历年中考数学模拟试题(含答案). (56)

合集下载

中考数学模拟试题(含答案和解析)

中考数学模拟试题(含答案和解析)

中考数学模拟试题(含答案和解析)一、选择题(本题有10小题.每小题4分.共40分.每小题只有一个选项是正确的.不选、多选、错选.均不给分)1.(4分)计算:(﹣1)+2的结果是()A.﹣1 B.1 C.﹣3 D.32.(4分)某校开展形式多样的“阳光体育”活动.七(3)班同学积极响应.全班参与.晶晶绘制了该班同学参加体育项目情况的扇形统计图(如图所示).由图可知参加人数最多的体育项目是()A.排球B.乒乓球C.篮球D.跳绳3.(4分)如图所示的物体有两个紧靠在一起的圆柱体组成.它的主视图是()A.B.C.D.4.(4分)已知点P(﹣1.4)在反比例函数的图象上.则k 的值是()A.B.C.4 D.﹣45.(4分)如图.在△ABC中.∠C=90°.AB=13.BC=5.则sin A的值是()A.B.C.D.6.(4分)如图.在矩形ABCD中.对角线AC.BD交于点O.已知∠AOB=60°.AC=16.则图中长度为8的线段有()A.2条B.4条C.5条D.6条7.(4分)为了支援地震灾区同学.某校开展捐书活动.九(1)班40名同学积极参与.现将捐书数量绘制成频数分布直方图如图所示.则捐书数量在5.5~6.5组别的频率是()A.0.1 B.0.2 C.0.3 D.0.48.(4分)已知线段AB=7cm.现以点A为圆心.2cm为半径画⊙A;再以点B为圆心.3cm为半径画⊙B.则⊙A和⊙B的位置关系()A.内含B.相交C.外切D.外离9.(4分)已知二次函数y=(x﹣1)2﹣1(0≤x≤3)的图象.如图所示.关于该函数在所给自变量取值范围内.下列说法正确的是()A.有最小值0.有最大值3 B.有最小值﹣1.有最大值0 C.有最小值﹣1.有最大值3 D.有最小值﹣1.无最大值10.(4分)如图.O是正方形ABCD的对角线BD上一点.⊙O与边AB.BC都相切.点E.F分别在AD.DC上.现将△DEF沿着EF对折.折痕EF与⊙O相切.此时点D恰好落在圆心O处.若DE=2.则正方形ABCD的边长是()A.3 B.4 C.D.二、填空题(本题有6小题.每小题5分.共30分)11.(5分)分解因式:a2﹣1=.12.(5分)某校艺术节演出中.5位评委给某个节目打分如下:9分.9.3分.8.9分.8.7分.9.1分.则该节目的平均得分是分.13.(5分)如图.a∥b.∠1=40°.∠2=80°.则∠3=度.14.(5分)如图.AB是⊙O的直径.点C.D都在⊙O上.连接CA.CB.DC.DB.已知∠D=30°.BC=3.则AB的长是.15.(5分)汛期来临前.滨海区决定实施“海堤加固”工程.某工程队承包了该项目.计划每天加固60米.在施工前.得到气象部门的预报.近期有“台风”袭击滨海区.于是工程队改变计划.每天加固的海堤长度是原计划的1.5倍.这样赶在“台风”来临前完成加固任务.设滨海区要加固的海堤长为a米.则完成整个任务的实际时间比原计划时间少用了天(用含a的代数式表示).16.(5分)我国汉代数学家赵爽为了证明勾股定理.创制了一副“弦图”.后人称其为“赵爽弦图”(如图1).图2由弦图变化得到.它是由八个全等的直角三角形拼接而成.记图中正方形ABCD.正方形EFGH.正方形MNKT的面积分别为S1.S2.S3.若S1+S2+S3=10.则S2的值是.三、解答题(本题有8小题.共80分.解答需要写出必要的文字说明、演算步骤或证明过程)17.(10分)(1)计算:;(2)化简:a(3+a)﹣3(a+2).18.(8分)如图.在等腰梯形ABCD中.AB∥CD.点M是AB的中点.求证:△ADM≌△BCM.19.(8分)七巧板是我们祖先的一项卓越创造.用它可以拼出多种图形.请你用七巧板中标号为①②③的三块板(如图1)经过平移、旋转拼成图形.(1)拼成矩形.在图2中画出示意图.(2)拼成等腰直角三角形.在图3中画出示意图.注意:相邻两块板之间无空隙.无重叠;示意图的顶点画在小方格顶点上.20.(8分)如图.AB是⊙O的直径.弦CD⊥AB于点E.过点B作⊙O 的切线.交AC的延长线于点F.已知OA=3.AE=2.(1)求CD的长;(2)求BF的长.21.(10分)一个不透明的布袋里装有3个球.其中2个红球.1个白球.它们除颜色外其余都相同.(1)求摸出1个球是白球的概率;(2)摸出1个球.记下颜色后放回.并搅均.再摸出1个球.求两次摸出的球恰好颜色不同的概率(要求画树状图或列表);(3)现再将n个白球放入布袋.搅均后.使摸出1个球是白球的概率为.求n的值.22.(10分)如图.在平面直角坐标系中.O是坐标原点.点A的坐标是(﹣2.4).过点A作AB⊥y轴.垂足为B.连接OA.(1)求△OAB的面积;(2)若抛物线y=﹣x2﹣2x+c经过点A.①求c的值;②将抛物线向下平移m个单位.使平移后得到的抛物线顶点落在△OAB的内部(不包括△OAB的边界).求m的取值范围(直接写出答案即可).23.(12分)2011年5月20日是第22个中国学生营养日.某校社会实践小组在这天开展活动.调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图).根据信息.解答下列问题.(1)求这份快餐中所含脂肪质量;(2)若碳水化合物占快餐总质量的40%.求这份快餐所含蛋白质的质量;(3)若这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%.求其中所含碳水化合物质量的最大值.24.(14分)如图.在平面直角坐标系中.O是坐标原点.点A的坐标是(﹣4.0).点B的坐标是(0.b)(b>0).P是直线AB上的一个动点.作PC⊥x轴.垂足为C.记点P关于y轴的对称点为P′(点P′不在y轴上).连接PP′.P′A.P′C.设点P的横坐标为a.(1)当b=3时.①求直线AB的解析式;②若点P′的坐标是(﹣1.m).求m的值;(2)若点P在第一象限.记直线AB与P′C的交点为D.当P′D:DC=1:3时.求a的值;(3)是否同时存在a.b.使△P′CA为等腰直角三角形?若存在.请求出所有满足要求的a.b的值;若不存在.请说明理由.参考答案与试题解析一、选择题(本题有10小题.每小题4分.共40分.每小题只有一个选项是正确的.不选、多选、错选.均不给分)1.【分析】异号两数相加.取绝对值较大加数的符号.再用较大绝对值减去较小绝对值.【解答】解:(﹣1)+2=+(2﹣1)=1.故选:B.【点评】此题主要考查了有理数的加法.做题的关键是掌握好有理数的加法法则.2.【分析】因为总人数是一样的.所占的百分比越大.参加人数就越多.从图上可看出篮球的百分比最大.故参加篮球的人数最多.【解答】解:∵篮球的百分比是35%.最大.∴参加篮球的人数最多.故选:C.【点评】本题对扇形图的识图能力.扇形统计图表现的是部分占整体的百分比.因为总数一样.所以百分比越大.人数就越多.3.【分析】找到从正面看所得到的图形即可.注意所有的看到的棱都应表现在主视图中.【解答】解:主视图是从正面看.圆柱从正面看是长方形.两个圆柱.看到两个长方形.故选:A.【点评】此题主要考查了三视图的知识.主视图是从物体的正面看得到的视图.4.【分析】根据反比例函数图象上的点的坐标特征.将P(﹣1.4)代入反比例函数的解析式.然后解关于k的方程即可.【解答】解:∵点P(﹣1.4)在反比例函数的图象上. ∴点P(﹣1.4)满足反比例函数的解析式.∴4=.解得.k=﹣4.故选:D.【点评】此题比较简单.考查的是用待定系数法求反比例函数的解析式.是中学阶段的重点.解答此题时.借用了“反比例函数图象上的点的坐标特征”这一知识点.5.【分析】本题可以利用锐角三角函数的定义求解.sin A为∠A的对边比上斜边.求出即可.【解答】解:∵在△ABC中.∠C=90°.AB=13.BC=5.∴sin A===.故选:A.【点评】此题主要考查了锐角三角函数的定义及运用:在直角三角形中.锐角的正弦为对边比斜边.余弦为邻边比斜边.正切为对边比邻边.6.【分析】因为矩形的对角线相等且互相平分.所以AO=BO=CO =DO.已知∠AOB=60°.所以AB=AO.从而CD=AB=AO.从而可求出线段为8的线段.【解答】解:∵在矩形ABCD中.AC=16.∴AO=BO=CO=DO=×16=8.∵AO=BO.∠AOB=60°.∴AB=AO=8.∴CD=AB=8.∴共有6条线段为8.故选:D.【点评】本题考查矩形的性质.矩形的对角线相等且互相平分.以及等边三角形的判定与性质.7.【分析】频率=.从直方图可知在5.5~6.5组别的频数是8.总数是40可求出解.【解答】解:∵在5.5~6.5组别的频数是8.总数是40.∴=0.2.故选:B.【点评】本题考查频数分布直方图.从直方图上找出该组的频数.根据频率=.可求出解.8.【分析】针对两圆位置关系与圆心距d.两圆半径R.r的数量关系间的联系得出两圆位置关系.【解答】解:依题意.线段AB=7cm.现以点A为圆心.2cm为半径画⊙A;再以点B为圆心.3cm为半径画⊙B.∴R+r=3+2=5.d=7.所以两圆外离.故选:D.【点评】此题主要考查了圆与圆的位置关系.圆与圆的位置关系与数量关系间的联系.此类题为中考热点.需重点掌握.9.【分析】根据函数图象自变量取值范围得出对应y的值.即是函数的最值.【解答】解:根据图象可知此函数有最小值﹣1.有最大值3.故选:C.【点评】此题主要考查了根据函数图象判断函数的最值问题.结合图象得出最值是利用数形结合.此知识是部分考查的重点.10.【分析】延长FO交AB于点G.根据折叠对称可以知道OF⊥CD.所以OG⊥AB.即点G是切点.OD交EF于点H.点H是切点.结合图形可知OG=OH=HD=EH.等于⊙O的半径.先求出半径.然后求出正方形的边长.【解答】解:如图:延长FO交AB于点G.则点G是切点.OD交EF于点H.则点H是切点.∵ABCD是正方形.点O在对角线BD上.∴DF=DE.OF⊥DC.∴GF⊥DC.∴OG⊥AB.∴OG=OH=HD=HE=AE.且都等于圆的半径.在等腰直角三角形DEH中.DE=2.∴EH=DH==AE.∴AD=AE+DE=+2.故选:C.【点评】本题考查的是切线的性质.利用切线的性质.结合正方形的特点求出正方形的边长.二、填空题(本题有6小题.每小题5分.共30分)11.【分析】符合平方差公式的特征.直接运用平方差公式分解因式.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:a2﹣1=(a+1)(a﹣1).故答案为:(a+1)(a﹣1).【点评】本题主要考查平方差公式分解因式.熟记公式是解题的关键.12.【分析】把5位评委的打分加起来然后除以5即可得到该节目的平均得分.【解答】解:==9.∴该节目的平均得分是9分.故答案为:9.【点评】本题考查的是平均数的求法.平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数.它是反映数据集中趋势的一项指标.熟记公式是解决本题的关键.13.【分析】先根据两直线平行.同位角相等.求出∠2的同位角的度数.再利用三角形的外角的性质求得∠3的度数.【解答】解:如图.∵a∥b.∠2=80°.∴∠4=∠2=80°(两直线平行.同位角相等)∴∠3=∠1+∠4=40°+80°=120°.故答案为120°.【点评】本题比较简单.考查的是平行线的性质及三角形外角的性质.特别注意三角形的一个外角等于与它不相邻的两个内角的和.14.【分析】利用直径所对的圆周角是直角得到直角三角形.然后利用同弧所对的圆周角相等.在解直角三角形即可.【解答】解:∵AB是⊙O的直径.∴∠ACB=90°.∵∠D=30°.∴∠A=∠D=30°.∵BC=3.∴AB=6.故答案为:6.【点评】本题考查了圆周角定理及直角三角形的性质.考查了同学们利用角平分线的性质、圆周角定理、弦切角定理解决问题的能力.有利于培养同学们的发散思维能力.15.【分析】首先由已知用a表示出原计划用的天数和实际用的天数再相减即是完成整个任务的实际时间比原计划时间少用的天数.【解答】解:由已知得:原计划用的天数为..实际用的天数为.=.则完成整个任务的实际时间比原计划时间少用的天数为.﹣=.故答案为:.【点评】此题考查的知识点是列代数式.解题的关键是根据题意先列出原计划用的天数和实际用的天数.16.【分析】根据图形的特征得出四边形MNKT的面积设为x.将其余八个全等的三角形面积一个设为y.从而用x.y表示出S1.S2.S3.得出答案即可.【解答】解:将四边形MTKN的面积设为x.将其余八个全等的三角形面积一个设为y.∵正方形ABCD.正方形EFGH.正方形MNKT的面积分别为S1.S2.S3.S1+S2+S3=10.∴得出S1=8y+x.S2=4y+x.S3=x.∴S1+S2+S3=3x+12y=10.故3x+12y=10.x+4y=.所以S2=x+4y=.故答案为:.【点评】此题主要考查了图形面积关系.根据已知得出用x.y表示出S1.S2.S3.再利用S1+S2+S3=10求出是解决问题的关键.三、解答题(本题有8小题.共80分.解答需要写出必要的文字说明、演算步骤或证明过程)17.【分析】(1)本题涉及零指数幂、乘方、二次根式化简三个考点.针对每个考点分别进行计算.然后根据实数的运算法则求得计算结果.(2)根据乘法的分配律.去括号.合并同类项即可.【解答】解:(1)(﹣2)2+(﹣2011)0﹣.=4+1﹣2.=5﹣2;(2)a(3+a)﹣3(a+2).=3a+a2﹣3a﹣6.=a2﹣6.【点评】本题考查实数的综合运算能力.整式的混合运算及零指数幂.是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握乘方、零指数幂、二次根式等考点的运算.18.【分析】由等腰梯形得到AD=BC.∠A=∠B.根据SAS即可判断△ADM≌△BCM.【解答】证明:在等腰梯形ABCD中.AB∥CD.∴AD=BC.∠A=∠B.∵点M是AB的中点.∴MA=MB.∴△ADM≌△BCM.【点评】本题主要考查对等腰梯形的性质.全等三角形的判定等知识点的理解和掌握.证出证三角形全等的三个条件是解此题的关键.19.【分析】(1)根据七巧板中有两个较小的等腰直角三角形.由一个小正方形进行拼凑即可;(2)根据七巧板中有两个较小的等腰直角三角形.且小正方形的边长与等腰三角形的腰长相等进行拼凑.【解答】解:参考图形如下(答案不唯一).【点评】本题考查的是作图与应用设计作图.熟知七巧板中各图形的特点是解答此题的关键.20.【分析】(1)连接OC.在△OCE中用勾股定理计算求出CE的长.然后得到CD的长.(2)根据切线的性质得AB⊥BF.然后用△ACE∽△AFB.可以求出BF的长.【解答】解:(1)如图.连接OC.∵AB是直径.弦CD⊥AB.∴CE=DE在直角△OCE中.OC2=OE2+CE232=(3﹣2)2+CE2得:CE=2.∴CD=4.(2)∵BF切⊙O于点B.∴∠ABF=90°=∠AEC.又∵∠CAE=∠F AB(公共角).∴△ACE∽△AFB∴=即:=∴BF=6.【点评】本题考查的是切线的性质.(1)利用垂径定理求出CD的长.(2)根据切线的性质.得到两相似三角形.然后利用三角形的性质计算求出BF的长.21.【分析】(1)由一个不透明的布袋里装有3个球.其中2个红球.1个白球.根据概率公式直接求解即可求得答案;(2)依据题意先用列表法或画树状图法分析所有等可能的出现结果.然后根据概率公式求出该事件的概率;(3)根据概率公式列方程.解方程即可求得n的值.【解答】解:(1)∵一个不透明的布袋里装有3个球.其中2个红球.1个白球.∴摸出1个球是白球的概率为;(2)画树状图、列表得:第二次白红1 红2 第一次白白.白白.红1白.红2红1红1.白红1.红1红1.红2红2红2.白红2.红1红2.红2∴一共有9种等可能的结果.两次摸出的球恰好颜色不同的有4种. ∴两次摸出的球恰好颜色不同的概率为;(3)由题意得:.解得:n=4.经检验.n=4是所列方程的解.且符合题意.∴n=4.【点评】此题考查了概率公式与用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果.适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.【分析】(1)根据点A的坐标是(﹣2.4).得出AB.BO的长度.即可得出△OAB的面积;(2)①把点A的坐标(﹣2.4)代入y=﹣x2﹣2x+c中.直接得出即可;②利用配方法求出二次函数解析式即可得出顶点坐标.根据AB的中点E的坐标以及F点的坐标即可得出m的取值范围.【解答】解:(1)∵点A的坐标是(﹣2.4).AB⊥y轴.∴AB=2.OB=4.∴△OAB的面积为:×AB×OB=×2×4=4.(2)①把点A的坐标(﹣2.4)代入y=﹣x2﹣2x+c中.﹣(﹣2)2﹣2×(﹣2)+c=4.∴c=4.②∵y=﹣x2﹣2x+4=﹣(x+1)2+5.∴抛物线顶点D的坐标是(﹣1.5).过点D作DE⊥AB于点E交AO于点F.AB的中点E的坐标是(﹣1.4).OA的中点F的坐标是(﹣1.2). ∴m的取值范围是:1<m<3.【点评】此题主要考查了二次函数的综合应用以及二次函数顶点坐标求法.二次函数的综合应用是初中阶段的重点题型特别注意利用数形结合是这部分考查的重点也是难点同学们应重点掌握.23.【分析】(1)快餐中所含脂肪质量=快餐总质量×脂肪所占百分比;(2)根据这份快餐总质量为400克.列出方程求解即可;(3)根据这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%.列出不等式求解即可.【解答】解:(1)400×5%=20克.答:这份快餐中所含脂肪质量为20克;(2)设400克快餐所含矿物质的质量为x克.由题意得:x+4x+20+400×40%=400.∴x=44.∴4x=176.答:所含蛋白质质量为176克;(3)设所含矿物质的质量为y克.则所含蛋白质质量为4y克.所含碳水化合物的质量为(380﹣5y)克.∴4y+(380﹣5y)≤400×85%.∴y≥40.∴﹣5y≤﹣200.∴380﹣5y≤380﹣200.即380﹣5y≤180.∴所含碳水化合物质量的最大值为180克.【点评】本题由课本例题改编而成(原题为浙教版七年级下P96例题).这使学生对试题有“亲切感”.而且对教学有着积极的导向作用.题中第(3)问是本题的一个亮点.给出两个量的和的范围.求其中一个量的最值.隐含着函数最值思想.本题切入点较多.方法灵活.解题方式多样化.可用不等式解题.也可用极端原理求解.不同的解答反映出思维的不同层次.24.【分析】(1)①利用待定系数法即可求得函数的解析式;②把(﹣1.m)代入函数解析式即可求得m的值;(2)可以证明△PP′D∽△ACD.根据相似三角形的对应边的比相等.即可求解;(3)分P在第一.二.三象限.三种情况进行讨论.利用相似三角形的性质即可求解.【解答】解:(1)①设直线AB的解析式为y=kx+3.把x=﹣4.y=0代入得:﹣4k+3=0.∴k=.∴直线的解析式是:y=x+3.②P′(﹣1.m).∴点P的坐标是(1.m).∵点P在直线AB上.∴m=×1+3=;(2)∵PP′∥AC.△PP′D∽△ACD.∴=.即=.∴a=;(3)以下分三种情况讨论.①当点P在第一象限时.1)若∠AP′C=90°.P′A=P′C(如图1)过点P′作P′H⊥x轴于点H.∴PP′=CH=AH=P′H=AC.∴2a=(a+4)∴a=∵P′H=PC=AC.△ACP∽△AOB∴==.即=.∴b=22)若∠P′AC=90°.(如图2).则四边形P′ACP是矩形.则PP′=AC.若△P´CA为等腰直角三角形.则:P′A=CA.∴2a=a+4∴a=4∵P′A=PC=AC.△ACP∽△AOB∴==1.即=1∴b=43)若∠P′CA=90°.则点P′.P都在第一象限内.这与条件矛盾.∴△P′CA不可能是以C为直角顶点的等腰直角三角形.②当点P在第二象限时.∠P′CA为钝角(如图3).此时△P′CA 不可能是等腰直角三角形;③当P在第三象限时.∠P′AC为钝角(如图4).此时△P′CA不可能是等腰直角三角形.所有满足条件的a.b的值为:..【点评】本题主要考查了梯形的性质.相似三角形的判定和性质以及一次函数的综合应用.要注意的是(3)中.要根据P点的不同位置进行分类求解.。

