的规范词语。
(参见《汉语主题词表》和《世界汉语主题词表》)。
5、论文正文(1)引言:引言又称前言、序言和导言,用在论文的开头。
引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。
引言要短小精悍、紧扣主题。
〈2)论文正文:正文是论文的主体,正文应包括论点、论据、论证过程和结论。
主体部分包括以下内容:a.提出问题-论点;b.分析问题-论据和论证;c.解决问题-论证方法与步骤;d.结论。
6、参考文献一篇论文的参考文献是将论文在研究和写作中可参考或引证的主要文献资料,列于论文的末尾。
参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行。
中文:标题--作者--出版物信息(版地、版者、版期)英文:作者--标题--出版物信息所列参考文献的要求是:(1)所列参考文献应是正式出版物,以便读者考证。
(2)所列举的参考文献要标明序号、著作或文章的标题、作者、出版物信息。
机械类专业毕业论文题目1.支架零件图设计2.斜联结管数控加工和工艺3.CA6140型铝活塞的机械加工工艺设计及夹具设计4.MG132320-W型采煤左牵引部机壳的加工工艺规程及数控编程5.MG132320-W型采煤左牵引部机壳的加工工艺规程及数控编程6.MG250591-WD型采煤机右摇臂壳体的加工工艺规程及数控编程7.工艺-SSCK20A数控车床主轴和箱体加工编程8.工艺-WHX112减速机壳加工工艺及夹具设计9.工艺-X5020B立式升降台铣床拔叉壳体工艺规程制订10.工艺-X62W铣床主轴机械加工工艺规程与钻床夹具设计11.工艺-Z90型电动阀门装置及数控加工工艺的设计12.工艺-“填料箱盖”零件的工艺规程及钻孔夹具设计13.工艺-加工涡轮盘榫槽的卧式拉床夹具14.工艺-回转盘工艺规程设计及镗孔工序夹具设计15.工艺-壳体的工艺与工装的设计16.工艺-支承套零件加工工艺编程及夹具17.机电一体化-T6113电气控制系统的设计18.机电一体化-连杆平行度测量仪19.设计-CA-20地下自卸汽车工作、转向液压系统20.JX0020+设计-DTⅡ型皮带机设计21.设计-GBW92外圆滚压装置设计22.NK型凝汽式汽轮机调节系统的设计23.SPT120推料装置24.T611镗床主轴箱传动设计及尾柱设计25.XQB小型泥浆泵的结构设计26.YZJ压装机整机液压系统设计27.三自由度圆柱坐标型工业机器人设计28.乳化液泵的设计29.双柱式机械式举升机设计30.外圆磨床设计31.大型制药厂热电冷三联供32.大型轴齿轮专用机床设计33.大模数蜗杆铣刀专用机床设计34.小型轧钢机设计35.巷道堆垛类自动化立体车库36.巷道式自动化立体车库升降部分37.拖拉机变速箱体上四个定位平面专用夹具及组合机床设计38.板材送进夹钳装置39.校直机设计40.棒料切割机41.涡轮盘液压立拉夹具42.液压式双头套皮辊机43.液压绞车设计44.玉米脱粒机设计45.车载装置升降系统的开发46.铲平机的设计47.5吨中级桥式起重机电气控制系统的PLC改造设计48.C618数控车床的主传动系统设计49.TH5940型数控加工中心进给系统设计50.减速器箱体钻口面孔组合机床总体设计及主轴箱设计51.拖拉机拨叉铣专机52.数控机床主传动系统设计53.数控车床主传动机构设计54.数控车床纵向进给及导轨润滑机构设计55.三通管的塑料模设计二级圆柱直齿齿轮减速器的设计30130X31型钻床的PLC控制系统设计APIZ150-2楔式单闸板闸阀的工艺设计C6140车床齿轮零件工艺与夹具设计CA6140车床拨叉_卡具设计CA6140车床拨叉工艺工装设计(精铣槽16H11的夹具)CA6140车床后托架加工工艺及夹具设计CA6140普通钻床改造为多轴钻床CHRS-360烘干机的设计GE283型纺织机寸行传动件的设计研究MDEM-27光纤盘工艺设计及数控编程X53K立式铣床数控改造装配X6132铣床PC改造(电气控制改造论)Z32K型摇臂钻床变速箱改进设计柴油机调速盘工艺工装设计带式运输机的减速器的设计搬动机械手PLC控制系统设计升降电梯驱动系统设计及控制电路设计自动人行道的设计多功能自动跑步机的设计工业机械手及控制设计环面蜗轮蜗杆提升机的设计连杆零件加工工艺规程及专用钻床夹具的设计某机型铰链座制造与工艺普通车床和铣削普通钻床改造为多轴钻床的设计“车床拨叉”零件的机械加工工艺及工艺设备的设计四轴头多工位同步钻床的设计四星件加工( 机械专业论文毕业设计)液压缸的设计(机械专业论文毕业设计)支承套零件加工工艺编程及夹具的设计中心对称型凸台零件的数控编程及加工559空压机吸气阀盖头零件数控加工工艺分析及工艺装备设计6140车床拨叉的工装夹具的设计C6136经济型数控机床纵向改造的设计CA-20地下矿山自卸汽车电气系统PLC控制设计WHX112减速机壳加工工艺及夹具设计板类零件工艺规程设计及数控编程单级圆锥齿轮减速器的设计制造电液控综合实验台的设计行走式小型液压起重机设计(机架和小车设计)极芯落料级进模加工简易工业机械手的加工工艺设计空气压缩机V带校核和噪声处理立式单面8轴数控组合钻床主轴箱设计普通机床6140(纵向)数控化改造哨型凸台的设计(机械专业类毕业设计)数控系统中气动系统应用研究双面钻孔组合机床的PLC控制系统设计凸轮轴零件工艺规程设计真空泵的磁性液体密封设计直列式加工自动线的设计自动扶梯扶手导轨防变形设计35M3料罐设计(机械专业类毕业设计)C6136型卧式车床经济型数控改造的设计CA6140车床拔叉工