树和二叉树
第7章-树和二叉树第2讲-二叉树的概念
第一层
树的特 点?
第二层 第三层 第四层
复习:二、树的基本术语
1.结点A、D的度?树的度? 2;3;3; 2.根结点?分支结点?叶子结点? A;BCDE;GHIJF;
在二叉链中,空指针的个数?
b A
B∧
C
∧D
∧E∧
∧F∧
∧G∧
n个结点 2n个指针域 分支数为n-1 非空指针域有n-1个 空指针域个数 = 2n-(n-1) = n+1
n=7 空指针域个数=8
39/10
40/10
二叉树
当n=3,结果为ห้องสมุดไป่ตู้。
第n个Catalan数
41/23
有n个结点并且高度为n的不同形态的二叉树个数是多少? 该二叉树:有n层,每层一个结点,该结点可以
43/23
结点个数为n,树形可以唯一确定 叶子结点个数为n0,树形不能唯一确定 n为奇数时,n1=0; n为偶数时,n1=1。 n0=n2+1 高度h= log2(n+1),是n个结点高度最小的二叉树
44/23
含有60个叶子结点的二叉树的最小高度是多少?
在该二叉树中,n0=60,n2=n0-1=59,n=n0+n1+n2=119+n1。 当n1=0且为完全二叉树时高度最小。 此时高度h=log2(n+1)= log2120=7。
作为双亲结点的左孩子,也可以作为右孩子 这样的二叉树的个数=1×2×…×2=2n-1。
例如,当n=3时有22=4个这样的二叉树。
树和二叉树 PPT课件
C
E
D
F
C
D
C
D
F
E F 二叉链表
E
二叉树
三叉链表
三叉链表的静态结构
root data parent lchild rchild 0 1 2 3 4 5 A B C D E F -1 0 1 1 3 3 1 2 -1 4 -1 -1 -1 3 -1 5 -1 -1
A
B C E D F
0
1 3 7 8 9 4 5
2 6
4. 二叉树的存储结构
顺序表示
1
2 4 5 6 3 7 7 4 8 2 5 9 1 3 6 10 9
8 9 10
1 2 3 4 5 6 7 8 910
完全二叉树 的顺序表示
1 2 3 4 0 5 6 7 8 0 0 0 0 910
一般二叉树 的顺序表示
链表表示
第六章 树和二叉树
1. 2. 3. 4. 5. 6.
树的定义和基本术语 二叉树 遍历二叉树与线索二叉树 树与森林 赫夫曼树 及其应用 二叉树的计数
6.1 树的定义和基本术语
树的定义
树是由 n (n 0) 个结点组成的有限集合。如果 n = 0, 称为空树;如果 n > 0,则 有且仅有一个特定的称之为根(Root)的结点,它只有直 接后继,但没有直接前驱; 当n > 1,除根以外的其它结点划分为 m (m >0) 个互不 相交的有限集 T1, T2 ,…, Tm,其中每个集合Ti本身又是一 棵树,并且称为根的子树(SubTree)。
特点
每个结点至多只有两棵非空子树(二叉树中 不存在度大于2的结点)
2.五种形态
说明树与二叉树的主要区别
说明树与二叉树的主要区别摘要:一、引言二、树与二叉树的定义及基本概念1.树的定义及特点2.二叉树的定义及特点三、树与二叉树的主要区别1.节点数量的限定2.节点连接方式的差异3.遍历方式的差异四、实例分析1.满二叉树与满树的对比2.完全二叉树与完全树的对比五、总结与展望正文:一、引言在计算机科学中,树和二叉树是广泛应用于数据结构和组织的重要概念。
尽管它们在某些方面具有相似之处,但它们之间仍存在显著差异。
本文将详细介绍树与二叉树的主要区别,以帮助读者更好地理解这两种数据结构。
二、树与二叉树的定义及基本概念1.树的定义及特点树(Tree)是一种非线性的数据结构,它由若干个节点组成,这些节点通过边连接在一起。
树中最顶层的节点称为根节点,最底层的节点称为叶节点,中间层节点称为内部节点。
树具有以下特点:(1)只有一个根节点。
(2)每个节点最多有若干个子节点,最少有一个子节点(除了根节点)。
(3)节点之间的连接顺序呈层次结构。
2.二叉树的定义及特点二叉树(Binary Tree)是一种特殊的树结构,其中每个节点最多有两个子节点,通常称为左子节点和右子节点。
根据这个定义,二叉树可以进一步细分为满二叉树、完全二叉树和不完全二叉树等。
二叉树具有以下特点:(1)每个节点最多有两个子节点。
(2)节点之间的连接呈二叉树结构。
三、树与二叉树的主要区别1.节点数量的限定树中每个节点可以有任意数量的子节点,而二叉树中每个节点最多有两个子节点。
这是树与二叉树最明显的区别。
2.节点连接方式的差异树中节点之间的连接顺序呈层次结构,呈放射状分布。
而二叉树中节点之间的连接呈二叉树结构,呈线性分布。
3.遍历方式的差异树的遍历方式有前序遍历、中序遍历和后序遍历等。
二叉树的遍历方式有前序遍历、中序遍历和后序遍历等。
不过,二叉树的遍历方式通常与树的遍历方式有所不同。
四、实例分析1.满二叉树与满树的对比满二叉树是一种特殊的二叉树,其每个节点都有两个子节点,且所有叶子节点都在同一层。
树与二叉树h
SBNode nodes[MAXSIZE]; } SBTree;
举例
结点 左子
右子
1
26 34
1
2
6
2
3
4
3
0
4
4
0
0
4
4
0
0
特点:
6
0
0
找子方便,找父 结点不便.