中考数学模拟卷50题及答案

中考数学模拟卷50题及答案

1.下列几何体的主视图和俯视图完全相同的是()A. B. C. D.2.在⊙O中按如下步骤作图:(1)作⊙O的直径AD;(2)以点D为圆心,DO长为半径画弧,交⊙O于B,C两点;(3)连接DB,DC,AB,AC,BC.根据以上作图过程及所作图形,下列四个结论中错误的是()A.∠ABD=90°B.∠BAD=∠CBDC.AD⊥BCD.AC=2CD3.面对突如其来的疫情,全国广大医务工作者以白衣为战袍,义无反顾的冲在抗疫战争的一线,用生命捍卫人民的安全.据统计,全国共有346支医疗队,将近42600名医护工作者加入到支援湖北武汉的抗疫队伍,将42600用科学记数法表示为()A.0.426×105B.4.26×104C.42.6×103D.426×1024.下列各数中比3大比4小的无理数是()A. B. C.3.14159 D.﹣π5.如图,已知AB∥CD,AF交CD于点E,且BE⊥AF,∠BED =40°,则∠A的度数是()A.40°B.50°C.80°D.90°6.如图,直线y=kx+b分别交x轴、y轴于点A、C,直线y=mx+n分别交x轴、y轴于点B、D,直线AC与直线BD相交于点M(﹣1,2),则不等式kx+b≤mx+n的解集为()A.x≥﹣1B.x≤﹣1C.x≥2D.x≤27.如图,已知菱形ABCD的顶点A的坐标为(1,0),顶点B 的坐标为(4,4),若将菱形ABCD绕原点O逆时针旋转45°称为1次变换,则经过2020次变换后点C的坐标为()A.(9,4)B.(4,﹣9)C.(﹣9,﹣4)D.(﹣4,﹣9)8.为了解某校初三400名学生的体重情况,从中抽取50名学生的体重进行分析.在这项调查中,下列说法正确的是()A.400名学生中每位学生是个体B.400名学生是总体C.被抽取的50名学生是总体的一个样本D.样本的容量是509.据报道,2020年某市户籍人口中,60岁以上的老人有1230000人,预计未来五年该市人口“老龄化”还将提速.将1230000用科学记数法表示为()A.12.3×105B.1.23×105C.0.12×106D.1.23×10610.下列计算错误的是()A.(a3b)•(ab2)=a4b3B.xy2﹣xy2=xy2C.a5÷a2=a3D.(﹣mn3)2=m2n511.如图,AB是⊙O的直径,AC是⊙O的切线,OC交⊙O于点D,若∠ABD=24°,则∠C的度数是()A.48°B.42°C.34°D.24°12.下列各数中,最小的是()A.πB.﹣3C.D.﹣13.如图,将一块三角尺的直角顶点放在直尺的一边上,当∠1=35°时,∠2的度数为()A.35°B.45°C.55°D.65°14.下面计算正确的是()A.3a﹣2a=1B.2a2+4a2=6a4C.(x3)2=x5D.x8÷x2=x615.不等式组的解集在数轴上表示正确的是()A. B.C. D.16.如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于BF的长为半径画弧,两弧交于点P;连接AP并延长交BC于点E,连接EF.若四边形ABEF的周长为12,∠C=60°,则四边形ABEF的面积是()A.9B.12C.D.617.如图,在正方形ABCD中,顶点A(﹣1,0),C(1,2),点F是BC的中点,CD与y轴交于点E,AF与BE交于点G.将正方形ABCD绕点O顺时针旋转,每次旋转90°,则第99次旋转结束时,点G的坐标为()A.(,)B.(﹣,)C.(﹣,)D.(,﹣)18.如图,在长方形ABCD中,AB=4,AD=5,E为AB的中点,点F,G分别在CD,AD上,△EFG为等腰直角三角形,则四边形BCFE的面积为()A.10B.9C.D.19.某篮球兴趣小组7名学生参加投篮比赛,每人投10个,投中的个数分别为:8,5,7,5,8,6,8,则这组数据的众数和中位数分别为()A.8,7B.6,7C.8,5D.5,720.二次函数y1=ax2+bx+c(a,b,c为常数)的图象如图所示,若y1+y2=2,则下列关于函数y2的图象与性质描述正确的是()A.函数y2的图象开口向上B.函数y2的图象与x轴没有公共点C.当x=1时,函数y2的值小于0D.当x>2时,y2随x的增大而减小21.如图,在△ABC中,BC>AB>AC,D是边BC上的一个动点(点D不与点B、C重合),将△ABD沿AD折叠,点B落在点B'处,连接BB',B'C,若△BCB'是等腰三角形,则符合条件的点D的个数是()A.0个B.1个C.2个D.3个22.将矩形ABCD按如图所示的方式折叠,BE,EG,FG为折痕,若顶点A,C,D都落在点O处,且点B,O,G在同一条直线上,同时点E,O,F在另一条直线上,则的值为()A. B. C. D.23.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0),其对称轴为直线x=﹣,结合图象分析下列结论:①abc>0;②3a+c>0;③当x<0时,y随x的增大而增大;④一元二次方程cx2+bx+a=0的两根分别为x1=﹣,x2=;⑤<0;⑥若m,n(m<n)为方程a(x+3)(x﹣2)+3=0的两个根,则m<﹣3且n>2,其中正确的结论有()A.3个B.4个C.5个D.6个24.如图,矩形OABC的顶点O(0,0),B(﹣2,2),若矩形绕点O逆时针旋转,每秒旋转60°,则第2017秒时,矩形的对角线交点D的坐标为()A.(﹣1,)B.(﹣1,﹣3)C.(﹣2,0)D.(1,﹣3)25.如图,矩形ABCD中,AB=3,BC=6,点E、F是BC的三等分点,连接AF,DE,相交于点M,则线段ME的长为.26.我国古代数学著作《孙子算经》中记载了这样一个有趣的数学问题“今有五等诸侯,共分橘子60颗,人别加三颗,问五人各得几何?”题目大意是:诸侯5人,共同分60个橘子,若后面的人总比前一个人多分3个,问每个人各分得多少个橘子?若设中间的那个人分得x个,依题意可列方程得.27.若关于x的一元二次方程ax2+2ax+4﹣m=0有两个相等的实数根,则a+m﹣3的值为.28.如图,已知⊙O的半径为6,点A、B在⊙O上,∠AOB=60°,动点C在⊙O上(与A、B两点不重合),连接BC,点D是BC中点,连接AD,则线段AD的最大值为.29.不等式组的整数解是.30.如图,在平面直角坐标系中,菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,∠BOC=60°,顶点C的坐标为(m,3),反比例函数y=的图象与菱形对角线AO交于点D,连接BD,当BD⊥x轴时,k的值是.31.计算:2cos30°﹣﹣()﹣2=.32.如图,正方形ABCD的边长为4,连接AC,先以A为圆心,AB的长为半径作弧BD,再以A为圆心、AC的长为半径作弧CE,且A、D、E三点共线,则图中两个阴影部分的面积之和是.33.如图,在扇形OAB中,∠AOB=90°,C是OA的中点,D 是的中点,连接CD、CB.若OA=2,则阴影部分的面积为.(结果保留π)34.如图,在△ABC中,AB=AC=,∠B=30°,D是BC上一点,连接AD,把△ABD沿直线AD折叠,点B落在B′处,连接B'C,若△AB'C是直角三角形,则BD的长为.35.如图,在平面直角坐标系中,直线y=x+2交x轴于点A,交y轴于点A1,若图中阴影部分的三角形都是等腰直角三角形,则从左往右数第5个阴影三角形的面积是,第2019个阴影三角形的面积是.36.如图,点A在反比例函数y1=(x>0)的图象上,点B在反比例函数y2=(x<0)的图象上,AB⊥y轴,若△AOB的面积为2,则k的值为.37.如图,在Rt△ABC中,∠ACB=90°,AB=10,AC=6,点D是BC上一动点,连接AD,将△ACD沿AD折叠,点C落在点C',连接C'D交AB于点E,连接BC'.当△BC'D是直角三角形时,DE的长为.38.如图,点C是以点O为圆心,AB为直径的半圆上的动点(不与点A,B重合),AB=6cm,过点C作CD⊥AB于点D,E是CD的中点,连接AE并延长交于点F,连接FD.小腾根据学习函数的经验,对线段AC,CD,FD的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点C在上的不同位置,画图、测量,得到了线段AC ,CD ,FD 的长度的几组值,如表: 位置1 位置2 位置3 位置4 位置5 位置6 位置7 位置8AC /cm 0.1 0.5 1.0 1.9 2.6 3.2 4.2 4.9CD /cm 0.1 0.5 1.0 1.8 2.2 2.5 2.3 1.0FD /cm 0.2 1.0 1.8 2.8 3.0 2.7 1.8 0.5在AC ,CD ,FD 的长度这三个量中,确定 的长度是自变量, 的长度和 的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy 中,画出(1)中所确定的函数的图象;(3)结合函数图象,解答问题:当CD >DF 时,AC 的长度的取值范围是 .39.如图,AB 是⊙O 的直径,NM 与⊙O 相切于点M ,与AB的延长线交于点N,MH⊥AB于点H.(1)求证:∠1=∠2;(2)若∠N=30°,BN=5,求⊙O的半径;(3)在(2)的条件下,求线段BN、MN及劣弧BM围成的阴影部分面积.40.先化简,再求值:•÷,其中x、y满足=2.41.(1)发现如图1,△ABC和△ADE均为等边三角形,点D在BC边上,连接CE.填空:①∠DCE的度数是;②线段CA、CE、CD之间的数量关系是.(2)探究如图2,△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE =90°,点D在BC边上,连接CE.请判断∠DCE的度数及线段CA、CE、CD之间的数量关系,并说明理由.(3)应用如图3,在Rt△ABC中,∠A=90°,AC=4,AB=6.若点D满足DB=DC,且∠BDC=90°,请直接写出DA的长.42.如图,直线y=﹣2x+c交x轴于点A(3,0),交y轴于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求抛物线的解析式;(2)点M(m,0)是线段OA上一动点(点M不与点O,A 重合),过点M作y轴的平行线,交直线AB于点P,交抛物线于点N,若NP=AP,求m的值;(3)若抛物线上存在点Q,使∠QBA=45°,请直接写出相应的点Q的坐标.43.如图,抛物线y=ax2+bx﹣3过A(1,0),B(﹣3,0),直线AD交抛物线于点D,点D的横坐标为﹣2,点P(m,n)是线段AD上的动点.(1)求直线AD及抛物线的解析式;(2)过点P的直线垂直于x轴,交抛物线于点Q,求线段PQ 的长度l与m的关系式,m为何值时,PQ最长?(3)在平面内是否存在整点(横、纵坐标都为整数)R,使得P,Q,D,R为顶点的四边形是平行四边形?若存在,直接写出点R的坐标;若不存在,说明理由.44.如图,兰兰站在河岸上的G点,看见河里有一只小船沿垂直于岸边的方向划过来,此时,测得小船C的俯角是∠FDC =30°,若兰兰的眼睛与地面的距离是1.5米,BG=1米,BG 平行于AC所在的直线,迎水坡的坡度i=4:3,坡高BE=8米,求小船C到岸边的距离CA的长?(参考数据:≈1.7,结果保留一位小数)45.如图,点O是线段AH上一点,AH=3,以点O为圆心,OA的长为半径作⊙O,过点H作AH的垂线交⊙O于C,N 两点,点B在线段CN的延长线上,连接AB交⊙O于点M,以AB,BC为边作▱ABCD.(1)求证:AD是⊙O的切线;(2)若OH=AH,求四边形AHCD与⊙O重叠部分的面积;(3)若NH=AH,BN=,连接MN,求OH和MN的长.46.某商店购进A、B两种商品,购买1个A商品比购买1个B 商品多花10元,并且花费300元购买A商品和花费100元购买B商品的数量相等.(1)求购买一个A商品和一个B商品各需要多少元;(2)商店准备购买A、B两种商品共80个,若A商品的数量不少于B商品数量的4倍,并且购买A、B商品的总费用不低于1000元且不高于1050元,那么商店有哪几种购买方案?47.如图1,在矩形ABCD中,BC=3,动点P从B出发,以每秒1个单位的速度,沿射线BC方向移动,作△P AB关于直线P A的对称△P AB′,设点P的运动时间为t(s).(1)若AB=2.①如图2,当点B′落在AC上时,显然△P AB′是直角三角形,求此时t的值;②是否存在异于图2的时刻,使得△PCB′是直角三角形?若存在,请直接写出所有符合题意的t的值?若不存在,请说明理由.(2)当P点不与C点重合时,若直线PB′与直线CD相交于点M,且当t<3时存在某一时刻有结论∠P AM=45°成立,试探究:对于t>3的任意时刻,结论“∠P AM=45°”是否总是成立?请说明理由.48.如图,在△ABC中,∠B=60°,⊙O是△ABC的外接圆,过点A作⊙O的切线,交CO的延长线于点M,CM交⊙O于点D.(1)求证:AM=AC;(2)填空:①若AC=3,MC=;②连接BM,当∠AMB的度数为时,四边形AMBC是菱形.49.如图1,△ABC是直角三角形,∠ACB=90°,点D在AC 上,DE⊥AB于E,连接BD,点F是BD的中点,连接EF,CF.(1)EF和CF的数量关系为;(2)如图2,若△ADE绕着点A旋转,当点D落在AB上时,小明通过作△ABC和△ADE斜边上的中线CM和EN,再利用全等三角形的判定,得到了EF和CF的数量关系,请写出此时EF和CF的数量关系;(3)若△AED继续绕着点A旋转到图3的位置时,EF和CF 的数量关系是什么?写出你的猜想,并给予证明.50.如图,直线y=x﹣4与x轴、y轴分别交于A,B两点,抛物线y=x2+bx+c经过A,B两点,与x轴的另一交点为C,连接BC.(1)求抛物线的解析式;(2)点M在抛物线上,连接MB,当∠MBA+∠CBO=45°时,求点M的横坐标;(3)点P从点C出发,沿线段CA由C向A运动,同时点Q 从点B出发沿线段BC由B向C运动,P,Q的运动速度都是每秒1个单位长度,当Q点到达C点时,P,Q同时停止运动,问在坐标平面内是否存在点D,使P,Q运动过程中的某些时刻t,以C,D,P,Q为顶点的四边形为菱形?若存在,直接写出t的值;若不存在,说明理由.参考答案1.D;2.D;3.B;4.A;5.B;6.B;7.C;8.D;9.D;10.D;11.B;12.B;13.C;14.D;15.A;16.C;17.B;18.D;19.A;20.D;21.C;22.B;23.C;24.C;25.;26.(x﹣6)+(x﹣3)+x+(x+3)+(x+6)=60;27.1;28.3;29.﹣1,0,1;30.﹣12;31.﹣2﹣4;32.6π﹣8;33.+﹣1;34.或;35.29;24037;36.﹣3;37.3或;详细解析1.【解答】A、圆锥的主视图是等腰三角形,俯视图是圆,故A选项不合题意;B、圆柱主视图是矩形,俯视图是圆,故B选项不合题意;C、三棱柱主视图是一行两个矩形,俯视图是三角形,故C选项不合题意;D、正方体主视图和俯视图都为正方形,故D选项符合题意;故选:D.2.【解答】根据作图过程可知:AD是⊙O的直径,∴∠ABD=90°,∴A选项正确;∵BD=CD,∴=,∴∠BAD=∠CBD,∴B选项正确;根据垂径定理,得AD⊥BC,∴C选项正确;∵DC=OD,∴AD=2CD,∴D选项错误.故选:D.3.【解答】将数据42600用科学记数法可表示为:4.26×104. 故选:B.4.【解答】3=,4=,A、是比3大比4小的无理数,故此选项符合题意;B、比4大的无理数,故此选项不合题意;C、3.14159是有理数,故此选项不合题意;D、﹣π是比﹣3小比﹣4大的无理数,故此选项不符合题意;故选:A.5.【解答】∵BE⊥AF,∠BED=40°,∴∠FED=50°,∵AB∥CD,∴∠A=∠FED=50°.故选:B.6.【解答】根据函数图象,当x≤﹣1时,kx+b≤mx+n,所以不等式kx+b≤mx+n的解集为x≤﹣1.故选:B.7.【解答】∵360°÷45°=8,∴菱形ABCD绕原点O逆时针旋转8次变换为一次循环,∵2020÷8=252…4,∴4×45=180°,∴经过2020次变换后点C的坐标处于点C绕原点逆时针旋转180°的位置.∵顶点A的坐标为(1,0),顶点B的坐标为(4,4),∴AB==5,∵四边形ABCD是菱形,∴BC∥AD,BC=AB=5,∴C(9,4),∴经过2020次变换后点C的坐标为(﹣9,﹣4).故选:C.8.【解答】A.400名学生中每位学生的体重是个体,故本选项不合题意;B.400名学生的体重是总体,故本选项不合题意;C.被抽取的50名学生的体重是总体的一个样本,故本选项不合题意;D.样本的容量是50,符号题意;故选:D.9.【解答】将1230000用科学记数法表示为1.23×106.故选:D.10.【解答】解:选项A,单项式×单项式,(a3b)•(ab2)=a3•a•b•b2=a4b3,原计算正确,故此选项不符合题意;选项B,合并同类项,xy2﹣xy2=xy2﹣xy2=xy2,原计算正确,故此选项不符合题意;选项C,同底数幂的除法,a5÷a2=a5﹣2=a3,原计算正确,故此选项不符合题意;选项D,积的乘方,(﹣mn3)2=m2n6,原计算错误,故此选项符合题意;故选:D.11.【解答】∵∠ABD=24°,∴∠AOC=48°,∵AC是⊙O的切线,∴∠OAC=90°,∴∠AOC+∠C=90°,∴∠C=90°﹣48°=42°,故选:B.12.【解答】∵﹣=﹣2,π>>﹣>﹣3,∴这些数中最小的是:﹣3.故选:B.13.【解答】∵直尺的两边互相平行,∠1=35°,∴∠3=35°.∵∠2+∠3=90°,∴∠2=55°.故选:C.14.【解答】∵3a﹣2a=a,故选项A错误;∵2a2+4a2=6a2,故选项B错误;∵(x3)2=x6,故选项C错误;∵x8÷x2=x6,故选项D正确;故选:D.15.【解答】解不等式3x<2x+2,得:x<2,解不等式﹣x≤1,得:x≥﹣1,则不等式组的解集为﹣1≤x<2,故选:A.16.【解答】由作法得AE平分∠BAD,AB=AF,则∠1=∠2,∵四边形ABCD为平行四边形,∴BE∥AF,∠BAF=∠C=60°,∴∠2=∠BEA,∴∠1=∠BEA=30°,∴BA=BE,∴AF=BE,∴四边形AFEB为平行四边形,△ABF是等边三角形,而AB=AF,∴四边形ABEF是菱形;∴BF⊥AE,AG=EG,∵四边形ABEF的周长为12,∴AF=BF=AB=3,在Rt△ABG中,∠1=30°,∴BG=AB=1.5,AG=BG=,∴AE=2AG=3,∴菱形ABEF的面积=BF×AE=×3×3=;故选:C.17.【解答】∵四边形ABCD是正方形,∴AB=BC=CD=2,∠C=∠ABF=90°,∵点F是BC的中点,CD与y轴交于点E,∴CE=BF=1,∴△ABF≌△BCE(SAS),∴∠BAF=∠CBE,∵∠BAF+∠BF A=90°,∴∠FBG+∠BFG=90°,∴∠BGF=90°,∴BE⊥AF,∵AF===,∴BG==,过G作GH⊥AB于H,∴∠BHG=∠AGB=90°,∵∠HBG=∠ABG,∴△ABG∽△GBH,∴,∴BG2=BH•AB,∴BH==,∴OH=,∵OG=AB=1,∴HG==,∴G(,),∵将正方形ABCD绕点O顺时针每次旋转90°,∴第一次旋转90°后对应的G点的坐标为(,﹣),第二次旋转90°后对应的G点的坐标为(﹣,﹣),第三次旋转90°后对应的G点的坐标为(﹣,),第四次旋转90°后对应的G点的坐标为(,),…,∵99=4×24+3,∴每4次一个循环,第99次旋转结束时,相当于正方形ABCD 绕点O顺时针旋转3次,∴第99次旋转结束时,点G的坐标为(﹣,).故选:B.18.【解答】∵△GEF为等腰直角三角形,∴GE=GF,∠EGF=90°,∴∠AGE+∠DGF=90°,∵∠AEG+∠AGE=90°,∴∠AEG=∠DGF,∴△AEG≌△DGF(AAS),∴AE=GD,AG=DF,∵AB=4,AD=5,E为AB的中点,∴DG=AE=2,AG=DF=AD﹣DG=3,∴CF=CD﹣DF=4﹣3=1,∴S=(2+1)×5=,四边形BCFE故选:D.19.【解答】这组数据中出现次数最多的是8,出现了3次,故众数为8,这组数据重新排列为5、5、6、7、8、8、8,故中位数为7.故选:A.20.【解答】∵y1=ax2+bx+c,y1+y2=2,∴y2=2﹣y1,∴函数y2的图象是函数y1的图象关于x轴对称,然后再向上平移2个单位长度得到的,∴函数y2的图象开口向下,故选项A错误;函数y2的图象与x轴有两个交点,故选项B错误;当x=1时,函数y2的值大于0,故选项C错误;当x>2时,y随x的增大而减小,故选项D正确;故选:D.21.【解答】如图1,当BB′=B′C时,△BCB'是等腰三角形,如图2,当BC=BB′时,△BCB'是等腰三角形,故若△BCB'是等腰三角形,则符合条件的点D的个数是2,故选:C.22.【解答】由折叠可得,AE=OE=DE,CG=OG=DG,∴E,G分别为AD,CD的中点,设CD=2a,AD=2b,则AB=2a=OB,DG=OG=CG=a,BG=3a,BC=AD=2b,∵∠C=90°,∴Rt△BCG中,CG2+BC2=BG2,即a2+(2b)2=(3a)2,∴b2=2a2,即b=a,∴,∴的值为,故选:B.23.【解答】∵抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0),其对称轴为直线x=﹣∴抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0)和(2,0),且a=b由图象知:a<0,c>0,b<0∴abc>0故结论①正确;∵抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0)∴9a﹣3b+c=0∵a=b∴c=﹣6a∴3a+c=﹣3a>0故结论②正确;∵当x<﹣时,y随x的增大而增大;当﹣<x<0时,y随x 的增大而减小∴结论③错误;∵cx2+bx+a=0,c>0∴x2+x+1=0∵抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0)和(2,0)∴ax2+bx+c=0的两根是﹣3和2∴=1,=﹣6∴x2+x+1=0即为:﹣6x2+x+1=0,解得x1=﹣,x2=;故结论④正确;∵当x=﹣时,y=>0∴<0故结论⑤正确;∵抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0)和(2,0),∴y=ax2+bx+c=a(x+3)(x﹣2)∵m,n(m<n)为方程a(x+3)(x﹣2)+3=0的两个根∴m,n(m<n)为方程a(x+3)(x﹣2)=﹣3的两个根∴m,n(m<n)为函数y=a(x+3)(x﹣2)与直线y=﹣3的两个交点的横坐标结合图象得:m<﹣3且n>2故结论⑥成立;故选:C.24.【解答】∵矩形OABC的顶点O(0,0),B(﹣2,2),∴D(﹣1,),过D作DE⊥x轴于点E,则OE=1,DE=,∴,tan∠DOE=,∴∠DOE=60°,∵60°×2017÷360°=336,∵,又∵旋转336周时,D点刚好回到起始位置,∴第2017秒时,矩形绕点O逆时针旋转336周,此时D点在x轴负半轴上,∴此时D点的坐标为(﹣2,0),故选:C.25.【解答】∵矩形ABCD中,AB=3,BC=6,点E、F是BC 的三等分点,∴CE=4,CD=3,EF=2,AD=6,∴Rt△CDE中,DE==5,∵AD∥EF,∴△ADM∽△FEM,∴=,即=,∴EM=DE=,故答案为:.26.【解答】设中间的那个人分得x个,由题意得:(x﹣6)+(x﹣3)+x+(x+3)+(x+6)=60,故答案为:(x﹣6)+(x﹣3)+x+(x+3)+(x+6)=60. 27.【解答】∵关于x的一元二次方程ax2+2ax+4﹣m=0有两个相等的实数根,∴△=b2﹣4ac=4a(a﹣4+m)=0,∵a≠0,∴a﹣4+m=0,∴a+m=4,∴a+m﹣3=4﹣3=1.故答案为:1.28.【解答】如图1,连接OC,Q取OB的中点E,连接DE. 则OE=EB=OB=3.在△OBC中,DE是△OBC的中位线,∴DE=OC=3,∴EO=ED=EB,即点D是在以E为圆心,2为半径的圆上,∴求AD的最大值就是求点A与⊙E上的点的距离的最大值,如图2,当D在线段AE延长线上时,AD取最大值,∵OA=OB=6,∠AOB=60°,OE=EB,∴AE=3,DE=3,∴AD取最大值为3+3.故答案为3.29.【解答】解不等式x+1≥0,得:x≥﹣1,解不等式2﹣x>0,得:x<2,则不等式组的解集为﹣1≤x<2,所以不等式组的整数解为﹣1、0、1,故答案为:﹣1、0、1.30.【解答】延长AC交y轴于E,如图,∵菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,∴AC∥OB,∴AE⊥y轴,∵∠BOC=60°,∴∠COE=30°,而顶点C的坐标为(m,3),∴OE=3,∴CE=OE=3,∴OC=2CE=6,∵四边形ABOC为菱形,∴OB=OC=6,∠BOA=30°,在Rt△BDO中,∵BD=OB=2,∴D点坐标为(﹣6,2),∵反比例函数y=的图象经过点D,∴k=﹣6×2=﹣12.故答案为﹣12.31.【解答】原式=2×﹣3﹣4=﹣3﹣4=﹣2﹣4,故答案为:﹣2﹣4.32.【解答】∵正方形ABCD的边长为4,∴AB=BC=4,∠ABC=90°,∴AC=4,∠EAC=∠CAB=45°,∴图中阴影部分的面积是:+[]=6π﹣8,故答案为:6π﹣8.33.【解答】连接OD,过D作DH⊥OA于H,∵∠AOB=90°,D是的中点,∴∠AOD=∠BOD=45°,∵OD=OA=2,∴DH=OC=,∵C是OA的中点,∴OC=1,∴阴影部分的面积=S+S△CDO﹣S△BCO=+×1﹣扇形DOB=+﹣1,故答案为:+﹣1.34.【解答】如图1中,当点B′在直线BC的下方∠CAB′=90°时,作AF⊥BC于F.∵AB=AC=,∴∠B=∠ACB=30°,∴∠BAC=120°,∵∠CAB′=90°,∴∠BAB′=30°,∴∠DAB=∠DAB′=15°,∴∠ADC=∠B+∠DAB=45°,∵AF⊥DF,∴AD=DF=AB•sin30°=,BF=AF=,∴BD=BF﹣DF=.如图2中,当点B′在直线BC的上方∠CAB′=90°时,可得∠ADB=45°,AF=DF=,BD=BF+FD=,综上所述,满足条件的BD的值时.故答案为或.35.【解答】当x=0时,y=x+2=2,∴OA1=OB1=2;当x=2时,y=x+2=4,∴A2B1=B1B2=4;当x=2+4=6时,y=x+2=8,∴A3B2=B2B3=8;当x=6+8=14时,y=x+2=16,∴A4B3=B3B4=16.∴A n+1B n=B n B n+1=2n+1,∴S n+1=×(2n+1)2=22n+1.当n=4时,S5=22×4+1=29;当n=2018时,S2019=22×2018+1=24037.故答案为:29,24037;36.【解答】设点A坐标(a,)∵点B在反比例函数y2=(x<0)的图象上,AB⊥y轴,∴∴x=ak∴点B(ak,)∵△AOB的面积为2∴(a﹣ak)×=2∴1﹣k=4∴k=﹣3故答案为:﹣337.【解答】如图所示;点E与点C′重合时.在Rt△ABC中,BC===8,由翻折的性质可知;AE=AC=6、DC=DE.则EB=10﹣6=4. 设DC=ED=x,则BD=8﹣x.在Rt△DBE中,DE2+BE2=DB2,即x2+42=(8﹣x)2.解得x=3,如图所示:∠EDB=90时,由翻折的性质可知:AC=AC′,∠C=∠C′=90°.∵∠C=∠C′=∠CDC′=90°,∴四边形ACDC′为矩形.又∵AC=AC′,∴四边形ACDC′为正方形.∴CD=AC=6.∴DB=BC﹣DC=8﹣6=2.∵DE∥AC,∴△BDE∽△BCA.=,即,解得DE=,点D在CB上运动,∠DBC′<90°,(假设∠DBC′≥90°,则AC′≥BD,这个显然不可能,故∠DBC′<90°),故∠DBC′不可能为直角.故答案为3或.38.【解答】(1)由题意可知:AC是自变量,CD,DF是自变量AC的函数.故答案为:AC,CD,FD.(2)函数图象如图所示:(3)观察图象可知CD>DF时,3.5cm<x<5cm. 故答案为:3.5cm<x<5cm.39.【解答】(1)证明:连接OM,∵NM与⊙O相切,∴OM⊥MN,∵OB=OM,∴∠OBM=∠OMB,∵NH⊥AB,∴∠2+∠MBO=90°,∵∠1+∠BMO=∠NMO=90°,∴∠1=∠2;(2)∵∠N=30°,MH⊥AB,∴∠1+∠2=60°,∴∠1=∠2=30°,∠MON=60°,∴BM=BN=5,∵OB=OM,∴△OBM为等边三角形,∴OB=OM=BM=5,即⊙O的半径为5;(3)由(2)知,∠N=30°,OM=5,∴MN=5,∴S△OMN=MN•OM==,S扇形MOB==,∴线段BN、MN及劣弧BM围成的阴影部分面积=S△OMN﹣S=﹣.扇形MOB40.【解答】•÷==,=1+,当=2时,原式=1+2=3.41.【解答】(1)发现解:①∵在△ABC中,AB=AC,∠BAC=60°,∴∠BAC=∠DAE=60°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴∠ACE=∠B=60°,∴∠DCE=∠ACE+∠ACB=60°+60°=120°;故答案为:120°,②∵△BAD≌△CAE,∴BD=CE,∴BC=BD+CD=EC+CD,∴CA=BC=CE+CD;故答案为:CA=CE+CD.(2)探究∠DCE=90°;CA=CD+CE.理由:∵△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,∴AB=AC,AD=AE,∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE.∴△BAD≌△CAE(SAS).∴BD=CE,∠B=∠ACE=45°.∴∠DCE=∠ACB+∠ACE=90°.在等腰直角三角形ABC中,CB=CA,∵CB=CD+DB=CD+CE,∴CA=CD+CE.(3)应用DA=5或.作DE⊥AB于E,连接AD,∵在Rt△ABC中,AB=6,AC=4,∠BAC=90°,∴BC===2,∵∠BDC=90°,DB=DC,∴DB=DC=,∠BCD=∠CBD=45°,∵∠BDC=∠BAC=90°,∴点B,C,A,D四点共圆,∴∠DAE=45°,∴△ADE是等腰直角三角形,∴AE=DE,∴BE=6﹣DE,∵BE2+DE2=BD2,∴DE2+(6﹣DE)2=26,∴DE=1,DE=5,∴AD=或AD=5.42.【解答】(1)∵y=﹣2x+c与x轴交于点A(3,0),与y 轴交于点B,∴﹣2×3+c=0,解得c=6,∴B(0,6),∵抛物线y=﹣x2+bx+c经过点A,B,∴,解得,∴抛物线解析式为y=﹣x2+x+6.(2)由点M(m,0),得点P(m,﹣2m+6),点N(m,﹣m2+m+6),∴NP=﹣m2+3m.在Rt△OAB中,AB==3,∵MP∥y轴,∴△APM∽△ABO,∴,即,∴AP=(3﹣m),∵NP=AP,∴﹣m2+3m=×(3﹣m),解得:m=或3(舍去3),∴m=.(3)点Q的坐标为(,)或(﹣2,0).①当点Q在AB上方时,。

中考数学模拟试题(含答案和解析)

中考数学模拟试题(含答案和解析)
A. B. C. D.
【答案】C
【解析】
【分析】设CF交AB于P.过C作CN⊥AB于N.设正方形JKLM边长为m.根据正方形ABGF与正方形JKLM的面积之比为5.得AF=AB= m.证明△AFL≌△FGM(AAS).可得AL=FM.设AL=FM=x.在Rt△AFL中.x2+(x+m)2=( m)2.可解得x=m.有AL=FM=m.FL=2m.从而可得AP= .FP= m.BP= .即知P为AB中点.CP=AP=BP= .由△CPN∽△FPA.得CN=m.PN= m.即得AN= m.而tan∠BAC= .又△AEC∽△BCH.根据相似三角形的性质列出方程.解方程即可求解.
【答案】B
【解析】
【分析】根据四边形的内角和等于360°计算可得∠BAC=50°.再根据圆周角定理得到∠BOC=2∠BAC.进而可以得到答案.
【详解】解:∵OD⊥AB.OE⊥AC.
∴∠ADO=90°.∠AEO=90°.
∵∠DOE=130°.
∴∠BAC=360°-90°-90°-130°=50°.
∴∠BOC=2∠BAC=100°.
A. B.
C. D.
【答案】A
【解析】
【分析】分别对每段时间的路程与时间的变化情况进行分析.画出路程与时间图像.再与选项对比判断即可.
【详解】解:对各段时间与路程的关系进行分析如下:
从家到凉亭.用时10分种.路程600米.s从0增加到600米.t从0到10分.对应图像为
在凉亭休息10分钟.t从10分到20分.s保持600米不变.对应图像为
故选:B.
【点睛】本题考查扇形统计图.解答本题的关键是明确题意.求出本次参加兴趣小组的总人数.
4.化简 的结果是( )
A. B. C. D.

中考数学模拟试题(含答案和解析)

中考数学模拟试题(含答案和解析)

中考数学模拟试题(含答案和解析)一、选择题本题有10小题.每小题4分.共40分.1.计算(﹣2)2的结果是()A.4B.﹣4C.1D.﹣12.直六棱柱如图所示.它的俯视图是()A.B.C.D.3.第七次全国人口普查结果显示.我国具有大学文化程度的人口超218000000人.数据218000000用科学记数法表示为()A.218×106B.21.8×107C.2.18×108D.0.218×109 4.如图是某天参观温州数学名人馆的学生人数统计图.若大学生有60人.则初中生有()A.45人B.75人C.120人D.300人5.解方程﹣2(2x+1)=x.以下去括号正确的是()A.﹣4x+1=﹣x B.﹣4x+2=﹣x C.﹣4x﹣1=xD.﹣4x﹣2=x6.如图.图形甲与图形乙是位似图形.O是位似中心.点A.B的对应点分别为点A′.则A′B′的长为()A.8B.9C.10D.157.某地居民生活用水收费标准:每月用水量不超过17立方米.每立方米a元;超过部分每立方米(a+1.2).则应缴水费为()A.20a元B.(20a+24)元C.(17a+3.6)元D.(20a+3.6)元8.图1是第七届国际数学教育大会(ICME)会徽.在其主体图案中选择两个相邻的直角三角形.∠AOB=α.则OC2的值为()A.+1B.sin2α+1C.+1D.cos2α+1 9.如图.点A.B在反比例函数y=(k>0.x>0).AC⊥x轴于点C.BD ⊥x轴于点D.连结AE.若OE=1.OC=.AC=AE.则k的值为()A.2B.C.D.210.由四个全等的直角三角形和一个小正方形组成的大正方形ABCD 如图所示.过点D作DF的垂线交小正方形对角线EF的延长线于点G.连结CG.延长BE交CG于点H.若AE=2BE.则()A.B.C.D.二、填空题(本题有6小题.每小题5分.共30分)11.(5分)分解因式:2m2﹣18=.12.(5分)一个不透明的袋中装有21个只有颜色不同的球.其中5个红球.7个白球.13.(5分)若扇形的圆心角为30°.半径为17.则扇形的弧长为.14.(5分)不等式组的解集为.15.(5分)如图.⊙O与△OAB的边AB相切.切点为B.将△OAB绕点B按顺时针方向旋转得到△O′A′B.边A′B交线段AO于点C.若∠A′=25°.则∠OCB=度.16.(5分)图1是邻边长为2和6的矩形.它由三个小正方形组成.将其剪拼成不重叠、无缝隙的大正方形(如图2);记图1中小正方形的中心为点A.B.C.图2中的对应点为点A′.B′.则当点A′.B′.圆的最小面积为.三、解答题(本题有8小题.共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(10分)(1)计算:4×(﹣3)+|﹣8|﹣.(2)化简:(a﹣5)2+a(2a+8).18.(8分)如图.BE是△ABC的角平分线.在AB上取点D(1)求证:DE∥BC;(2)若∠A=65°.∠AED=45°.求∠EBC的度数.19.(8分)某校将学生体质健康测试成绩分为A.B.C.D四个等级.依次记为4分.2分.1分.为了解学生整体体质健康状况(1)以下是两位同学关于抽样方案的对话:小红:“我想随机抽取七年级男、女生各60人的成绩.”小明:“我想随机抽取七、八、九年级男生各40人的成绩.”根据如图学校信息.请你简要评价小红、小明的抽样方案.如果你来抽取120名学生的测试成绩.请给出抽样方案.(2)现将随机抽取的测试成绩整理并绘制成如图统计图.请求出这组数据的平均数、中位数和众数.20.(8分)如图中4×4与6×6的方格都是由边长为1的小正方形组成.图1是绘成的七巧板图案.它由7个图形组成.请按以下要求选择其中一个并在图2、图3中画出相应的格点图形(顶点均在格点上).(1)选一个四边形画在图2中.使点P为它的一个顶点.并画出将它向右平移3个单位后所得的图形.(2)选一个合适的三角形.将它的各边长扩大到原来的倍.画在图3中.21.(10分)已知抛物线y=ax2﹣2ax﹣8(a≠0)经过点(﹣2.0).(1)求抛物线的函数表达式和顶点坐标.(2)直线l交抛物线于点A(﹣4.m).B(n.7).n为正数.若点P 在抛物线上且在直线l下方(不与点A.B重合).分别求出点P横坐标与纵坐标的取值范围.22.(10分)如图.在▱ABCD中.E.F是对角线BD上的两点(点E在点F左侧)(1)求证:四边形AECF是平行四边形;(2)当AB=5.tan∠ABE=.∠CBE=∠EAF时23.(12分)某公司生产的一种营养品信息如表.已知甲食材每千克的进价是乙食材的2倍.用80元购买的甲食材比用20元购买的乙食材多1千克.营养品信息表营养成份每千克含铁42毫克配料表原料每千克含铁甲食材50毫克乙食材10毫克规格每包食材含量每包单价A包装1千克45元B包装0.25千克12元(1)问甲、乙两种食材每千克进价分别是多少元?(2)该公司每日用18000元购进甲、乙两种食材并恰好全部用完.①问每日购进甲、乙两种食材各多少千克?②已知每日其他费用为2000元.且生产的营养品当日全部售出.若A的数量不低于B的数量.则A为多少包时24.(14分)如图.在平面直角坐标系中.⊙M经过原点O(2.0).B(0.8).连结AB.直线CM分别交⊙M于点D.E(点D在左侧).交x轴于点C(17.0)(1)求⊙M的半径和直线CM的函数表达式;(2)求点D.E的坐标;(3)点P在线段AC上.连结PE.当∠AEP与△OBD的一个内角相等时.求所有满足条件的OP的长.参考答案与试题解析一、选择题本题有10小题.每小题4分.共40分.1.计算(﹣2)2的结果是()A.4B.﹣4C.1D.﹣1【分析】(﹣2)²表示2个(﹣2)相乘,根据幂的意义计算即可.【解答】解:(﹣2)²=(﹣2)×(﹣6)=4,故选:A.2.直六棱柱如图所示.它的俯视图是()A.B.C.D.【分析】根据简单几何体的三视图进行判断即可.【解答】解:从上面看这个几何体.看到的图形是一个正六边形.故选:C.3.第七次全国人口普查结果显示.我国具有大学文化程度的人口超218000000人.数据218000000用科学记数法表示为()A.218×106B.21.8×107C.2.18×108D.0.218×109【分析】科学记数法的表示形式为a×10n的形式.其中1≤|a|<10.n 为整数.确定n的值时.要看把原数变成a时.小数点移动了多少位.n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时.n是正数;当原数的绝对值<1时.n是负数.【解答】解:将218000000用科学记数法表示为2.18×108.故选:C.4.如图是某天参观温州数学名人馆的学生人数统计图.若大学生有60人.则初中生有()A.45人B.75人C.120人D.300人【分析】利用大学生的人数以及所占的百分比可得总人数.用总人数乘以初中生所占的百分比即可求解.【解答】解:参观温州数学名人馆的学生人数共有60÷20%=300(人).初中生有300×40%=120(人).故选:C.5.解方程﹣2(2x+1)=x.以下去括号正确的是()A.﹣4x+1=﹣x B.﹣4x+2=﹣x C.﹣4x﹣1=xD.﹣4x﹣2=x【分析】可以根据乘法分配律先将2乘进去.再去括号.【解答】解:根据乘法分配律得:﹣(4x+2)=x.去括号得:﹣3x﹣2=x.故选:D.6.如图.图形甲与图形乙是位似图形.O是位似中心.点A.B的对应点分别为点A′.则A′B′的长为()A.8B.9C.10D.15【分析】根据位似图形的概念列出比例式.代入计算即可.【解答】解:∵图形甲与图形乙是位似图形.位似比为2:3.∴=.即=.解得.A′B′=9.故选:B.7.某地居民生活用水收费标准:每月用水量不超过17立方米.每立方米a元;超过部分每立方米(a+1.2).则应缴水费为()A.20a元B.(20a+24)元C.(17a+3.6)元D.(20a+3.6)元【分析】应缴水费=17立方米的水费+(20﹣17)立方米的水费。