艺工装设计(钻Φ25孔夹具)WCB型无绳电水壶耐久插拔实验机的设计Z32K型摇臂钻床变速箱的改进设计车床尾座体工艺工装设计(钻Φ14斜孔夹具)磁流变液的特性原理及运用设计电火花机械体的设计(机械专业类毕业设计)电火花数控切割加工工艺及应用的设计电机端盖零件工艺规程的设计法兰零件机械加工工艺及程序的设计封闭板成形模及冲压工艺的设计高级工椭圆型零件的加工及程序编制的设计工业机器人机械手的设计鼓形齿联轴器的设计机床主轴设计(机械专业类毕业设计)机械手的设计(机械专业类毕业设计)简易电动车结构设计锦佳丰559空压机吸气阀盖头零件数控加工工艺分析及工艺装备设计客户孔夹具的设计(机械毕业论文)连杆零件的加工工艺规程及专用铣床夹具的设计两级圆柱齿轮减速器的设计1两级圆柱齿轮减速器设计2膜片式离合器设计(自带)某机架扩孔机设计(机械专业类毕业设计)汽车轮毂设计(机械专业类毕业设计)数控回转工作台的设计尾座体加工工艺及夹具设计压力机和垫板间夹紧装置的设计压力机用安全双联阀先导阀座加工工艺设计液压传动基本回路的设计一级圆柱齿轮减速机的设计支承套零件工艺与夹具设计织机导板零件数控加工工艺与工装设计12.5万次末级叶片加工工艺及程序设计492Q型气缸盖双端面铣削组合铣床总体设计C618 数控车床的主传动系统设计CA610车床后托架工艺与夹具的设计CA6140车床拨叉”零件的机械加工工艺及工艺设备的设计CA6140车床拨叉零件的机械加工工艺规程1CA6140车床后托架加工工艺及夹具设计CA6140的数控化改造的设计CA6140机床主轴箱的设计FX系列PLC在铣床上的应用GE轮毂造型工艺设计M1040A无心磨床纵进给托架左前口4-φ5孔钻工装的设计SH280×85卧式混合机设计X5020B立式铣床拨叉壳体加工工艺规程制订及夹具的设计YZJ压装机液压系统的设计吹塑薄膜辅机设计(机械专业类毕业设计)拨叉80-08的加工工艺及夹具设计拨叉工艺与钻2φ8孔工装设计拨叉工艺与钻φ22两外圆的两端面夹具设计Y1200L电机端盖加工工艺设计叉车液压系统设计(机械专业类毕业设计)多缸直列式燃油喷射泵泵体工装夹具设计车床变速箱中拔叉及专用夹具设计齿轮泵后盖加工工艺与编程(机械专业类毕业设计)齿轮油泵零件的三维设计和工艺设计减速器传动系统分析与测绘锤式粉碎机的设计(机械专业类毕业设计)带式输送机传动装置设计电器控制柜门的加工工艺及数控编程加工设计电机端盖的三维造型及其工艺设计典型零件数控加工(机械专业类毕业设计)富士数码洗相机导轨底板加工编程设计光盘搬运气动机械手设计(机械专业类毕业设计)共轭凸轮的设计制造(CADCAM)及工艺机械手自动控制系统设计(机械专业类毕业设计)机械式双头套皮辊机设计(机械专业类毕业设计)组合机床主轴箱及夹具设计(机械专业类毕业设计)压燃式发动机油管残留测量装置设计基于单片机的行车泵式吸泥机动力系统的设计艾友煤矿运输设备选型设计立式加工中心主轴系统的结构设计MP3上壳叠层式塑料注射模具设计豆类自走式捡拾脱粒机设计勾尾框夹具设计(机械夹具类毕业设计)高档不锈钢保温杯过滤盘切边冲孔模具设计钢筋弯曲机设计及其运动过程虚拟设计封闭板成形模及冲压工艺设计(机械模具类毕业设计)带位移电反馈的二级电液比例节流阀设计马路保洁车的设计(机械专业类毕业设计)铰链落料冲孔复合模具设计冷冲扬声器模具设计(机械模具类毕业设计)护罩壳侧壁冲孔模设计(机械模具类毕业设计)空气滤清器壳正反拉伸复合模设计对讲机外壳注射模设计(机械模具类毕业设计)内齿轮铣齿机的铣削动力头的设计普通CA6140机床的经济型数控改造的设计小型加工中心刀库系统设计XZ25.50变速器箱体制造工艺规程、专用组合铣床概念设计及铣床专用夹具设计ZS1105 柴油机箱体工艺规程及专用夹具设计蝶形阀阀体工艺工装设计转速器盘工艺工装设计(机械专业类毕业设计)杠杆加工工艺及夹具设计(机械专业类毕业设计)钢筋弯曲机的设计(机械专业类毕业设计)风电轴承的建模和工艺设计法兰零件机械加工工艺规程的编制惰轮轴工艺设计和工装设计厚板轧机联轴器的AUTOCAD 和CAD-CAM的设计后钢板弹簧吊耳加工工艺及夹具设计数控磨床的设计(机械专业类毕业设计)活动缸壁双联缸式摆动发动机设计基于UGS技术的齿轮油泵的设计基于SINUMERIK 802S 数控系统的数控车床改造基于普通机床的后托架及夹具设计开发300×400数控激光切割机XY工作台部件及单片机控制设计锡林右轴承座组件工艺及夹具设计DTⅡ型固定式带式输送机的设计(机械专业类毕业设计)双铰接剪叉式液压升降台的设计万能外圆磨床液压传动系统设计实验用减速器的设计(机械专业类毕业设计)管套压装专机的设计(机械专业类毕业设计)环面蜗轮蜗杆减速器(机械专业类毕业设计)用于带式运输机传动装置中的同轴式二级圆柱齿轮减速器的设计减速器的整体设计(机械专业类毕业设计)CA6140车床主轴箱的设计(机械专业类毕业设计)电动自行车调速系统的设计(机械专业类毕业设计)膜片式离合器的设计(机械专业类毕业设计)多用途气动机器人结构设计自动洗衣机行星齿轮减速器的设计机油冷却器自动装备线压紧工位装备设计新KS型单级单吸离心泵的设计可调速钢筋弯曲机的设计数控机床自动夹持搬运装置的液压系统设计减速箱壳体动模的工艺设计及数控编程减速箱的整体设计(机械专业类毕业设计)减速箱的工艺过程与装配设计减速箱传动轴的加工工艺和夹具设计减速器的加工工艺设计(机械专业类毕业设计)CA6140的数控改装设计(机械专业类毕业设计)基于华中数控系统的车床改造的设计DN5500椭圆封头模具设计(机械专业类毕业设计)冷冲压模具设计(机械模具类毕业