三、二叉链表存储结构
第一层 第二层
( A ( B ( E (K,L),F),C(G),D( H (M),I,J )))
第四层 第三层
二、基本术语
结点:包括一个数据元素及若干个指向其它子树 的分支;例如,A,B,C,D等。
叶结点:无后件结点为叶结点;如K,L,M。 根结点:无前件的结点为根;例如,A结点。
子结点:某结点后件为该结点的子结点;例如,
方法描述: 从根结点a开始访问, 接着访问左子结点b, 最后访问右子结点c。
即:
根
A 访问根结点 B 先序遍历左子树 C 先序遍历右子树
a
左子 右子
bc
二、中序法(InOrder)
方法描述:
从左子结点b开始访问,
接着访问根结点a,
最后访问右子结点c。
即:
根
A 中序遍历左子树 B 访问根结点 C 中序遍历右子树
计算机学院
自动化学院
各种社会组织机构;
在计算机领域中,用树表示源
程序的语法结构;
2101 2102
2103
在OS中,文件系统、目录等组
织结构也是用树来表示的。
树和二叉树的知识点总结
树和二叉树的知识点总结一、树的基本概念1. 树的定义:树是一种非线性数据结构,由 n(n>=1)个结点组成的有限集合。
对于每个非终端节点,都有一个被称为根的结点,且除根节点外,其他结点可以分为 m(m>=0)个互不相交的子集合,而每个子集合本身又是一个树。
2. 树的基本特点:树是一种分层数据的抽象模型,具有层级关系的数据结构。
树的结点包括根结点、子节点、叶子结点、父节点等。
3. 树的术语解释:树的根节点是树的顶端结点,没有父节点;子节点是一个结点向下连接的结点;叶子结点是没有子节点的结点;父节点是有一个或多个子节点的结点。
二、树的分类1. 二叉树:一种特殊的树,每个结点最多有两个子结点,分别为左子结点和右子结点。
二叉树的子树有左子树和右子树,必须遵循左子树 < 根节点 < 右子树的顺序。
2. 平衡树:每个结点的左子树和右子树的高度之差不能超过1的二叉树。
3. 满二叉树:每个结点要么没有子节点,要么有两个子节点的二叉树。
4. 完全二叉树:除了最底层,所有层的结点数都达到最大,并且最底层的结点都依次从左到右排列。
三、二叉树的基本概念1. 二叉树的特点:每个结点最多有两个子结点,分别为左子结点和右子结点。
二叉树的子树都遵循左子树 < 根节点 < 右子树的顺序。
2. 二叉树的遍历:分为前序遍历、中序遍历和后序遍历。
前序遍历先访问根节点,再递归左右子树;中序遍历先递归左子树,再访问根节点,最后递归右子树;后序遍历先递归左右子树,最后访问根节点。
3. 二叉树的存储:二叉树的存储方式可以采用链式存储和顺序存储。
链式存储是通过结点间的指针链接,顺序存储是通过数组或列表进行存储。
四、二叉树的应用1. 二叉搜索树:是一种特殊的二叉树结构,对于任意节点,其左子树上的结点值都小于该节点的值,右子树上的结点值都大于该节点的值。
2. 堆:是一种特殊的完全二叉树,分为最大堆和最小堆。
最大堆的每个结点的值都大于或等于其子节点的值,最小堆的每个结点的值都小于或等于其子节点的值。
树和二叉树的基本知识
树和二叉树的基本知识Jsoi2006春季函授 B层次讲义(3)常州市第一中学林厚从 1/53树和二叉树的基本知识树是一种非线性的数据结构,用它能很好地描述有分支和层次特性的数据集合。
树型结构在现实世界中广泛存在,如把一个家族看作为一棵树,树中的结点为家族成员的姓名及相关信息,树中的关系为父子关系,即父亲是儿子的前驱,儿子是父亲的后继;把一个国家或一个地区的各级行政区划分看作为一棵树,树中的结点为行政区的名称及相关信息,树中的关系为上下级关系,如一个城市包含有若干个区,每个区又包含有若干个街道,每个街道又包含有若干个居委会;把一本书的结构看作是一棵树,树中的结点为书、章、节的名称及相关信息,树中的关系为包含关系。
树在计算机领域中也有广泛应用,如在编译系统中,用树表示源程序的语法结构;在数据库系统中,树型结构是数据库层次模型的基础,也是各种索引和目录的主要组织形式。
在许多算法中,常用树型结构描述问题的求解过程、所有解的状态和求解的对策等。
在树型结构中,二叉树是最常用的结构,它的分支个数确定,又可以为空,具有良好的递归特性,特别适宜于程序设计,因此我们常常将一般树型结构转换成二叉树进行处理。
第一节树一、树的定义一棵树(tree)是由n(n>0)个元素组成的有限集合,其中:1.每个元素称为结点(node);2.有一个特定的结点,称为根结点或树根(root);3.除根结点外,其余结点被分成m(m>=0)个互不相交的有限集合T0,T1,T2,……Tm-1,而每一个子集Ti又都是一棵树(称为原树的子树subtree)。