中考数学模拟测试试卷(附含有答案)

中考数学模拟测试试卷(附含有答案)

中考数学模拟测试试卷(附含有答案)学校:___________班级:___________姓名:___________考号:___________本试题分试卷和答题卡两部分、第1卷满分为40分;第11卷满分为110分,本试题共8页,满分为150分,考试时间为120分钟答卷前,请考生务必将自己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的位置,考试结束后,将试卷、答题卡一并交回,本考试不允许使用计算器.第1卷(选择题共40分)一.选择题(本大题共10个小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.-2的相反数是()A.2B.﹣12C.-2 D.122.如图是《九章算术》中"堑堵"的立体图形,它的左视图为()3.2023年10月26日神舟十七号载人飞船发射取得圆满成功,我国载人航天工程发射任务实现30战30捷,航天员在中国空间站俯瞰地球的高度约为400000米,将400000用科学记数法表示应为()A.4x105B.4x106C.40x104D.0.4x1064.如图,直线a∥b、若∠1=130°,则∠2等于()A.60°B.50°C.40°D.30°(第4题图)5.下列校徽的图案是轴对称图形的是()6.下列运算正确的是()A.2a+b=2abB.2a2b-a2b=a2bC.(a3)2=a8D.2a8÷a4=2a27.济南市体质健康测试的技能测试要求学生从篮球、足球、排球、游泳四个项目中自选一项。

两名同学选择相同项目的概率是()A.116B.18C.16D.148.如图,在平面直角坐标系中,点4(0,2),B(1,0),∠ABC=90°,BC=2AB.若点C在函数y=kx(x>0)的图象上,则k的值为( )A.6B.8C.10D.12(第8题图) (第9题图)9.用尺规作一个角等于已知角,已知∠AOB、求作:∠DEF,使∠DEF=∠AOB.作法如下:(1)作射线EG:(2)①为圆心,任意长为半径画弧,交OA于点P、交OB于点Q:(3)以点E为圆心,以②为半径画强交EG于点D:(4)以点D为圆心,以③为半径画弧交前面的弧于点片:(5)过点F作④,∠DEF即为所求作的角.以上作图步骤中,序号代表的内容错误的是()A.①表示点OB.②表示OPC.③表示OQD.④表示射线EF10.在平面直角坐标系中,对点M(a,b)和点M'(a,b')给出如下定义:若b'={b-4(a≥0)|a|(a<0),则称点M'(a,b')是点M(a,b)的伴随点,如:点A(1,-2)的伴随点是A'(1,-6),B(-1,-2)的伴随点是B'(-1,2).若点Q(m,n)在二次函数y=x2-4x-2的图象上,则当﹣2≤m<5时,其伴随点Q'(m,n')的纵坐标n'的值不可能是( )A.-10B.-1C.1D.10第II卷(非选择题共110分)二.填空题(本大题共6个小题,每小题4分,共24分,把答案填在答题卡的横线上)11.因式分解:m2-4= .12.如图,平行四边形ABCD的对角线AC、BD相交于点O,EF、GH过点O,且点E、H在边AB上,点G、F在边CD上,向平行四边形ABCD内部投掷飞镖,飞镖恰好落在阴影区域的概率为。

中考数学模拟考试试卷带答案

中考数学模拟考试试卷带答案

中考数学模拟考试试卷带答案学校:___________班级:___________姓名:___________考号:___________一、单选题(本大题共8小题,每小题5分,共40分)1.有7张扑克牌如图所示,将其打乱顺序后,背面朝上放在桌面上.若从中随机抽取一张,则抽到的花色可能性最大的是( )A .B .C .D .2.如图,将三角形纸片剪掉一角得四边形,设△ABC 与四边形BCDE 的外角和度数分别为α和β,则正确的是( ) A .0αβ-= B .0αβ-< C .0αβ-> D .无法比较α与β的大小3.下列说法中,正确的是( )A .调查某班45名学生的身高情况宜采用全面调查B .“太阳东升西落”是不可能事件C .为了直观地介绍空气各成分的百分比,最适合使用的统计图是条形统计图D .任意投掷一枚质地均匀的硬币26次,出现正面朝上的次数一定是13次4.如图,在O 中,半径,OA OB 互相垂直,点C 在劣弧AB 上.若19ABC ∠=︒,则BAC ∠=( ) A .23︒B .24︒C .25︒D .26︒5.不等式组43264x x x +⎧-≤⎪⎨⎪-<-⎩的解集在数轴上表示为( )A .B .C .D .6.如图是一种轨道示意图,其中ADC 和ABC 均为半圆,点M ,A ,C ,N 依次在同一直线上,且AM CN =.现有两个机器人(看成点)分别从M ,N 两点同时出发,沿着轨道以大小相同的速度匀速移动,其路线分别为M A D C N →→→→和N C B A M →→→→.若移动时间为x ,两个机器人之间距离为y ,则y 与x 关系的图象第1题图 第2题图 第4题图大致是( )A .B .C .D .7.我国古代数学名著《九章算术》中记载:“今有共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?”意思是现有几个人共买一件物品,每人出8钱.多出3钱;每人出7钱,差4钱.问人数,物价各是多少?若设共有x 人,物价是y 钱,则下列方程正确的是( )A .()()8374x x -=+B .8374x x +=-C .3487y y -+=D .3487y y +-= 8.如图,抛物线2y ax bx c =++的对称轴为直线1x =,与x 轴的一个交点为(1,0)-,其部分函数图象如图所示,下列说法不正确的是( )A .0abc >B .20a b -=C .方程20ax bx c ++=的两个根为3和1-D .当1x <时,y 随x 的增大而减小二、填空题(本大题共4小题,每小题5分,共20分)9.因式分解:229ax ay -= .10.如图,ABC 和DEF 是以点O 为位似中心的位似图形.若:2:3OA AD =,则ABC 与DEF 的周长比是 .11.如图,菱形ABCD 中,分别以点A ,C 为圆心,AD ,CB 长为半径画弧,分别交对角线AC 于点E ,F .若2AB =,60BAD ∠=︒则图中阴影部分的面积为 .12.如图,在边长为2的正方形ABCD 中,E ,F 分别是,BC CD 上的动点,M ,N 分别是EF AF ,的中点,则MN 的最大值为 .第6题图第8题图三、解答题(本大题共3小题,共40分)13.(8分)计算:﹣12024﹣|﹣sin45°|+(3.14﹣π)0+()﹣1﹣.14.(15分)如图,已知()1,0A -,()2,3B -两点在二次函数213y ax bx =+-与一次函数2y x m =-+的图象上.(1)求该一次函数和二次函数的表达式;(2)请直接写出当12y y >时,自变量x 的取值范围;(3)若二次函数的图象交y 轴于点C ,连接,AC BC ,求ABC 的面积.15.(17分)在古代,智慧的劳动人民已经会使用“石磨”,其原理为在磨盘的边缘连接一个固定长度的“连杆”,推动“连杆”带动磨盘转动,将粮食磨碎,物理学上称这种动力传输工具为“曲柄连杆机构”.小明受此启发设计了一个“双连杆机构”,设计图如图1,两个固定长度的“连杆”AP ,BP 的连接点P 在O 上,当点P 在O 上转动时,带动点A ,B 分别在射线OM ,ON 上滑动OM ON ⊥.当AP 与O 相切时,点B 恰好落在O 上,如图2.第10题图 第11题图 第12题图请仅就图2的情形解答下列问题.(1)求证:2PAO PBO ∠=∠;(2)若O 的半径为5,203AP = 求BP 的长. 参考答案一、单选题(本大题共8小题,每小题5分,共40分)1.有7张扑克牌如图所示,将其打乱顺序后,背面朝上放在桌面上.若从中随机抽取一张,则抽到的花色可能性最大的是( B )A .B .C .D .2.如图,将三角形纸片剪掉一角得四边形,设△ABC 与四边形BCDE 的外角和度数分别为α和β,则正确的是( A ) A .0αβ-= B .0αβ-< C .0αβ-> D .无法比较α与β的大小3.下列说法中,正确的是( A )A .调查某班45名学生的身高情况宜采用全面调查B .“太阳东升西落”是不可能事件C .为了直观地介绍空气各成分的百分比,最适合使用的统计图是条形统计图D .任意投掷一枚质地均匀的硬币26次,出现正面朝上的次数一定是13次4.如图,在O 中,半径,OA OB 互相垂直,点C 在劣弧AB 上.若19ABC ∠=︒,则BAC ∠=( D ) A .23︒B .24︒C .25︒D .26︒第1题图 第2题图 第4题图5.不等式组43264x x x +⎧-≤⎪⎨⎪-<-⎩的解集在数轴上表示为( A )A .B .C .D .6.如图是一种轨道示意图,其中ADC 和ABC 均为半圆,点M ,A ,C ,N 依次在同一直线上,且AM CN =.现有两个机器人(看成点)分别从M ,N 两点同时出发,沿着轨道以大小相同的速度匀速移动,其路线分别为M A D C N →→→→和N C B A M →→→→.若移动时间为x ,两个机器人之间距离为y ,则y 与x 关系的图象大致是( D )A .B .C .D .7.我国古代数学名著《九章算术》中记载:“今有共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?”意思是现有几个人共买一件物品,每人出8钱.多出3钱;每人出7钱,差4钱.问人数,物价各是多少?若设共有x 人,物价是y 钱,则下列方程正确的是( D )A .()()8374x x -=+B .8374x x +=-C .3487y y -+=D .3487y y +-= 8.如图,抛物线2y ax bx c =++的对称轴为直线1x =,与x 轴的一个交点为(1,0)-,其部分函数图象如图所示,下列说法不正确的是( B )A .0abc >B .20a b -=C .方程20ax bx c ++=的两个根为3和1-D .当1x <时,y 随x 的增大而减小二、填空题(本大题共4小题,每小题5分,共20分)第6题图第8题图9.因式分解:229ax ay -= ()()33a x y x y +- .10.如图,ABC 和DEF 是以点O 为位似中心的位似图形.若:2:3OA AD =,则ABC 与DEF 的周长比是 2:5 . 11.如图,菱形ABCD 中,分别以点A ,C 为圆心,AD ,CB 长为半径画弧,分别交对角线AC 于点E ,F .若2AB =,60BAD ∠=︒,则图中阴影部分的面积为 233π . 12.如图,在边长为2的正方形ABCD 中,E ,F 分别是,BC CD 上的动点,M ,N 分别是EF AF ,的中点,则MN 的最大值为 2 .三、解答题(本大题共3小题,共40分)13.(8分)计算:﹣12024﹣|﹣sin45°|+(3.14﹣π)0+()﹣1﹣. =﹣1﹣√22 +1+ √22﹣3 ...........................................................................................................................................6分=﹣3. ..................................................................................................................................................................8分14.(15分)如图,已知()1,0A -,()2,3B -两点在二次函数213y ax bx =+-与一次函数2y x m =-+的图象上.(1)求该一次函数和二次函数的表达式;(2)请直接写出当12y y >时,自变量x 的取值范围;(3)若二次函数的图象交y 轴于点C ,连接,AC BC ,求ABC 的面积.(1)解:∵()1,0A -在一次函数2y x m =-+的图象上∵01m =+,解得:1m =-.............................................................................................................................................1分 ∵一次函数的表达式为21y x =--;................................................................................................................................2分 第10题图 第11题图 第12题图∵()1,0A -,()2,3B -两点在二次函数213y ax bx =+-的图象上∵304233a b a b --=⎧⎨+-=-⎩..........................................................................................................................................................4分 解得12a b =⎧⎨=-⎩.....................................................................................................................................................................6分 ∵二次函数的表达式为:2123y x x =--;....................................................................................................................7分(2)解:()1,0A - ()2,3B -由图象可得当12y y >时,自变量x 的取值范围为1x <-或2x >;............................................................................11分(3)解:∵二次函数2123y x x =--交y 轴于点C∵()0,3C -,......................................................................................................................................................................12分 又∵()2,3B -∵BC y ⊥轴2BC =...................................................................................................................................................13分∵ABC 的面积为1123322B BC y ⋅=⨯⨯=..................................................................................................................15分 15.(17分)在古代,智慧的劳动人民已经会使用“石磨”,其原理为在磨盘的边缘连接一个固定长度的“连杆”,推动“连杆”带动磨盘转动,将粮食磨碎,物理学上称这种动力传输工具为“曲柄连杆机构”.小明受此启发设计了一个“双连杆机构”,设计图如图1,两个固定长度的“连杆”AP ,BP 的连接点P 在O 上,当点P 在O 上转动时,带动点A ,B 分别在射线OM ,ON 上滑动OM ON ⊥.当AP 与O 相切时,点B 恰好落在O 上,如图2.请仅就图2的情形解答下列问题.(1)求证:2PAO PBO ∠=∠;(2)若O 的半径为5,203AP =求BP 的长 解:(1)证明:连接OP ,取y 轴正半轴与O 交点于点Q ,如下图:......................................................................1分 ,OP ON OPN PBO =∴∠=∠........................................................................................................................................2分 POQ ∠为PON △的外角2POQ OPN PBO PBO ∴∠=∠+∠=∠............................................................................................................................3分 90POQ POA POA PAO ∠+∠=∠+∠=︒......................................................................................................................4分 PAO POQ ∴∠=∠............................................................................................................................................................5分 2PAO PBO ∴∠=∠..........................................................................................................................................................6分 (2)过点Q 作PO 的垂线,交PO 与点C ,如下图:...................................................................................................7分由题意:在Rt APO 中53tan 2043OP PAO AP ∠===..........................................................................................................................................9分由(1)知:,QOC OAP APO OCQ ∠=∠∠=∠Rt APO Rt OCQ ∽......................................................................................................................................................11分 3tan ,54CQ COQ OQ CO ∴∠===....................................................................................................................................12分 4,3CO CQ ∴==............................................................................................................................................................13分 541PC PO CO ∴=-=-=............................................................................................................................................14分 221910PQ PC CQ ∴=++分 ∵NQ 是直径;∴∠BPQ=90。.....................................................................................................................................................................16分 在Rt QPB △中,由勾股定理得:2221010310BP BQ PQ --分 即310BP =。

中考数学模拟考试卷(附含答案解析)

中考数学模拟考试卷(附含答案解析)

中考数学模拟考试卷(附含答案解析)(满分:120分;考试时间:120分钟)第Ⅰ卷(选择题)一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来每小题选对得3分,选错、不选或选出的答案超过一个均记零分。

1.﹣|﹣2021|等于()A.﹣2021B.2021C.﹣D.2.下列计算正确的是()A.2a+3b=5ab B.(﹣a2)3=a6C.a3•a2=a5D.(a+b)2=a2+b23.如图,直线a∥b,点A在直线b上,∠BAC=108°,∠BAC的两边与直线a分别交于B、C两点.若∠1=42°,则∠2的大小为()A.30°B.38°C.52°D.72°4.如图,在△ABC中,∠A=60°,∠B=45°.若边AC的垂直平分线DE交边AB于点D,交边AC 于点E,连接CD,则∠DCB=()A.15°B.20°C.25°D.30°5.一个不透明的盒子中装有2个红球,1个白球和1个黄球,它们除颜色外都相同,若从中任意摸出一个球,则下列叙述正确的是()A.摸到红球是必然事件B.摸到黄球是不可能事件C.摸到白球与摸到黄球的可能性相等D.摸到红球比摸到黄球的可能性小6.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b>0;②abc<0;③b2﹣4ac>0;④a+b+c<0;⑤4a﹣2b+c<0,其中正确的个数是()A.2B.3C.4D.57.如图,在平面直角坐标系中,点P坐标为(﹣2,3),以点O为圆心,以OP的长为半径画弧,交x 轴的负半轴于点A,则点A的横坐标介于()A.﹣4和﹣3之间B.3和4之间C.﹣5和﹣4之间D.4和5之间8.植树节这天有20名同学共种了52棵树苗,其中男生每人种树3棵,女生每人种树2棵.设男生有x 人,女生有y人,根据题意,下列方程组正确的是()A.B.C.D.9.如图,在边长为4的正方形ABCD中剪去一个边长为2的小正方形CEFG,动点P从点A出发,沿多边形的边以A→D→E→F→G→B的路线匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的图象大致为()A.B.C.D.10.如图,▱ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB=BC=1,则下列结论:①∠CAD=30°;②BD=;③S平行四边形ABCD=AB •AC;④OE=AD;⑤S△APO=中,正确的个数是()A.2B.3C.4D.5第Ⅱ卷(非选择题共90分)二、填空题:本大题共8小题,其中11-14题,每小题3分,15-18题,每小题4分,共28分,只要求填写最后结果。

中考数学模拟试题(含答案和解析)

中考数学模拟试题(含答案和解析)