设计)胎帽的模拟数控加工制造的设计B537动叶中间体的加工(机械专业类毕业设计)零件的三维造型、数控加工工艺编制程及程序编制(连接轴)汽车变速箱加工工艺及夹具设计普通铣床的数控化改造及部分零件的数控编程绞盘机离合器的设计(机械专业类毕业设计)摩托车减震器示功试验台的设计灭火瓶收口收底专用机构的设计密封盖的工艺分析及数控编程门式起重机联轴器的设计杠杆支撑工艺及钻3-Φ10孔工装设计减速箱的工艺及夹具设计乳化液泵的工艺工装的设计全液压升降机的设计(机械专业类毕业设计)气缸阀体的工艺分析及夹具设计数控机床的主轴控制系统设计与调试(数控专业)LZ500离合器主体数控加工工艺设计凸轮机构设计及其零件的数控加工单管智能型螺旋电子秤设计(机电专业类毕业设计)透平叶片的现代加工工艺分析及其工装设计数控机床主轴控制系统设计与调试数控磨床的设计(机械专业类毕业设计)Y1200L电机端盖加工工艺设计塑料成型模具的CADCAM的设计心轴铣削夹具的设计(机械专业类毕业设计)十字轴工艺工装设计(机械专业类毕业设计)通信基站节能系统设计(机电专业类毕业设计)卧式钢筋切断机的设计(机械专业类毕业设计)M1040A无心磨床纵进给托架左前钳口机加工工装设计杠杆支撑工艺及钻3-Φ10孔工装设计五十铃泵头柱塞工艺设计捏合机的设计(机械专业类毕业设计)拨叉工艺与铣φ40两端面工装设计虚拟数控机床的总体设计及分析PLC在液压传动组合机床控制中的应用(机电专业类毕设计)采矿破碎试验台液压系统设计气门摇臂轴支座工艺编制及钻Ø11孔夹具设计机械手以及PLC控制的设计升降机构液压传动的设计无轴承无刷直流电机结构设计十字路口交通信号灯控制系统(机电专业类毕业设计)电动自行车喷淋试验装置设计及应用简易切管机的设计(机械专业类毕业设计)工作轴零件工艺与夹具设计薄壁衬套的工艺及夹具设计CA6140杠杆加工工艺及夹具设计阀体强度较核的设计(机械专业类毕业设计)线圈骨架注塑模的设计塑料模的设计(机械专业类毕业设计)塑件工艺性分析(机械专业类毕业设计)输出轴的数控工艺及主要工装设计设计“CA6140车床拔叉”零件的机械加工工艺规程及工艺装备(大批生产)全自动弯管机弯管夹头的工艺设计气动机械手的设计(机械专业类毕业设计)空压机吸气阀盖头零件加工工艺与工装设计简易切管机的设计(机械专业类毕业设计)杠杆工艺工装设计(机械专业类毕业设计)弹簧离合器的设计(机械专业类毕业设计)LB2000沥青搅拌机设计叶片加工过程和工艺路线叶轮座工艺编制和车孔4xФ42H7夹具设计KT300二轴联动数控转台吊运安装设计普通车床简易数控改造压缩机关键部件的工艺设计及数控编程压力控制阀的设计(机械专业类毕业设计)柱形凸轮零件的数控加工(机械专业类毕业设计)主体工艺钻6¬X Φ22孔工装设计铝活塞的加工工艺与夹具设计(机械专业类毕业设计)手柄多工位级进模设计一级圆柱齿轮减速机(机械专业类毕业设计)轧钢机减速器的设计(机械专业类毕业设计)拨叉(CA6140车床)(一)夹具设计拨叉工艺与铣16槽夹具设计带式输送机传动装置的设计1带式输送机减速装置的设计2电机端盖数控加工工艺设计回油管加工工艺设计(机械专业类毕业设计)基于华中HSV-160型全数字交流伺服驱动系统的设计四自由度多用途气动机器人结构设计及控制实现摇臂轴的工艺设计及编程的设计简易切管机的设计(机械专业类毕业设计)电动自行车喷淋试验装置设计及应用电控支架的冲压模具设计机械手结构设计(机械专业类毕业设计)啤酒桶清洗机的设计及PLC的控制的设计塑件工艺性分析(机械专业类毕业设计)液压传动系统的设计(机械专业类毕业设计)无轴承无刷直流电机结构设计线圈骨架注塑模的设计(机械专业类毕业设计)汽车升降机设计(机械专业类毕业设计)电子仪盒盖注塑模具设计组合镗床动力头与液压缸设计差速器壳体工艺及钻夹具设计冰箱抽屉塑料注射模具设计小型数控冲的两轴送料系统的设计XK-160小型数控铣床XY工作台的设计计算机键盘底盘的模具设计插线板后盖叠层式塑料注射模具设计钢筋折弯机设计(机械专业类毕业设计)基于ProE的浴室托架模型重构及注射模具设计立式加工中心回转工作台的结构设计汽车塑料支架的模具设计万向脚轮边盖的注射模具设计大型回转窑的挡轮设计立式加工中心直线工作台的结构设计剪板机设计(机械专业类毕业设计)六足爬虫式机器人设计及制作肥皂盒上盖模具设计(机械模具类毕业设计)小型龙门式数控钻铣床主传动与Z轴传动系统设计中心传动刮泥机机械结构系统设计CK6132 数控卧式车床及控制系统的设计PSP 游戏机外壳的注射模具设计基于单片机的中心传动刮泥机动力系统的设计矿用回柱绞车设计(机械专业类毕业设计)单绳缠绕式提升机的设计(机械专业类毕业设计)HB-60 混凝土泵泵送系统的设计自动往返式送料车设计(机械专业类毕业设计)四自由度机械手设计(机械专业类毕业设计)柴油机齿轮室盖钻镗专机总体及主轴箱设计柴油机气缸体顶底面粗铣组合机床总体及夹具设计电风扇旋扭的塑料模具设计电机炭刷架冷冲压模具设计放大镜模具的设计与制造肥皂盒模具的设计(机械模具类毕业设计)管套压装专机结构设计盒形件落料拉深模设计机床-S195柴油机机体三面精镗组合机床总体设计及夹具设计机床-车床主轴箱箱体右侧10-M8螺纹底孔组合钻床设计机油盖注塑模具设计(机械模具类毕业设计)搅拌器的设计(机械专业类毕业设计)精密播种机的设计(机械专业类毕业设计)拉深模设计(机械模具类毕业设计)螺旋管状面筋机总体及坯片导出装置设计内螺纹管接头注塑模具设计内循环式烘干机总体及卸料装置设计双齿减速器设计(机械专业类毕业设计)S195柴油机机体三面精镗组合机床总体设计及左主