图1图1就是一棵典型的树结构。
从树的定义可以看出:1.树是递归定义的,这就决定了树的操作和应用大都是采用递归思想来解决;2.一棵树中至少有1个结点,这个结点就是根结点,如上图中的结点1;3.只有根结点没有前趋结点,其余每个结点都有唯一的一个前趋结点;4.所有结点都可以有0或多个后继结点;二、树的基本概念下面以图1为例给出树结构中的一些基本概念:1.一个结点的子树个数,称为这个结点的度(degree),如结点1的度为3,结点3的度为0。
第6章树和二叉树
9
6.1.4 树的存储结构
3.孩子兄弟表示法 孩子兄弟表示法 在结点中设置两个指针域, 在结点中设置两个指针域,一个指针域指向该结 点的第一个孩子,另一个指针域指向其右兄弟。 点的第一个孩子,另一个指针域指向其右兄弟。
2
6.1.1树的定义 树的定义
结点的度:结点所拥有子树的个数称为结点的度。 结点的度:结点所拥有子树的个数称为结点的度。 子树 称为结点的度 树的度:树中所有结点的度的最大值称为树的度。 最大值称为树的度 树的度:树中所有结点的度的最大值称为树的度。 叶结点:度为零的结点称为叶结点。也称终端结点 终端结点或 叶结点:度为零的结点称为叶结点。也称终端结点或叶 子 分支结点:度不为零的结点称为分支结点。也称非终端 分支结点:度不为零的结点称为分支结点。也称非终端 结点。除根结点以外,分支结点也称为内部结点。 结点。除根结点以外,分支结点也称为内部结点。 孩子结点和双亲结点: 孩子结点和双亲结点:树中一个结点的子树的根结点称 为孩子结点。该结点就称为孩子结点的双亲结点。 为孩子结点。该结点就称为孩子结点的双亲结点。 兄弟结点:具有同一双亲的孩子结点互为兄弟结点。 兄弟结点:具有同一双亲的孩子结点互为兄弟结点。 结点的祖先:从根到该结点所经分支上的所有结点, 结点的祖先:从根到该结点所经分支上的所有结点,称 为结点的祖先。 为结点的祖先。
17
6.2.2 二叉树的性质
性质4 具有n( 性质 具有 (n>0)个结点的完全二叉树的深度 )个结点的完全二叉树的深度h= log 2 n + 1 证明: 证明: 根据完全二叉树的定义可知深度为h-1层及以上的结点构成 根据完全二叉树的定义可知深度为 层及以上的结点构成 满二叉树,因此由性质2得深度为 得深度为h的完全二叉树满足 满二叉树,因此由性质 得深度为 的完全二叉树满足 n>2h-1-1和n≤2h-1 和 整理后得到 2h-1≤n<2h 不等式两边取对数, 不等式两边取对数,得 h-1≤log2n<h 由于h为正整数 为正整数, 由于 为正整数,因此 h= log 2 n + 1
数据结构树和二叉树知识点总结
数据结构树和二叉树知识点总结
1.树的概念:树是一种非线性的数据结构,由节点和边构成,每个节点只能有一个父节点,但可以有多个子节点。
2. 二叉树的概念:二叉树是一种特殊的树结构,每个节点最多只有两个子节点,一个是左子节点,一个是右子节点。
3. 二叉树的遍历:二叉树的遍历分为前序遍历、中序遍历和后序遍历三种方式。
前序遍历是先访问根节点,再访问左子树,最后访问右子树;中序遍历是先访问左子树,再访问根节点,最后访问右子树;后序遍历是先访问左子树,再访问右子树,最后访问根节点。
4. 二叉搜索树:二叉搜索树是一种特殊的二叉树,它满足左子树中所有节点的值均小于根节点的值,右子树中所有节点的值均大于根节点的值。
因此,二叉搜索树的中序遍历是一个有序序列。
5. 平衡二叉树:平衡二叉树是一种特殊的二叉搜索树,它的左子树和右子树的高度差不超过1。
平衡二叉树的插入和删除操作可以保证树的平衡性,从而提高树的查询效率。
6. 堆:堆是一种特殊的树结构,它分为最大堆和最小堆两种。
最大堆的每个节点的值都大于等于其子节点的值,最小堆的每个节点的值都小于等于其子节点的值。
堆常用于排序和优先队列。
7. Trie树:Trie树是一种特殊的树结构,它用于字符串的匹配和检索。
Trie树的每个节点代表一个字符串的前缀,从根节点到叶子节点的路径组成一个完整的字符串。
以上是数据结构树和二叉树的一些基本知识点总结,对于深入学
习数据结构和算法有很大的帮助。
自考软件基础(数据结构--树与二叉树)
B
C
D
E
F
G
H
I
J
第 5 /209页
第二节 二叉树
一、定义
南昌大学
二叉树是一种重要的树形结构,它的特点是:二叉树可以为空(节点个
数为0),任何一个节点的度都小于或等于2,并且,子树有左、右之分,