中考数学模拟试题(含答案和解析)一、选择题(本题有10小题.每小题4分.共40分.每小题只有一个选项是正确的.不选、多选、错选.均不给分)1.(4分)数1.0.﹣.﹣2中最大的是()A.1B.0C.﹣D.﹣2 2.(4分)原子钟是以原子的规则振动为基础的各种守时装置的统称.其中氢脉泽钟的精度达到了1700000年误差不超过1秒.数据1700000用科学记数法表示为()A.17×105B.1.7×106C.0.17×107D.1.7×107 3.(4分)某物体如图所示.它的主视图是()A.B.C.D.4.(4分)一个不透明的布袋里装有7个只有颜色不同的球.其中4个白球.2个红球.1个黄球.从布袋里任意摸出1个球.是红球的概率为()A.B.C.D.5.(4分)如图.在△ABC中.∠A=40°.AB=AC.点D在AC边上.以CB.CD为边作▱BCDE.则∠E的度数为()A.40°B.50°C.60°D.70°6.(4分)山茶花是温州市的市花、品种多样.“金心大红”是其中的一种.某兴趣小组对30株“金心大红”的花径进行测量、记录.统计如下表:株数(株)79122花径(cm) 6.5 6.6 6.7 6.8这批“金心大红”花径的众数为()A.6.5cm B.6.6cm C.6.7cm D.6.8cm 7.(4分)如图.菱形OABC的顶点A.B.C在⊙O上.过点B作⊙O的切线交OA的延长线于点D.若⊙O的半径为1.则BD的长为()A.1B.2C.D.8.(4分)如图.在离铁塔150米的A处.用测倾仪测得塔顶的仰角为α.测倾仪高AD为1.5米.则铁塔的高BC为()A.(1.5+150tanα)米B.(1.5+)米C.(1.5+150sinα)米D.(1.5+)米9.(4分)已知(﹣3.y1).(﹣2.y2).(1.y3)是抛物线y=﹣3x2﹣12x+m 上的点.则()A.y3<y2<y1B.y3<y1<y2C.y2<y3<y1D.y1<y3<y2 10.(4分)如图.在Rt△ABC中.∠ACB=90°.以其三边为边向外作正方形.过点C作CR⊥FG于点R.再过点C作PQ⊥CR分别交边DE.BH于点P.Q.若QH=2PE.PQ=15.则CR的长为()A.14B.15C.8D.6二、填空题(本题有6小题.每小题5分.共30分)11.(5分)分解因式:m2﹣25=.12.(5分)不等式组的解集为.13.(5分)若扇形的圆心角为45°.半径为 3.则该扇形的弧长为.14.(5分)某养猪场对200头生猪的质量进行统计.得到频数直方图(每一组含前一个边界值.不含后一个边界值)如图所示.其中质量在77.5kg及以上的生猪有头.15.(5分)点P.Q.R在反比例函数y=(常数k>0.x>0)图象上的位置如图所示.分别过这三个点作x轴、y轴的平行线.图中所构成的阴影部分面积从左到右依次为S1.S2.S3.若OE=ED=DC.S1+S3=27.则S2的值为.16.(5分)如图.在河对岸有一矩形场地ABCD.为了估测场地大小.在笔直的河岸l上依次取点E.F.N.使AE⊥l.BF⊥l.点N.A.B在同一直线上.在F点观测A点后.沿FN方向走到M点.观测C点发现∠1=∠2.测得EF=15米.FM=2米.MN=8米.∠ANE=45°.则场地的边AB为米.BC为米.三、解答题(本题有8小题.共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(10分)(1)计算:﹣|﹣2|+()0﹣(﹣1).(2)化简:(x﹣1)2﹣x(x+7).18.(8分)如图.在△ABC和△DCE中.AC=DE.∠B=∠DCE=90°.点A.C.D依次在同一直线上.且AB∥DE.(1)求证:△ABC≌△DCE.(2)连结AE.当BC=5.AC=12时.求AE的长.19.(8分)A.B两家酒店规模相当.去年下半年的月盈利折线统计图如图所示.(1)要评价这两家酒店7~12月的月盈利的平均水平.你选择什么统计量?求出这个统计量.(2)已知A.B两家酒店7~12月的月盈利的方差分别为1.073(平方万元).0.54(平方万元).根据所给的方差和你在(1)中所求的统计量.结合折线统计图.你认为去年下半年哪家酒店经营状况较好?请简述理由.20.(8分)如图.在6×4的方格纸ABCD中.请按要求画格点线段(端点在格点上).且线段的端点均不与点A.B.C.D重合.(1)在图1中画格点线段EF.GH各一条.使点E.F.G.H分别落在边AB.BC.CD.DA上.且EF=GH.EF不平行GH.(2)在图2中画格点线段MN.PQ各一条.使点M.N.P.Q分别落在边AB.BC.CD.DA上.且PQ=MN.21.(10分)已知抛物线y=ax2+bx+1经过点(1.﹣2).(﹣2.13).(1)求a.b的值.(2)若(5.y1).(m.y2)是抛物线上不同的两点.且y2=12﹣y1.求m 的值.22.(10分)系统找不到该试题23.(12分)某经销商3月份用18000元购进一批T恤衫售完后.4月份用39000元购进一批相同的T恤衫.数量是3月份的2倍.但每件进价涨了10元.(1)4月份进了这批T恤衫多少件?(2)4月份.经销商将这批T恤衫平均分给甲、乙两家分店销售.每件标价180元.甲店按标价卖出a件以后.剩余的按标价八折全部售出;乙店同样按标价卖出a件.然后将b件按标价九折售出.再将剩余的按标价七折全部售出.结果利润与甲店相同.①用含a的代数式表示b.②已知乙店按标价售出的数量不超过九折售出的数量.请你求出乙店利润的最大值.24.(14分)如图.在四边形ABCD中.∠A=∠C=90°.DE.BF分别平分∠ADC.∠ABC.并交线段AB.CD于点E.F(点E.B不重合).在线段BF上取点M.N(点M在BN之间).使BM=2FN.当点P从点D匀速运动到点E时.点Q恰好从点M匀速运动到点N.记QN =x.PD=y.已知y=x+12.当Q为BF中点时.y=.(1)判断DE与BF的位置关系.并说明理由.(2)求DE.BF的长.(3)若AD=6.①当DP=DF时.通过计算比较BE与BQ的大小关系.②连结PQ.当PQ所在直线经过四边形ABCD的一个顶点时.求所有满足条件的x的值.参考答案与试题解析一、选择题(本题有10小题.每小题4分.共40分.每小题只有一个选项是正确的.不选、多选、错选.均不给分)1.(4分)数1.0.﹣.﹣2中最大的是()A.1B.0C.﹣D.﹣2【分析】根据有理数大小比较的方法即可得出答案.【解答】解:﹣2<﹣<0<1.所以最大的是1.故选:A.【点评】本题考查了有理数大小比较的方法.(1)在数轴上表示的两点.右边的点表示的数比左边的点表示的数大.(2)正数大于0.负数小于0.正数大于负数.(3)两个正数中绝对值大的数大.(4)两个负数中绝对值大的反而小.2.(4分)原子钟是以原子的规则振动为基础的各种守时装置的统称.其中氢脉泽钟的精度达到了1700000年误差不超过1秒.数据1700000用科学记数法表示为()A.17×105B.1.7×106C.0.17×107D.1.7×107【分析】科学记数法的表示形式为a×10n的形式.其中1≤|a|<10.n 为整数.确定n的值时.要看把原数变成a时.小数点移动了多少位.n 的绝对值与小数点移动的位数相同.【解答】解:1700000=1.7×106.故选:B.【点评】此题考查科学记数法的表示方法.表示时关键要正确确定a 的值以及n的值.3.(4分)某物体如图所示.它的主视图是()A.B.C.D.【分析】根据主视图的意义和画法进行判断即可.【解答】解:根据主视图就是从正面看物体所得到的图形可知:选项A所表示的图形符合题意.故选:A.【点评】考查简单几何体的三视图的画法.主视图就是从正面看物体所得到的图形.4.(4分)一个不透明的布袋里装有7个只有颜色不同的球.其中4个白球.2个红球.1个黄球.从布袋里任意摸出1个球.是红球的概率为()A.B.C.D.【分析】根据概率公式求解.【解答】解:从布袋里任意摸出1个球.是红球的概率=.故选:C.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.5.(4分)如图.在△ABC中.∠A=40°.AB=AC.点D在AC边上.以CB.CD为边作▱BCDE.则∠E的度数为()A.40°B.50°C.60°D.70°【分析】根据等腰三角形的性质可求∠C.再根据平行四边形的性质可求∠E.【解答】解:∵在△ABC中.∠A=40°.AB=AC.∴∠C=(180°﹣40°)÷2=70°.∵四边形BCDE是平行四边形.∴∠E=70°.故选:D.【点评】考查了平行四边形的性质.等腰三角形的性质.关键是求出∠C的度数.6.(4分)山茶花是温州市的市花、品种多样.“金心大红”是其中的一种.某兴趣小组对30株“金心大红”的花径进行测量、记录.统计如下表:株数(株)79122花径(cm) 6.5 6.6 6.7 6.8这批“金心大红”花径的众数为()A.6.5cm B.6.6cm C.6.7cm D.6.8cm【分析】根据表格中的数据.可以得到这组数据的中位数.本题得以解决.【解答】解:由表格中的数据可得.这批“金心大红”花径的众数为6.7.故选:C.【点评】本题考查众数.解答本题的关键是明确众数的含义.会求一组数据的众数.7.(4分)如图.菱形OABC的顶点A.B.C在⊙O上.过点B作⊙O的切线交OA的延长线于点D.若⊙O的半径为1.则BD的长为()A.1B.2C.D.【分析】连接OB.根据菱形的性质得到OA=AB.求得∠AOB=60°.根据切线的性质得到∠DBO=90°.解直角三角形即可得到结论.【解答】解:连接OB.∵四边形OABC是菱形.∴OA=AB.∵OA=OB.∴OA=AB=OB.∴∠AOB=60°.∵BD是⊙O的切线.∴∠DBO=90°.∵OB=1.∴BD=OB=.故选:D.【点评】本题考查了切线的性质.菱形的性质.等边三角形的判定和性质.解直角三角形.熟练正确切线的性质定理是解题的关键.8.(4分)如图.在离铁塔150米的A处.用测倾仪测得塔顶的仰角为α.测倾仪高AD为1.5米.则铁塔的高BC为()A.(1.5+150tanα)米B.(1.5+)米C.(1.5+150sinα)米D.(1.5+)米【分析】过点A作AE⊥BC.E为垂足.再由锐角三角函数的定义求出BE的长.由BC=CE+BE即可得出结论.【解答】解:过点A作AE⊥BC.E为垂足.如图所示:则四边形ADCE为矩形.AE=150.∴CE=AD=1.5.在△ABE中.∵tanα==.∴BE=150tanα.∴BC=CE+BE=(1.5+150tanα)(m).故选:A.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题.根据题意作出辅助线.构造出直角三角形是解答此题的关键.9.(4分)已知(﹣3.y1).(﹣2.y2).(1.y3)是抛物线y=﹣3x2﹣12x+m 上的点.则()A.y3<y2<y1B.y3<y1<y2C.y2<y3<y1D.y1<y3<y2【分析】求出抛物线的对称轴为直线x=﹣2.然后根据二次函数的增减性和对称性解答即可.【解答】解:抛物线的对称轴为直线x=﹣=﹣2.∵a=﹣3<0.∴x=﹣2时.函数值最大.又∵﹣3到﹣2的距离比1到﹣2的距离小.∴y3<y1<y2.故选:B.【点评】本题考查了二次函数图象上点的坐标特征.主要利用了二次函数的增减性和对称性.求出对称轴是解题的关键.10.(4分)如图.在Rt△ABC中.∠ACB=90°.以其三边为边向外作正方形.过点C作CR⊥FG于点R.再过点C作PQ⊥CR分别交边DE.BH于点P.Q.若QH=2PE.PQ=15.则CR的长为()A.14B.15C.8D.6【分析】如图.连接EC.CH.设AB交CR于J.证明△ECP∽△HCQ.推出===.由PQ=15.可得PC=5.CQ=10.由EC:CH=1:2.推出AC:BC=1:2.设AC=a.BC=2a.证明四边形ABQC是平行四边形.推出AB=CQ=10.根据AC2+BC2=AB2.构建方程求出a 即可解决问题.【解答】解:如图.连接EC.CH.设AB交CR于J.∵四边形ACDE.四边形BCIH都是正方形.∴∠ACE=∠BCH=45°.∵∠ACB=90°.∠BCI=90°.∴∠ACE+∠ACB+∠BCH=180°.∠ACB+∠BCI=90°∴B.C.D共线.A.C.I共线.E、C、H共线.∵DE∥AI∥BH.∴∠CEP=∠CHQ.∵∠ECP=∠QCH.∴△ECP∽△HCQ.∴===.∵PQ=15.∴PC=5.CQ=10.∵EC:CH=1:2.∴AC:BC=1:2.设AC=a.BC=2a.∵PQ⊥CR.CR⊥AB.∴CQ∥AB.∵AC∥BQ.CQ∥AB.∴四边形ABQC是平行四边形.∴AB=CQ=10.∵AC2+BC2=AB2.∴5a2=100.∴a=2(负根已经舍弃).∴AC=2.BC=4.∵•AC•BC=•AB•CJ.∴CJ==4.∵JR=AF=AB=10.∴CR=CJ+JR=14.故选:A.【点评】本题考查相似三角形的判定和性质.平行四边形的判定和性质.解直角三角形等知识.解题的关键是学会添加常用辅助线.构造相似三角形解决问题.学会利用参数构建方程解决问题.属于中考选择题中的压轴题.二、填空题(本题有6小题.每小题5分.共30分)11.(5分)分解因式:m2﹣25=(m+5)(m﹣5).【分析】直接利用平方差进行分解即可.【解答】解:原式=(m﹣5)(m+5).故答案为:(m﹣5)(m+5).【点评】此题主要考查了运用公式法分解因式.关键是掌握平方差公式:a2﹣b2=(a+b)(a﹣b).12.(5分)不等式组的解集为﹣2≤x<3.【分析】先求出不等式组中每一个不等式的解集.再求出它们的公共部分即可求解.【解答】解:.解①得x<3;解②得x≥﹣2.故不等式组的解集为﹣2≤x<3.故答案为:﹣2≤x<3.【点评】考查了解一元一次不等式组.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.13.(5分)若扇形的圆心角为45°.半径为 3.则该扇形的弧长为π.【分析】根据弧长公式l=.代入相应数值进行计算即可.【解答】解:根据弧长公式:l==π.故答案为:π.【点评】此题主要考查了弧长的计算.关键是掌握弧长公式.14.(5分)某养猪场对200头生猪的质量进行统计.得到频数直方图(每一组含前一个边界值.不含后一个边界值)如图所示.其中质量在77.5kg及以上的生猪有140头.【分析】根据题意和直方图中的数据可以求得质量在77.5kg及以上的生猪数.本题得以解决.【解答】解:由直方图可得.质量在77.5kg及以上的生猪:90+30+20=140(头).故答案为:140.【点评】本题考查频数分布直方图.解答本题的关键是明确题意.利用数形结合的思想解答.15.(5分)点P.Q.R在反比例函数y=(常数k>0.x>0)图象上的位置如图所示.分别过这三个点作x轴、y轴的平行线.图中所构成的阴影部分面积从左到右依次为S1.S2.S3.若OE=ED=DC.S1+S3=27.则S2的值为.【分析】设CD=DE=OE=a.则P(.3a).Q(.2a).R(.a).推出CP=.DQ=.ER=.推出OG=AG.OF=2FG.OF=GA.推出S1=S3=2S2.根据S1+S3=27.求出S1.S3.S2即可.【解答】解:∵CD=DE=OE.∴可以假设CD=DE=OE=a.则P(.3a).Q(.2a).R(.a).∴CP=.DQ=.ER=.∴OG=AG.OF=2FG.OF=GA.∴S1=S3=2S2.∵S1+S3=27.∴S3=.S1=.S2=.故答案为.【点评】本题考查反比例函数系数k的几何意义.矩形的性质等知识.解题的关键是学会利用参数解决问题.属于中考常考题型.16.(5分)如图.在河对岸有一矩形场地ABCD.为了估测场地大小.在笔直的河岸l上依次取点E.F.N.使AE⊥l.BF⊥l.点N.A.B在同一直线上.在F点观测A点后.沿FN方向走到M点.观测C点发现∠1=∠2.测得EF=15米.FM=2米.MN=8米.∠ANE=45°.则场地的边AB为15米.BC为20米.【分析】根据已知条件得到△ANE和△BNF是等腰直角三角形.求得AE=EN=15+2+8=25(米).BF=FN=2+8=10(米).于是得到AB=AN﹣BN=15(米);过C作CH⊥l于H.过B作PQ∥l 交AE于P.交CH于Q.根据矩形的性质得到PE=BF=QH=10.PB =EF=15.BQ=FH.根据相似三角形的性质即可得到结论.【解答】解:∵AE⊥l.BF⊥l.∵∠ANE=45°.∴△ANE和△BNF是等腰直角三角形.∴AE=EN.BF=FN.∴EF=15米.FM=2米.MN=8米.∴AE=EN=15+2+8=25(米).BF=FN=2+8=10(米).∴AN=25.BN=10.∴AB=AN﹣BN=15(米);过C作CH⊥l于H.过B作PQ∥l交AE于P.交CH于Q.∴AE∥CH.∴四边形PEHQ和四边形PEFB是矩形.∴PE=BF=QH=10.PB=EF=15.BQ=FH.∵∠1=∠2.∠AEF=∠CHM=90°.∴△AEF∽△CHM.∴===.∴设MH=3x.CH=5x.∴CQ=5x﹣10.BQ=FH=3x+2.∵∠APB=∠ABC=∠CQB=90°.∴∠ABP+∠P AB=∠ABP+∠CBQ=90°.∴∠P AB=∠CBQ.∴△APB∽△BQC.∴.∴=.∴x=6.∴BQ=CQ=20.∴BC=20.故答案为:15.20.【点评】本题考查了相似三角形的应用.矩形的性质.等腰直角三角形的判定和性质.正确的识别图形是解题的关键.三、解答题(本题有8小题.共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(10分)(1)计算:﹣|﹣2|+()0﹣(﹣1).(2)化简:(x﹣1)2﹣x(x+7).【分析】(1)直接利用零指数幂的性质以及二次根式的性质、绝对值的性质分别化简得出答案;(2)直接利用完全平方公式以及单项式乘以多项式运算法则计算得出答案.【解答】解:(1)原式=2﹣2+1+1=2;(2)(x﹣1)2﹣x(x+7)=x2﹣2x+1﹣x2﹣7x=﹣9x+1.【点评】此题主要考查了实数运算以及完全平方公式以及单项式乘以多项式运算.正确掌握相关运算法则是解题关键.18.(8分)如图.在△ABC和△DCE中.AC=DE.∠B=∠DCE=90°.点A.C.D依次在同一直线上.且AB∥DE.(1)求证:△ABC≌△DCE.(2)连结AE.当BC=5.AC=12时.求AE的长.【分析】(1)由“AAS”可证△ABC≌△DCE;(2)由全等三角形的性质可得CE=BC=5.由勾股定理可求解.【解答】证明:(1)∵AB∥DE.∴∠BAC=∠D.又∵∠B=∠DCE=90°.AC=DE.∴△ABC≌△DCE(AAS);(2)∵△ABC≌△DCE.∴CE=BC=5.∵∠ACE=90°.∴AE===13.【点评】本题考查了全等三角形的判定和性质.勾股定理.熟练掌握全等三角形的判定方法是本题的关键.19.(8分)A.B两家酒店规模相当.去年下半年的月盈利折线统计图如图所示.(1)要评价这两家酒店7~12月的月盈利的平均水平.你选择什么统计量?求出这个统计量.(2)已知A.B两家酒店7~12月的月盈利的方差分别为1.073(平方万元).0.54(平方万元).根据所给的方差和你在(1)中所求的统计量.结合折线统计图.你认为去年下半年哪家酒店经营状况较好?请简述理由.【分析】(1)由要评价两家酒店月盈利的平均水平.即可得选择两家酒店月盈利的平均值.然后利用求平均数的方法求解即可求得答案;(2)平均数.盈利的方差反映酒店的经营业绩.A酒店的经营状况较好.【解答】解:(1)选择两家酒店月盈利的平均值;==2.5.==2.3;(2)平均数.方差反映酒店的经营业绩.A酒店的经营状况较好.理由:A酒店盈利的平均数为2.5.B酒店盈利的平均数为2.3.A酒店盈利的方差为1.073.B酒店盈利的方差为0.54.无论是盈利的平均数还是盈利的方差.都是A酒店比较大.且盈利折线A是持续上升的.故A酒店的经营状况较好.【点评】此题考查了折线统计图的知识.此题难度适中.注意掌握折线统计图表达的实际意义是解此题的关键.20.(8分)如图.在6×4的方格纸ABCD中.请按要求画格点线段(端点在格点上).且线段的端点均不与点A.B.C.D重合.(1)在图1中画格点线段EF.GH各一条.使点E.F.G.H分别落在边AB.BC.CD.DA上.且EF=GH.EF不平行GH.(2)在图2中画格点线段MN.PQ各一条.使点M.N.P.Q分别落在边AB.BC.CD.DA上.且PQ=MN.【分析】(1)根据点E.F.G.H分别落在边AB.BC.CD.DA上.且EF =GH.EF不平行GH.画出线段即可;(2)根据使点M.N.P.Q分别落在边AB.BC.CD.DA上.且PQ=MN.画出线段即可.【解答】解:(1)如图1.线段EF和线段GH即为所求;(2)如图2.线段MN和线段PQ即为所求.【点评】本题考查了作图﹣应用与设计作图.熟练掌握勾股定理是解题的关键.21.(10分)已知抛物线y=ax2+bx+1经过点(1.﹣2).(﹣2.13).(1)求a.b的值.(2)若(5.y1).(m.y2)是抛物线上不同的两点.且y2=12﹣y1.求m 的值.【分析】(1)把点(1.﹣2).(﹣2.13)代入y=ax2+bx+1解方程组即可得到结论;(2)把x=5代入y=x2﹣4x+1得到y1=6.于是得到y1=y2.即可得到结论.【解答】解:(1)把点(1.﹣2).(﹣2.13)代入y=ax2+bx+1得..解得:;(2)由(1)得函数解析式为y=x2﹣4x+1.把x=5代入y=x2﹣4x+1得.y1=6.∴y2=12﹣y1=6.∵y1=y2.且对称轴为x=2.∴m=4﹣5=﹣1.【点评】本题考查了二次函数图象上点的坐标特征.解方程组.正确的理解题意是解题的关键.22.(10分)系统找不到该试题23.(12分)某经销商3月份用18000元购进一批T恤衫售完后.4月份用39000元购进一批相同的T恤衫.数量是3月份的2倍.但每件进价涨了10元.(1)4月份进了这批T恤衫多少件?(2)4月份.经销商将这批T恤衫平均分给甲、乙两家分店销售.每件标价180元.甲店按标价卖出a件以后.剩余的按标价八折全部售出;乙店同样按标价卖出a件.然后将b件按标价九折售出.再将剩余的按标价七折全部售出.结果利润与甲店相同.①用含a的代数式表示b.②已知乙店按标价售出的数量不超过九折售出的数量.请你求出乙店利润的最大值.【分析】(1)根据4月份用39000元购进一批相同的T恤衫.数量是3月份的2倍.可以得到相应的分式方程.从而可以求得4月份进了这批T恤衫多少件;(2)①根据甲乙两店的利润相同.可以得到关于a、b的方程.然后化简.即可用含a的代数式表示b;②根据题意.可以得到利润与a的函数关系式.再根据乙店按标价售出的数量不超过九折售出的数量.可以得到a的取值范围.从而可以求得乙店利润的最大值.【解答】解:(1)设3月份购进x件T恤衫..解得.x=150.经检验.x=150是原分式方程的解.则2x=300.答:4月份进了这批T恤衫300件;(2)①每件T恤衫的进价为:39000÷300=130(元).(180﹣130)a+(180×0.8﹣130)(150﹣a)=(180﹣130)a+(180×0.9﹣130)b+(180×0.7﹣130)(150﹣a﹣b)化简.得b=;②设乙店的利润为w元.w=(180﹣130)a+(180×0.9﹣130)b+(180×0.7﹣130)(150﹣a﹣b)=54a+36b﹣600=54a+36×﹣600=36a+2100.∵乙店按标价售出的数量不超过九折售出的数量.∴a≤b.即a≤.解得.a≤50.∴当a=50时.w取得最大值.此时w=3900.答:乙店利润的最大值是3900元.【点评】本题考查一次函数的应用、分式方程的应用.解答本题的关键是明确题意.利用一次函数的性质和分式方程的知识解答.注意分式方程要检验.24.(14分)如图.在四边形ABCD中.∠A=∠C=90°.DE.BF分别平分∠ADC.∠ABC.并交线段AB.CD于点E.F(点E.B不重合).在线段BF上取点M.N(点M在BN之间).使BM=2FN.当点P从点D匀速运动到点E时.点Q恰好从点M匀速运动到点N.记QN =x.PD=y.已知y=x+12.当Q为BF中点时.y=.(1)判断DE与BF的位置关系.并说明理由.(2)求DE.BF的长.(3)若AD=6.①当DP=DF时.通过计算比较BE与BQ的大小关系.②连结PQ.当PQ所在直线经过四边形ABCD的一个顶点时.求所有满足条件的x的值.【分析】(1)推出∠AED=∠ABF.即可得出DE∥BF;(2)求出DE=12.MN=10.把y=代入y=﹣x+12.解得x=6.即NQ=6.得出QM=4.由FQ=QB.BM=2FN.得出FN=2.BM=4.即可得出结果;(3)连接EM并延长交BC于点H.易证四边形DFME是平行四边形.得出DF=EM.求出∠DEA=∠FBE=∠FBC=30°.∠ADE=∠CDE=∠FME=60°.∠MEB=∠FBE=30°.得出∠EHB=90°.DF=EM=BM=4.MH=2.EH=6.由勾股定理得HB=2.BE =4.当DP=DF时.求出BQ=.即可得出BQ>BE;②(Ⅰ)当PQ经过点D时.y=0.则x=10;(Ⅱ)当PQ经过点C时.由FQ∥DP.得出△CFQ∽△CDP.则=.即可求出x=;(Ⅲ)当PQ经过点A时.由PE∥BQ.得出△APE∽△AQB.则=.求出AE=6.AB=10.即可得出x=.由图可知.PQ不可能过点B.【解答】解:(1)DE与BF的位置关系为:DE∥BF.理由如下:如图1所示:∵∠A=∠C=90°.∴∠ADC+∠ABC=360°﹣(∠A+∠C)=180°.∵DE、BF分别平分∠ADC、∠ABC.∴∠ADE=∠ADC.∠ABF=∠ABC.∴∠ADE+∠ABF=×180°=90°.∵∠ADE+∠AED=90°.∴∠AED=∠ABF.∴DE∥BF;(2)令x=0.得y=12.∴DE=12.令y=0.得x=10.∴MN=10.把y=代入y=﹣x+12.解得:x=6.即NQ=6.∴QM=10﹣6=4.∵Q是BF中点.∴FQ=QB.∵BM=2FN.∴FN+6=4+2FN.解得:FN=2.∴BM=4.∴BF=FN+MN+MB=16;(3)①连接EM并延长交BC于点H.如图2所示:∵FM=2+10=12=DE.DE∥BF.∴四边形DFME是平行四边形.∴DF=EM.EH∥CD.∴∠MHB=∠C=90°.∵AD=6.DE=12.∠A=90°.∴∠DEA=30°.∴∠DEA=∠FBE=∠FBC=30°.∴∠ADE=60°.∴∠ADE=∠CDE=∠FME=60°.∴∠DFM=∠DEM=120°.∴∠MEB=180°﹣120°﹣30°=30°.∴∠MEB=∠FBE=30°.∴∠EHB=180°﹣30°﹣30°﹣30°=90°.DF=EM=BM=4.∴MH=BM=2.∴EH=4+2=6.由勾股定理得:HB===2.∴BE===4.当DP=DF时.﹣x+12=4.解得:x=.∴BQ=14﹣x=14﹣=.∵>4.∴BQ>BE;②(Ⅰ)当PQ经过点D时.如图3所示:y=0.则x=10;(Ⅱ)当PQ经过点C时.如图4所示:∵BF=16.∠FCB=90°.∠CBF=30°.∴CF=BF=8.∴CD=8+4=12.∵FQ∥DP.∴△CFQ∽△CDP.∴=.∴=.解得:x=;(Ⅲ)当PQ经过点A时.如图5所示:∵PE∥BQ.∴△APE∽△AQB.∴=.由勾股定理得:AE===6.∴AB=6+4=10.∴=.解得:x=.由图可知.PQ不可能过点B;综上所述.当x=10或x=或x=时.PQ所在的直线经过四边形ABCD的一个顶点.【点评】本题是四边形综合题.主要考查了平行四边形的判定与性质、勾股定理、角平分线的性质、平行线的判定与性质、相似三角形的判定与性质、含30°角的直角三角形的性质等知识;本题综合性强.难度较大.熟练掌握平行四边形的判定与性质是解题的关键.。

中考数学模拟试题(共4套含答案)

中考数学模拟试题(共4套含答案)