轴箱设计推动架设计(机械专业类毕业设计)椭圆盖注射模设计(机械模具类毕业设计)五寸软盘盖注射模具设计仪器连接板注塑模设计C618数控车床的主传动系统设计TH5940型数控加工中心进给系统设计ZH3100组合式选粉机的设计3L-108空气压缩机曲轴零件的机械加工工艺及夹具设计Φ1000立轴锤击式破碎机的设计φ2600筒辊磨压辊及加压、卸料装置设计φ2600筒辊磨液压系统及料流控制装置设计Ф2.6×13m管磨机(总体、回转部件)的设计Ф3.2x10m机立窑(总体、窑体、卸料部件)设计拔叉及夹具设计(机械夹具类毕业设计)彩瓦成型机的PLC设计(机电专业类毕业设计)齿轮的设计和应用(机械专业类毕业设计)传动盖冲压工艺制定及冲孔模具设计单拐曲轴机械加工工艺的设计电流线圈架塑料模设计(机械模具类毕业设计)电织机导板零件数控的设计高层建筑外墙清洗机---升降机部分的设计离合器板冲成形模具设计笔记本电脑壳上壳冲压模设计某大型水压机的驱动系统和控制系统的设计数控车床主传动机构设计自行车无级变速器设计多用工作灯后盖注塑模的设计手机充电器塑料模具的设计水管三通管塑料模具的设计数控车床纵向进给及导轨润滑机构设计旋转门的设计(机械专业类毕业设计)杠杆的设计(机械专业类毕业设计)高速数字多功能土槽试验台车的设计货车底盘布置的设计圆锥—圆柱齿轮减速器的设计轿车双摆臂悬架的设计及产品建模的设计侧抽芯机构分析及ABS三通管注塑模的设计椭圆盖注射模的设计(机械模具类毕业设计)外行星摆线马达结构设计中单链型刮板输送机设计花键加工装备的系统设计(X62W万能铣床)花键加工装备系统设计(X620 卧式铣床)智能型非侵入式电动控制器的设计智能型非侵入式电动控制器的设计中型加工中心的刀具库系统的设计LED显示称重系统设计单片机自动控制电动机闸门提升系统设计激光平面度仪随动系统的设计经济型车床进给系统数控改造的设计小型闸水坝闸门提升系统设计钢筋矫直机设计(机械专业类毕业设计)高楼自动清洗机设计(机械专业类毕业设计)ZS1105 柴油机箱体制造工艺规程镗床专用夹具的设计人工髋关节模拟试验机液压加载装置的研制MC32型埋刮板输送机设计S195柴油机箱体工艺规程、数控编程与铣床专用夹具的设计S195柴油机箱体工艺规程、数控编程与组合夹具设计XZ25.50 变速箱箱体工艺规程、数控编程与专用铣床夹具的设计XZ25.50变速箱箱体工艺规程、数控编程及专用夹具的设计随车起重机上车部分设计随车起重机上车部分的设计溶液自动配比装置的设计混凝土泵的设计(机械专业类毕业设计)溶液自动配比装置设计自动穿串机的设计(机械专业类毕业设计)基于HDPE/PVC 塑料管材无屑切割机结构设计装载机的总体设计及制动系统、工作机构和行走系统的设计组合机床的滑台及底座设计手动穿串机的设计(机械专业类毕业设计)JH-14回柱绞车改造的设计立轴式搅拌机的设计三辊卷板机的设计(机械专业类毕业设计)带式输送机的设计(淘论文网独家原创)回柱绞车改造的设计(机械专业类毕业设计)404312B 后桥托架机加工工艺规程与夹具设计及电源按钮注塑模具设计XZ25-50 变速箱箱体零件精镗孔专用机床设计XZ25-50 变速箱体机械加工规程与粗镗孔专用夹具设计及锥形套零件的注塑模具设计总速比为20.52非转向刚性驱动桥的设计YA32-500800液压机机身结构及其数字控制系统的设计电控定轴变速箱机械及典型工艺规程设计(4D355)拖式混凝土输送泵的设计(机械专业类毕业设计)工件传输机的设计及其连杆机构的分析与综合C650 车床改造及PLC设计(机电专业类毕业设计)立式精锻自动上料机械手部设计。
机械工程学报论文排版要求
机械工程学报论文排版要求
1.纸张格式:在A4纸上撰写,并保留一个边距,上、下、左、右四
个边距长度分别为15毫米。
2.字体格式:正文使用宋体字,字号为小四号(12号),行间距为
固定值24磅。
标题使用黑体字,一级标题为三号加粗字,二级标题为四
号加粗字。
4.图表编排:图表需与正文相符,采用阿拉伯数字编号,并且需要有
相应的标题以及引用文献。
图表的文字需清晰可读,建议使用矢量图形格式。
6.公式编排:公式需单独居中排列,并用阿拉伯数字进行编号,格式
如(1)、(2)等。
公式中的各个符号需有详细的注释与解释。
7.插图图片:插图图片需要具有清晰的解释说明,并用中文进行编号。
若使用表格形式呈现数据,需格外注意表格的清晰度以及表头的文字。
8.对照表格:对照表格中的数值,若有指标较大的差别,需要在表中
使用颜色区分或使用星号(*)标注。
总之,机械工程学报对论文排版有一定的要求,包括纸张格式、字体
格式、页面格式、图表编排、引用格式、公式编排、插图图片以及对照表
格等方面。
合理遵循以上要求可以使论文具有较高的质量,并提高论文在
该期刊中的发表概率。
机械工程学报的latex模板
机械工程学报的latex模板《机械工程学报》是一本著名的、以机械工程学为主题的学术期刊。
在本文中,我们将逐步介绍如何使用LaTeX模板来撰写一篇符合《机械工程学报》要求的论文。
1. 下载LaTeX模板:首先,我们需要从相应的网站上下载《机械工程学报》的LaTeX模板。
可以在期刊的官方网站或其他相关网站上找到这个模板文件,并将其下载到我们的计算机上。
2. 安装LaTeX系统:安装LaTeX系统是使用LaTeX模板的先决条件。
常见的LaTeX系统有TeX Live和MiKTeX。
可以从它们的官方网站下载相应的安装程序,并按照提示进行安装。
3. 创建新的LaTeX文档:使用LaTeX模板撰写论文前,需要创建一个新的LaTeX文档。