其次序不能任意颠倒。 二叉树有5种基本形态,如图10-2所示。
第 6 /209页
第二节 二叉树
南昌大学
struct node
{ datatype data; struct node *Lchild,*rchild:
};
第 15 /209页
第二节 二叉树
南昌大学
例10-5 写出图10-8a所示二叉树的链式存储结构。其链式结构如图10-8b 所示。可以看出:具有n个节点的二叉树链式存储共有2n个链,其中只 有n-1个用来存放该节点的左、右孩子,其余的n +1个指针域为空。
解:第一步:由后序遍历结果确定整个二叉树根为A,由中序结果确定
A的左、右子树。 后序遍历结果: 中序遍历结果:
第 24 /209页
第三节 二叉树的遍历
第二步:确定A的左子树。 1)后序遍历结果:
南昌大学
中序遍历结果:
2)确定B的右子树: ①后序遍历结果:
第 25 /209页
第三节 二叉树的遍历
②中序遍历结果:
南昌大学
第 9 /209页
第二节 二叉树
下面介绍两种特殊的二叉树。
南昌大学
(1) 满二叉树指深度为k,且有2k-1个节点的二叉树。或者说除叶子节点外,
其它节点的度都为2的二叉树。
(2) 完全二叉树一个满二叉树的最下层从右向左连续缺少n (n>=0)个节点 的二叉树。 图10-3为满二叉树和完全二叉树示例。
第六章-树和二叉树
之
树 和 二 叉 树 13
1 2 3 A B C
4 5 6 7 0 D E F
8 0
9 10 0 G
¾ 二叉树顺序存储的算法描述
数 据 结 构
¾ 初始化二叉树
之
树 和 二 叉 树 14
#define Max_Size 100 typedef int TElemType; typedef TElemType SqBT[Max_Size+1]; void InitBT(SqBT bt){//设置空树 int i; for(i=1;i<=Max_Size;i++) bt[i]=0; }
数 据 结 构
之
树 和 二 叉 树 19
¾ 后序遍历顺序二叉树算法 void PostBT(SqBT bt,int i){ if(i>Max_Size||!bt[i]) return; PostBT(bt,2*i); PostBT(bt,2*i+1); printf("%3d ",bt[i]); }
数 据 结 构
之
树 和 二 叉 树 4
5. 孩子结点、双亲结点、兄弟结点、堂兄弟 结点、祖先结点、子孙结点…… 6. 结点的层次从根开始,根为第一层,根的 孩子为第二层;若某结点在第L层,则其 子树的根就在第L+1层。 7. 树的深度或高度:树中结点的最大层次。 8. 有序树:如果将树中结点的各子树看成是 从左至右有次序的;反之,则是无序树。 9. 森林:是m棵互不相交的树的集合。
数 据 结 构
之
树 和 二 叉 树 25
¾ 打印一维数组 void printSq(SqBT bt){ int i; printf("\nSeqArray:"); for(i=1;i<=Max_Size;i++) printf("%3d ",bt[i]); }
数据结构PPT(树和二叉树)
徽 理
第6章 树和二叉树
工
大 本章学习导读
学
树型结构是一类重要的非线性结构。它的特点是结点之
间有分支,并具有明显的层次关系的结构。树在计算机领
域中有着广泛的应用,例如在编译程序中,用树来表示源
程序的语法结构;在数据库系统中,可用树来组织信息;
在分析算法的行为时,可用树来描述其执行过程。
本章重点讨论二叉树的存储表示及其各种运算,并研究
假设对所有j, 1≤j﹤i,命题成立,即第j层上至多有2 j-1 个
结点。
由归纳假设第i-1 层上至多有 2i -2个结点。
由于二叉树的每个结点的度至多为2,故在第i层上的最大结
点数为第i-1层上的最大结点数的2倍,即2×2i -2= 2 i-1。
安
徽 理
6.2.2 二叉树的性质
工
大 学
性质2 深度为 k 的二叉树至多有 2 k-1个结点(k ≥1)。
一般树和森林与二叉树的转换关系,最后介绍树的应用实
例。
安
徽 理
6.1 树的定义和基本术语
工
大 学
❖ 什么是树?树是由 n (n ≥ 0) 个结点的有限集合。如果 n
= 0,称为空树;如果 n > 0,则
▪ 有且仅有一个特定的称之为根(Root)的结点,它只有直
接后继,但没有直接前驱;
▪ 当n > 1,除根以外的其它结点划分为 m (m >0) 个互不
相交的有限集 T1, T2 ,…, Tm,其中每个集合本身又是一棵 树,并且称为根的子树(SubTree)。
安
徽 理