中考数学模拟测试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)2020的倒数是()A.﹣2020B.2020C.D.2.(3分)下列计算中正确的是()A.b3•b2=b6B.x3+x3=x6C.a2÷a2=0D.(﹣a3)2=a6 3.(3分)如图,已知BC是圆柱底面的直径,AB是圆柱的高,在圆柱的侧面上,过点A,C嵌有一圈路径最短的金属丝,现将圆柱侧面沿AB剪开,所得的圆柱侧面展开图是()A.B.C.D.4.(3分)如图,是小垣同学某两天进行体育锻炼的时间统计图,第一天锻炼了1小时,第二天锻炼了40分钟,根据统计图,小垣这两天体育锻炼时间最长的项目是()A.跳绳B.引体向上C.跳远D.仰卧起坐5.(3分)如图,在△ABC中,∠C=90°,AB的垂直平分线交AB于D,交BC于E,连接AE,若CE=5,AC=12,且△ACE的周长为30,则BE的长是()A.5B.10C.12D.136.(3分)解是x=2的一元一次方程是()A.x2+2=6B.+10=C.+1=x D.2x+4=07.(3分)如图,在平行四边形ABCD中,∠A=2∠B,⊙C的半径为3,则图中阴影部分的面积是()A.πB.2πC.3πD.6π8.(3分)不等式4(x﹣2)≥2(3x﹣5)的正整数解有()A.3个B.2个C.1个D.0个9.(3分)在正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF.下列结论:(1)△ABG≌△AFG;(2)∠EAG=45°;(3)AG∥CF;(4)S△EFC=2,其中正确的有()个.A.1B.2C.3D.410.(3分)已知抛物线y=(x+a)(x﹣a﹣1)(a为常数,a≠0).有下列结论(1)抛物线的对称轴为x=;(2)(x+a)(x﹣a﹣1)=1有两个不相等的实数根;(3)抛物线上有两点P(x0,m),Q(1,n),若m<n,则0<x0<1.其中,正确结论的个数为()A.0B.1C.2D.3二.填空题(共6小题,满分18分,每小题3分)11.(3分)家鸡的市场价格为15元/kg,买akg家鸡需要元.12.(3分)如图,在正方形ABCD中,画一个最大的正六边形EFGHlJ,则∠BGF的度数是.13.(3分)计算的结果是.14.(3分)某班9名学生的体重指数分别是20.2,20.4,17.3,18.9,20.1,19.4,24.2,28.3,22.4,这组数据的中位数是,体重状况属于正常(体重指数在18.5﹣23.9之间为正常)的频数为.15.(3分)定义:给定关于x的函数y,对于函数图象上的任意两点(x1,y1),(x2,y2),当x1<x2时,都有y1>y2,则称该函数为减函数.根据以上定义,下列函数为减函数的有.①y=﹣2x+1;②y=3x;③y=(x>0);④y=5x2(x<0)(只需填写序号)16.(3分)如图,在矩形ABCD中,AB=2cm,BC=3cm,现有一根长为2cm的棒EF紧贴着矩形的边(即两个端点始终落在矩形的边上),按逆时针方向滑动一周,则木棒EF 的中点P在运动过程中所经过的路径长度为cm.三.解答题(共9小题,满分72分)17.(6分)计算:(1)+|﹣2|;(2)+﹣;(3)(+1)2(3﹣2);(4)﹣(﹣)0+(﹣)﹣1.18.(6分)如图,BE,AD是△ABC的高且相交于点P,点Q是BE延长线上的一点.(1)试说明:∠1=∠2;(2)若AP=BC,BQ=AC,线段CP与CQ会相等吗?请说明理由.19.(6分)一个不透明的口袋里装着分别标有数字﹣3,﹣1,0,2的四个小球,除数字不同外,小球没有任何区别,每次实验时把小球搅匀.(1)从中任取一球,求所抽取的数字恰好为负数的概率;(2)从中任取一球,将球上的数字记为x,然后把小球放回;再任取一球,将球上的数字记为y,试用画树状图(或列表法)表示出点(x,y)所有可能的结果,并求点(x,y)在直线y=﹣x﹣1上的概率.20.(8分)已知关于x的方程3x2﹣mx+2=0(1)若方程有两相等实数根,求m的取值;(2)若方程其中一根为,求其另一根及m的值.21.(8分)如图,一次函数y=ax+图象与x轴,y轴分别相交于A、B两点,与反比例函数y=(k≠0)的图象相交于点E、F,过F作y轴的垂线,垂足为点C,已知点A(﹣3,0),点F(3,t).(1)求一次函数和反比例函数的表达式;(2)求点E的坐标并求△EOF的面积;(3)结合该图象写出满足不等式﹣ax≤的解集.22.(8分)如图,在⊙O中,点C为的中点,∠ACB=120°,OC的延长线与AD交于点D,且∠D=∠B.(1)求证:AD与⊙O相切;(2)若CE=4,求弦AB的长.23.(10分)中考体育加试中跳绳为易得分项目,某文具店看准商机购进甲、乙两种跳绳.已知甲、乙两种跳绳进价之和为36元;甲种跳绳每根获利4元,乙种跳绳每根获利5元;第一批店主购买甲种跳绳30根、乙种跳绳40根一共花费1280元.(1)甲、乙两种跳绳的单价各是多少元?(2)若该文具店预备第二批购进甲、乙两种跳绳共60根,在费用不超过1120元的情况下,如何进货才能保证利润W最大?(3)由于质量上乘,前两批跳绳很快售器,店主第三批购进甲、乙两种跳绳若干,当甲、乙保持原有利润时,甲、乙两种跳绳每天别可以卖出120根和105根,后来店主决定和甲、乙两种跳绳同时提高相同的售价,已知甲、乙两种跳绳每提高1元均少卖出5根,为了每天获取更多利润,请问店主将两种跳绳同时提高多少元时,才能使日销售利润达到最大?24.(10分)(1)如图1,△ABC为等边三角形,点D、E分别为边AB、AC上的一点,将图形沿线段DE所在的直线翻折,使点A落在BC边上的点F处.求证:BF•CF=BD•CE.(2)如图2,按图1的翻折方式,若等边△ABC的边长为4,当DF:EF=3:2时,求sin∠DFB的值;(3)如图3,在Rt△ABC中,∠A=90°,∠ABC=30°,AC=2,点D是AB边上的中点,在BC的下方作射线BE,使得∠CBE=30°,点P是射线BE上一个动点,当∠DPC=60°时,求BP的长;25.(10分)如图,抛物线y=ax2+bx(a>0)过点E(8,0),矩形ABCD的边AB在线段OE上(点A在点B的左侧),点C、D在抛物线上,∠BAD的平分线AM交BC于点M,点N是CD的中点,已知OA=2,且OA:AD=1:3.(1)求抛物线的解析式;(2)F、G分别为x轴,y轴上的动点,顺次连接M、N、G、F构成四边形MNGF,求四边形MNGF周长的最小值;(3)在x轴下方且在抛物线上是否存在点P,使△ODP中OD边上的高为?若存在,求出点P的坐标;若不存在,请说明理由;(4)矩形ABCD不动,将抛物线向右平移,当平移后的抛物线与矩形的边有两个交点K、L,且直线KL平分矩形的面积时,求抛物线平移的距离.试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)2020的倒数是()A.﹣2020B.2020C.D.解:2020的倒数是,故选:C.2.(3分)下列计算中正确的是()A.b3•b2=b6B.x3+x3=x6C.a2÷a2=0D.(﹣a3)2=a6解:b3•b2=b5,故选项A不合题意;x3+x3=2x3,故选项B不合题意;a2÷a2=1,故选项C不合题意;(﹣a3)2=a6,正确,故选项D符合题意.故选:D.3.(3分)如图,已知BC是圆柱底面的直径,AB是圆柱的高,在圆柱的侧面上,过点A,C嵌有一圈路径最短的金属丝,现将圆柱侧面沿AB剪开,所得的圆柱侧面展开图是()A.B.C.D.解:因圆柱的展开面为长方形,AC展开应该是两线段,且有公共点C.故选:A.4.(3分)如图,是小垣同学某两天进行体育锻炼的时间统计图,第一天锻炼了1小时,第二天锻炼了40分钟,根据统计图,小垣这两天体育锻炼时间最长的项目是()A.跳绳B.引体向上C.跳远D.仰卧起坐解:小垣这两天跳远的时间为60×20%+40×20%=20(分钟),跳绳的时间为60×30%+40×20%=26(分钟),引体向上的时间为60×50%=30(分钟),仰卧起坐时间为40×60%=24(分钟),故选:B.5.(3分)如图,在△ABC中,∠C=90°,AB的垂直平分线交AB于D,交BC于E,连接AE,若CE=5,AC=12,且△ACE的周长为30,则BE的长是()A.5B.10C.12D.13解:∵CE=5,AC=12,且△ACE的周长为30,∴AE=13.∵AB的垂直平分线交AB于D,交BC于E,∴BE=AE=13,故选:D.6.(3分)解是x=2的一元一次方程是()A.x2+2=6B.+10=C.+1=x D.2x+4=0解:因为x2+2=6不是一元一次方程,故A不合题意;当x=2时,+10=10≠,+1=1+1=2,2x+4=8≠0.故x=2不是选项B、D的解,是选项C的解.故选:C.7.(3分)如图,在平行四边形ABCD中,∠A=2∠B,⊙C的半径为3,则图中阴影部分的面积是()A.πB.2πC.3πD.6π解:∵在▱ABCD中,∠A=2∠B,∠A+∠B=180°,∴∠A=120°,∵∠C=∠A=120°,⊙C的半径为3,∴图中阴影部分的面积是:=3π,故选:C.8.(3分)不等式4(x﹣2)≥2(3x﹣5)的正整数解有()A.3个B.2个C.1个D.0个解:去括号,得:4x﹣8≥6x﹣10,移项,得:4x﹣6x≥﹣10+8,合并同类项,得:﹣2x≥﹣2,系数化为1,得:x≤1,则不等式的正整数解为1,故选:C.9.(3分)在正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF.下列结论:(1)△ABG≌△AFG;(2)∠EAG=45°;(3)AG∥CF;(4)S△EFC=2,其中正确的有()个.A.1B.2C.3D.4解:∵四边形ABCD是正方形,∴AB=AD=DC=6,∠B=D=90°,∵CD=3DE,∴DE=2,∵△ADE沿AE折叠得到△AFE,∴DE=EF=2,AD=AF,∠D=∠AFE=∠AFG=90°,∴AF=AB,∵在Rt△ABG和Rt△AFG中,AG=AG,AB=AF,∴Rt△ABG≌Rt△AFG(HL),∴①正确;∵△ADE沿AE折叠得到△AFE,∴△DAE≌△F AE.∴∠DAE=∠F AE.∵△ABG≌△AFG,∴∠BAG=∠F AG.∵∠BAD=90°,∴∠EAG=∠EAF+∠GAF=×90°=45°.∴②正确.∵CG=GF,∴∠CFG=∠FCG,∵∠BGF=∠CFG+∠FCG,又∵∠BGF=∠AGB+∠AGF,∴∠CFG+∠FCG=∠AGB+∠AGF,∵∠AGB=∠AGF,∠CFG=∠FCG,∴∠AGB=∠FCG,∴AG∥CF,∴③正确;∵Rt△ABG≌Rt△AFG,∴BG=FG,∠AGB=∠AGF,设BG=x,则CG=BC﹣BG=6﹣x,GE=GF+EF=BG+DE=x+2,在Rt△ECG中,由勾股定理得:CG2+CE2=EG2,∵CG=6﹣x,CE=4,EG=x+2∴(6﹣x)2+42=(x+2)2解得:x=3,∴BG=GF=CG=3,∵△CEF和△CEG中,分别把EF和GE看作底边,则这两个三角形的高相同.∴S△EFC:S△ECG=EF:EG=2:5,∴S△EFC=××3×4=∴④错误;正确的结论有3个,故选:C.10.(3分)已知抛物线y=(x+a)(x﹣a﹣1)(a为常数,a≠0).有下列结论(1)抛物线的对称轴为x=;(2)(x+a)(x﹣a﹣1)=1有两个不相等的实数根;(3)抛物线上有两点P(x0,m),Q(1,n),若m<n,则0<x0<1.其中,正确结论的个数为()A.0B.1C.2D.3解:抛物线y=(x+a)(x﹣a﹣1)=x2﹣x﹣a2﹣a,(1)抛物线的对称轴为x=﹣=,所以此答案正确;(2)令y=1,即x2﹣x﹣a2﹣a=1,整理得一元二次方程x2﹣x﹣a2﹣a﹣1=0,∵△=1﹣4(﹣a2﹣a﹣1)=4a2+4a+5=2(a+1)2+3>0,∴(x+a)(x﹣a﹣1)=1有两个不相等的实数根,所以此答案正确;(3)∵1>0,∴抛物线开口向上,当x<时,y随x的增大而减小,当x>时,y随x的增大而增大,∴若m<n,则0<x0<1,所以此答案正确.(1)(2)(3)均正确,故选:D.二.填空题(共6小题,满分18分,每小题3分)11.(3分)家鸡的市场价格为15元/kg,买akg家鸡需要15a元.解:由题意得:买akg家鸡需要15a元,故答案为:15a.12.(3分)如图,在正方形ABCD中,画一个最大的正六边形EFGHlJ,则∠BGF的度数是15°.解:连接AC,BD交于O,连接OG.则点O是正方形和正六边形的中心,F,I在BD上.∴∠OBG=45°,∠OFG=60°,∠OGF=60°.∴∠BGO=75°.∴∠BGF=15°.13.(3分)计算的结果是﹣1.解:原式=﹣===﹣1,故答案为:﹣1.14.(3分)某班9名学生的体重指数分别是20.2,20.4,17.3,18.9,20.1,19.4,24.2,28.3,22.4,这组数据的中位数是20.2,体重状况属于正常(体重指数在18.5﹣23.9之间为正常)的频数为6.解:将这组数据从小到大的顺序排列:17.3,18.9,19.4,20.1,20.2,20.4,22.4,24.2,28.3,处于中间位置的那个数是20.2,由中位数的定义可知,这组数据的中位数是20.2,体重状况属于正常(体重指数在18.5﹣23.9之间为正常)的频数为6.故答案为:20.2,6.15.(3分)定义:给定关于x的函数y,对于函数图象上的任意两点(x1,y1),(x2,y2),当x1<x2时,都有y1>y2,则称该函数为减函数.根据以上定义,下列函数为减函数的有①③④.①y=﹣2x+1;②y=3x;③y=(x>0);④y=5x2(x<0)(只需填写序号)解:①y=﹣2x+1,k=﹣2<0,y随x的增大而减小,故①正确;②y=3x,k=3>0,y随x的增大而增大,故②错误;③y=(x>0)位于第一象限,y随x的增大而减小,故③正确;④y=5x2,a=5>0开口向上,x<0时,y随x的增大而减小,故④正确;故答案为:①③④.16.(3分)如图,在矩形ABCD中,AB=2cm,BC=3cm,现有一根长为2cm的棒EF紧贴着矩形的边(即两个端点始终落在矩形的边上),按逆时针方向滑动一周,则木棒EF 的中点P在运动过程中所经过的路径长度为(2π+2)cm.解:连接BP,如图所示:∵P是EF的中点,∴BP=EF=×2=1,如图所示,点P的运动轨迹是4段弧长+2段线段的长度,即4×+2×1=2π+2.故答案为:2π+2.三.解答题(共9小题,满分72分)17.(6分)计算:(1)+|﹣2|;(2)+﹣;(3)(+1)2(3﹣2);(4)﹣(﹣)0+(﹣)﹣1.解:(1)原式=+2﹣=1+2﹣=3﹣;(2)原式=4+3﹣=;(3)原式=(3+2)(3﹣2)=9﹣8=1;(4)原式=2﹣﹣2=﹣2.18.(6分)如图,BE,AD是△ABC的高且相交于点P,点Q是BE延长线上的一点.(1)试说明:∠1=∠2;(2)若AP=BC,BQ=AC,线段CP与CQ会相等吗?请说明理由.证明:(1)∵BE,AD是△ABC的高∴∠1+∠BCA=90°,∠2+BCA=90°,∴∠1=∠2,(2)∵AP=BC,∠1=∠2,BQ=AC,∴△APC≌△BCQ(SAS)∴CP=CQ.19.(6分)一个不透明的口袋里装着分别标有数字﹣3,﹣1,0,2的四个小球,除数字不同外,小球没有任何区别,每次实验时把小球搅匀.(1)从中任取一球,求所抽取的数字恰好为负数的概率;(2)从中任取一球,将球上的数字记为x,然后把小球放回;再任取一球,将球上的数字记为y,试用画树状图(或列表法)表示出点(x,y)所有可能的结果,并求点(x,y)在直线y=﹣x﹣1上的概率.解:(1)∵共有4个数字,分别是﹣3,﹣1,0,2,其中是负数的有﹣3,﹣1,∴所抽取的数字恰好为负数的概率是=;(2)根据题意列表如下:﹣3﹣102﹣3(﹣3,﹣3)(﹣1,﹣3)(0,﹣3)(2,﹣3)﹣1(﹣3,﹣1)(﹣1,﹣1)(0,﹣1)(2,﹣1)0(﹣3,0)(﹣1,0)(0,0)(2,0)2(﹣3,2)(﹣1,2)(0,2)(2,2)所有等可能的情况有16种,其中点(x,y)在直线y=﹣x﹣1上的情况有4种,则点(x,y)在直线y=﹣x﹣1上的概率是=.20.(8分)已知关于x的方程3x2﹣mx+2=0(1)若方程有两相等实数根,求m的取值;(2)若方程其中一根为,求其另一根及m的值.解:(1)依题意得:△=b2﹣4ac=(﹣m)2﹣4×3×2=m2﹣24=0,解得:m=±2.故m的取值为±2.(2)设方程的另一根为x2,由根与系数的关系得:,解得:.故另一根为1,m的值为5.21.(8分)如图,一次函数y=ax+图象与x轴,y轴分别相交于A、B两点,与反比例函数y=(k≠0)的图象相交于点E、F,过F作y轴的垂线,垂足为点C,已知点A(﹣3,0),点F(3,t).(1)求一次函数和反比例函数的表达式;(2)求点E的坐标并求△EOF的面积;(3)结合该图象写出满足不等式﹣ax≤的解集.解:(1)把A(﹣3,0)代入一次函数解析式得:0=﹣3a+,解得:a=,即一次函数解析式为y=x+,把F(3,t)代入一次函数解析式得:t=3,则反比例解析式为y=;(2)联立得:,解得:或,∴点E(﹣6,﹣),则S△EOF=S△AOE+S△AOB+S△BOF=×3×+××3+××3=;(3)根据图象得:不等式﹣ax≤的解集为﹣6≤x<0或x≥3.22.(8分)如图,在⊙O中,点C为的中点,∠ACB=120°,OC的延长线与AD交于点D,且∠D=∠B.(1)求证:AD与⊙O相切;(2)若CE=4,求弦AB的长.(1)证明:如图,连接OA,∵=,∴CA=CB,又∵∠ACB=120°,∴∠B=30°,∴∠O=2∠B=60°,∵∠D=∠B=30°,∴∠OAD=180°﹣(∠O+∠D)=90°,∴AD与⊙O相切;(2)∵∠O=60°,OA=OC,∴△OAC是等边三角形,∴∠ACO=60°,∵∠ACB=120°,∴∠ACB=2∠ACO,AC=BC,∴OC⊥AB,AB=2BE,∵CE=4,∠B=30°,∴BC=2CE=8,∴BE===4,∴AB=2BE=8,∴弦AB的长为8.23.(10分)中考体育加试中跳绳为易得分项目,某文具店看准商机购进甲、乙两种跳绳.已知甲、乙两种跳绳进价之和为36元;甲种跳绳每根获利4元,乙种跳绳每根获利5元;第一批店主购买甲种跳绳30根、乙种跳绳40根一共花费1280元.(1)甲、乙两种跳绳的单价各是多少元?(2)若该文具店预备第二批购进甲、乙两种跳绳共60根,在费用不超过1120元的情况下,如何进货才能保证利润W最大?(3)由于质量上乘,前两批跳绳很快售器,店主第三批购进甲、乙两种跳绳若干,当甲、乙保持原有利润时,甲、乙两种跳绳每天别可以卖出120根和105根,后来店主决定和甲、乙两种跳绳同时提高相同的售价,已知甲、乙两种跳绳每提高1元均少卖出5根,为了每天获取更多利润,请问店主将两种跳绳同时提高多少元时,才能使日销售利润达到最大?解:(1)设甲、乙两种跳绳的单价各是x元和y元,根据题意得,,解得:,答:甲、乙两种跳绳的单价各是16元和20元;(2)设第二批购进甲种跳绳a根,乙种跳绳(60﹣a)根,由题意得,W=4a+5(60﹣a)=﹣a+300,∵﹣1<0,∴W随a的增大而减小,∵费用不超过1120元,∴16a+20(60﹣a)≤1120,解得:a≥20,∴当购进甲种跳绳20根,购进乙种跳绳40根,利润W最大;(3)设店主将两种跳绳同时提高m元时,才能使日销售利润y达到最大,由题意得,y=(4+m)(120﹣5m)+(5+m)(105﹣5m)=﹣10m2+180m+1005=﹣10(m ﹣9)2+1815,∴当店主将两种跳绳同时提高9元时,才能使日销售利润达到最大.24.(10分)(1)如图1,△ABC为等边三角形,点D、E分别为边AB、AC上的一点,将图形沿线段DE所在的直线翻折,使点A落在BC边上的点F处.求证:BF•CF=BD•CE.(2)如图2,按图1的翻折方式,若等边△ABC的边长为4,当DF:EF=3:2时,求sin∠DFB的值;(3)如图3,在Rt△ABC中,∠A=90°,∠ABC=30°,AC=2,点D是AB边上的中点,在BC的下方作射线BE,使得∠CBE=30°,点P是射线BE上一个动点,当∠DPC=60°时,求BP的长;(1)证明:∵△ABC是等边三角形,∠A=∠B=∠C=60°,∴∠BDF+∠BFD=180°﹣∠B=120°,由折叠知,∠DFE=∠A=60°,∴∠CFE+∠BFD=120°,∴∠BDF=∠CFE,∵∠B=∠C=60°,∴△BDF∽△CFE,∴,∴BF•CF=BD•CE;(2)解:如图2,设BD=3x(x>0),则AD=AB﹣BD=4﹣3x,由折叠知,DF=AD=4﹣3x,过点D作DH⊥BC于H,∴∠DHB=∠DHF=90°,∵∠B=60°,∴BH=x,DH=x,由(1)知,△BDF∽△CFE,∴=,∵DF:EF=3:2,∴=,∴CF=2x,∴BF=BC﹣CF=4﹣2x,∴HF=BF﹣BH=4﹣2x﹣x=4﹣x,在Rt△DHF中,DH2+HF2=DF2,∴(x)2+(4﹣x)2=(4﹣3x)2,∴x=0(舍)或x=,∴DH=,DF=4﹣3×=,∴sin∠DFB===;(3)如图3,在Rt△ABC中,AC=2,∠ABC=30°,∴BC=2AC=4,AB=AC=6,∵点D是AB的中点,∴BD=AB=3,过点C作BC的垂线交BP的延长线于Q,∴∠BCQ=90°,在Rt△BCQ中,∠CBE=30°,∴CQ==4,∴BQ=2CQ=8,∴∠BCQ=90°,∵∠CBE=30°,∴∠Q=90°﹣∠CBE=60°,∴∠DBP=∠ABC+∠CBE=60°=∠Q,∴∠CPQ+∠PCQ=120°,∵∠DPC=60°,∴∠BPD+∠CPQ=120°,∴∠BPD=∠PCQ,∴△BDP∽△QPC,∴=,∴,∴BP=2或BP=6.25.(10分)如图,抛物线y=ax2+bx(a>0)过点E(8,0),矩形ABCD的边AB在线段OE上(点A在点B的左侧),点C、D在抛物线上,∠BAD的平分线AM交BC于点M,点N是CD的中点,已知OA=2,且OA:AD=1:3.(1)求抛物线的解析式;(2)F、G分别为x轴,y轴上的动点,顺次连接M、N、G、F构成四边形MNGF,求四边形MNGF周长的最小值;(3)在x轴下方且在抛物线上是否存在点P,使△ODP中OD边上的高为?若存在,求出点P的坐标;若不存在,请说明理由;(4)矩形ABCD不动,将抛物线向右平移,当平移后的抛物线与矩形的边有两个交点K、L,且直线KL平分矩形的面积时,求抛物线平移的距离.解:(1)∵点A在线段OE上,E(8,0),OA=2∴A(2,0)∵OA:AD=1:3∴AD=3OA=6∵四边形ABCD是矩形∴AD⊥AB∴D(2,﹣6)∵抛物线y=ax2+bx经过点D、E∴解得:∴抛物线的解析式为y=x2﹣4x(2)如图1,作点M关于x轴的对称点点M',作点N关于y轴的对称点点N',连接FM'、GN'、M'N'∵y=x2﹣4x=(x﹣4)2﹣8∴抛物线对称轴为直线x=4∵点C、D在抛物线上,且CD∥x轴,D(2,﹣6)∴y C=y D=﹣6,即点C、D关于直线x=4对称∴x C=4+(4﹣x D)=4+4﹣2=6,即C(6,﹣6)∴AB=CD=4,B(6,0)∵AM平分∠BAD,∠BAD=∠ABM=90°∴∠BAM=45°∴BM=AB=4∴M(6,﹣4)∵点M、M'关于x轴对称,点F在x轴上∴M'(6,4),FM=FM'∵N为CD中点∴N(4,﹣6)∵点N、N'关于y轴对称,点G在y轴上∴N'(﹣4,﹣6),GN=GN'∴C四边形MNGF=MN+NG+GF+FM=MN+N'G+GF+FM'∵当M'、F、G、N'在同一直线上时,N'G+GF+FM'=M'N'最小∴C四边形MNGF=MN+M'N'==2+10=12∴四边形MNGF周长最小值为12.(3)存在点P,使△ODP中OD边上的高为.过点P作PE∥y轴交直线OD于点E∵D(2,﹣6)∴OD=,直线OD解析式为y=﹣3x设点P坐标为(t,t2﹣4t)(0<t<8),则点E(t,﹣3t)①如图2,当0<t<2时,点P在点D左侧∴PE=y E﹣y P=﹣3t﹣(t2﹣4t)=﹣t2+t∴S△ODP=S△OPE+S△DPE=PE•x P+PE•(x D﹣x P)=PE(x P+x D﹣x P)=PE•x D=PE=﹣t2+t∵△ODP中OD边上的高h=,∴S△ODP=OD•h∴﹣t2+t=×2×方程无解②如图3,当2<t<8时,点P在点D右侧∴PE=y P﹣y E=t2﹣4t﹣(﹣3t)=t2﹣t∴S△ODP=S△OPE﹣S△DPE=PE•x P﹣PE•(x P﹣x D)=PE(x P﹣x P+x D)=PE•x D=PE=t2﹣t∴t2﹣t=×2×解得:t1=﹣4(舍去),t2=6∴P(6,﹣6)综上所述,点P坐标为(6,﹣6)满足使△ODP中OD边上的高为.(4)设抛物线向右平移m个单位长度后与矩形ABCD有交点K、L∵KL平分矩形ABCD的面积∴K在线段AB上,L在线段CD上,如图4∴K(m,0),L(2+m,﹣6)连接AC,交KL于点H∵S△ACD=S四边形ADLK=S矩形ABCD∴S△AHK=S△CHL∵AK∥LC∴△AHK∽△CHL∴∴AH=CH,即点H为AC中点∴H(4,﹣3)也是KL中点∴∴m=3∴抛物线平移的距离为3个单位长度.中考数学模拟试卷一.选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列运算结果为正数的是()A.(﹣3)2B.﹣3÷2C.0×(﹣2017)D.2﹣32.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.00 000 0076克,用科学记数法表示是()A.7.6×108克B.7.6×10﹣7克C.7.6×10﹣8克D.7.6×10﹣9克3.如图,能用∠AOB,∠O,∠1三种方法表示同一个角的图形是()A.B.C.D.4.计算:得()A.B.C.D.5.下列图形中,不是中心对称图形的是()A.B.C.D.6.对于2,下列说法中正确的是()A.它是一个无理数B.它比0小C.它不能用数轴上的点表示出来D.它的相反数为27.下列结论中,错误的有:()①所有的菱形都相似;②放大镜下的图形与原图形不一定相似;③等边三角形都相似;④有一个角为110度的两个等腰三角形相似;⑤所有的矩形不一定相似.A.1个B.2个C.3个D.4个8.如图所示的几何体,它的左视图是()A.B.C.D.9.如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,连接OH,若OB=4,S菱形ABCD=24,则OH的长为()A.3B.4C.5D.610.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,则∠AOB的大小为()A.69°B.111°C.159°D.141°11.一个正方形的周长与一个等腰三角形的周长相等,若等腰三角形的两边长为和,则这个正方形的对角线长为()A.12B.C.2D.612.下列各式,其中不正确的个数有()①(6﹣2×3)0=1;②10﹣3=0.01;③|π﹣3.14|=3.14﹣π;④0.000001=10﹣5A.1个B.2个C.3个D.4个13.化简,其结果为()A.B.C.D.14.甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表如图,比较5月份两组家庭用水量的中位数,下列说法正确的是()甲组12户家庭用水量统计表用水量(吨)4569户数4521A.甲组比乙组大B.甲、乙两组相同C.乙组比甲组大D.无法判断15.已知抛物线y=x2+2x﹣m﹣2与x轴没有交点,则函数y的大致图象是()A.B.C.D.16.已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK 边与AB边重合,如图所示.按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD 边重合,完成第二次旋转;……在这样连续6次旋转的过程中,点B,M间的距离不可能是()A.0.5B.0.6C.0.7D.0.8二.填空题(本大题有3个小题,共11分,17小题3分:18~19小题每题4分,把答案写在题中横线上)17.如图,在四边形ABDC中,E、F、G、H分别为AB、BC、CD、DA的中点,并且E、F、G、H四点不共线.当AC=6,BD=8时,四边形EFGH的周长是.18.如图,已知线段AB=2,作BD⊥AB,使BD AB;连接AD,以D为圆心,BD长为半径画弧交AD于点E,以A为圆心,AE长为半径画弧交AB于点C,则AC长为.19.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),则关于x的方程ax2﹣bx﹣c=0的解为.三.解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.(8分)阅读下面材料:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.回答下列问题:(1)数轴上表示﹣3和1两点之间的距离是,数轴上表示﹣2和3的两点之间的距离是;(2)数轴上表示x和﹣1的两点之间的距离表示为;(3)若x表示一个有理数,则|x﹣2|+|x+3|有最小值吗?若有,请求出最小值;若没有,请说明理由.21.(9分)某班50名学生参加“迎国庆,手工编织‘中国结’”活动,要求每人编织4~7枚,活动结束后随机抽查了20名学生每人的编织量,并将各类的人数绘制成扇形统计图(如图①)和条形统计图(如图②),注:A代表4枚;B代表5枚;C代表6枚;D代表7枚.经确认扇形图是正确的,而条形统计图尚有一处错误.回答下列问题:(1)写出条形图中存在的错误:;(2)写出这20名学生每人编织‘中国结’数量的众数、中位数、平均数;(3)求这50名学生中编织‘中国结’个数不少于6的人数;(4)若从这50名学生中随机选取一名,求其编织‘中国结’个数为C的概率.22.(9分)阅读:已知a、b、c为△ABC的三边长,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:因为a2c2﹣b2c2=a4﹣b4,①所以c2(a2﹣b2)=(a2﹣b2)(a2+b2).②所以c2=a2+b2.③所以△ABC是直角三角形.④请据上述解题回答下列问题:(1)上述解题过程,从第步(该步的序号)开始出现错误,错的原因为;(2)请你将正确的解答过程写下来.23.(9分)如图,AB=16,点O为AB的中点,点C在线段OB上(不与点O,B重合),将OC绕点O顺时针旋转270°后得到大扇形COD,AP、BQ分别与优弧相切于点P、Q,且点P、Q在AB的异侧.(1)求证:AP=BQ;(2)当BQ=4时,求弧的长.(结果保留π)24.(10分)如图,在平面直角坐标系中,直线l1的解析式为y=x,直线l2的解析式为y x+3,与x轴、y轴分别交于点A、点B,直线l1与l2交于点C.(1)求点A、点B、点C的坐标,并求出△COB的面积;(2)若直线l2上存在点P(不与B重合),满足S△COP=S△COB,请求出点P的坐标;(3)在y轴右侧有一动直线平行于y轴,分别与l1,l2交于点M、N,且点M在点N的下方,y轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请直接写出满足条件的点Q的坐标;若不存在,请说明理由.25.(10分)如图,在矩形ABCD中,AB=3,BC=4,将对角线AC绕对角线交点O旋转,分别交边AD、BC于点E、F,点P是边DC上的一个动点,且保持DP=AE,连接PE、PF,设AE=x(0<x<3).(1)填空:PC=,FC=;(用含x的代数式表示)(2)求△PEF面积的最小值;(3)在运动过程中,PE⊥PF是否成立?若成立,求出x的值;若不成立,请说明理由.26.(12分)春节临近,由于我市城区执行严禁燃放烟花炮竹令,某商店发现了商机经销一种安全、无污染的电子鞭炮已知这种电子鞭炮的成本价每盒80元,市场调查发现春节期间,该种电子鞭炮每天的销售量y(盒)与销售单价x(元)有如下关系:y=﹣2x+320(80≤x≤160).设这种电子鞭炮每天的销售利润为w元.(1)求w与x的函数关系式;(2)该种电子鞭炮的销售单价定为多少元时,每天销售利润最大?最大利润是多少元?(3)若该商店销售这种电子鞭炮要想每天获得销售利润2400元,应如何定价?答案解析一.选择题(共16小题)1.下列运算结果为正数的是()A.(﹣3)2B.﹣3÷2C.0×(﹣2017)D.2﹣3解:A、原式=9,符合题意;B、原式=﹣1.5,不符合题意;C、原式=0,不符合题意,D、原式=﹣1,不符合题意,故选:A.2.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.00 000 0076克,用科学记数法表示是()A.7.6×108克B.7.6×10﹣7克C.7.6×10﹣8克D.7.6×10﹣9克解:0.00 000 0076克=7.6×10﹣8克,故选:C.3.如图,能用∠AOB,∠O,∠1三种方法表示同一个角的图形是()A.B.C.D.解:A、以O为顶点的角不止一个,不能用∠O表示,故A选项错误;B、以O为顶点的角不止一个,不能用∠O表示,故B选项错误;C、以O为顶点的角不止一个,不能用∠O表示,故C选项错误;D、能用∠1,∠AOB,∠O三种方法表示同一个角,故D选项正确.故选:D.4.计算:得()A.B.C.D.解:原式,.故选:B.5.下列图形中,不是中心对称图形的是()A.B.C.D.解:A、是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项正确;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误;故选:B.6.对于2,下列说法中正确的是()A.它是一个无理数B.它比0小C.它不能用数轴上的点表示出来D.它的相反数为2解:A、2是一个无理数,故符合题意;B、2比0大,故不符合题意;C、2能用数轴上的点表示出来,故不符合题意;D、2它的相反数为2,故不符合题意.故选:A.7.下列结论中,错误的有:()①所有的菱形都相似;②放大镜下的图形与原图形不一定相似;③等边三角形都相似;④有一个角为110度的两个等腰三角形相似;⑤所有的矩形不一定相似.A.1个B.2个C.3个D.4个解:①:菱形的两组对角不一定分别对应相等,故所有的菱形不一定都相似;即:选项①错误.②:放大镜下的图形与原图形只是大小不相等,但形状相同,所以它们一定相似;即:选项②错误.③:等边三角形的三个内角相等,三条边都相等,故所有的等边三角形都相似;即:选项③正确④:有一个角为110度的两个等腰三角形一定相似.因为它们的顶角均为110°,两锐角均为35°,根据“两内角对应相等的两个三角形相似”即可判定.故:选项④正确.⑤:只有长与宽对应成比例的两个矩形相似,故选项⑤正确故选:B.8.如图所示的几何体,它的左视图是()A.B.C.D.解:如图所示的几何体的左视图为:.故选:D.9.如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,连接OH,若OB=4,S菱形ABCD=24,则OH的长为()A.3B.4C.5D.6解:∵ABCD是菱形,∴BO=DO=4,AO=CO,S菱形ABCD24,∴AC=6,∵AH⊥BC,AO=CO=3,∴OH AC=3.故选:A.10.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,则∠AOB的大小为()A.69°B.111°C.159°D.141°解:如图,由题意,得∠1=54°,∠2=15°.由余角的性质,得∠3=90°﹣∠1=90°﹣54°=36°.由角的和差,得∠AOB=∠3+∠4+∠2=36°+90°+15°=141°,故选:D.11.一个正方形的周长与一个等腰三角形的周长相等,若等腰三角形的两边长为和,则这个正方形的对角线长为()A.12B.C.2D.6解:①当是腰和时,两边的和小于第三边,不能构成三角形,应舍去.②当是底边和是腰时,等腰三角形的周长是,因而可得正方形的边长是,故这个正方形的对角线长是•cos45°=12;故选:A.12.下列各式,其中不正确的个数有()①(6﹣2×3)0=1;②10﹣3=0.01;③|π﹣3.14|=3.14﹣π;④0.000001=10﹣5A.1个B.2个C.3个D.4个解:①(6﹣2×3)0,无意义,故此选项符合题意;②10﹣3=0.001,故原题错误,符合题意;③|π﹣3.14|=π﹣3.14,错误,符合题意;④0.000001=10﹣6,错误,符合题意;故不正确的有4个.故选:D.13.化简,其结果为()A.B.C.D.解:原式。

中考数学试题及答案模拟

中考数学试题及答案模拟

中考数学试题及答案模拟第一部分:选择题(共20小题,每小题2分,共40分)1.设集合A={x|x²-4x+3=0},则A的元素个数为()。

A. 0B. 1C. 2D. 32.已知函数f(x)=sin(x)cos(x),则f(x)的值域为()。

A. [-1, 0]B. [0, 1]C. [-1, 1]D. [0, ∞)3.方程2x+5y=12与5x+ky=8有且仅有一个公共解,求k的值。

4.a,b,c,d均为正整数,且满足a²+b²+c²=9d²,请问d的最小值是多少?5.已知等差数列{an}满足a₁=3,a₉=19,求a₃₀的值。

6.已知直角三角形ABC,∠C=90°,AB=3,BC=4,求AC的长度。

7.一容器盛有600毫升的纯酒精,取出一部分,然后用水充满容器至600毫升,再取出80毫升,再用水充满容器至600毫升。

最后容器中的酒精占容积的百分比是多少?8.如图所示,AB是⊙O的直径,点C在弧AB上,∠COB=30°,则∠ACB的度数是多少?9.已知两个地点A和B的距离为120km,一辆汽车从A沿着同一方向以每小时50km的速度行驶,另一辆汽车从B沿着同一方向以每小时70km的速度行驶。

当两辆汽车相遇时,较快的一辆比较慢的一辆行驶的时间是多少?10.一角的补角是其3倍,则此角的度数是多少?11.用最少的直线段,将5个相互不重合的圆分成10个区域,所需的直线段的总段数是多少?12.已知平面坐标系中过点A(-1,2)和点B(3,1)的直线l,是两坐标轴平行的直线,求直线l的方程。

13.已知两个立方体的体积比为8:27,如果将这两个立方体合并,新立方体的体积是原来两个立方体体积的多少倍?14.如图所示,在长方体ABCDA1B1C1D1中,E是AC1的中点,F 是BC1的中点,EF的中点为M,则向量A B⃗与向量A M⃗的夹角为()。

初三数学中考模拟试题(含答案)

初三数学中考模拟试题(含答案)

初三年级数学中考模拟试题题次 一 二 三 总分1—10 11-15 16 17 18 19 20 21 22 得分一、选择题:(本大题共10题,每小题3分,共30分;每小题只有一个正确答案,请 把正确答案的字母代号填在下面的表内,否则不给分) 题号 1 2 3 4 5 6 7 8 9 10 答案1. 下列各数(-2)0 , — (-2), (—2)2, (—2)3中, 负数的个数为 ( ) A 。

1 B 。

2 C. 3 D 。

42.下列图形既是轴对称图形, 又是中心对称图形的是:( )3. 资料显示, 2005年“十 一”黄金周全国实现旅游收入 约463亿元,用科学记数法表示463亿这个数是:( )A 。

463×108B 。

4.63×108C 。

4。

63×1010D 。

0.463×10114.“圆柱与球的组合体"如左图所示,则它的三视图是( )A .B .C . D5. 10名学生的平均成绩是x ,如果另外5名学生每人得84分,那么整个组的平均成绩是()A .284+x B .542010+x C .158410+x D .1542010+x 6. 二次函数y = ax 2+ bx +c 的图象如图所示, 则下列结论正确的是: ( )A. a >0,b <0,c >0 B 。

a <0,b <0,c >0 C. a <0,b >0,c <0 D. a <0,b >0,c >07.一个均匀的立方体六个面上分别标有数字1,2,3,4,5,6,如图是这个立方体表主视图左视图俯视图主视图左视图俯视图主视图左视图俯视图主视图左视图俯视图13题图O B A C y xOC B A面的展开图,抛掷这个立方体,则朝上一面的数字恰好等于朝下一面数字的21的概率是( ) A .61 B .31 C .21 D .326题图 7题图 8题图 9题图8.如图所示, ABCD 中∠C=108°BE 平分∠ABC ,则∠AEB 等于 ( ) A . 180° B .36° C . 72° D . 108°9.如图,在△ABC 中,∠C =90°,AC >BC,若以AC 为底面圆的半径,BC 为高的圆锥的侧面积为S 1,若以BC 为底面圆的半径,AC 为高的圆锥的侧面积为S 2 , 则( ) A .S 1 =S 2 B .S 1 >S 2 C .S 1 <S 2 D .S 1 ,S 2的大小大小不能确定 10.在直角坐标系中,⊙O 的圆心在原点,半径为3,⊙A 的圆心A 的坐标为(-3,1),半径为1,那么⊙O 与⊙A 的位置关系为( )A 、外离B 、外切C 、内切D 、相交二、填空题:(本大题共5题,每小题3分,共15分;请把答案填在下表内相应的题号下,否则不给分)题号 11 12 13 14 15 答案11.为了估计湖里有多少条鱼,我们从湖里捕上100条做上标记,然后放回湖里,经过一段时间待带标记的鱼完全混合于鱼群中后,第二次捕得200条,发现其中带标记的鱼25条,通过这种调查方式,我们可以估计湖里有鱼 ________条。