在文本编辑器中打开这个新的文档,并将以下代码粘贴到文档开头:latex\documentclass{jmecia}这个代码行告诉LaTeX使用《机械工程学报》的模板。
4. 设置论文标题和作者信息:在LaTeX模板中,可以使用以下命令来设置论文的标题和作者信息:latex\title{文章标题}\author{Name1\inst{1}, Name2\inst{2}, Name3\inst{1}}\institute{Institute1 \and Institute2}在这个例子中,我们设置了文章标题为"文章标题",并列出了三个作者。
每个作者都被编号为1或2,并与对应的机构信息相匹配。
5. 开始写作:在完成前面的设置之后,就可以开始写作论文了。
可以使用LaTeX的各种格式设置命令设置章节标题、段落格式、引用等。
6. 添加参考文献:使用LaTeX模板撰写论文时,可以使用BibTeX来管理参考文献。
需要创建一个名为"references.bib"的BibTeX文件,并在LaTeX文档的末尾添加以下代码:latex\bibliography{references}在正文中引用参考文献时,可以使用"\cite"命令。
《机械工程学报》论文模板
《机械工程学报》论文模板
下面是一个适用于《机械工程学报》的论文模板,长度超过1200字:标题:在这里填写论文标题
摘要:在这里写摘要,总结研究目的、方法、结果和结论。
关键词:在这里填写关键词,用逗号分隔。
引言:在这里介绍研究背景、目的和意义。
解释为什么这项研究是重
要的,并引用相关的文献来支持你的观点。
方法:在这里描述你所使用的研究方法和实验设计。
包括实验设备、
样本选择、数据采集和分析方法等。
结果:在这里展示你的实验结果。
使用表格、图表或其他适当的形式
来清楚地呈现你的数据。
对结果进行客观的描述,不要加入个人感受。
讨论:在这里对结果进行解释和分析。
讨论你的结果与已有文献的一
致性或差异性,并提出可能的解释。
指出你的研究的局限性并提出改进方法。
结论:在这里总结你的研究结果,并强调研究的重要性和潜在影响。
不要重复摘要中的内容,但可以讨论进一步的研究方向。
致谢:在这里感谢给予帮助和支持的人和机构。
对于提供技术、设备、样本或经费支持的人表示感谢。
附录:在这里包含任何需要包含但对论文主体内容来说太大或太详细
的信息。
这可能包括额外的数据、图表、公式、图片或其他相关材料。
以上是基本的《机械工程学报》论文模板。
你可以根据自己的研究内容和要求进行适当的修改和调整。
记得按照学报的具体要求填写论文的各个部分,并遵循学术规范和规定。
《机械工程学报》投稿格式
《机械工程学报》和《中国机械工程学报》(原《机械工程学报(英文版)》)是由中国科学技术协会主管、中国机械工程学会主办的学术期刊。
作为中国机械工程技术领域的权威学术期刊,两刊紧密把握机械工程学科的发展方向,着重报道具有综合、基础、开发和边缘性质的科技成果和先进经验,发表具有国内、国际先进水平的学术论文。
刊登论文的主要类型包括机械工程及其相关领域的前沿性综述研究、高水平基础理论研究和高应用价值工程技术应用研究,多数属于国家或省部级资助项目。
《机械工程学报》为月刊(创刊于1953年),《中国机械工程学报》为双月刊(创刊于1988年),内容不重复。
1 投稿要求和注意事项作者所投稿件应符合以下要求:(1)论文报道的内容符合党和国家的方针、政策和路线, 充分体现科技兴国战略, 促进科技、教育并与经济紧密结合, 为振兴机械工业服务,并达到国际或国内先进水平;同时应具有科学性、创新性,有一定的个人见解和前瞻性,综述性稿件应注意时效性。
(2)论文的写作符合有关国家标准及专业技术手册。
目前我刊参照的国家标准主要包括:①GB 3100-1993 国际单位制及其应用②GB 3101-1993 有关量、单位和符号的一般规则③GB 3102.1~13-1993 量和单位④GB/T 7714-2005 文后参考文献著录规则⑤GB/T 15834-1995 标点符号用法⑥GB/T 15835-1995 出版物上数字用法的规定参照相关专业技术手册包括:《机械工程手册》和《电机工程手册》等。
(3)通过《机械工程学报》工作平台投稿,必要时可打电话或发邮件向编辑部询问有关情况。
注意不要一稿多投!(4)作者应提供详细的通信地址及联系方式(电话、E-mail等),并与编辑部密切合作,积极配合编辑部进行论文修改工作,提供与论文发表相关的各类材料。
(5)论文如有资助项目应在首页脚注处明确标出。
获省部(局)级以上基金(如“863”计划、自然科学基金等)项目资助以及获得奖励者,须提供证明复印件。
机械类论文模板十一篇
机械类论文模板十一篇
机械类论文模板第一篇
摘要;妍究中国古代技术史和现存的传统技术也正是认识或者说发现中国的技术传统.20世纪,刘仙洲、王振铎等专家开创了中国古代机械的文献考释、专题妍究和复原工作.李约瑟、陆敬严和华觉明等学者的著作使这一领域的妍究达到了新的水泙.但是,古代典籍和考古资料的缺撼陷制了人们对机械技术传统的认识.进一步发现技术传统的一个有用途径正是调查现存传统技术.国内外学者在这方面已经做过大量的工作.1991年以来,本文有选择地调查了若干种机械的机构设计、材料、制造工艺和使用方法等技术细节,将实物的调查与走坊工匠相结合起来,在认识技术传统方面有所突破,抢救了少许技术资料,积累了调查妍究的经验.认为,可以像国外同行那样,将文化人类学的方法引入到科学技术史妍究中,开展"不同文化背景中的技术传统"的调查妍究.