树的示例
A
工
B
C
D
大
学
E
第5章 树和二叉树
B A
C
D
E
F
G
H
I
J
K
L
T1
T2
M
2015年10月20日
T3
树的其它表示方式
A D K L F C G E B H M J I
A
A B E K L F C G
B C D
嵌套集合
E
D H M
F
G
H
I
J
I J
K
L
M
凹入表示
(A(B(E(K,L),F),C(G),D(H(M),I,J)))
广义表
2015年10月20日
北京林业大学信息学院
2015年10月20日
二叉树的链式存储
PARENT
lchild
data
rchild
DATA
lchild
data
parent rchild
LCHILD
RCHILD
北京林业大学信息学院
2015年10月20日
二叉链表
A A ^ B D lchild data rchild
B
C
E
G
F
二叉树的五种不同形态
2015年10月20日
练习
具有3个结点的二叉树可能有几种不同形态?普通树呢? 5种/2种
2015年10月20日
二叉树的抽象数据类型定义
ADT BinaryTree{ 数据对象D: D是具有相同特性的数据元素的集合。 数据关系R: 若D=Φ,则R= Φ ; 若D≠Φ,则R= {H};存在二元关系: ① root 唯一 //关于根的说明 ② Dj∩Dk= Φ //关于子树不相交的说明 ③ …… //关于数据元素的说明 ④ …… //关于左子树和右子树的说明 //至少有20个 基本操作 P: }ADT BinaryTree
常见基本数据结构——树,二叉树,二叉查找树,AVL树
常见基本数据结构——树,⼆叉树,⼆叉查找树,AVL树常见数据结构——树处理⼤量的数据时,链表的线性时间太慢了,不宜使⽤。
在树的数据结构中,其⼤部分的运⾏时间平均为O(logN)。
并且通过对树结构的修改,我们能够保证它的最坏情形下上述的时间界。
树的定义有很多种⽅式。
定义树的⾃然的⽅式是递归的⽅式。
⼀棵树是⼀些节点的集合,这个集合可以是空集,若⾮空集,则⼀棵树是由根节点r以及0个或多个⾮空⼦树T1,T2,T3,......,Tk组成,这些⼦树中每⼀棵的根都有来⾃根r的⼀条有向的边所连接。
从递归的定义中,我们发现⼀棵树是N个节点和N-1条边组成的,每⼀个节点都有⼀条边连接⽗节点,但是根节点除外。
具有相同⽗亲的节点为兄弟,类似的⽅法可以定义祖⽗和孙⼦的关系。
从节点n1到nk的路径定义为节点n1,n2,...,nk的⼀个序列,并且ni是ni+1的⽗亲。
这个路径的长是路径上的边数,即k-1。
每个节点到⾃⼰有⼀条长为0的路径。
⼀棵树从根到叶⼦节点恰好存在⼀条路径。
对于任意的节点ni,ni的深度为从根到ni的唯⼀路径长。
ni的⾼是从ni到⼀⽚叶⼦的最长路径的长。
因此,所有的树叶的⾼度都是0,⼀棵树的⾼等于它的根节点的⾼。
⼀棵树的深度总是等于它最深叶⼦的深度;该深度等于这棵树的⾼度。
树的实现实现树的⼀种⽅法可以是在每⼀个节点除数据外还要有⼀些指针,使得该节点的每⼀个⼉⼦都有⼀个指针指向它。
但是由于每个节点的⼉⼦树可以变化很⼤⽽且事先不知道,故在各个节点建⽴⼦节点的链接是不可⾏的,这样将会浪费⼤量的空间。
实际的做法很简单:将每个节点的所有⼉⼦都放在树节点的链表中。
下⾯是典型的声明:typedef struct TreeNode *PtrToNodestruct TreeNode{ ElementType Element; PtrToNode FirstChild; PtrToNode NextSibling}下⾯是⼉⼦兄弟表⽰法的图⽰:树的遍历及应⽤⼀个常见的使⽤是操作系统中的⽬录结构。
数据结构 第六章 树和二叉树
F
G
H
M
I
J
结点F,G为堂兄弟 结点A是结点F,G的祖先
5
树的基本操作
树的应用很广,应用不同基本操作也不同。下面列举了树的一些基本操作: 1)InitTree(&T); 2)DestroyTree(&T); 3)CreateTree(&T, definition); 4)ClearTree(&T); 5)TreeEmpty(T); 6)TreeDepth(T); 7) Root(T); 8) Value(T, &cur_e); 9) Assign(T, cur_e, value); 10)Paret(T, cur_e); 11)LeftChild(T, cur_e); 12)RightSibling(T, cur_e); 13)InsertChild(&T, &p, i, c); 14)DeleteChild(&T,&p, i); 15)TraverseTree(T, Visit( ));