九年级中考数学模拟考试卷(附答案)

九年级中考数学模拟考试卷(附答案)

九年级中考数学模拟考试卷(附答案)学校:___________班级:___________姓名:___________考号:___________一、选择题(每小题3分,共30分)1.的相反数的倒数是()A.B.﹣3C.3D.2.若一个正多边形的一个外角是60°,则这个正多边形的边数是()A.10B.9C.8D.63.总投资54亿元的万家丽高架快速路建成,不仅疏解了中心城区的交通,还形成了我市的快速路网,54亿用科学记数法表示为()A.0.54×109B.5.4×109C.54×108D.5.4×1084.在平面直角坐标系中,以点(﹣3,4)为圆心,以3个单位长度为半径的圆()A.与x轴相交,与y轴相切B.与x轴相离,与y轴相切C.与x轴相离,与y轴相交D.与x轴相切,与y轴相离5.关于x的方程x2﹣mx﹣1=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定6.甲、乙两学生在军训打靶训练中,打靶的总次数相同,且所中环数的平均数也相同,那么两者的方差的大小关系是()A.<B.>C.=D.不能确定7.如图,是由一个圆柱体和一个长方体组成的几何体,其俯视图是()A.B.C.D.8.已知菱形的周长为40,一条对角线长为12,则这个菱形的面积为()A.40B.47C.96D.1909.如图,△ABC内接于⊙O,∠ACB=90°,BD=5,则BC的长为()A.12B.8C.10D.10.周末晚会上,师生共有20人参加跳舞,其中方老师和7个学生跳舞,一直到何老师,他和参加跳舞的所有学生跳过舞()A.15B.14C.13D.12二、填空题(每小题3分,共18分)11.分解因式:3x3﹣3x=.12.若式子在实数范围内有意义,则x的取值范围为.13.如图,△ABC与△A1B1C1为位似图形,点O是它们的位似中心,位似比是1:3,那么△A1B1C1的面积是.14.圆锥底面圆的半径为3cm,其侧面展开图是半圆,则圆锥母线长为.15.如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,EF∥AB,且AD:DB=3:5.16.如图,点A在反比例(x>0)图象上,交x轴于点C、D.若点B的坐标为(0,2)则图中阴影部分面积为.三、解答题(第17、18、19题6分,第20、21题8分,第22、23题9分,第24、25题10分,共72分)17.计算:.18.先化简,再求值:,其中a满足a2+2a﹣3=0.19.“一号龙卷风”给小岛O造成了较大的破坏,救灾部门迅速组织力量,从仓储D处调集救援物资,再用货船运到小岛O.已知:OA⊥AD,∠ODA=15°,∠OBA=45°,CD =20km.若汽车行驶的速度为50km/时,问这批物资在哪个码头装船,最早运抵小岛O?(在物资搬运能力上每个码头工作效率相同,参考数据:≈1.4,≈1.7).20.历下区某中学举行了“中国梦,中国好少年”演讲比赛,菲菲同学将选手成绩划分为A、B、C、D四个等级根据图中提供的信息,解答下列问题:(1)参加演讲比赛的学生共有人,扇形统计图中m=,n=,并把条形统计图补充完整.(2)学校欲从A等级2名男生2名女生中随机选取两人,参加达州市举办的演讲比赛,请利用列表法或树状图求出恰好1男1女参加比赛的概率。

中考数学模拟考试卷(附含答案)

中考数学模拟考试卷(附含答案)

中考数学模拟考试卷(附含答案)(满分:120分 ;考试时间:120分钟)一、单项选择题(本题共10个小题,每小题3分,共30分)1.东营市市总面积约8000平方千米,8000用科学记数法可表示为( )A .8×103B .8×104C .0.8×104D .0.08×105 2.下列既是轴对称图形又是中心对称图形的是( ) A .B .C .D .3..下列计算正确的是( )A .a2•a3=a6B .(xy )2=xy2C .(m3)5=m8D .a7÷a3=a44.如图①是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图②. 关于平移后几何体的三视图,下列说法正确的是( )A.主视图相同B. 左视图相同C. 俯视图相同D. 三种视图都不相同5.将下列多项式分解因式,结果中不含因式x+3的是( )A .x2﹣9B .x2﹣6x+9C .x (x ﹣1)+3(x-1)D .x2+6x+96.一个不透明的布袋中仅有2个红球,1个黑球,这些球除颜色外无其它差别.先随机摸出一个小球,记下颜色后放回搅匀,再随机摸出一个小球,则两次摸出的小球颜色不同的概率是( ).A B. C. D. 7.下列命题是真命题的是( )A 、如果两个三角形相似,相似比为4︰9,那么这两个三角形的周长比为4︰9;B 、如果两个三角形相似,相似比为4︰9,那么这两个三角形的周长比为2︰3;C 、如果两个三角形相似,相似比为4︰9,那么这两个三角形的面积比为2︰3;D 、如果两个三角形相似,相似比为4︰9,那么这两个三角形的面积比为4︰9.8.为了更好地开展阳光大课间活动,某班级计划购买跳绳和呼啦圈两种体育用品,已知一个跳绳8元,一个呼啦圈12元.准备用120元钱全部用于购买这两种体育用品(两种都买),该班级的购买方案共有( )A .3种B .4种C .5种D .6种9.已知点P (2a+6,4+a )在第二象限,则a 的取值范围是( )31329495A.﹣4<a<-3 B.a<﹣3 C.a>﹣3 D.a>-410.如图,在正方形ABCD的对角线AC上取一点E.使得∠CDE=15°,连接BE并延长BE到F,使CF=CB,BF与CD相交于点H,若AB=1,有下列结论:①BE=DE;②CE+DE=EF;③S△DEC=﹣;④=2﹣1.则其中正确的结论有()A.①②③B.①②③④C.①②④D.①③④二、填空题(本题共8个小题,其中11-14题每小题3分,15题-18题每题4分,共28分)请在答题卡上把你的答案写在相对应的题号后的指定区域内11.计算:.12.函数中x的取值范围是。

中招考试数学模拟考试卷(附含答案)

中招考试数学模拟考试卷(附含答案)

中招考试数学模拟考试卷(附含答案)(满分:120分考试时间:120分钟)一选择题(本大题共10小题每题3分,共30.0分)1.|−16|的相反数是()A. 16B. −16C. 6D. −62.下列四个算式中正确的是()A. a2+a3=a5B. (−a2)3=a6C. a2⋅a3=a6D. a3÷a2=a3.在计算器上按键:显示的结果为()A. −5B. 5C. −25D. 254.若式子√m+1|m−3|有意义则实数m的取值范围是()A. m≥−1B. m>−1C. m>−1且m≠3D. m≥−1且m≠35.“赵爽弦图”巧妙地利用面积关系证明了勾股定理是我国古代数学的骄傲如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形设直角三角形较长直角边长为a较短直角边长为b若(a+b)2=21大正方形的面积为13则小正方形的面积为()A. 3B. 4C. 5D. 66.圆锥的底面半径r=6高ℎ=8则圆锥的侧面积是()A. 15πB. 30πC. 45πD. 60π7.已知点A(x1,y1)B(x2,y2)C(x3,y3)都在反比例函数y=kx(k<0)的图象上且x1<x2<0< x3则y1y2y3的大小关系是()A. y2>y1>y3B. y3>y2>y1C. y1>y2>y3D. y3>y1>y28.函数y=kx与y=−kx2+k(k≠0)在同一直角坐标系中的大致图象可能是()A. B.C. D.9.已知二次函数y=ax2+bx+c的y与x的部分对应值如表:x−10234y50−4−30下列结论:①抛物线的开口向上②抛物线的对称轴为直线x=2③当0<x<4时y>0④抛物线与x轴的两个交点间的距离是4⑤若A(x1,2)B(x2,3)是抛物线上两点则x1<x2其中正确的个数是()A. 2B. 3C. 4D. 510.如图在正方形ABCD中点O是对角线AC BD的交点过点O作射线OM ON分别交BC CD于点E F且∠EOF=90°OC EF交于点G.给出下列结论:①△COE≌△DOF②△OGE∽△FGC③四边形CEOF的面积为正方形ABCD面积的14④DF2+BE2=OG⋅OC.其中正确的是()A. ①②③④B. ①②③C. ①②④D. ③④二、填空题(本大题共8小题,11-14每题3分,15-18每题4分,共28.0分)11.目前世界上能制造的芯片最小工艺水平是5纳米而我国能制造芯片的最小工艺水平是16纳米已知1纳米=10−9米用科学记数法将16纳米表示为______米.12.分解因式:3a3−12a2b+12ab2=______.13.某校调查了20名男生某一周参加篮球运动次数调查结果如表所示那么这20名男生该周参加篮球运动次数的平均数是______次.次数2345人数2210614.已知一个正数的两个平方根分别是3x−2和5x+6则这个数是.15.如图在平面直角坐标系中长方形OACB的顶点O为坐标原点顶点A B分别在x轴y轴的正半轴上OA=3OB=4D为边OB的中点连接CD E是边OA上的一个动点当△CDE的周长最小时点E的坐标为.16.如图点O是半圆圆心BE是半圆的直径点A D在半圆上且AD//BO∠ABO=60°AB=8过点D作DC⊥BE于点C则阴影部分的面积是______.17.如图在平面直角坐标系xOy中直线y=√33x+2√33与⊙O相交于A B两点且点A在x轴上则弦AB的长为.18.如图已知等边△OA1B1顶点A1在双曲线y=√3x(x>0)上点B1的坐标为(2,0).过B1作B1A2//OA1交双曲线于点A2过A2作A2B2//A1B1交x轴于点B2得到第二个等边△B1A2B2过B2作B2A3//B1A2交双曲线于点A3过A3作A3B3//A2B2交x轴于点B3得到第三个等边△B2A3B3以此类推…则点B6的坐标为____.三、解答题(本题共7小题共62.0分)19.(8分)(1)计算:−14−|√3−1|+(√2−1.414)0+2sin60°−(−12)−1(2)先化简(m2+4mm−2−m−2)÷m2+2m+1m−2然后从−2<m≤2中选一个合适的整数作为m的值代入求值.20. (8分)为深化课程改革提高学生的综合素质某校开设了形式多样的校本课程.为了解哪门校本课程在学生中最受欢迎学校随机抽取了部分学生进行调查从A:天文地理:B:科学探究;C:文史天地;D:趣味数学四门课程中选你喜欢的课程(被调查者限选一项)并将调查结果绘制成两个不完整的统计图如图所示.根据以上信息解答下列问题:(1)本次调查的总人数为人扇形统计图中A部分的圆心角是度.(2)请补全条形统计图.(3)根据本次调查估计该校400名学生中最喜欢“科学探究”的学生人数为多少⋅(4)为激发学生的学习热情学校决定举办学生综合素质大赛采取“双人同行合作共进”小组赛形式比赛题目从上面四个类型的校本课程中产生每个类型题目被抽到的概率一样并且规定:同一小组的两名同学的题目类型不能相同且每人只能抽取一次.小琳和小金组成了一组他们抽到“天文地理”和“趣味数学”类题目的概率是多少?(请用画树状图或列表的方法求)21. (8分)如图在Rt△ABC中∠B=90°∠BAC的平分线AD交BC于点D点E在AC上以AE为直径的⊙O经过点D.(1)求证:①BC是⊙O的切线②CD2=CE⋅CA(2)若点F是劣弧AD的中点且CE=3试求阴影部分的面积.22. (8分)为了维护国家主权和海洋权力海监部门对我国领海实现了常态化巡航管理.如图所示正在执行巡航任务的海监船以每小时40海里的速度向正东方向航行在A处测得灯塔P在北偏东60°方向上继续航行30分钟后到达B处此时测得灯塔P在北偏东45°方向上.(1)求∠APB的度数(2)已知在灯塔P的周围25海里内有暗礁问海监船继续向正东方向航行是否安全?(参考数据:√2≈1.41423. (8分)为助力我省脱贫攻坚某村在“农村淘宝网店”上销售该村优质农产品.该网店于今年六月底收购一批农产品七月份销售256袋八九月该商品十分畅销销售量持续走高.在售价不变的基础上九月份的销售量达到400袋.(1)求八九这两个月销售量的月平均增长率(2)该网店十月降价促销经调查发现若该农产品每袋降价1元销售量可增加5袋当农产品每袋降价多少元时这种农产品在十月份可获利4250元?(若农产品每袋进价25元原售价为每袋40元)24. (10分)已知如图抛物线y=ax2+bx+c(a≠0)的顶点为M(1,9)经过抛物线上的两点A(−3,−7)和B(3,m)的直线交抛物线的对称轴于点C.(1)求抛物线的解析式和直线AB的解析式.(2)在抛物线上A M两点之间的部分(不包含A M两点)是否存在点D使得S△DAC=2S△DCM若存在求出点D的坐标若不存在请说明理由.(3)若点P在抛物线上点Q在x轴上当以点A M P Q为顶点的四边形是平行四边形时直接写出满足条件的点P的坐标.25. (12分)在矩形ABCD中AB=3BC=8F是BC边上的中点动点E在边AD上连接EF过点F作FP⊥EF分别交射线AD射线CD于点P Q.(1)如图1当点P与点Q重合时求PF的长(2)如图2当点Q在线段CD上(不与C D重合)且tanP=1时求AE的长2(3)线段PF将矩形分成两个部分设较小部分的面积为y AE长为x求y与x的函数关系式.参考答案1.【答案】B【解析】解:|−16|的相反数即16的相反数是−16.故选:B.根据只有符号不同的两个数互为相反数可得一个数的相反数.本题考查了相反数绝对值在一个是数的前面加上负号就是这个数的相反数.2.【答案】D【解析】解:A.a2和a3不能合并故本选项不符合题意B.(−a2)3=−a6故本选项不符合题意C.a2⋅a3=a5故本选项不符合题意D.a3÷a2=a故本选项符合题意故选:D.根据幂的乘方与积的乘方合并同类项法则同底数幂的乘法同底数幂的除法逐个判断即可.本题考查了幂的乘方与积的乘方合并同类项法则同底数幂的乘法同底数幂的除法等知识点能熟记知识点是解此题的关键.3.【答案】A【解析】 【分析】本题考查了计算器−数的开方 解决本题的关键是认识计算器.根据计算器的功能键即可得结论. 【解答】解:根据计算器上按键−√1253=−5所以显示结果为−5. 故选:A .4.【答案】D【解析】 【分析】本题考查二次根式有意义的条件 分式有意义的条件 解题的关键是熟练运用二次根式的条件 本题属于基础题型.根据二次根式有意义的条件和分式有意义的条件列出不等式组 通过解不等式组即可求出答案. 【解答】解:依题意得:{m +1≥0m −3≠0.解得m ≥−1且m ≠3. 故选:D .5.【答案】C【解析】 【分析】此题主要考查了勾股定理的应用有关知识.熟练掌握勾股定理是本题解题的关键.观察图形可知 小正方形的面积=大正方形的面积−4个直角三角形的面积 利用已知(a +b)2=21 大正方形的面积为13 可以得出四个直角三角形的面积 进而求出答案. 【解答】解:如图所示:∵(a+b)2=21∴a2+2ab+b2=21∵大正方形的面积为a2+b2,又∵大正方形的面积为(a−b)2+2ab=13∴a2+b2=13∴2ab=21−13=8即4个直角三角形的面积之和为8∴小正方形的面积为13−8=5.故选C.6.【答案】D【解析】解:圆锥的母线l=√ℎ2+r2=√62+82=10∴圆锥的侧面积=π⋅10⋅6=60π故选:D.⋅2πr⋅l=πrl求出圆锥的母线l即可解决问题.圆锥的侧面积:S侧=12本题考查圆锥的侧面积勾股定理等知识解题的关键是记住圆锥的侧面积公式.7.【答案】A(k<0)的图象分布在第二四象限【解析】解:∵反比例函数y=kx在每一象限y随x的增大而增大而x1<x2<0<x3∴y3<0<y1<y2.即y2>y1>y3.故选:A.(k<0)的图象分布在第二四象限则y3最小y2最大.根据反比例函数性质反比例函数y=kx本题考查反比例函数图象上点的坐标特征:反比例函数图象上点的坐标满足其解析式.也考查了反比例函数的性质.8.【答案】B【解析】解:由解析式y=−kx2+k可得:抛物线对称轴x=0A由双曲线的两支分别位于二四象限可得k<0则−k>0抛物线开口方向向上抛物线与y轴的交点为y轴的负半轴上本图象与k的取值相矛盾故A错误B由双曲线的两支分别位于一三象限可得k>0则−k<0抛物线开口方向向下抛物线与y轴的交点在y轴的正半轴上本图象符合题意故B正确C由双曲线的两支分别位于一三象限可得k>0则−k<0抛物线开口方向向下抛物线与y轴的交点在y轴的正半轴上本图象与k的取值相矛盾故C错误D由双曲线的两支分别位于一三象限可得k>0则−k<0抛物线开口方向向下抛物线与y轴的交点在y轴的正半轴上本图象与k的取值相矛盾故D错误.故选:B.本题可先由反比例函数的图象得到字母系数的正负再与二次函数的图象相比较看是否一致.本题主要考查了二次函数及反比例函数和图象解决此类问题步骤一般为:(1)先根据图象的特点判断k取值是否矛盾(2)根据二次函数图象判断抛物线与y轴的交点是否符合要求.9.【答案】B【解析】解:设抛物线解析式为y=ax(x−4)把(−1,5)代入得5=a×(−1)×(−1−4)解得a=1∴抛物线解析式为y=x2−4x所以①正确抛物线的对称性为直线x=2所以②正确∵抛物线与x轴的交点坐标为(0,0)(4,0)∴当0<x<4时y<0所以③错误抛物线与x轴的两个交点间的距离是4所以④正确若A(x1,2)B(x2,3)是抛物线上两点则x2<x1<2或2<x1<x2所以⑤错误.故选:B.先利用交点式求出抛物线解析式则可对①进行判断利用抛物线的对称性可对②进行判断利用抛物线与x轴的交点坐标为(0,0)(4,0)可对③④进行判断根据二次函数的增减性可对⑤进行判断.本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.10.【答案】B【解析】解:①∵四边形ABCD是正方形∴OC=OD AC⊥BD∠ODF=∠OCE=45°∵∠MON=90°∴∠COM=∠DOF∴△COE≌△DOF(ASA)故①正确②∵∠EOF=∠ECF=90°∴点O E C F四点共圆∴∠EOG=∠CFG∠OEG=∠FCG∴△OGE∽△FGC故②正确③∵△COE≌△DOF∴S△COE=S△DOF∴S四边形CEOF =S△OCD=14S正方形ABCD故③正确④∵△COE≌△DOF∴OE=OF又∵∠EOF=90°∴△EOF是等腰直角三角形∴∠OEG=∠OCE=45°∵∠EOG=∠COE ∴△OEG∽△OCE∴OE:OC=OG:OE∴OG⋅OC=OE2∵OC=12AC OE=√22EF∴OG⋅AC=EF2∵CE=DF BC=CD∴BE=CF又∵Rt△CEF中CF2+CE2=EF2∴BE2+DF2=EF2∴OG⋅AC=BE2+DF2故④错误故选:B.①由正方形证明OC=OD∠ODF=∠OCE=45°∠COM=∠DOF便可得结论②证明点O E C F四点共圆得∠EOG=∠CFG∠OEG=∠FCG进而得OGE∽△FGC便可③先证明S△COE=S△DOF∴S四边形CEOF=S△OCD=14S正方形ABCD便可④证明△OEG∽△OCE得OG⋅OC=OE2再证明OG⋅AC=EF2再证明BE2+DF2=EF2得OG⋅AC=BE2+DF2便可.本题属于正方形的综合题主要考查了正方形的性质全等三角形的判定与性质相似三角形的判定与性质勾股定理的综合运用.解题时注意:全等三角形的对应边相等相似三角形的对应边成比例.11.【答案】1.6×10−8【解析】解:∵1纳米=10−9米∴16纳米=1.6×10−8米.故答案为:1.6×10−8.由1纳米=10−9米可得出16纳米=1.6×10−8米此题得解.本题考查了科学记数法中的表示较小的数掌握科学记数法是解题的关键.12.【答案】3a(a−2b)2【解析】解:原式=3a(a2−4ab+4b2)=3a(a−2b)2故答案为:3a(a−2b)2原式提取公因式再利用完全平方公式分解即可.此题考查了因式分解−提公因式法熟练掌握提取公因式的方法是解本题的关键.13.【答案】4【解析】解:(2×2+3×2+4×10+5×6)÷20=(4+6+40+30)÷20=80÷20=4(次).∴这20名男生该周参加篮球运动次数的平均数是4次.故答案为:4.加权平均数:若n个数x1x2x3…x n的权分别是w1w2w3…w n则(x1w1+x2w2+⋯+x n w n)÷(w1+w2+⋯+w n)叫做这n个数的加权平均数依此列式计算即可求解.本题考查的是加权平均数的求法.本题易出现的错误是求2345这四个数的平均数对平均数的理解不正确.14.【答案】494【解析】略15.【答案】(1,0)【解析】【分析】此题主要考查轴对称--最短路线问题解决此类问题一般都是运用轴对称的性质作D关于x轴的对称点D′连接D′C交x轴于点E如图则此时△CDE的周长最小易得点C和D′坐标故可利用待定系数法求出直线CD′的解析式然后求直线CD′与x轴的交点即得答案.【解答】如图作点D关于x轴的对称点D′连接CD′与x轴交于点E此时△CDE的周长最小.∵OB=4OA=3D是OB的中点∴OD=2C的坐标是(3,4)则D的坐标是(0,2)∴D′的坐标是(0,−2).设直线CD′所对应的函数解析式是y=kx+b(k≠0)将D′(0,−2)代入y=kx+b得b=−2将C(3,4)代入y=kx−2得4=3k−2解得k=2则直线CD′所对应的函数解析式是y=2x−2令y=0得2x−2=0解得x=1则点E的坐标为(1,0)故答案为(1,0).16.【答案】643π−8√3【解析】【分析】本题考查了扇形的面积等边三角形的判定和性质解直角三角形熟练掌握扇形的面积公式是解题的关键.连接OA易求得圆O的半径为8扇形的圆心角的度数然后根据S阴影=S△AOB+S扇形OAD+S扇形ODE−S△BCD即可得到结论.【解答】解:连接OA∵∠ABO=60°OA=OB∴△AOB是等边三角形∵AB=8∴⊙O的半径为8∵AD//OB∴∠DAO=∠AOB=60°∵OA=OD∴∠AOD=60°∵∠AOB=∠AOD=60°∴∠DOE=60°∵DC⊥BE于点C∴CD=√32OD=4√3OC=12OD=4∴BC=8+4=12S阴影=S△AOB+S扇形OAD+S扇形ODE−S△BCD=12×8×4√3+2×60π×82360−12×12×4√3=64π3−8√3.故答案为64π3−8√3.17.【答案】2√3【解析】设直线AB交y轴于点C过点O作OD⊥AB于点D如图所示.在y=√33x+2√33中令x=0得y=2√33∴C(0,2√33)∴OC=2√33.在y=√33x+2√33中令y=0得√33x+2√33=0解得x=−2.∴A(−2,0).∴OA=2在Rt△AOC中tan∠CAO=OCOA =2√332=√33∴∠CAO=30∘.在Rt△AOD中AD=OA⋅cos30∘=2×√32=√3.∵OD⊥AB∴AD=BD=√3.∴AB=2√3.18.【答案】(2√6,0)【解析】【分析】本题考查了反比例函数图象上点的坐标特征等边三角形的性质正确求出B2B3B4的坐标进而得出点B n的规律是解题的关键.根据等边三角形的性质以及反比例函数图象上点的坐标特征分别求出B2B3B4的坐标得出规律进而求出点B6的坐标.【解答】解:如图作A2C⊥x轴于点C设B1C=a则A2C=√3aOC=OB1+B1C=2+a A2(2+a,√3a).∵点A2在双曲线y=√3(x>0)上x∴(2+a)⋅√3a=√3解得a=√2−1或a=−√2−1(舍去)∴OB2=OB1+2B1C=2+2√2−2=2√2∴点B2的坐标为(2√2,0)作A3D⊥x轴于点D设B2D=b则A3D=√3bOD=OB2+B2D=2√2+b A3(2√2+b,√3b).∵点A3在双曲线y=√3x(x>0)上∴(2√2+b)⋅√3b=√3解得b=−√2+√3或b=−√2−√3(舍去)∴OB3=OB2+2B2D=2√2−2√2+2√3=2√3∴点B3的坐标为(2√3,0)同理可得点B4的坐标为(2√4,0)即(4,0)以此类推…∴点B n的坐标为(2√n,0)∴点B6的坐标为(2√6,0).故答案为(2√6,0).19.(1)【答案】解:原式=−1−(√3−1)+1+2×√32+2=−1−√3+1+1+√3+2=3.【解析】直接利用零指数幂的性质以及负指数幂的性质和特殊角的三角函数值绝对值的性质分别化简得出答案.此题主要考查了实数运算正确化简各数是解题关键.(2)【答案】解:(m2+4mm−2−m−2)÷m2+2m+1m−2=m2+4m−(m+2)(m−2)m−2⋅m−2(m+1)2=4(m+1)(m+1)2=4m+1当m=0时原式=40+1=4.20.【答案】解:(1)6036(2)选B课程的人数为60−(6+18+24)=12(人)如图.=80(人).(3)估计最喜欢“科学探究”的学生人数为400×1260(4)画树状图如图所示共有12种等可能的结果数其中抽到“天文地理”和“趣味数学”类题目的结果数为2.他们抽到“天文地理”和“趣味数学”类题目的概率是16【解析】根据分式的减法和除法可以化简题目中的式子然后在−2<m≤2中选一个使得原分式有意义的整数作为m的值代入化简后的式子即可解答本题.本题考查分式的化简求值解答本题的关键是明确分式化简求值的方法.21.【答案】解:(1)①连接OD∵AD是∠BAC的平分线∴∠DAB=∠DAO∵OD=OA∴∠DAO=∠ODA∴∠DAB=∠ODA ∴DO//AB而∠B=90°∴∠ODB=90°∴BC是⊙O的切线②连接DE∵BC是⊙O的切线∴∠CDE=∠DAC∠C=∠C∴△CDE∽△CAD∴CDCA=CECD∴CD2=CE⋅CA(2)连接DF OF设圆的半径为R∵点F是劣弧AD的中点∴OF是DA中垂线∴DF=AF∴∠FDA=∠FAD∵DO//AB∴∠ODA=∠DAF∴∠ADO=∠DAO=∠FDA=∠FAD∴DF//OA∴四边形AODF是平行四边形又OA=OD∴AF=DF=OA=OD∴△OFD△OFA是等边三角形∴S△OFD=S△OFA, ∠DOC=60°∴∠C=30°∴OD=12OC=OE+EC而OE=OD∴CE=OE=R=3S阴影=S扇形DFO=60360×π×32=3π2.【解析】此题属于圆的综合题涉及了平行四边形的性质等边三角形的判定与性质含30度角的直角三角形的知识相似三角形的判断与性质综合性较强解答本题需要我们熟练各部分的内容对学生的综合能力要求较高一定要注意将所学知识贯穿起来.(1)①证明DO//AB即可求解②证明CDE∽△CAD即可求解(2)证明△OFD△OFA是等边三角形S阴影=S扇形DFO即可求解.22.【答案】解:(1)由题意得∠PAB=90°−60°=30°∠ABP=90°+45°=135°∴∠APB=180°−∠PAB−∠ABP=180°−30°−135°=15°(2)作PH⊥AB于H如图:则△PBH是等腰直角三角形∴BH=PH设BH=PH=x海里由题意得:AB=40×3060=20(海里)在Rt△APH中tan∠PAB=tan30°=PHAH =√33即x20+x =√33解得:x=10√3+10≈27.32>25且符合题意∴海监船继续向正东方向航行安全.【解析】(1)由题意得∠PAB=30°∠APB=135°由三角形内角和定理即可得出答案(2)作PH⊥AB于H则△PBH是等腰直角三角形BH=PH设BH=PH=x海里求出AB=20海里在Rt△APH中由三角函数定义得出方程解方程即可.本题考查的是解直角三角形的应用−方向角问题以及等腰直角三角形的判定与性质熟练掌握锐角三角函数的概念是解题的关键.23.【答案】解:(1)设89这两个月的月平均增长率为x根据题意可得:256(1+x)2=400解得:x1=14x2=−94(不合题意舍去).答:89这两个月的月平均增长率为25%(2)设当每袋降价m元时根据题意可得:(40−25−m)(400+5m)=4250解得:m1=5m2=−70(不合题意舍去)答:当每袋降价5元时获利4250元.【解析】本题主要考查了一元二次方程的应用本题的关键在于理解题意找到等量关系准确的列出方程是解决问题的关键.(1)由题意可得7月份的销售量为:256件设8月份到9月份销售额的月平均增长率则8月份的销售量为:256(1+x)9月份的销售量为:256(1+x)(1+x)又知三月份的销售量为:400袋由此等量关系列出方程求出x的值即求出了平均增长率(2)利用销量×每件商品的利润=4250求出即可.24.【答案】解:(1)二次函数表达式为:y=a(x−1)2+9将点A的坐标代入上式并解得:a=−1故抛物线的表达式为:y=−x2+2x+8…①则点B(3,5)将点A B的坐标代入一次函数表达式并解得:直线AB的表达式为:y=2x−1(2)存在理由:二次函数对称轴为:x=1则点C(1,1)过点D作y轴的平行线交AB于点H设点D(x,−x2+2x+8)点H(x,2x−1)∵S△DAC=2S△DCM则S△DAC=12DH(x C−x A)=12(−x2+2x+8−2x+1)(1+3)=12(9−1)(1−x)×2解得:x=−1或5(舍去5)故点D(−1,5)(3)设点Q(m,0)点P(s,t)t=−s2+2s+8①当AM是平行四边形的一条边时点M向左平移4个单位向下平移16个单位得到A同理点Q(m,0)向左平移4个单位向下平移16个单位为(m−4,−16)即为点P 即:m−4=s−16=t而t=−s2+2s+8解得:s=6或−4故点P(6,−16)或(−4,−16)②当AM是平行四边形的对角线时由中点公式得:m+s=−2t=2而t=−s2+2s+8解得:s=1±√7故点P(1+√7,2)或(1−√7,2)综上点P(6,−16)或(−4,−16)或(1+√7,2)或(1−√7,2).【解析】(1)设二次函数表达式为:y=a(x−1)2+9即可求解(2)S△DAC=2S△DCM则S△DAC=12DH(x C−x A)=12(−x2+2x+8−2x+1)(1+3)=12(9−1)(1−x)×2即可求解(3)分AM是平行四边形的一条边AM是平行四边形的对角线两种情况分别求解即可.本题考查的是二次函数综合运用涉及到一次函数平行四边形性质图形的面积计算等其中(3)要注意分类求解避免遗漏.25.【答案】解:(1)当P Q重合时PF=DF∵F为BC中点∴CF=12BC=12×8=4∵四边形ABCD是矩形∴AB=CD=3∠C=90°∴PF=DF=√CF2+CD2=√42+32=5 (2)过E作EG⊥BC于G如图②所示:则∠EGF=90°∴四边形ABGE是矩形∴EG=AB=3AE=BG四边形ABCD是矩形∴AD//BC∠ADC=90°又tanP=12则DQDP=12∵AD//BC∴△PDQ∽△FCQ∴DQDP=CQFC=12∵∠EFP=90°∴∠EFG+∠QFC=90°∠QFC+∠FQC=90°∴∠EFG=∠FQC ∴△EGF∽△FCQ∴CQFC=GFEG=12∴GF=12EG=32∴AE=BG=BF−GF=4−32=52(3)①当Q在线段CD上时如图②所示:∵△EGF∽△FCQ∴EGFC =GFQC即34=4−xQC∴QC=43(4−x)∴y=12QC⋅FC=12×43(4−x)×4=83(4−x)②当Q在线段CD的延长线上时过P作PH⊥BC于H过E作EG⊥BC于G如图③所示:则∠PHF=∠EGF=90°四边形ABGE四边形EGHP四边形CDPH都是矩形∴AB=EG=PH=CD=3PD=CH∵∠EFP=90°∴∠EFG+∠PFH=90°∠PFH+∠FPH=90°∴∠EFG=∠FPH∴△EGF∽△FHP∴EGFH =GFPH即:3FH=4−x3∴FH=94−x∴CH=PD=CF−FH=4−94−x∴y=12FH⋅PH+CH⋅CD=12×94−x×3+(4−94−x)×3=12−278−2x.【解析】(1)当P Q重合时PF=DF求出CF=12BC=4由勾股定理即可得出结果(2)过E作EG⊥BC于G则∠EGF=90°四边形ABGE是矩形得出EG=AB=3AE=BG由tanP=12则DQDP =12易证△PDQ∽△FCQ得出DQDP=CQFC=12证得∠EFG=∠FQC则△EGF∽△FCQ得出CQFC=GF EG =12则GF=12EG=32即可得出结果(3)①当Q在线段CD上时由△EGF∽△FCQ得出EGFC =GFQC求出QC=43(4−x)由y=12QC⋅FC即可得出结果②当Q在线段CD的延长线上时过P作PH⊥BC于H过E作EG⊥BC于G则∠PHF=∠EGF=90°证明△EGF∽△FHP得出EGFH =GFPH求出FH=94−x得出CH=PD=CF−FH=4−94−x由y=12FH⋅PH+CH⋅CD即可得出结果.本题是四边形综合题主要考查了矩形的判定与性质勾股定理相似三角形的判定与性质三角形面积与矩形面积的计算等知识熟练掌握矩形的性质证明三角形相似是解题的关键.。