关键词;认识、技术传统、传统机械
在古代,不同的文明区域有着不同的知识和技术传统.要认识中国的技术传统,最初要探究中国的技术发展史.刘仙洲、梁思成等学者在20世纪前半叶开创了中国技术史妍究.但是,技术史到现在在中国仍是一个年轻的学科①.妍究中国古代技术史和现存的传统技术也正是认识或者说发现中国的技术传统,我们到现在对这一传统的认识还不充分.本文从回顾中国机械工程史妍究入手,进而探究技术传统的一个认
识途径——调查现存的传统机械.
一、对中国古代机械工程史的妍究
关于中国机械传统的的记述和传说长期流传于世,引起了历代拿手技术者和文人的注意和好奇.三国时期的马钧曾再度发明前人的指南车、翻车,明末的王徵试图复原指南车、木牛流马等 王祯撰机械类论文模板第二篇。
《机械工程学报》论文模板
基于神经网络的双层辉光离子渗金属工艺预测模型(二号黑体)*董宏林1闫颖鑫2王科俊2段广仁2(四号仿宋)(1. 南京理工大学计算机科学与技术学院南京210094;(五号宋体)2. 哈尔滨工业大学航天学院哈尔滨150001)摘要(小五黑体):将人工神经网络理论和算法应用于双层辉光离子渗金属工艺的研究,在对网络进行训练的基础上,建立了双层辉光离子渗金属工艺与渗层表面成分和元素总质量分数、渗层厚度和吸收率之间的数学模型,试验结果与计算结果十分吻合。
(小五宋体)关键词(小五黑体):双层辉光人工神经网络预测模型(小五宋体)中图分类号(小五黑体):TG156(小五Times New Roman)Research on ANN-based Prediction Model Used to Double Glow PlasmaSurface Alloying Processing(小三)XXX(姓大写) Xxxxxx XXX Xxxxxx(小四)(1.College of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100081;2.School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200030 )(五号)Abstract(小五黑体):The theory and the algorithm of the artificial neural network are applied in the research of the technique and the composition, the gross mass fraction of element, the thickness of surface alloying layer as well as the absorption rate is built. The calculation results are in good agreement with the experimental results.(小五)Key words(小五黑体):Double glow Artificial neural network Prediction model0 前言(四号宋体)(五号宋体)双层辉光离子渗金属技术是我国在国内外都获得专利的一项等离子表面冶金新技术[1-4],它可以在普通材料表面形成具有特殊物理、化学性质的表面合金层。
机械工程师论文格式
机械工程师论文格式【篇一:机械工程师论文】浅谈中国模具现状摘要:本文根据我国注塑模具,同日本注塑模具进行比对分析,并通过比较,以个人见解希望为提高中国的模具行业的整体水平给一点参考。
同时希望中国对于日本要依照取其精华去其糟粕为原则,强我中华。
关键词:注塑模具随着中国模具技术的不断提高,日本已失去了大部分模具在中国市场的竞争力,份额已大大缩减,只蜷缩在了极个别的高技术的模具领域,因为中国的加工水平与日本还有差距,再加上竞争激烈,中国企业利润微薄,无力开展大量的研发工作。
但这只是时间问题,中国企业一定能全面超越日本企业。
对于日本这样一个自然资源严重匮乏的国家来说,人的创造力是唯一的资源。
只有依靠人不断创造出新的产品,日本才能够在这个全球化的时代得以生存和发展,从这个意义上来说,把制造业称为日本的立国之本是恰如其分的。
正是因为如此,中国模具行业的繁荣,才会如此刺激日本产业界的神经。
有着丰富资源的中国如果掌握了制造业的精髓,并能不断将其升华,那么日本生存的根基就会受到动摇。
为了应对来自中国的威胁,日本模具企业绞尽脑汁。
由于具有技术上的优势,因而充分发挥日本模具企业高、精、尖的技术特点,就成了普遍的共识。
日本政策研究学院教授桥本久义认为,一般来说中国模具与日本模具相比是“1/3的成本、1/2的质量”。
也就是说,根据质量要求的不同,一部分用户会满足于“1/3的成本、1/2的质量”,另一部分则不会。
这就是日本模具行业在面对中国同行竞争时自信的根本。
本文希望透过对比,给在模具行业的中国机械工程师一个参考,如何提高我国的模具技术及质量给出一些参考意见。
1 从模具的设计、精度、寿命、使用、保养及维护方面列出中日模具的比对。
1.1 中日模具设计比照。
1.1.1模具的选材(一)满足工作条件要求1.耐磨性坯料在模具型腔中塑性变性时,沿型腔表面既流动又滑动,使型腔表面与坯料间产生剧烈的摩擦,从而导致模具因磨损而失效。
所以材料的耐磨性是模具最基本、最重要的性能之一。
《机械工程学报》投稿格式
《机械工程学报》和《中国机械工程学报》(原《机械工程学报(英文版)》)是由中国科学技术协会主管、中国机械工程学会主办的学术期刊。
作为中国机械工程技术领域的权威学术期刊,两刊紧密把握机械工程学科的发展方向,着重报道具有综合、基础、开发和边缘性质的科技成果和先进经验,发表具有国内、国际先进水平的学术论文。
刊登论文的主要类型包括机械工程及其相关领域的前沿性综述研究、高水平基础理论研究和高应用价值工程技术应用研究,多数属于国家或省部级资助项目。
《机械工程学报》为月刊(创刊于1953年),《中国机械工程学报》为双月刊(创刊于1988年),内容不重复。
1 投稿要求和注意事项作者所投稿件应符合以下要求:(1)论文报道的内容符合党和国家的方针、政策和路线, 充分体现科技兴国战略, 促进科技、教育并与经济紧密结合, 为振兴机械工业服务,并达到国际或国内先进水平;同时应具有科学性、创新性,有一定的个人见解和前瞻性,综述性稿件应注意时效性。
(2)论文的写作符合有关国家标准及专业技术手册。
目前我刊参照的国家标准主要包括:①GB 3100-1993 国际单位制及其应用②GB 3101-1993 有关量、单位和符号的一般规则③GB 3102.1~13-1993 量和单位④GB/T 7714-2005 文后参考文献著录规则⑤GB/T 15834-1995 标点符号用法⑥GB/T 15835-1995 出版物上数字用法的规定参照相关专业技术手册包括:《机械工程手册》和《电机工程手册》等。
(3)通过《机械工程学报》工作平台投稿,必要时可打电话或发邮件向编辑部询问有关情况。
注意不要一稿多投!(4)作者应提供详细的通信地址及联系方式(电话、E-mail等),并与编辑部密切合作,积极配合编辑部进行论文修改工作,提供与论文发表相关的各类材料。
(5)论文如有资助项目应在首页脚注处明确标出。
获省部(局)级以上基金(如“863”计划、自然科学基金等)项目资助以及获得奖励者,须提供证明复印件。
《机械工程学报》论文模板
《机械工程学报》论文模板
以下是《机械工程学报》论文模板的示例:
标题:论文标题
摘要:
本文旨在……(简述研究的背景、目的、方法和结果)。
关键词:关键词1;关键词2;关键词3
1.引言
(叙述研究领域的重要性、研究的背景和目的、前人的研究成果)
2.方法和实验
(详细描述用于该研究的方法和实验设置,包括样本/设备的描述,实验步骤或模型建立的具体方法等)
3.结果和讨论
(具体描述实验或模拟结果,并对结果进行分析和讨论)
4.结论
(总结研究的主要内容和结果,并提出可能的未来研究方向或改进之处)
收稿日期:年月日
接受日期:年月日
本文采用《机械工程学报》论文模板撰写,字数超过1200字。
注意事项:
1.摘要部分应包括研究的背景、目的、方法和结果,尽量简明扼要。
2.正文部分应明确论述研究的方法和实验设置,并对结果进行详细分
析和讨论。
3.结论部分应对整个研究进行总结,并提出可能的进一步研究方向或
改进之处。
7.论文模板的字数应超过1200字,确保内容充实且详尽。
以上是一份示例的《机械工程学报》论文模板,希望能对您有所帮助。
请根据具体论文要求和格式要求进行调整。
中国机械工程学会年会论文格式要求