1
2 4 8 9 10 5 11 12 6 13 14 3 7 15 4 6 2
1
3
5 7
证明:设二叉树中度为1的结点个数为n1 根据二叉树的定义可知,该二叉树的结点数n=n0+n1+n2
又因为在二叉树中,度为0的结点没有孩子,度为1的结点有1 个孩子,度为2的结点有2个结孩子,故该二叉树的孩子结点 数为 n0*0+n1*1+n2*2(分支数) 而一棵二叉树中,除根结点外所有都为孩子结点,故该二叉 树的结点数应为孩子结点数加1即:n=n0*0+n1*1+n2*2+1
文件夹1
文件夹n
第六章 树与二叉树
森林的遍历
(4) 广度优先遍历(层次序 遍历) :
数据结构
若森林F为空,返回; 否则 依次遍历各棵树的根 结点; 依次遍历各棵树根结 点的所有子女; 依次遍历这些子女结 森林的二叉树表示 点的子女结点。
45
二叉树的计数 由二叉树的前序序列和中序序列可唯 一地确定一棵二叉树。例, 前序序列 { ABHFDECKG } 和中序序列 { HBDFAEKCG }, 构造二叉树过程如 下:
三个结点构成的不同的二叉树
8
用二 叉 树 表达实际问题
例2 双人比赛的所有可能的结局
开始
甲
开局连赢两局 或五局三胜
乙
甲
甲 甲 乙
乙
乙 甲 乙 甲 甲 乙
甲
乙 甲
乙
乙
甲
乙甲
乙
甲
乙 甲 乙
二叉树的性质
数据结构
性质1 若二叉树的层次从1开始, 则在二叉树的 第 i 层最多有 2i -1个结点。(i 1) [证明用数学归纳法] 性质2 高度为k的二叉树最多有 2k-1个结点。 (k 0) [证明用求等比级数前k项和的公式]
前序遍历二叉树算法的框架是 若二叉树为空,则空操作; 否则 – 访问根结点 (V); – 前序遍历左子树 (L); – 前序遍历右子树 (R)。
遍历结果 -+a*b-cd/ef
27
数据结构
后序遍历 (Postorder Traversal)
后序遍历二叉树算法的框架是 若二叉树为空,则空操作; 否则 – 后序遍历左子树 (L); – 后序遍历右子树 (R); – 访问根结点 (V)。
数据结构
36
左子女-右兄弟表示法 第一种解决方案
软件技术--树与二叉树
(3 ) 若*p结点的左子树和右子树均不为空。
五、哈夫曼树的应用
1、什么是哈夫曼树
假设有n个权值{w1,w2,…,wn},试构造一棵有n 个叶子结点的二叉树,每个叶子结点带权wi,则其中带 权路径长度WPL最小的二叉树称作最优二叉树或哈夫 曼树。
2、 树的基本术语
结点的度:一个结点拥有的子树数称为该结点的度。 叶子结点:度为0的结点称为叶子(Leaf)或终端结点。 非终端结点:度不为0的结点称为非终端结点或分支结点。除根结 点之外,分支结点也称为内部结点。
树的度:树内各结点的度的最大值称为树的度。 树中结点之间的关系:在描述结点之间的关系时,通常用家族关 系来形象的称呼结点之间的联系。结点的子树的根称为该结点的孩 子(Child),相应的,该结点称为孩子的双亲(Parents)或父结点。 同一个双亲的孩子之间称为兄弟(Sibling)。 结点的层次(Level):一棵树从根开始定义起,根为第一层,根的 孩子为第二层,…,依此类推。若某结点在第i层,则其子树的根就 在第i+1层。其双亲在同一层的结点互为堂兄弟。
(4) 性质4: 具有n个结点的完全二叉树的深度为log2n+1。
3、几种特殊的二叉树
• 满二叉树:深度为K,且存在2K-1个结点的二叉树。 • 完全二叉树:至多只有最下面两层上的结点度数可以小于
2,并且最下层结点都集中在该层最左边的位置。 • 平衡二叉树:或是一棵空树,或是具有下列性质的二叉树:
每次插入一个结点的递归算法
struct node {anytype data; struct node *lchild; struct node *rchild; } *root; void insnode(t,d) struct node *t; anytype d;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
树和二叉树一、下面是有关二叉树的叙述,请判断正误(每小题1分,共10分)(√)1. 若二叉树用二叉链表作存贮结构,则在n个结点的二叉树链表中只有n—1个非空指针域。
(×)2.二叉树中每个结点的两棵子树的高度差等于1。
(√)3.二叉树中每个结点的两棵子树是有序的。
(×)4.二叉树中每个结点有两棵非空子树或有两棵空子树。