中考模拟考试数学试卷及答案解析(共五套)

中考模拟考试数学试卷及答案解析(共五套)
(3)生活中,无论油价如何变化,有人总按相同金额加油,有人总按相同油量加油,结合(2)的计算结果,建议按相同加油更合算(填“金额”或“油量”).
19.(8分)为了提高农副产品的国际竞争力,我国一些行业协会对农副产品的规格进行了划分.某外贸公司要出口一批规格为75g的鸡腿,现有两个厂家提供货源,它们的价格相同,鸡腿的品质相近质检员分别从两厂的产品中抽样调查了20只鸡腿,它们的质量(单位:g)如下:
(4)某外贸公司从甲厂采购了20000只鸡腿,并将质量(单位:g)在71≤x<77的鸡腿加工成优等品,请估计可以加工成优等品的鸡腿有多少只?
20.(8分)图1是疫情期间测温员用“额温枪”对小红测温时的实景图,图2是其侧面示意图,其中枪柄BC与手臂MC始终在同一直线上,枪身BA与额头保持垂直.量得胳膊MN=28cm,MB=42cm,肘关节M与枪身端点A之间的水平宽度为25.3cm(即MP的长度),枪身BA=8.5cm.
18.(8分)甲,乙两人去市场采购相同价格的同一种商品,甲用2400元购买的商品数量比乙用3000元购买的商品数量少10件.
(1)求这种商品的单价;
(2)甲,乙两人第二次再去采购该商品时,单价比上次少了20元/件,甲购买商品的总价与上次相同,乙购买商品的数量与上次相同,则甲两次购买这种商品的平均单价是元/件,乙两次购买这种商品的平均单价是元/件.
C.三四线城市购买新能源汽车用户达到11万
D.四线城市以下购买新能源汽车用户最少
【分析】根据扇形统计图中的数据一一分析即可判断.
【解答】解:A、一线城市购买新能源汽车的用户最多,故本选项正确,不符合题意;
B、二线城市购买新能源汽车用户达37%,故本选项正确,不符合题意;
C、由扇形统计图中的数据不能得出三四线城市购买新能源汽车用户达到11万,故本选项错误,符合题意;

中考数学模拟试题(含答案和解析)

中考数学模拟试题(含答案和解析)

中考数学模拟试题(含答案和解析)一、选择题(本题有10小题.每小题4分.共40分)1.(4分)给出四个实数.2.0.﹣1.其中负数是()A.B.2 C.0 D.﹣1 2.(4分)移动台阶如图所示.它的主视图是()A.B.C.D.3.(4分)计算a6•a2的结果是()A.a3B.a4C.a8D.a124.(4分)某校九年级“诗歌大会”比赛中.各班代表队得分如下(单位:分):9.7.8.7.9.7.6.则各代表队得分的中位数是()A.9分B.8分C.7分D.6分5.(4分)在一个不透明的袋中装有10个只有颜色不同的球.其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球.是白球的概率为()A.B.C.D.6.(4分)若分式的值为0.则x的值是()A.2 B.0 C.﹣2 D.﹣5 7.(4分)如图.已知一个直角三角板的直角顶点与原点重合.另两个顶点A.B的坐标分别为(﹣1.0).(0.).现将该三角板向右平移使点A与点O重合.得到△OCB′.则点B的对应点B′的坐标是()A.(1.0)B.(.)C.(1.)D.(﹣1.)8.(4分)学校八年级师生共466人准备参加社会实践活动.现已预备了49座和37座两种客车共10辆.刚好坐满.设49座客车x 辆.37座客车y辆.根据题意可列出方程组()A.B.C.D.9.(4分)如图.点A.B在反比例函数y=(x>0)的图象上.点C.D 在反比例函数y=(k>0)的图象上.AC∥BD∥y轴.已知点A.B 的横坐标分别为1.2.△OAC与△ABD的面积之和为.则k的值为()A.4 B.3 C.2 D.10.(4分)我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形.得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理.如图所示的矩形由两个这样的图形拼成.若a=3.b=4.则该矩形的面积为()A.20 B.24 C.D.二、填空题(本题有6小题.每小题5分.共30分)11.(5分)分解因式:a2﹣5a=.12.(5分)已知扇形的弧长为2π.圆心角为60°.则它的半径为.13.(5分)一组数据1.3.2.7.x.2.3的平均数是3.则该组数据的众数为.14.(5分)不等式组的解是.15.(5分)如图.直线y=﹣x+4与x轴、y轴分别交于A.B两点.C 是OB的中点.D是AB上一点.四边形OEDC是菱形.则△OAE的面积为.16.(5分)小明发现相机快门打开过程中.光圈大小变化如图1所示.于是他绘制了如图2所示的图形.图2中六个形状大小都相同的四边形围成一个圆的内接正六边形和一个小正六边形.若PQ所在的直线经过点M.PB=5cm.小正六边形的面积为cm2.则该圆的半径为cm.三、解答题(本题有8小题.共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(10分)(1)计算:(﹣2)2﹣+(﹣1)0.(2)化简:(m+2)2+4(2﹣m).18.(8分)如图.在四边形ABCD中.E是AB的中点.AD∥EC.∠AED =∠B.(1)求证:△AED≌△EBC.(2)当AB=6时.求CD的长.19.(8分)现有甲、乙、丙等多家食品公司在某市开设蛋糕店.该市蛋糕店数量的扇形统计图如图所示.其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店.请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数.(2)甲公司为了扩大市场占有率.决定在该市增设蛋糕店.在其余蛋糕店数量不变的情况下.若要使甲公司经营的蛋糕店数量达到全市的20%.求甲公司需要增设的蛋糕店数量.20.(8分)如图.P.Q是方格纸中的两格点.请按要求画出以PQ为对角线的格点四边形.(1)画出一个面积最小的▱P AQB.(2)画出一个四边形PCQD.使其是轴对称图形而不是中心对称图形.且另一条对角线CD由线段PQ以某一格点为旋转中心旋转得到.21.(10分)如图.抛物线y=ax2+bx(a≠0)交x轴正半轴于点A.直线y=2x经过抛物线的顶点M.已知该抛物线的对称轴为直线x =2.交x轴于点B.(1)求a.b的值.(2)P是第一象限内抛物线上的一点.且在对称轴的右侧.连接OP.BP.设点P的横坐标为m.△OBP的面积为S.记K=.求K关于m的函数表达式及K的范围.22.(10分)如图.D是△ABC的BC边上一点.连接AD.作△ABD的外接圆.将△ADC沿直线AD折叠.点C的对应点E落在⊙O上.(1)求证:AE=AB.(2)若∠CAB=90°.cos∠ADB =.BE=2.求BC的长.23.(12分)温州某企业安排65名工人生产甲、乙两种产品.每人每天生产2件甲或1件乙.甲产品每件可获利15元.根据市场需求和生产经验.乙产品每天产量不少于5件.当每天生产5件时.每件可获利120元.每增加1件.当天平均每件利润减少2元.设每天安排x 人生产乙产品.(1)根据信息填表:产品种类每天工人数(人)每天产量(件)每件产品可获利润(元)甲15乙x x(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元.求每件乙产品可获得的利润.(3)该企业在不增加工人的情况下.增加生产丙产品.要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品).丙产品每件可获利30元.求每天生产三种产品可获得的总利润W(元)的最大值及相应的x值.24.(14分)如图.已知P为锐角∠MAN内部一点.过点P作PB⊥AM 于点B.PC⊥AN于点C.以PB为直径作⊙O.交直线CP于点D.连接AP.BD.AP交⊙O于点E.(1)求证:∠BPD=∠BAC.(2)连接EB.ED.当tan∠MAN=2.AB=2时.在点P的整个运动过程中.①若∠BDE=45°.求PD的长.②若△BED为等腰三角形.求所有满足条件的BD的长.(3)连接OC.EC.OC交AP于点F.当tan∠MAN=1.OC∥BE时.记△OFP的面积为S1.△CFE的面积为S2.请写出的值.参考答案与试题解析一、选择题(本题有10小题.每小题4分.共40分.每小题只有一个选项是正确的.不选、多选、错选.均不给分)1.【分析】直接利用负数的定义分析得出答案.【解答】解:四个实数.2.0.﹣1.其中负数是:﹣1.故选:D.【点评】此题主要考查了实数.正确把握负数的定义是解题关键.2.【分析】根据从正面看得到的图形是主视图.可得答案.【解答】解:从正面看是三个台阶.故选:B.【点评】本题考查了简单组合体的三视图.从正面看得到的图形是主视图.3.【分析】根据同底数幂相乘.底数不变.指数相加进行计算.【解答】解:a6•a2=a8.故选:C.【点评】此题主要考查了同底数幂的乘法.关键是掌握同底数幂的乘法的计算法则.4.【分析】将数据重新排列后.根据中位数的定义求解可得.【解答】解:将数据重新排列为6、7、7、7、8、9、9.所以各代表队得分的中位数是7分.故选:C.【点评】本题主要考查中位数.解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列.如果数据的个数是奇数.则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数.则中间两个数据的平均数就是这组数据的中位数.5.【分析】根据概率的求法.找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵袋子中共有10个小球.其中白球有2个.∴摸出一个球是白球的概率是=.故选:D.【点评】此题主要考查了概率的求法.如果一个事件有n种可能.而且这些事件的可能性相同.其中事件A出现m种结果.那么事件A的概率P(A)=.6.【分析】分式的值等于零时.分子等于零.【解答】解:由题意.得x﹣2=0.解得.x=2.经检验.当x=2时.=0.故选:A.【点评】本题考查了分式的值为零的条件.注意.分式方程需要验根.7.【分析】根据平移的性质得出平移后坐标的特点.进而解答即可.【解答】解:因为点A与点O对应.点A(﹣1.0).点O(0.0). 所以图形向右平移1个单位长度.所以点B的对应点B'的坐标为(0+1.).即(1.).故选:C.【点评】此题考查坐标与图形变化.关键是根据平移的性质得出平移后坐标的特点.8.【分析】本题中的两个等量关系:49座客车数量+37座客车数量=10.两种客车载客量之和=466.【解答】解:设49座客车x辆.37座客车y辆.根据题意可列出方程组.故选:A.【点评】考查了由实际问题抽象出二元一次方程组.根据实际问题中的条件列方程组时.要注意抓住题目中的一些关键性词语.找出等量关系.列出方程组.9.【分析】先求出点A.B的坐标.再根据AC∥BD∥y轴.确定点C.点D的坐标.求出AC.BD.最后根据.△OAC与△ABD的面积之和为.即可解答.【解答】解:∵点A.B在反比例函数y=(x>0)的图象上.点A.B 的横坐标分别为1.2.∴点A的坐标为(1.1).点B的坐标为(2.).∵AC∥BD∥y轴.∴点C.D的横坐标分别为1.2.∵点C.D在反比例函数y=(k>0)的图象上.∴点C的坐标为(1.k).点D的坐标为(2.).∴AC=k﹣1.BD=.∴S△OAC=(k﹣1)×1=.S△ABD=•×(2﹣1)=.∵△OAC与△ABD的面积之和为.∴.解得:k=3.故选:B.【点评】本题考查了反比例函数系数k的几何意义.解决本题的关键是求出AC.BD的长.10.【分析】欲求矩形的面积.则求出小正方形的边长即可.由此可设小正方形的边长为x.在直角三角形ACB中.利用勾股定理可建立关于x的方程.利用整体代入的思想解决问题.进而可求出该矩形的面积.【解答】解:设小正方形的边长为x.∵a=3.b=4.∴AB=3+4=7.在Rt△ABC中.AC2+BC2=AB2.即(3+x)2+(x+4)2=72.整理得.x2+7x﹣12=0.而长方形面积为x2+7x+12=12+12=24∴该矩形的面积为24.故选:B.【点评】本题考查了勾股定理的证明以及运用和一元二次方程的运用.求出小正方形的边长是解题的关键.二、填空题(本题有6小题.每小题5分.共30分)11.【分析】提取公因式a进行分解即可.【解答】解:a2﹣5a=a(a﹣5).故答案是:a(a﹣5).【点评】考查了因式分解﹣提公因式法:如果一个多项式的各项有公因式.可以把这个公因式提出来.从而将多项式化成两个因式乘积的形式.这种分解因式的方法叫做提公因式法.12.【分析】根据弧长公式直接解答即可.【解答】解:设半径为r.2.解得:r=6.故答案为:6【点评】此题考查弧长公式.关键是根据弧长公式解答.13.【分析】根据平均数的定义可以先求出x的值.再根据众数的定义求出这组数的众数即可.【解答】解:根据题意知=3.解得:x=3.则数据为1、2、2、3、3、3、7.所以众数为3.故答案为:3.【点评】本题考查的是平均数和众数的概念.注意一组数据的众数可能不只一个.14.【分析】先求出不等式组中每一个不等式的解集.再求出它们的公共部分即可.【解答】解:.解①得x>2.解②得x>4.故不等式组的解集是x>4.故答案为:x>4.【点评】考查了解一元一次不等式组.一元一次不等式组的解法:解一元一次不等式组时.一般先求出其中各不等式的解集.再求出这些解集的公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.15.【分析】延长DE交OA于F.如图.先利用一次函数解析式确定B (0.4).A(4.0).利用三角函数得到∠OBA=60°.接着根据菱形的性质判定△BCD为等边三角形.则∠BCD=∠COE=60°.所以∠EOF=30°.则EF=OE=1.然后根据三角形面积公式计算.【解答】解:延长DE交OA于F.如图.当x=0时.y=﹣x+4=4.则B(0.4).当y=0时.﹣x+4=0.解得x=4.则A(4.0).在Rt△AOB中.tan∠OBA==.∴∠OBA=60°.∵C是OB的中点.∴OC=CB=2.∵四边形OEDC是菱形.∴CD=BC=DE=CE=2.CD∥OE.∴△BCD为等边三角形.∴∠BCD=60°.∴∠COE=60°.∴∠EOF=30°.∴EF=OE=1.△OAE的面积=×4×1=2.故答案为2.【点评】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b.(k≠0.且k.b为常数)的图象是一条直线.它与x轴的交点坐标是(﹣.0);与y轴的交点坐标是(0.b).直线上任意一点的坐标都满足函数关系式y=kx+b.也考查了菱形的性质.16.【分析】设两个正六边形的中心为O.连接OP.OB.过O作OG⊥PM.OH⊥AB.由正六边形的性质及邻补角性质得到三角形PMN为等边三角形.由小正六边形的面积求出边长.确定出PM的长.进而求出三角形PMN的面积.利用垂径定理求出PG的长.在直角三角形OPG中.利用勾股定理求出OP的长.设OB=xcm.根据勾股定理列出关于x的方程.求出方程的解即可得到结果.【解答】解:设两个正六边形的中心为O.连接OP.OB.过O作OG ⊥PM.OH⊥AB.由题意得:∠MNP=∠NMP=∠MPN=60°.∵小正六边形的面积为cm2.∴小正六边形的边长为cm.即PM=7cm.∴S△MPN=cm2.∵OG⊥PM.且O为正六边形的中心.∴PG=PM=cm.OG=PM=.在Rt△OPG中.根据勾股定理得:OP==7cm.设OB=xcm.∵OH⊥AB.且O为正六边形的中心.∴BH=x.OH=x.∴PH=(5﹣x)cm.在Rt△PHO中.根据勾股定理得:OP2=(x)2+(5﹣x)2=49. 解得:x=8(负值舍去).则该圆的半径为8cm.故答案为:8【点评】此题考查了正多边形与圆.熟练掌握正多边形的性质是解本题的关键.三、解答题(本题有8小题.共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.【分析】(1)本题涉及零指数幂、乘方、二次根式化简3个考点.在计算时.需要针对每个考点分别进行计算.然后根据实数的运算法则求得计算结果.(2)根据完全平方公式和去括号法则计算.再合并同类项即可求解.【解答】解:(1)(﹣2)2﹣+(﹣1)0=4﹣3+1=5﹣3;(2)(m+2)2+4(2﹣m)=m2+4m+4+8﹣4m=m2+12.【点评】本题主要考查了实数的综合运算能力.是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、乘方、二次根式、完全平方公式、去括号法则、合并同类项等考点的运算.18.【分析】(1)利用ASA即可证明;(2)首先证明四边形AECD是平行四边形.推出CD=AE=AB即可解决问题;【解答】(1)证明:∵AD∥EC.∴∠A=∠BEC.∵E是AB中点.∴AE=EB.∵∠AED=∠B.∴△AED≌△EBC.(2)解:∵△AED≌△EBC.∴AD=EC.∵AD∥EC.∴四边形AECD是平行四边形.∴CD=AE.∵AB=6.∴CD=AB=3.【点评】本题考查全等三角形的判定和性质、平行四边形的判定和性质等知识.解题的关键是正确寻找全等三角形解决问题.属于中考常考题型.19.【分析】(1)由乙公司蛋糕店数量及其占总数的比例可得总数量.再用总数量乘以甲公司数量占总数量的比例可得;(2)设甲公司增设x家蛋糕店.根据“该市增设蛋糕店数量达到全市的20%”列方程求解可得.【解答】解:(1)该市蛋糕店的总数为150÷=600家.甲公司经营的蛋糕店数量为600×=100家;(2)设甲公司增设x家蛋糕店.由题意得:20%×(600+x)=100+x.解得:x=25.答:甲公司需要增设25家蛋糕店.【点评】本题主要考查扇形统计图与一元一次方程的应用.解题的关键是掌握扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数及根据题意确定相等关系.并据此列出方程.20.【分析】(1)画出面积是4的格点平行四边形即为所求;(2)画出以PQ为对角线的等腰梯形即为所求.【解答】解:(1)如图①所示:(2)如图②所示:【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知.对应角都相等都等于旋转角.对应线段也相等.由此可以通过作相等的角.在角的边上截取相等的线段的方法.找到对应点.顺次连接得出旋转后的图形.也考查了轴对称变换.21.【分析】(1)根据直线y=2x求得点M(2.4).由抛物线的对称轴及抛物线上的点M的坐标列出关于a、b的方程组.解之可得;(2)作PH⊥x轴.根据三角形的面积公式求得S=﹣m2+4m.根据公式可得K的解析式.再结合点P的位置得出m的范围.利用一次函数的性质可得答案.【解答】解:(1)将x=2代入y=2x.得:y=4.∴点M(2.4).由题意.得:.∴;(2)如图.过点P作PH⊥x轴于点H.∵点P的横坐标为m.抛物线的解析式为y=﹣x2+4x.∴PH=﹣m2+4m.∵B(2.0).∴OB=2.∴S=OB•PH=×2×(﹣m2+4m)=﹣m2+4m.∴K==﹣m+4.由题意得A(4.0).∵M(2.4).∴2<m<4.∵K随着m的增大而减小.∴0<K<2.【点评】本题主要考查抛物线与x轴的交点.解题的关键是掌握待定系数法求函数解析式及一次函数的性质等知识点.22.【分析】(1)由折叠得出∠AED=∠ACD、AE=AC.结合∠ABD =∠AED知∠ABD=∠ACD.从而得出AB=AC.据此得证;(2)作AH⊥BE.由AB=AE且BE=2知BH=EH=1.根据∠ABE =∠AEB=∠ADB知cos∠ABE=cos∠ADB==.据此得AC=AB=3.利用勾股定理可得答案.【解答】解:(1)由折叠的性质可知.△ADE≌△ADC.∴∠AED=∠ACD.AE=AC.∵∠ABD=∠AED.∴∠ABD=∠ACD.∴AB=AC.∴AE=AB;(2)如图.过A作AH⊥BE于点H.∵AB=AE.BE=2.∴BH=EH=1.∵∠ABE=∠AEB=∠ADB.cos∠ADB=.∴cos∠ABE=cos∠ADB=.∴=.∴AC=AB=3.∵∠BAC=90°.AC=AB.∴BC=3.【点评】本题主要考查三角形的外接圆.解题的关键是掌握折叠的性质、圆周角定理、等腰三角形的性质及三角函数的应用等知识点.23.【分析】(1)根据题意列代数式即可;(2)根据(1)中数据表示每天生产甲乙产品获得利润根据题意构造方程即可;(3)根据每天甲、丙两种产品的产量相等得到m与x之间的关系式.用x表示总利润利用二次函数性质讨论最值.【解答】解:(1)由已知.每天安排x人生产乙产品时.生产甲产品的有(65﹣x)人.共生产甲产品2(65﹣x)130﹣2x件.在乙每件120元获利的基础上.增加x人.利润减少2x元每件.则乙产品的每件利润为120﹣2(x﹣5)=130﹣2x.故答案为:65﹣x;130﹣2x;130﹣2x;(2)由题意15×2(65﹣x)=x(130﹣2x)+550∴x2﹣80x+700=0解得x1=10.x2=70(不合题意.舍去)∴130﹣2x=110(元)答:每件乙产品可获得的利润是110元.(3)设生产甲产品m人W=x(130﹣2x)+15×2m+30(65﹣x﹣m)=﹣2(x﹣25)2+3200∵2m=65﹣x﹣m∴m=∵x、m都是非负整数∴取x=26时.m=13.65﹣x﹣m=26即当x=26时.W最大值=3198答:安排26人生产乙产品时.可获得的最大利润为3198元.【点评】本题以盈利问题为背景.考查一元二次方程和二次函数的实际应用.解答时注意利用未知量表示相关未知量.24.【分析】(1)由PB⊥AM、PC⊥AN知∠ABP=∠ACP=90°.据此得∠BAC+∠BPC=180°.根据∠BPD+∠BPC=180°即可得证;(2)①由∠APB=∠BDE=45°、∠ABP=90°知BP=AB=2.根据tan∠BAC=tan∠BPD==2知BP=PD.据此可得答案;②根据等腰三角形的定义分BD=BE、BE=DE及BD=DE三种情况分类讨论求解可得;(3)作OH⊥DC.由tan∠BPD=tan∠MAN=1知BD=PD.据此设BD=PD=2a、PC=2b.从而得出OH=a、CH=a+2b、AC=4a+2b.证△ACP∽△CHO得=.据此得出a=b及CP=2a、CH=3a、OC=a.再证△CPF∽△COH.得=.据此求得CF=a、OF=a.证OF为△PBE的中位线知EF=PF.从而依据=可得答案.【解答】解:(1)∵PB⊥AM、PC⊥AN.∴∠ABP=∠ACP=90°.∴∠BAC+∠BPC=180°.又∠BPD+∠BPC=180°.∴∠BPD=∠BAC;(2)①如图1.∵∠APB=∠BDE=45°.∠ABP=90°.∴BP=AB=2.∵∠BPD=∠BAC.∴tan∠BPD=tan∠BAC.∴=2.∴BP=PD.∴PD=2;②当BD=BE时.∠BED=∠BDE.∴∠BPD=∠BPE=∠BAC.∴tan∠BPE=2.∵AB=2.∴BP=.∴BD=2;当BE=DE时.∠EBD=∠EDB.∵∠APB=∠BDE、∠DBE=∠APC.∴∠APB=∠APC.∴AC=AB=2.过点B作BG⊥AC于点G.得四边形BGCD是矩形.∵AB=2、tan∠BAC=2.∴AG=2.∴BD=CG=2﹣2;当BD=DE时.∠DEB=∠DBE=∠APC.∵∠DEB=∠DPB=∠BAC.∴∠APC=∠BAC.设PD=x.则BD=2x.∴=2.∴.∴x=.∴BD=2x=3.综上所述.当BD=2、3或2﹣2时.△BDE为等腰三角形;(3)如图3.过点O作OH⊥DC于点H.∵tan∠BPD=tan∠MAN=1.∴BD=PD.设BD=PD=2a、PC=2b.则OH=a、CH=a+2b、AC=4a+2b.∵OC∥BE且∠BEP=90°.∴∠PFC=90°.∴∠P AC+∠APC=∠OCH+∠APC=90°.∴∠OCH=∠P AC.∴△ACP∽△CHO.∴=.即OH•AC=CH•PC.∴a(4a+2b)=2b(a+2b).∴a=b.即CP=2a、CH=3a.则OC=a.∵△CPF∽△COH.∴=.即=.则CF=a.OF=OC﹣CF=a.∵BE∥OC且BO=PO.∴OF为△PBE的中位线.∴EF=PF.∴==.【点评】本题主要考查圆的综合问题.解题的关键是掌握圆周角定理、相似三角形的判定与性质、中位线定理、勾股定理及三角函数的应用等知识点.。

中考数学模拟试卷(附含答案)

中考数学模拟试卷(附含答案)