中国机械工程学会年会论文格式要求1论文结构和格式论文写作结构和格式请参考“格式及字号要求”附件。
排版软件要求:排版文件采用Word 2000或Word XP,请尽量用Word作图。
要求邮寄一式二份打印稿,及其电子文件一份(使用E-mail方式或邮寄软盘、光盘均可)。
2稿件中应注意的重点事项(1)摘要摘要是客观介绍研究项目的重点技术内容,包括研究的目的、采用的方法、获得的结果和结论等。
摘要中不用“本文”、“作者”之类的词,字数要求不超过500字。
关键词为3~4个。
(2)前言前言是概述论文中研究项目的实用意义,简明扼要。
(3)物理量(变量)符号的选用论文中各物理量(变量)符号及其组成的方程式,是最准确阐述研究内容和成果的工具和方式,因此,在文中选用各物理量(变量)名称、符号及其单位必须符合GB3100—3102—93国家标准;物理量(变量)符号字母均为斜体字母,用下角标符号是进一步说明和区别物理量符号含义,例如,为说明和区别不同的力,可用英文单词头个字母a(轴向)、r(径向)、t(切向)、l(纵向)以及坐标轴x和y等作为力符号F的下角标符号,则构成轴向力F a、径向力F r、切向力F t、纵向力F l以及坐标x,y向的F x和F y的物理量符号。
其中a、r、t、l是名词或定语的头个字母,所以是正体字母,而x,y是坐标变量符号,所以是斜体字母。
(4)坐标图坐标上有数字时,需在对应坐标上标出向内的刻度线,坐标轴无数字时须加箭头。
在各坐标轴旁必须给出对应的物理量名称、符号和单位(三者要齐全),例如:电流I/A;若是量纲一(即过去称为无量纲)时,则只给出物理量名称和符号即可。
(5)表格表格采用三线表格,表格中各物理量名称、符号、单位三者要齐全。
图和表格放在正文提到的一段文字后面,不要插在段落之中。
(6)参考文献中外文参考文献中的作者均按先姓后名排列,多位作者只列出前三名,后面作者用“等”表示。
参考文献按照其种类不同列出的格式如下。
机械工程学报模板
机械工程学报模板甲方:____________________________乙方:____________________________11 为促进双方在机械工程领域的学术交流与合作,共同提升科研水平,甲乙双方依据相关法律法规,在平等自愿的基础上,经友好协商达成如下协议:111 协议目的1111 加强双方在机械工程领域内的学术研究和技术开发合作1112 推动双方资源共享和优势互补1113 提升双方在国内外学术界的地位和影响力112 合作内容1121 学术交流活动组织1122 共同申报科研项目1123 技术成果共享1124 联合举办学术会议1125 互派访问学者113 权利与义务1131 甲方权利与义务11311 提供必要的研究条件和支持11312 参与乙方主持的学术交流活动11313 在合作项目中享有同等发表权11314 遵守协议约定,维护双方利益11315 对合作过程中产生的技术资料保密1132 乙方权利与义务11321 同等享有甲方提供的资源和支持11322 组织学术交流活动并邀请甲方参加11323 共享合作期间的技术成果11324 在联合申报项目时给予甲方优先权11325 保守合作过程中的技术秘密114 知识产权1141 合作期间产生的知识产权归属11411 双方共同完成的研究成果,其知识产权由双方共有11412 单方独立完成的成果归该方所有11413 知识产权申请及维护费用由双方协商解决115 保密条款1151 双方应严格保守对方提供的技术资料、商业秘密及其他相关信息1152 未经对方书面同意,不得将上述信息泄露给第三方1153 保密义务不因本协议终止而解除116 违约责任1161 任何一方违反本协议规定,均应承担相应的违约责任1162 因违约行为给对方造成损失的,违约方应负责赔偿1163 双方应通过友好协商解决争议,协商不成时可提交有管辖权的法院诉讼解决117 协议期限1171 本协议自双方签字盖章之日起生效,有效期为五年1172 如需延长合作期限,应在协议到期前三个月进行协商并签订补充协议118 协议修改1181 本协议未尽事宜,由双方协商解决,并以书面形式确认1182 任何对本协议的修改或补充均须经双方书面同意方可生效119 通知与送达1191 有关本协议的所有通知均应采用书面形式1192 通知应按照双方提供的联系方式发送1193 双方应及时更新联系方式,确保通知能够准确送达120 适用法律1201 本协议适用中华人民共和国法律1202 双方因履行本协议发生的争议,应首先通过友好协商解决1203 若协商不成,任何一方均可向有管辖权的人民法院提起诉讼本协议一式两份,甲乙双方各执一份,具有同等法律效力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Received September 8, 2008; revised January 18, 2009; accepted February 23, 2009; published electronically March 6, 2009
Abstract: A particular emphasis is put on a novel wearable exoskeleton arm, ZJUESA, with 6 degrees of freedom, 字号 8 磅,段后回车换行 1 次 which is used for the robot teleoperation with the force-feedback in the unknown environment. In this external structure mechanism, the 3-revolution-prismatic-spherical (3RPS) parallel mechanism is devised from the concept of the human upper-limb anatomy and applied for the shoulder 3-DOF joint. Meanwhile, the orthogonal experiment design method is introduced for its optimal design. Aiming at enhancing the performance of teleoperation, the force feedback is employed by the pneumatic system on ZJUESA to produce the vivid feeling in addition to the soft control interface. Due to the compressibility and nonlinearity of the pneumatic force feedbacy controller for the precise force control is proposed and realized based on the Mega8 microcontroller units as the units 字号 9 磅,段后回车换行 1 次 feedback, the of the distributed control system on ZJUESA. With the results of several experiments for master-slave control with force feasibility of ZJUESA system and the effect of its hybrid fuzzy controller are verified. Key words: exoskeleton arm, teleoperation, pneumatic force-feedback, hybrid fuzzy control 一级标题字号 12 磅, 段前空 1 行,段后回车换行 1 次 字号 9 磅,段后
首 页 上 行 页 眉 字 号 10.5 磅,单倍行距,段后 1.2 磅
CHINESE JOURNAL OF MECHANICAL ENGINEERING
Vol. 22,aNo. 5,a2009 字号 8 磅,段后回车换行 2 次 ·1·
DOI: 10.3901/CJME.2009.05.***, available online at ;
下行页眉字号 9 磅, 单 倍行距,段后 1.2 磅
Novel 6-DOF Wearable Exoskeleton Arm with Pneumatic Force-Feedback for Bilateral Teleoperation