(×)5.二叉树中每个结点的关键字值大于其左非空子树(若存在的话)所有结点的关键字值,且小于其右非空子树(若存在的话)所有结点的关键字值。
(应当是二叉排序树的特点)(×)6.二叉树中所有结点个数是2k-1-1,其中k是树的深度。
(应2i-1)(×)7.二叉树中所有结点,如果不存在非空左子树,则不存在非空右子树。
(×)8.对于一棵非空二叉树,它的根结点作为第一层,则它的第i层上最多能有2i—1个结点。
(应2i-1)(√)9.用二叉链表法(link-rlink)存储包含n个结点的二叉树,结点的2n个指针区域中有n+1个为空指针。
(正确。
用二叉链表存储包含n个结点的二叉树,结点共有2n个链域。
由于二叉树中,除根结点外,每一个结点有且仅有一个双亲,所以只有n-1个结点的链域存放指向非空子女结点的指针,还有n+1个空指针。
)即有后继链接的指针仅n-1个。
(√)10.具有12个结点的完全二叉树有5个度为2的结点。
最快方法:用叶子数=[n/2]=6,再求n2=n0-1=5二、填空(每空1分,共15分)1.由3个结点所构成的二叉树有5种形态。
2. 一棵深度为6的满二叉树有n1+n2=0+ n2= n0-1=31 个分支结点和26-1 =32个叶子。
注:满二叉树没有度为1的结点,所以分支结点数就是二度结点数。
3.一棵具有257个结点的完全二叉树,它的深度为9。
(注:用⎣ log2(n) ⎦+1= ⎣ 8.xx ⎦+1=94.设一棵完全二叉树有700个结点,则共有350个叶子结点。
答:最快方法:用叶子数=[n/2]=3505. 设一棵完全二叉树具有1000个结点,则此完全二叉树有500个叶子结点,有499个度为2的结点,有1个结点只有非空左子树,有0个结点只有非空右子树。
答:最快方法:用叶子数=[n/2]=500 ,n2=n0-1=499。
另外,最后一结点为2i属于左叶子,右叶子是空的,所以有1个非空左子树。
完全二叉树的特点决定不可能有左空右不空的情况,所以非空右子树数=0.6.一棵含有n个结点的k叉树,可能达到的最大深度为n,最小深度为2。
答:当k=1(单叉树)时应该最深,深度=n(层);当k=n-1(n-1叉树)时应该最浅,深度=2(层),但不包括n=0或1时的特例情况。
教材答案是“完全k叉树”,未定量。
)7.二叉树的基本组成部分是:根(N)、左子树(L)和右子树(R)。
因而二叉树的遍历次序有六种。
最常用的是三种:前序法(即按N L R次序),后序法(即按L R N次序)和中序法(也称对称序法,即按L N R次序)。
这三种方法相互之间有关联。
若已知一棵二叉树的前序序列是BEFCGDH,中序序列是FEBGCHD,则它的后序序列必是 F E G H D C B。
解:法1:先由已知条件画图,再后序遍历得到结果;法2:不画图也能快速得出后序序列,只要找到根的位置特征。
由前序先确定root,由中序先确定左子树。
例如,前序遍历BEFCGDH中,根结点在最前面,是B;则后序遍历中B一定在最后面。
法3:递归计算。
如B在前序序列中第一,中序中在中间(可知左右子树上有哪些元素),则在后序中必为最后。
如法对B的左右子树同样处理,则问题得解。
8.中序遍历的递归算法平均空间复杂度为O(n)。
答:即递归最大嵌套层数,即栈的占用单元数。
精确值应为树的深度k+1,包括叶子的空域也递归了一次。
9.用5个权值{3, 2, 4, 5, 1}构造的哈夫曼(Huffman)树的带权路径长度是33 。
解:先构造哈夫曼树,得到各叶子的路径长度之后便可求出WPL=(4+5+3)×2+(1+2)×3=33(15)(9) (6) (注:两个合并值先后不同会导致编码不同,即哈夫曼编码不唯一)4 5 3 (3) (注:合并值应排在叶子值之后)1 2(注:原题为选择题:A.32 B.33 C.34 D.15)三、单项选择题(每小题1分,共11分)(C)1.不含任何结点的空树。
(A)是一棵树; (B)是一棵二叉树;(C)是一棵树也是一棵二叉树; (D)既不是树也不是二叉树答:以前的标答是B,因为那时树的定义是n≥1(C)2.二叉树是非线性数据结构,所以。
(A)它不能用顺序存储结构存储; (B)它不能用链式存储结构存储;(C)顺序存储结构和链式存储结构都能存储; (D)顺序存储结构和链式存储结构都不能使用(C)3. 〖01年计算机研题〗具有n(n>0)个结点的完全二叉树的深度为。