中考数学模拟试卷(附含答案)(满分:120分 ;考试时间:120分钟)第Ⅰ卷(选择题 共30分)一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.下列各数中是负数的是( )A .-(-3)B .-(-3)2C .-(-2)3D .|-2| 2、下列运算正确的是( )A .2142-⎛⎫=- ⎪⎝⎭B .235325a a a +=C .2(5)5-=-D . 2a ²·3a ³=6a 53、 下列四个图形:从中任取一个是中心对称图形的概率是( )A .B .1C .D .4、如图,在△ABC 中,∠A=36°,AB=AC ,AB 的垂直平分线OD 交AB 于点O ,交AC 于点D ,连接BD ,下列结论错误的是( ) A . ∠C=2∠A B . BD 平分∠ABC C . S △BCD =S △BOD D . CD AC AD ⋅=25、如图,扇形AOB 的半径为1,∠AOB=90°,以AB 为直径画半圆,则图中阴影部分的面积为( ) A π41 B 21-π C 21 D 2141+π(第4题图) (第5题图)6、下面四个几何体中,左视图是四边形的几何体共有( )A . 1个B . 2个C . 3个D . 4个7.若A (1,413y -)、B (2,45y -)、C (3,41y )为二次函数245y x x =+-图象上的三点,则 的大小关系是( ) A .123y y y << B .213y y y <<C .312y y y <<D .132y y y <<8、我校为了丰富学生的校园生活,准备购买一批陶笛,已知A 型陶笛比B 型陶笛的单价低20元,用2700元购买A 型陶笛与用4500购买B 型陶笛的数量相同,设A 型陶笛的单价为x 元,依题意,下面所列方程正确的是( ) A .=B .=C .=D .=9、若关于x 的不等式⎩⎨⎧≤-<-1270x m x 的整数解共有4个,则m 的取值范围是A .76<<mB .76<≤mC .76≤≤mD .76≤<m10.如图,⊿ABC 和⊿CDE 均为等腰直角三角形,点B,C,D 在一条直线上,点M 是AE 的中点,下列结论:①BM=DM. ②tan∠AEC=CDBC;③S ⊿ABC +S ⊿CDE ≧S ⊿ACE ; ④ BM⊥DM;正确的结论个数是( ) A .4个 B .3个 C .2个 D .1个二、填空题:(本大题共8个小题,只要求填写最后结果,每小题填对的3分,满分24分) 11、抛物线y=1)2(212-+x 的顶点坐标是___________ 12、分解因式:ab 4−4ab 3+4ab 2=______.13、用一个圆心角为120,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为___________ 14、关于x 的一元二次方程()01452=---x x a 有实数根,则a 的取值范围是__________15、如图,两个反比例函数x y x y 36==和在第一象限内的图象依次是C 1和C 2,设点P 在C 1上,PC ⊥x 轴于MEDCBA 第10题图y y y 321、、点C ,交C 2于点A ,PD ⊥y 轴于点D ,交C 2于点B ; 则四边形PAOB的面积为 .16、如图,在边长为9的正三角形ABC 中,BD=3,∠ADE=60°,则AE 的长为_____________ 17.如图,直线434--=x y 交x 轴与A ,交y 轴于点B ,点P 是x 轴上一动点,以点P 为圆心,以1个单位长为半径作⊙P ,当⊙P 与直线AB 相切时,点P 的坐标是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年贵州省毕节市中考数学试卷一、选择题(本大题共15小题,每小题3分,共45分.在每小题的四个选项中,只有一个选项正确,请把你认为正确的选项填涂在相应的答题卡上)1.(3分)下列实数中,无理数为()A.0.2 B.C.D.22.(3分)2017年毕节市参加中考的学生约为115000人,将115000用科学记数法表示为()A.1.15×106B.0.115×106C.11.5×104D.1.15×1053.(3分)下列计算正确的是()A.a3•a3=a9 B.(a+b)2=a2+b2C.a2÷a2=0 D.(a2)3=a64.(3分)一个几何体是由一些大小相同的小立方块摆成的,其主视图和俯视图如图所示,则组成这个几何体的小立方块最少有()A.3个 B.4个 C.5个 D.6个5.(3分)对一组数据:﹣2,1,2,1,下列说法不正确的是()A.平均数是1 B.众数是1 C.中位数是1 D.极差是46.(3分)如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=70°,则∠AED=()A.55°B.125°C.135° D.140°7.(3分)关于x的一元一次不等式≤﹣2的解集为x≥4,则m的值为()A.14 B.7 C.﹣2 D.28.(3分)为估计鱼塘中的鱼的数量,可以先从鱼塘中随机打捞50条鱼,在每条鱼身上做上记号后,把这些鱼放归鱼塘,经过一段时间,等这些鱼完全混合于鱼群后,再从鱼塘中随机打捞50条鱼,发现只有2条鱼是前面做好记号的,那么可以估计这个鱼塘鱼的数量约为()A.1250条B.1750条C.2500条D.5000条9.(3分)关于x的分式方程+5=有增根,则m的值为()A.1 B.3 C.4 D.510.(3分)甲、乙、丙、丁参加体育训练,近期10次跳绳测试的平均成绩都是每分钟174个,其方差如下表:选手甲乙丙丁方差0.0230.0180.0200.021则这10次跳绳中,这四个人发挥最稳定的是()A.甲B.乙C.丙D.丁11.(3分)把直线y=2x﹣1向左平移1个单位,平移后直线的关系式为()A.y=2x﹣2 B.y=2x+1 C.y=2x D.y=2x+212.(3分)如图,AB是⊙O的直径,CD是⊙O的弦,∠ACD=30°,则∠BAD为()A.30°B.50°C.60°D.70°13.(3分)如图,Rt△ABC中,∠ACB=90°,斜边AB=9,D为AB的中点,F为CD上一点,且CF=CD,过点B作BE∥DC交AF的延长线于点E,则BE的长为()A.6 B.4 C.7 D.1214.(3分)如图,在正方形ABCD中,点E,F分别在BC,CD上,且∠EAF=45°,将△ABE绕点A顺时针旋转90°,使点E落在点E'处,则下列判断不正确的是()A.△AEE′是等腰直角三角形B.AF垂直平分EE'C.△E′EC∽△AFD D.△AE′F是等腰三角形15.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD平分∠CAB交BC于D点,E,F分别是AD,AC上的动点,则CE+EF的最小值为()A.B.C.D.6二、填空题(本大题共5小题,每小题5分,共25分,请把答案填在答题卡相应题号后的横线上)16.(5分)分解因式:2x2﹣8xy+8y2=.17.(5分)正六边形的边长为8cm,则它的面积为cm2.18.(5分)如图,已知一次函数y=kx﹣3(k≠0)的图象与x轴,y轴分别交于A,B两点,与反比例函数y=(x>0)交于C点,且AB=AC,则k的值为.19.(5分)记录某足球队全年比赛结果(“胜”、“负”、“平”)的条形统计图和扇形统计图(不完整)如下:根据图中信息,该足球队全年比赛胜了场.20.(5分)观察下列运算过程:计算:1+2+22+ (210)解:设S=1+2+22+…+210,①①×2得2S=2+22+23+…+211,②②﹣①得S=211﹣1.所以,1+2+22+…+210=211﹣1运用上面的计算方法计算:1+3+32+…+32017=.三、解答题(本大题共7小题,各题分值见题号后,共80分.请解答在答题卡相应题号后,应写出必要的文字说明、证明过程或演算步骤)21.(8分)计算:(﹣)﹣2+(π﹣)0﹣|﹣|+tan60°+(﹣1)2017.22.(8分)先化简,再求值:(+)÷,且x为满足﹣3<x<2的整数.23.(10分)由于只有1张市运动会开幕式的门票,小王和小张都想去,两人商量采取转转盘(如图,转盘盘面被分为面积相等,且标有数字1,2,3,4的4个扇形区域)的游戏方式决定谁胜谁去观看.规则如下:两人各转动转盘一次,当转盘指针停止,如两次指针对应盘面数字都是奇数,则小王胜;如两次指针对应盘面数字都是偶数,则小张胜;如两次指针对应盘面数字是一奇一偶,视为平局.若为平局,继续上述游戏,直至分出胜负.如果小王和小张按上述规则各转动转盘一次,则(1)小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图的方法说明理由.24.(12分)如图,在▱ABCD中过点A作AE⊥DC,垂足为E,连接BE,F为BE 上一点,且∠AFE=∠D.(1)求证:△ABF∽△BEC;(2)若AD=5,AB=8,sinD=,求AF的长.25.(12分)某同学准备购买笔和本子送给农村希望小学的同学,在市场上了解到某种本子的单价比某种笔的单价少4元,且用30元买这种本子的数量与用50元买这种笔的数量相同.(1)求这种笔和本子的单价;(2)该同学打算用自己的100元压岁钱购买这种笔和本子,计划100元刚好用完,并且笔和本子都买,请列出所有购买方案.26.(14分)如图,已知⊙O的直径CD=6,A,B为圆周上两点,且四边形OABC 是平行四边形,过A点作直线EF∥BD,分别交CD,CB的延长线于点E,F,AO 与BD交于G点.(1)求证:EF是⊙O的切线;(2)求AE的长.27.(16分)如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B(4,0),C(0,﹣4)三点,点P是直线BC下方抛物线上一动点.(1)求这个二次函数的解析式;(2)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;(3)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC 的最大面积.2017年贵州省毕节市中考数学试卷参考答案与试题解析一、选择题(本大题共15小题,每小题3分,共45分.在每小题的四个选项中,只有一个选项正确,请把你认为正确的选项填涂在相应的答题卡上)1.(3分)(2017•毕节市)下列实数中,无理数为()A.0.2 B.C.D.2【分析】有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:是无理数.故选:C.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.(3分)(2017•毕节市)2017年毕节市参加中考的学生约为115000人,将115000用科学记数法表示为()A.1.15×106B.0.115×106C.11.5×104D.1.15×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将115000用科学记数法表示为:1.15×105,故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2017•毕节市)下列计算正确的是()A.a3•a3=a9 B.(a+b)2=a2+b2C.a2÷a2=0 D.(a2)3=a6【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=a6,不符合题意;B、原式=a2+2ab+b2,不符合题意;C、原式=1,不符合题意;D、原式=a6,符合题意,故选D【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.4.(3分)(2017•毕节市)一个几何体是由一些大小相同的小立方块摆成的,其主视图和俯视图如图所示,则组成这个几何体的小立方块最少有()A.3个 B.4个 C.5个 D.6个【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【解答】解:由题中所给出的主视图知物体共两列,且左侧一列高两层,右侧一列最高一层;由俯视图可知左侧两行,右侧一行,于是,可确定左侧只有一个小正方体,而右侧可能是一行单层一行两层,出可能两行都是两层.所以图中的小正方体最少4块,最多5块.故选:B.【点评】本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.5.(3分)(2017•毕节市)对一组数据:﹣2,1,2,1,下列说法不正确的是()A.平均数是1 B.众数是1 C.中位数是1 D.极差是4【分析】根据平均数、众数、中位数、极差的定义以及计算公式分别进行解答即可.【解答】解:A、这组数据的平均数是:(﹣2+1+2+1)÷4=,故原来的说法不正确;B、1出现了2次,出现的次数最多,则众数是1,故原来的说法正确;C、把这组数据从小到大排列为:﹣2,1,1,2,中位数是1,故原来的说法正确;D、极差是:2﹣(﹣2)=4,故原来的说法正确.故选A.【点评】此题主要考查了平均数、众数、中位数、极差的含义和求法,要熟练掌握定义和求法是解题的关键,是一道基础题.6.(3分)(2017•毕节市)如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=70°,则∠AED=()A.55°B.125°C.135° D.140°【分析】根据平行线性质求出∠CAB,根据角平分线求出∠EAB,根据平行线性质求出∠AED即可.【解答】解:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=70°,∴∠CAB=180°﹣70°=110°,∵AE平分∠CAB,∴∠EAB=55°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°﹣55°=125°.故选:B.【点评】本题考查了角平分线定义和平行线性质的应用,注意:平行线的性质有:①两条平行线被第三条直线所截,同位角相等,②两条平行线被第三条直线所截,内错角相等,③两条平行线被第三条直线所截,同旁内角互补.7.(3分)(2017•毕节市)关于x的一元一次不等式≤﹣2的解集为x≥4,则m的值为()A.14 B.7 C.﹣2 D.2【分析】本题是关于x的不等式,应先只把x看成未知数,求得x的解集,再根据x≥4,求得m的值.【解答】解:≤﹣2,m﹣2x≤﹣6,﹣2x≤﹣m﹣6,x≥m+3,∵关于x的一元一次不等式≤﹣2的解集为x≥4,∴m+3=4,解得m=2.故选:D.【点评】考查了不等式的解集,当题中有两个未知字母时,应把关于某个字母的不等式中的字母当成未知数,求得解集,再根据解集进行判断,求得另一个字母的值.8.(3分)(2017•毕节市)为估计鱼塘中的鱼的数量,可以先从鱼塘中随机打捞50条鱼,在每条鱼身上做上记号后,把这些鱼放归鱼塘,经过一段时间,等这些鱼完全混合于鱼群后,再从鱼塘中随机打捞50条鱼,发现只有2条鱼是前面做好记号的,那么可以估计这个鱼塘鱼的数量约为()A.1250条B.1750条C.2500条D.5000条【分析】首先求出有记号的2条鱼在50条鱼中所占的比例,然后根据用样本中有记号的鱼所占的比例等于鱼塘中有记号的鱼所占的比例,即可求得鱼的总条数.【解答】解:由题意可得:50÷=1250(条).故选A.【点评】本题考查了统计中用样本估计总体,表示出带记号的鱼所占比例是解题关键.9.(3分)(2017•毕节市)关于x的分式方程+5=有增根,则m的值为()A.1 B.3 C.4 D.5【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣1=0,得到x=1,然后代入化为整式方程的方程算出m的值.【解答】解:方程两边都乘(x﹣1),得7x+5(x﹣1)=2m﹣1,∵原方程有增根,∴最简公分母(x﹣1)=0,解得x=1,当x=1时,7=2m﹣1,解得m=4,所以m的值为4.故选C.【点评】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.10.(3分)(2017•毕节市)甲、乙、丙、丁参加体育训练,近期10次跳绳测试的平均成绩都是每分钟174个,其方差如下表:选手甲乙丙丁方差0.0230.0180.0200.021则这10次跳绳中,这四个人发挥最稳定的是()【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵S乙2<S丙2<S丁2<S甲2,∴这10次跳绳中,这四个人发挥最稳定的是乙.故选B.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.11.(3分)(2017•毕节市)把直线y=2x﹣1向左平移1个单位,平移后直线的关系式为()A.y=2x﹣2 B.y=2x+1 C.y=2x D.y=2x+2【分析】根据“左加右减”的函数图象平移规律来解答.【解答】解:根据题意,将直线y=2x﹣1向左平移1个单位后得到的直线解析式为:y=2(x+1)﹣1,即y=2x+1,故选B.【点评】本题考查的是一次函数的图象与几何变换,熟知“左加右减、上加下减”的原则是解答此题的关键12.(3分)(2017•毕节市)如图,AB是⊙O的直径,CD是⊙O的弦,∠ACD=30°,则∠BAD为()【分析】连接BD,根据直径所对的圆周角是直角,得∠ADB=90°,根据同弧或等弧所对的圆周角相等,得∠ABD=∠ACD,从而可得到∠BAD的度数.【解答】解:连接BD,∵∠ACD=30°,∴∠ABD=30°,∵AB为直径,∴∠ADB=90°,∴∠BAD=90°﹣∠ABD=60°.故选C.【点评】本题考查了圆周角定理,解答本题的关键是掌握圆周角定理中在同圆或等圆中,同弧或等弧所对的圆周角相等.13.(3分)(2017•毕节市)如图,Rt△ABC中,∠ACB=90°,斜边AB=9,D为AB的中点,F为CD上一点,且CF=CD,过点B作BE∥DC交AF的延长线于点E,则BE的长为()A.6 B.4 C.7 D.12【分析】先根据直角三角形的性质求出CD的长,再由三角形中位线定理即可得出结论.【解答】解:∵Rt△ABC中,∠ACB=90°,斜边AB=9,D为AB的中点,∴CD=AB=4.5.∵CF=CD,∴DF=CD=×4.5=3.∵BE∥DC,∴DF是△ABE的中位线,∴BE=2DF=6.故选A.【点评】本题考查的是三角形中位线定理,熟知三角形的中位线平行于第三边,并且等于第三边的一半是解答此题的关键.14.(3分)(2017•毕节市)如图,在正方形ABCD中,点E,F分别在BC,CD 上,且∠EAF=45°,将△ABE绕点A顺时针旋转90°,使点E落在点E'处,则下列判断不正确的是()A.△AEE′是等腰直角三角形B.AF垂直平分EE'C.△E′EC∽△AFD D.△AE′F是等腰三角形【分析】由旋转的性质得到AE′=AE,∠E′AE=90°,于是得到△AEE′是等腰直角三角形,故A正确;由旋转的性质得到∠E′AD=∠BAE,由正方形的性质得到∠DAB=90°,推出∠E′AF=∠EAF,于是得到AF垂直平分EE',故B正确;根据余角的性质得到∠FE′E=∠DAF,于是得到△E′EC∽△AFD,故C正确;由于AD⊥E′F,但∠E′AD不一定等于∠DAE′,于是得到△AE′F不一定是等腰三角形,故D错误.【解答】解:∵将△ABE绕点A顺时针旋转90°,使点E落在点E'处,∴AE′=AE,∠E′AE=90°,∴△AEE′是等腰直角三角形,故A正确;∵将△ABE绕点A顺时针旋转90°,使点E落在点E'处,∴∠E′AD=∠BAE,∵四边形ABCD是正方形,∴∠DAB=90°,∵∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠E′AD+∠FAD=45°,∴∠E′AF=∠EAF,∵AE′=AE,∴AF垂直平分EE',故B正确;∵AF⊥E′E,∠ADF=90°,∴∠FE′E+∠AFD=∠AFD+∠DAF,∴∠FE′E=∠DAF,∴△E′EC∽△AFD,故C正确;∵AD⊥E′F,但∠E′AD不一定等于∠DAE′,∴△AE′F不一定是等腰三角形,故D错误;故选D.【点评】本题考查了旋转的性质,正方形的性质,相似三角形的判定,等腰直角三角形的判定,线段垂直平分线的判定,正确的识别图形是解题的关键.15.(3分)(2017•毕节市)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD 平分∠CAB交BC于D点,E,F分别是AD,AC上的动点,则CE+EF的最小值为()A.B.C.D.6【分析】依据勾股定理可求得AB的长,然后在AB上取点C′,使AC′=AC,过点C′作C′F⊥AC,垂足为F,交AD与点E,先证明C′E=CE,然后可得到CE+EF=C′E+EF,然后依据垂直线段最短可知当点C′F⊥AC时,CE+EF有最小值,最后利用相似三角形的性质求解即可.【解答】解:如图所示:在AB上取点C′,使AC′=AC,过点C′作C′F⊥AC,垂足为F,交AD与点E.在Rt△ABC中,依据勾股定理可知BA=10.∵AC=AC′,∠CAD=∠C′AD,AE=C′E,∴△AEC≌△AEC′.∴CE=EC′.∴CE+EF=C′E+EF.∴当C′F⊥AC时,CE+EF有最小值.∵C′F⊥AC,BC⊥AC,∴C′F∥BC.∴△AFC′∽△ACB.∴=,即=,解得FC′=.故选:C.【点评】本题主要考查的是相似三角形的性质、勾股定理的应用、轴对称图形的性质,熟练掌握相关图形的性质是解题的关键.二、填空题(本大题共5小题,每小题5分,共25分,请把答案填在答题卡相应题号后的横线上)16.(5分)(2017•毕节市)分解因式:2x2﹣8xy+8y2=2(x﹣2y)2.【分析】首先提取公因式2,进而利用完全平方公式分解因式即可.【解答】解:2x2﹣8xy+8y2=2(x2﹣4xy+4y2)=2(x﹣2y)2.故答案为:2(x﹣2y)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练利用完全平方公式分解因式是解题关键.17.(5分)(2017•毕节市)正六边形的边长为8cm,则它的面积为96cm2.【分析】先根据题意画出图形,作出辅助线,根据∠COD的度数判断出其形状,求出小三角形的面积即可解答.【解答】解:如图所示,正六边形ABCD中,连接OC、OD,过O作OE⊥CD;∵此多边形是正六边形,∴∠COD==60°;∵OC=OD,∴△COD是等边三角形,∴OE=CE•tan60°=×=4cm,∴S△OCD=CD•OE=×8×4=16cm2.∴S正六边形=6S△OCD=6×16=96cm2.【点评】此题比较简单,解答此题的关键是根据题意画出图形,把正六边形的面积化为求三角形的面积解答.18.(5分)(2017•毕节市)如图,已知一次函数y=kx﹣3(k≠0)的图象与x轴,y轴分别交于A,B两点,与反比例函数y=(x>0)交于C点,且AB=AC,则k的值为.【分析】作CD⊥x轴于D,则OB∥CD,易得△AOB∽△ADC,根据相似三角形的性质得出OB=CD=3,根据图象上的点满足函数解析式,把C点纵坐标代入反比例函数解析式,可得横坐标;根据待定系数法,可得一次函数的解析式.【解答】解:作CD⊥x轴于D,则OB∥CD,∴△AOB∽△ADC,∴=,∵AB=AC,∴OB=CD,由直线y=kx﹣3(k≠0)可知B(0,﹣3),∴OB=3,∴CD=3,把y=3代入y=(x>0)解得,x=4,∴C(4,3),代入y=kx﹣3(k≠0)得,3=4k﹣3,解得k=,故答案为.【点评】本题考查了反比例函数与一次函数的交点问题,图象上的点满足函数解析式,求得C点的坐标是解题的关键.19.(5分)(2017•毕节市)记录某足球队全年比赛结果(“胜”、“负”、“平”)的条形统计图和扇形统计图(不完整)如下:根据图中信息,该足球队全年比赛胜了27场.【分析】根据统计图中的数据可以求得比赛总场数,从而可以求得足球队全年比赛胜的场数.【解答】解:由统计图可得,比赛场数为:10÷20%=50,胜的场数为:50×(1﹣26%﹣20%)=50×54%=27,故答案为:27.【点评】本题考查条形统计图、扇形统计图,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20.(5分)(2017•毕节市)观察下列运算过程:计算:1+2+22+ (210)解:设S=1+2+22+…+210,①①×2得2S=2+22+23+…+211,②②﹣①得S=211﹣1.所以,1+2+22+…+210=211﹣1运用上面的计算方法计算:1+3+32+…+32017=.【分析】令s=1+3+32+33+…+32017,然后在等式的两边同时乘以3,接下来,依据材料中的方程进行计算即可.【解答】解:令s=1+3+32+33+…+32017等式两边同时乘以3得:3s=3+32+33+…+32018两式相减得:2s=32018﹣1,∴s=,故答案为:.【点评】本题主要考查的是数字的变化规律,依据材料找出解决问题的方法和步骤是解题的关键.三、解答题(本大题共7小题,各题分值见题号后,共80分.请解答在答题卡相应题号后,应写出必要的文字说明、证明过程或演算步骤)21.(8分)(2017•毕节市)计算:(﹣)﹣2+(π﹣)0﹣|﹣|+tan60°+(﹣1)2017.【分析】先依据负整数指数幂的性质、零指数幂的性质、绝对值的性质、特殊锐角三角函数值、有理数的乘方法则进行化简,最后依据实数的加减法则计算即可.【解答】解:原式=+1+﹣+﹣1=3+1+﹣+﹣1=3+.【点评】本题主要考查的是实数的运算,熟练掌握相关法则是解题的关键.22.(8分)(2017•毕节市)先化简,再求值:(+)÷,且x 为满足﹣3<x<2的整数.【分析】首先化简(+)÷,然后根据x为满足﹣3<x<2的整数,求出x的值,再根据x的取值范围,求出算式的值是多少即可.【解答】解:(+)÷=[+]×x=(+)×x=2x﹣3∵x为满足﹣3<x<2的整数,∴x=﹣2,﹣1,0,1,∵x要使原分式有意义,∴x≠﹣2,0,1,∴x=﹣1,当x=﹣1时,原式=2×(﹣1)﹣3=﹣5【点评】此题主要考查了分式的化简求值问题,要熟练掌握,注意先把分式化简后,再把分式中未知数对应的值代入求出分式的值.23.(10分)(2017•毕节市)由于只有1张市运动会开幕式的门票,小王和小张都想去,两人商量采取转转盘(如图,转盘盘面被分为面积相等,且标有数字1,2,3,4的4个扇形区域)的游戏方式决定谁胜谁去观看.规则如下:两人各转动转盘一次,当转盘指针停止,如两次指针对应盘面数字都是奇数,则小王胜;如两次指针对应盘面数字都是偶数,则小张胜;如两次指针对应盘面数字是一奇一偶,视为平局.若为平局,继续上述游戏,直至分出胜负.如果小王和小张按上述规则各转动转盘一次,则(1)小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图的方法说明理由.【分析】(1)根据概率公式直接计算即可;(2)列表得出所有等可能的情况数,找出两指针所指数字都是偶数或都是奇数的概率即可得知该游戏是否公平.【解答】解:(1)∵转盘的4个等分区域内只有1,3两个奇数,∴小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率==;(2)列表如下:1234 1(1,1)(1,2)(1,3)(1,4)2(2,1)(2,2)(2,3)(2,4)3(3,1)(3,2)(3,3)(3,4)4(4,1)(4,2)(4,3)(4,4)所有等可能的情况有16种,其中两指针所指数字数字都是偶数或都是奇数的都是4种,∴P(小王胜)==,P(小张胜)==,∴游戏公平.【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.24.(12分)(2017•毕节市)如图,在▱ABCD中过点A作AE⊥DC,垂足为E,连接BE,F为BE上一点,且∠AFE=∠D.(1)求证:△ABF∽△BEC;(2)若AD=5,AB=8,sinD=,求AF的长.【分析】(1)由平行四边形的性质得出AB∥CD,AD∥BC,AD=BC,得出∠D+∠C=180°,∠ABF=∠BEC,证出∠C=∠AFB,即可得出结论;(2)由勾股定理求出BE,由三角函数求出AE,再由相似三角形的性质求出AF 的长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,AD=BC,∴∠D+∠C=180°,∠ABF=∠BEC,∵∠AFB+∠AFE=180°,∴∠C=∠AFB,∴△ABF∽△BEC;(2)解:∵AE⊥DC,AB∥DC,∴∠AED=∠BAE=90°,在Rt△ABE中,根据勾股定理得:BE===4,在Rt△ADE中,AE=AD•sinD=5×=4,∵BC=AD=5,由(1)得:△ABF∽△BEC,∴,即,解得:AF=2.【点评】此题考查了相似三角形的判定与性质,以及平行四边形的性质,熟练掌握相似三角形的判定与性质是解本题的关键.25.(12分)(2017•毕节市)某同学准备购买笔和本子送给农村希望小学的同学,在市场上了解到某种本子的单价比某种笔的单价少4元,且用30元买这种本子的数量与用50元买这种笔的数量相同.(1)求这种笔和本子的单价;(2)该同学打算用自己的100元压岁钱购买这种笔和本子,计划100元刚好用完,并且笔和本子都买,请列出所有购买方案.【分析】(1)首先设这种笔单价为x元,则本子单价为(x﹣4)元,根据题意可得等量关系:30元买这种本子的数量=50元买这种笔的数量,由等量关系可得方程=,再解方程可得答案;(2)设恰好用完100元,可购买这种笔m支和购买本子n本,根据题意可得这种笔的单价×这种笔的支数m+本子的单价×本子的本数n=1000,再求出整数解即可.【解答】解:(1)设这种笔单价为x元,则本子单价为(x﹣4)元,由题意得:=,解得:x=10,经检验:x=10是原分式方程的解,则x﹣4=6.答:这种笔单价为10元,则本子单价为6元;(2)设恰好用完100元,可购买这种笔m支和购买本子n本,由题意得:10m+6n=100,整理得:m=10﹣n,∵m、n都是正整数,∴①n=5时,m=7,②n=10时,m=4,③n=15,m=1;∴有三种方案:①购买这种笔7支,购买本子5本;②购买这种笔4支,购买本子10本;③购买这种笔1支,购买本子15本.【点评】此题主要考查了分式方程和二元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.26.(14分)(2017•毕节市)如图,已知⊙O的直径CD=6,A,B为圆周上两点,且四边形OABC是平行四边形,过A点作直线EF∥BD,分别交CD,CB的延长线于点E,F,AO与BD交于G点.(1)求证:EF是⊙O的切线;(2)求AE的长.【分析】(1)利用圆周角定理得到∠DBC=90°,再利用平行四边形的性质得AO ∥BC,所以BD⊥OA,加上EF∥BD,所以OA⊥EF,于是根据切线的判定定理可得到EF是⊙O的切线;(2)连接OB,如图,利用平行四边形的性质得OA=BC,则OB=OC=BC,于是可判断△OBC为等边三角形,所以∠C=60°,易得∠AOE=∠C=60°,然后在Rt△OAE 中利用正切的定义可求出AE的长.【解答】(1)证明:∵CD为直径,∴∠DBC=90°,∴BD⊥BC,∵四边形OABC是平行四边形,∴AO∥BC,∴BD⊥OA,∵EF∥BD,∴OA⊥EF,∴EF是⊙O的切线;(2)解:连接OB,如图,∵四边形OABC是平行四边形,∴OA=BC,而OB=OC=OA,∴OB=OC=BC,∴△OBC为等边三角形,∴∠C=60°,∴∠AOE=∠C=60°,在Rt△OAE中,∵tan∠AOE=,∴AE=3tan60°=3.【点评】本题考查了切线的判定与性质:圆的切线垂直于经过切点的半径;经过半径的外端且垂直于这条半径的直线是圆的切线.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;也考查了平行四边形的性质和解直角三角形.27.(16分)(2017•毕节市)如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B(4,0),C(0,﹣4)三点,点P是直线BC下方抛物线上一动点.(1)求这个二次函数的解析式;(2)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;(3)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC 的最大面积.【分析】(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)由题意可知点P在线段OC的垂直平分线上,则可求得P点纵坐标,代入抛物线解析式可求得P点坐标;(3)过P作PE⊥x轴,交x轴于点E,交直线BC于点F,用P点坐标可表示出PF的长,则可表示出△PBC的面积,利用二次函数的性质可求得△PBC面积的最大值及P点的坐标.【解答】解:(1)设抛物线解析式为y=ax2+bx+c,把A、B、C三点坐标代入可得,解得,∴抛物线解析式为y=x2﹣3x﹣4;(2)作OC的垂直平分线DP,交OC于点D,交BC下方抛物线于点P,如图1,∴PO=PD,此时P点即为满足条件的点,∵C(0,﹣4),∴D(0,﹣2),∴P点纵坐标为﹣2,代入抛物线解析式可得x2﹣3x﹣4=﹣2,解得x=(小于0,舍去)或x=,∴存在满足条件的P点,其坐标为(,﹣2);(3)∵点P在抛物线上,∴可设P(t,t2﹣3t﹣4),过P作PE⊥x轴于点E,交直线BC于点F,如图2,∵B(4,0),C(0,﹣4),∴直线BC解析式为y=x﹣4,∴F(t,t﹣4),∴PF=(t﹣4)﹣(t2﹣3t﹣4)=﹣t2+4t,∴S△PBC =S△PFC+S△PFB=PF•OE+PF•BE=PF•(OE+BE)=PF•OB=(﹣t2+4t)×4=﹣2(t﹣2)2+8,∴当t=2时,S△PBC最大值为8,此时t2﹣3t﹣4=﹣6,∴当P点坐标为(2,﹣6)时,△PBC的最大面积为8.【点评】本题为二次函数的综合应用,涉及待定系数法、等腰三角形的性质、二次函数的性质、三角形的面积、方程思想等知识.在(1)中注意待定系数法的应用,在(2)中确定出P点的位置是解题的关键,在(3)中用P点坐标表示出△PBC的面积是解题的关键.本题考查知识点较多,综合性较强,难度适中.。

相关文档
最新文档