论文题目字号 14 磅, 行距固定 值 16 磅,段后回车换行 2 次
字号 11 磅,段后 8 磅
ZHANG Jiafan1, 3, *, FU Hailun2, DONG Yiming1, ZHANG Yu1, YANG Canjun1, and CHEN Ying1
1 State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University,Hangzhou 310027, China 2 Zhejiang Province Instituteof Metrology,Hangzhou 310027, China 字号 200030, 10 磅,斜体, 3 National Die & Mold CAD Engineering Research Center, Shanghai Jiao Tong University, Shanghai China
次 and was assisted by 回车换行 adjusting2 system parameters which ∗ were not under direct control by the operator, specifically, 1 Introduction the mapping of positions and velocities between the master and slave and their impedance parameters. The ESA human At first look at modern society, more and more robots arm exoskele- ton was developed to enable force-feedback and automated devices are coming into our life and serve tele-manipulation on the exterior of the international space for human. But on even further inspection, one can find that station with redundant robotic arms[4]. In recent work[5–6], 菜单栏“格式”中的“段落” , 其中 mechatronic devices replace human subordinately only at the neuromuscular signal has been used to control the “缩进和间距”标签的复选框“如果 lower levels, essentially providing the “grunt” to perform exoskeleton arm and many new concepts were applied in 定义了文档网络, 则自动调整右缩进 routine tasks. Human control is still necessary at all higher (D) ”和“如果定义了文档网络, the rehabilitation[7–10]. Several researchers from Korea levels just as the term human supervisory control (HSC), ”不要勾选 则对齐网格(W) Institution of Science and Technology (KIST) introduced which is coined by SHERIDAN[1]. The modern the pneumatic actuator into the exoskeleton and designed a master-slave teleoperation system for the safe manipulation 正文字号为 10 磅,除特别标注外, novel manipulator with the 3RPS parallel mechanism[11–12]. of radioactive materials in a contaminated area in 1954 of 行距均为固定值 13 磅, 行首缩进 0.35 They explored a new exoskeleton-type master arm, in GOERTZ, et al[2], was the typical example of this concept. cm;含有上下标或较复杂数学式的 which the electric brakes with the torque sensor beams 段落为多倍行距,设置值为 1.1~1.2 Hereafter, exoskeleton arms with force-feedback have been were used for force reflection[14]. Likewise, the authors widely developed in the fields of robot teleoperation and gave out a 2-port network model to describe the bilateral haptic interface to enhance the performance of the human remote manipulation in the view of the control theory [15–17]. operator, also in the exciting applications in surgery In this research, a wearable exoskeleton arm, ZJUESA, planning, personnel training, and physical rehabilitation. based on man-machine system is designed and a [3] DUBEY, et al , developed a methodology to incorporate hierarchically distributed teleoperation control system is sensor and model based computer assistance into human explained. This system includes three main levels: ① controlled teleoperation systems. In their approach, the supervisor giving the command through the exoskeleton human operator was retained at all phases of the operation, arm in safe zone with the operator interface; ② 字号 8 磅, 单倍行距 slave-robot working in hazardous zone; ③ data * Corresponding author. E-mail: caffeezhang@ transmission between supervisor-master and master-slave This project is supported by National Natural Science Foundation of China (Grant No. 50305035), National Hi-tech Research and Development through the Internet or Ethernet. In section 2, by using the Program of China(863 Program, Grant No. ##), Beijing Municipal Natural orthogonal experiment design method, the design Science Foundation of China((Grant No. ##), and Zhejiang Provincial