(A) ⎡log2(n)⎤(B) ⎣ log2(n)⎦(C) ⎣ log2(n) ⎦+1 (D) ⎡log2(n)+1⎤注1:⎡x ⎤表示不小于x的最小整数;⎣ x⎦表示不大于x的最大整数,它们与[ ]含义不同!注2:选(A)是错误的。
例如当n为2的整数幂时就会少算一层。
似乎⎣ log2(n) +1⎦是对的?(A)4.把一棵树转换为二叉树后,这棵二叉树的形态是。
(A)唯一的(B)有多种(C)有多种,但根结点都没有左孩子(D)有多种,但根结点都没有右孩子5. 从供选择的答案中,选出应填入下面叙述?内的最确切的解答,把相应编号写在答卷的对应栏内。
树是结点的有限集合,它A 根结点,记为T。
其余的结点分成为m(m≥0)个 B的集合T1,T2,…,Tm,每个集合又都是树,此时结点T称为T i的父结点,T i称为T的子结点(1≤i ≤m)。
一个结点的子结点个数为该结点的 C 。
供选择的答案A:①有0个或1个②有0个或多个③有且只有1个④有1个或1个以上B: ①互不相交②允许相交③允许叶结点相交④允许树枝结点相交C : ①权 ② 维数 ③ 次数(或度) ④ 序 答案:ABC =1,1,36. 从供选择的答案中,选出应填入下面叙述 ? 内的最确切的解答,把相应编号写在答卷的对应栏内。
二叉树 A 。
在完全的二叉树中,若一个结点没有 B ,则它必定是叶结点。
每棵树都能惟一地转换成与它对应的二叉树。
由树转换成的二叉树里,一个结点N 的左子女是N 在原树里对应结点的 C ,而N 的右子女是它在原树里对应结点的 D 。
供选择的答案A : ①是特殊的树 ②不是树的特殊形式 ③是两棵树的总称 ④有是只有二个根结点的树形结构 B: ①左子结点 ② 右子结点 ③ 左子结点或者没有右子结点 ④ 兄弟C ~D : ①最左子结点 ② 最右子结点 ③ 最邻近的右兄弟 ④ 最邻近的左兄弟 ⑤ 最左的兄弟 ⑥ 最右的兄弟答案:A= B= C= D = 答案:ABCDE =2,1,1,3四、简答题(每小题4分,共20分)1. 一棵度为2的树与一棵二叉树有何区别?答:度为2的树从形式上看与二叉树很相似,但它的子树是无序的,而二叉树是有序的。
即,在一般树中若某结点只有一个孩子,就无需区分其左右次序,而在二叉树中即使是一个孩子也有左右之分。
2.设如下图所示的二叉树B 的存储结构为二叉链表,root 为根指针,结点结构为:(lchild,data,rchild )。
其中lchild ,rchild 分别为指向左右孩子的指针,data 为字符型,root为根指针,试回答下列问题:1. 对下列二叉树B ,执行下列算法traversal(root),试指出其输出结果;2. 假定二叉树B 共有n 个结点,试分析算法traversal(root)的时间复杂度。
(共8分)二叉树B解:这是“先根再左再根再右”,比前序遍历多打印各结点一次,输出结果为:A B C C E E B A D F F D G G特点:①每个结点肯定都会被打印两次;②但出现的顺序不同,其规律是:凡是有左子树的结点,必间隔左子树的全部结点后再重复出现;如A ,B ,D 等结点。
反之马上就会重复出现。
如C ,E ,F ,G 等结点。
时间复杂度以访问结点的次数为主,精确值为2*n ,时间渐近度为O(n). 3.给定二叉树的两种遍历序列,分别是:前序遍历序列:D ,A ,C ,E ,B ,H ,F ,G ,I ; 中序遍历序列:D ,C ,B ,E ,H ,A ,G ,I ,F , 试画出二叉树B ,并简述由任意二叉树B 的前序遍历序列和中序遍历序列求二叉树B 的思想方法。
解:方法是:由前序先确定root ,由中序可确定root 的左、右子树。
然后由其左子树的元素集合和右子树的集合对应前序遍历序列中的元素集合,可继续确定root 的左右孩子。
将他们分别作为新的root ,不断递归,则所有元素都将被唯一确定,问题得解。
DACFE GB H I4.给定如图所示二叉树T,请画出与其对应的中序线索二叉树。
解:要遵循中序遍历的轨迹来画出每个前驱和后继。
中序遍历序列:55 40 25 60 28 08 33 542833五、阅读分析题(每题5分,共20分)1.试写出如图所示的二叉树分别按先序、中序、后序遍历时得到的结点序列。
答:DLR:A B D F J G K C E H I L MLDR: B F J D G K A C H E L I MLRD:J F K G D B H L M I E C A2.把如图所示的树转化成二叉树。
答:注意全部兄弟之间都要连线(包括度为2的兄弟),并注意原有连线结点一律归入左子树,新添连线结点一律归入右子树。
ABE CK F H DL G IM J。